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Chapter 8

SPACETIME AS A MEMBRANE
IN A HIGHER-DIMENSIONAL SPACE

When studying dynamics of a system of membranes, as seen from the M-
space point of view, we have arrived in Chapter 5 at a fascinating conclusion
that all that exists in such a world model is a membrane configuration. The
membrane configuration itself is a ‘spacetime’. Without membranes there
is no spacetime. According to our basic assumption, at the fundamental
level we have an M-space — the space of all possible membrane configu-
rations — and nothing else. If the membrane configuration consists of the
membranes of various dimensions n, lower and higher than the dimension
of our observed word (n = 4), then we are left with a model in which our
4-dimensional spacetime is one of those (4-dimensional) membranes (which
I call worldsheets).

What is the space our worldsheet is embedded in? It is just the space
formed by the other n-dimensional (n = 0,1,2,...) extended objects (say
membranes) entering the membrane configuration. If all those other mem-
branes are sufficiently densely packed together, then as an approximation a
concept of a continuous embedding space can be used. Our spacetime can
then be considered as a 4-dimensional worldsheet embedded into a higher-
dimensional space.

8.1. THE BRANE IN A CURVED
EMBEDDING SPACE

We are now going to explore a brane moving in a curved background
embedding space V. Such a brane sweeps an n-dimensional surface which
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I call worldsheet' The dynamical principle governing motion of the brane
requires that its worldsheet is a minimal surface. Hence the action is

In% :/\/ﬁd”m, (8.1)

f = detfw , fw, = aun“ayn”%b. (8.2)

Here 2#, n=0,1,2,...,n — 1, are coordinates on the worldsheet V,,, whilst
n“(x) are the embedding functions. The metric of the embedding space
(from now on also called bulk) is 4, and the induced metric on the world-
sheet is fw-

In this part of the book I shall use the notation which is adapted to
the idea that our world is a brane. Position coordinates in our world are
commonly denoted as z#, p = 0,1,2,...,n — 1, and usually it is assumed
that n = 4 (for good reasons, of course, unless one considers Kaluza—Klein
theories). The notation in (8.1) (8.2) is "the reverse video” of the notation
used so far. The correspondence between the two notations is the following

where

worldsheet coordinates ga, A A xt
embedding space coordinates xH n®
embedding functions XH(EY), XP (D) n*(z")
worldsheet metric Yab s YAB Juv
embedding space metric Juv Yab

Such a reverse notation reflects the change of role given to spacetime. So
far ‘spacetime’ has been associated with the embedding space, whilst the
brane has been an object in spacetime. Now spacetime is associated with
a brane, so spacetime itself is an object in the embedding space?.

For the extended object described by the minimal surface action (8.1)
I use the common name brane. For a more general extended object de-
scribed by a Clifford algebra generalization of the action (8.1) I use the
name membrane (and occasionally also worldsheet, when I wish to stress
that the object of investigation is a direct generalization of the object V,,
described by (8.1) which is now understood as a special kind of (generalized)
worldsheet).

1Usually, when n > 2 such a surface is called a world volume. Here I prefer to retain the name
worldsheet, by which we can vividly imagine a surface in an embedding space.

2Such a distinction is only manifest in the picture in which we already have an effective embedding
space. In a more fundamental picture the embedding space is inseparable from the membrane
configuration, and in general is not a manifold at all.
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Suppose now that the metric of Vi is conformally flat (with 7., being
the Minkowski metric tensor in N-dimensions):

Yab = ¢nab- (83)
Then from (8.2) we have
f;w = ¢0unaaunbnab = ¢ful/ ) (8'4)
f=detf, =¢"detf, =¢"f (8.5)
Fl=wlfl, w=¢"2 (8.6)

Hence the action (8.1) reads

1) = [ wn) yifida, (8.7)

which looks like an action for a brane in a flat embedding space, except for
a function w(n) which depends on the position® 7% in the embedding space
V.

Function w(n) is related to the fixed background metric which is arbitrary
in principle. Let us now assume [88] that w(n) consists of a constant part
wp and a singular part with support on another brane’s worldsheet Vm:

— N — N
w(n) = wo +H/dm:z\/mL¢m”). (8.8)

Here 7%(&) are the embedding functions of the m-dimensional worldsheet
Vpn, f is the determinant of the induced metric on Vj,, and V7] allows for
taking curved coordinates in otherwise flat V.

The action for the brane which sweeps a worldsheet V,, is then given by
(8.7) in which we replace w(n) with the specific expression (8.8):

Iy = /wod"x\/M—l—/i/d"a:dmi\/mméN(ni\/mﬁ). (8.9)

If we take the second brane as dynamical too, then the kinetic term for
7% should be added to (8.9). Hence the total action for both branes is

I[n,n) = /wodnﬂv \/m+/wodmf\/m+n/d"xdmi\/m\/m(w.

(8.10)

3We use here the same symbol ¢ either for position coordinates in Viy or for the embedding
functions n*(z).
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The first two terms are the actions for free branes, whilst the last term
represents the interaction between the two branes. The interaction occurs
when the branes intersect. If we take m = N —n+1 then the intersection of
V,, and V;,, can be a (one-dimensional) line, i.e., a worldline V. In general,
when m = N —n + (p+ 1), the intersection can be a (p + 1)-dimensional
worldsheet representing the motion of a p-brane.

A

Vin

Vn

Figure 8.1. The intersection between two different branes V,, and Vm can be a p-brane

Vo1

In eq. (8.10) we assume contact interaction between the branes (i.e., the
interaction at the intersection). This could be understood by imagining
that gravity decreases so quickly in the transverse direction from the brane
that it can be approximated by a J-function. More about this will be said
in Section 4.

The equations of motion derived from the (8.10) by varying respectively
n® and 7 are:

N(, =

O l\/ma“na <wo - n/dmzﬁ\/ﬁ Wﬂ =0 (8.11)
N(. =

Iy [\/ﬁéﬂﬁa (wo - m/d"x\/m L\M”)ﬂ =0 (8.12)

where 0, = 0/0xz* and 5,; = 0/03". When deriving eq. (8.11) we have
taken into account that
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0 . iz . m~ iz O .
o | NN =) = = [rama il m ) (819

_ n/d%a—maf%—m:o,

one
since
m/ﬁ _9 1 0 =0 (8.14)
one of onr 7 ‘
because .
Fow = 0p® Opa %’%‘: =0. (8.15)

Analogous holds for eq. (8.12).
Assuming that the intersection V11 = V;, 1V}, does exist, and, in par-
ticular, that it is a worldline (i.e., p = 0), then we can write

ma 17 0N (n—17) _ (@ — X(7) vy
/d x\/m\/m = /drm (XPX,)Y2. (8.16)

The result above was obtained by writing

dmg=d"ledr, /|f] = IfeD(XRX) 2

and taking the coordinates n® such that n® = (x#, 7", n" 1, ... n , where
xt are (curved) coordinates on V,. The determinant of the metric of
the embedding space Vj in such a curvilinear coordinates is then v =
det 9,m"0,n. = f.

In general, for arbitrary intersection we have

N(p_ 4 (g —
[amaifI 0 = [ oo,
(8.17)

where X“(§A), p=2012..,n—-1 A = 1,2,...,p, are the embedding
functions of the p-brane’s worlsdsheet V)11 in V,.
Using (8.16) the equations of motion become

N—l)

9, { I (wo ™ + T’“’)(?Vna] —0, (8.18)

éﬂ {\/ﬁ(wof‘aﬁ + Tﬂﬁ)épﬁa] =0, (8.19)
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where
w [ XHXv
_ / e = X() Goz (8.20)
and o
%
/—6" (& — X(T))_)ofiXdT (8.21)
(X Xa)1/2

are the stress—energy tensors of the point particle on V,, and Vm, respec-
tively.

If dimensions m and n are such that the intersection V)11 is a worldsheet
with a dimension p > 1, then using (8.17) we obtain the equations of motion
of the same form (8.18),(8.19), but with the stress—energy tensor

_/\/_

(z — X () 94X 01 XY (det O X Op X o)\ /> dPH1¢,
(8.22)

(€)) 94X IAX” (det Do XCOpX4)'/2 dPFH1e,

"
This can also be seen directly from the action (8.9) in which we substitute
eq. (8.16)
Tl X*) = wy / "z \/|fl+x / A"z dr 8" (2 — X (7)) (fn XPX¥)12 (8.24)
or if we substitute (8.17)
I X" = w / ama\/If| (8.25)

e / 4" dPFLE 67 (@ — X(€)) (det DaXPOEXY fu)V/2.

(8.23)

Remembering that
f;w = 8;ﬂ'laaunb"?ab (826)
we can vary (8.24) or (8.25) with respect to n*(z) and we obtain (8.18).
Eq.(8.18) can be written as

woD,DFng + D, (T* 0yn,) = 0. (8.27)

where D, denotes covariant derivative in V,,. If we multiply the latter
equation by 9*n%, sum over a, and take into account the identity

80é77aDuDu77a =0, (8.28)
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which follows from D, (0,1*0s14) = D, fpe = 0, we obtain

D, T" = 0. (8.29)

Equation (8.29) implies that X*(7) is a geodesic equation in a space with
metric f,,, i.e., X#(7) is a geodesic on Vj,. This can be easily shown by
using the relation

1

DI = 8, (\/|F1TH) + T, T7 = 0. (8.30)

Taking (8.20) we have

" XX

XHXv
+1, [ dré"(x — X(7)) o —yd"z = 0. (8.31)
(XaXa)l/Z
The first term in the latter equation gives

o Xuxv
_/dfaXu(T)a (x—X(T))Wd x

Xl/
- /dT ié”(x - X(1) —————=d"z
dr o

d XV
_ /dTE (W) . (8.32)

Differentiating eq. (8.31) with respect to 7 we indeed obtain the geodesic
equation.
In a similar way we find for T, as given in eq. (8.22), that (8.30) implies

1
V]detdo X*0p X, |3A(\/\det80Xa8DXa‘ IMXY) + FZHE)AXPaAX# =0,
(8.33)

which is the equation of motion for a p-brane in a background metric
fur = 0un®0Ouna. Do not forget that the latter p-brane is the intersection
between two branes:

Vos1 =V NV . (8.34)
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It is instructive to integrate (8.27) over d"x. We find

wo 74 VIF1dS, 9, (8.35)

= —k / dPHLE(|det Do X 2 Op X o|) /2 94X OAXY DD,
2=X(¢)

where d¥,, is an element of an (n — 1)-dimensional hypersurface ¥ on V;,.
Assuming that the integral over the time-like part of ¥ vanishes (either
because 01, — 0 at the infinity or because V,, is closed) we have

oo [ 1114500~ [/If1dS, 0, (8.36)
T2 T1
= —k / dr dP¢(|det do X “Op X a|)/2 D4 X 02X DDy,
2=X(¢)

or

dfa __, / dPE(|det Do X “Op Xo|) /2 94X 02 XY DDy, (8.37)

dr r=X(¢)
where

P, = wo/,/m A, 97, . (8.38)
When p = 0, i.e., when the intersection is a worldline, eq. (8.37) reads

P, _ XHXY
dr (X X,)!/2

D,uDzz77a (8.39)

=X (&)

8.2. A SYSTEM OF MANY INTERSECTING
BRANES

Suppose we have a sytem of branes of various dimensionalities. They may
intersect and their intersections are the branes of lower dimensionality. The
action governing the dynamics of such a system is a generalization of (8.10)
and consists of the free part plus the interactive part (i,7 = 1,2,...):

I = Z/Womdl'i + %Z/Wij MMMM@UA@
i oy

(8.40)
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The equations of motion for the i-th brane are

{ VAEET (wo+2/ww (i — 77] ﬁda@)] —0.  (8.41)

i#]

Neglecting the kinetic term for all other branes the action leading to (8.41)
s (for a fixed 1)

I[ni] /wm/ﬂdxl + Z/ww 7% 77] ﬁ\/ﬂdxzdx] (8.42)

i#£]

1in) = [ wiln)y/Ifilda (8.43)
= wo + an 77 "J N (8.44)

or

with

where k; = w;;.

Returning now to egs. (8.3)—(8.6) we see that w;(n) is related to the con-
formally flat background metric as experienced by the i-th brane. The
action (8.43) is thus the action for a brane in a background metric v,

which is conformally flat:
1in] = [ V/11da: (5.45)

Hence the interactive term in (8.40) can be interpreted as a contribution
to the background metric in which the i-th brane moves. Without the
interactive term the metric is simply a flat metric (multiplied by w); with
the interactive term the background metric is singular on all the branes
within our system.

The total action (8.40), which contains the kinetic terms for all the other
branes, renders the metric of the embedding space Vy dynamical. The way
in which other branes move depends on the dynamics of the whole system.
It may happen that for a system of many branes, densely packed together,

the effective (average) metric could no longer be conformally flat. We have
already seen in Sec 6.2 that the effective metric for a system of generalized
branes (which I call membranes) indeed satisfies the Einstein equations.

Returning now to the action (8.42) as experienced by one of the branes
whose worldsheet V;, is represented by n¢(z;) = n®(z) we find, after inte-
grating out zj, j # ¢, that
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I, X" = wo / &'z /111 (8.46)

+3 k% / A" dPrLE (detda XHOp XY £,,)V/267 (2 — X;(€)).
J

For various p; the latter expression is an action for a system of point parti-
cles (p; = 0), strings (p; = 1), and higher-dimensional branes (p; = 2,3, ...)
moving in the background metric f,,,,, which is the induced metric on our
brane V,, represented by n®(z). Variation of (8.46) with respect to X}, gives
the equations of motion (8.33) for a p-brane with p = pj. Variation of (8.46)
with respect to n*(x) gives the equations of motion (8.18 for the (n — 1)-
brane. If we vary (8.46) with respect to n%(z) then we obtain the equation
of motion (III1.18) for an (n — 1)-brane. The action (8.46) thus describes
the dynamics of the (n —1)-brane (world sheet V},) and the dynamics of the
p-branes living on V,,.

We see that the interactive term in (8.40) manifests itself in various
ways, depending on how we look at it. It is a manifestation of the metric
of the embedding space being curved (in particular, the metric is singular
on the system of branes). From the point of view of a chosen brane V,
the interactive term becomes the action for a system of p-branes (including
point particles) moving on V,,. If we now adopt the brane world view,
where V,, is our spacetime, we see that matter on V, comes from other
branes’ worldsheets which happen to intersect our worldsheet V,,. Those
other branes are responsible for the non trivial metric of the embedding
space, also called the bulk.

THE BRANE INTERACTING WITH ITSELF

In (8.42) or (8.46) we have a description of a brane interacting with other
branes. What about self-interaction? In the second term of the action
(8.40) (8.42) we have excluded self-interaction. In principle we should not
exclude self-interaction, since there is no reason why a brane could not
interact with itself.

Let us return to the action (8.9) and let us calculate w(n), this time
assuming that XA/m coincides with our brane V,,. Hence the intersection is
the brane V,, itself, and according to (8.17) we have

_ na iz 0N (n = 0(&)
w(n) = wO+H/d x\/mW

= wg+k | A —m—"
0 / 3 7] |fl

= wo—l—/ﬁ/d”xé"(a:—X(x)) =wo + k. (8.47)
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Here the coordinates ¢4, A=0,1,2,...,n — 1, cover the manifold V,,, and
fap is the metric of V,, in coordinates §A. The other coordinates are x*,
w=0,1,2,....,n — 1. In the last step in (8.47) we have used the property

that the measure is invariant, d"¢ \/ﬁ =d"z/|f].

The result (8.47) demonstrates that we do not need to separate a constant
term wg from the function w(n). For a brane moving in a background of
many branes we can replace (8.44) with

— 3k 77 773 V1filda, (8.48)

J

where j runs over all the branes within the system. Any brane feels the
same background, and its action for a fixed ¢ is

I[n / w(mn;) \/7dx —Z/ 171 77] \/f |fijlde; dzj.  (8.49)

However the background is self-consistent: it is a solution to the variational
principle given by the action

i) = Y wig 6% (0 —my) /| fily /1 il dwi dy, (8.50)

i>j

where now also ¢ runs over all the branes within the system; the case i = j
is also allowed.

In (8.50) the self-interaction or self coupling occurs whenever ¢ = j. The
self coupling term of the action is

L] = 3 [ nta) = mla |l @) o
= S [ 80 = )50 = ntel)
/1 i)/ file)) ldaidarid ™y
= i [ 88— e ) | dridia ™
- ;/{imd"imi, (8.51)

where we have used the same procedure which led us to eq. (8.17) or (8.47).
We see that the interactive action (8.50) automatically contains the minimal
surface terms as well, so they do not need to be postulated separately.
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A SYSTEM OF MANY BRANES CREATES THE
BULK AND ITS METRIC

We have seen several times in this book (Chapters 5,6) that a system
of membranes (a membrane configuration) can be identified with the em-
bedding space in which a single membrane moves. Here we have a concrete
realization of that idea. We have a system of branes which intersect. The
only interaction between the branes is owed to intersection (‘contact’ in-
teraction). The interaction at the intersection influences the motion of a
(test) brane: it feels a potential because of the presence of other branes. If
there are many branes and a test brane moves in the midst of them, then
on average it feels a metric field which is approximately continuous. Our
test brane moves in the effective metric of the embedding space.

A single brane or several branes give the singular conformal metric. Many
branes give, on average, an arbitrary metric.

There is a close inter-relationship between the presence of branes and
the bulk metric. In the model we discuss here the bulk metric is singular
on the branes, and zero elsewhere. Without the branes there is no metric
and no bulk. Actually the bulk consists of the branes which determine its
metric.

Figure 8.2. A system of many intersecting branes creates the bulk metric. In the absence
of the branes there is no bulk (no embedding space).
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8.3. THE ORIGIN OF MATTER IN THE
BRANE WORLD

Our principal idea is that we have a system of branes (a brane configura-
tion). With all the branes in the system we associate the embedding space
(bulk). One of the branes (more precisely, its worldsheet) represents our
spacetime. Interactions between the branes (occurring at the intersections)
represent matter in spacetime.

MATTER FROM THE INTERSECTION OF OUR
BRANE WITH OTHER BRANES

We have seen that matter in V}, naturally occurs as a result of the inter-
section of our worldsheet V,, with other worldsheets. We obtain exactly the
stress—energy tensor for a dust of point particles, or p-branes in general.
Namely, varying the action (8.46) with respect to n%(z) we obtain

woD,D¥ng + D, (T" 0y1n4) = 0, (8.52)
with

THY Z K; /dpj+1§ (det 8AX],uaBX;/ fMV)1/2 W (853)
J

being the stress—energy tensor for a system of p-branes (which are the in-
tersections of V,, with the other worldsheets). The above expression for T#¥
holds if the extended objects have any dimensions p;. In particular, when
all objects have p; = 0 (point particles) eq. (8.53) becomes

Sk / gy XX 8@~ X(r) (8.54)

VX2 \ﬁ

From the equations of motion (8.53) we obtain (see egs. (8.27)—(8.29))

D, T" =0, (8.55)

which implies (see (8.30)—(8.33)) that any of the objects follows a geodesic
in V,.

MATTER FROM THE INTERSECTION OF OUR
BRANE WITH ITSELF
Our model of intersecting branes allows for the possibility that a brane

intersects with itself, as is schematically illustrated in Fig. 8.3. The analysis
used so far is also valid for situations like that in Fig. 8.3, if we divide the
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worldsheet V), into two pieces which are glued together at a submanifold C'
(see Fig. 8.4).

Figure 8.3. Illustration of a self-intersecting brane. At the intersection V11, because
of the contact interaction the stress—energy tensor on the brane V,, is singular and it
manifests itself as matter on V,,. The manifold V,41 is a worldsheet swept by a p-brane
and it is is minimal surface (e.g., a geodesic, when = 0) in V/,.

i (z1)

5 (w2)

Figure 8.4. A self-intersecting worldsheet is cut into two pieces, described by nf(z1)
and 73 (z2), which are glued together at a submanifold C' where the boundary condition

nt(z1)|c = n5(z2)|c is imposed.
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There is a variety of ways a worldsheet can self-intersect. Some of them
are sketched in Fig. 8.5.

a)

Figure 8.5. Some possible self-intersecting branes.

In this respect some interesting new possibilities occur, waiting to be
explored in detail. For instance, it is difficult to imagine how the three
particles entangled in the topology of the situation (a) in Fig. 8.5 could be
separated to become asymptotically free. Hence this might be a possible
classical model for hadrons composed of quarks; the extra dimensions of V,,
would bring, via the Kaluza—Klein mechanism, the chromodynamic force
into the action.

To sum up, it is obvious that a self-intersecting brane can provide a
variety of matter configurations on the brane. This is a fascinating and
intuitively clear mechanism for the origin of matter in a brane world.
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8.4. COMPARISON WITH THE
RANDALL-SUNDRUM MODEL

In our brane world model, which starts from the M-space Einstein equa-
tions, we have assumed that gravity is localized on the brane. This was
formally represented by the J-function. In a more conventional approach
the starting point is Einstein’s equations in the ordinary space, not in M-
space. Let us therefore explore a little what such an approach has to say
about gravity around a brane embedded in a “bulk”.

Randall and Sundrum [95] have considered a model in which a 3-brane
with tension k is coupled to gravity, the cosmological constant A being
different from zero. After solving the Einstein equations they found that
the metric tensor decreases exponentially with the distance from the brane.
Hence gravity is localized on the brane.

More precisely, the starting point is the action

n N N N
_ﬁ/d VI8 =) d¥n+ G(N /d m/If1(2A+R), (8.56)
which gives the Einstein equations
Gap = Rap — %R’Vab - A'Yab - 87TG( ) Tab » (857)
T = [ ndo i % Oumadm ™ = n@).  (8.59)

Let us consider a 3-brane (n = 4) embedded in a 5-dimensional bulk
(N = 5). In a particular gauge the worldsheet embedding functions are
nt = z#, n° = nd(x"). For a flat worldsheet n°(x*) = yo, where yq is
independent of z*#, it is convenient to take yg = 0. For such a brane located
at n° = y = 0 the appropriate Ansatz for the bulk metric respecting the
symmetry of the brane configuration is

ds® = a?(y)n, do* dz” — dy?. (8.59)
The Einstein equations read

% = Gh=G%=G%

3 " 3 12
_ 0 “2 = A —87GMTO, | (8.60)
a a
6 12
G55 — 52 = —A , (861)

where

Taﬁ - /lid4x \/ﬁfozﬁ 54(77# — x“)é(y) = K\/ﬁ]@ﬁ(@/), (862)
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whilst T,5 = 0, Ts5 = 0. The induced metric is

fap = 0an® 010 = Nap a*(y).

Hence
T% =TY =T?% =T33 = ka's(y). (8.63)

From eq. (8.61), which can be easily integrated, we obtain

a = age WIVAG, (8.64)

Such a solution makes sense if A < 0 and it respects the symmetry a(y) =
a(—y), so that the bulk metric is the same on both sides of the brane.
Introducing o = @’ /a (where ¢’ = da/dy) eq. (8.60) can be written as

30 = —87rGWM ka8 (y). (8.65)
Integrating both sides of the latter equation over y we find
3(a’(0%) = a/(07)) = —87GW™) ka(0). (8.66)

Using (8.64) we have

a(0t) B —A
a a/(07) =~ I
O _woy =2 (8.67)
a(0)=ap=1

Hence (8.66) gives

[—A
6\ 5 = srGM) (8.68)

which is a relation between the cosmological constant A and the brane
tension k.

From (8.59) and (8.64) it is clear that the metric tensor is localized on
the brane’s worldsheet and falls quickly when the transverse coordinates y
goes off the brane.

An alternative Ansatz. We shall now consider an alternative Ansatz
in which the metric is conformally flat:

ds? = b?(2) (nudotda” — dz?). (8.69)
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The Einstein equations read

3bll
Gl =5 =—A- 8GN kb (2)
6b/2
5
G’s = ek —A
The solution of (8.71) is
b=

1
e

From (8.70) (8.71) we have

bl/ bl2 N 5
3 <b2 - b3> = —8rGM) k%6 (2).

Introducing 3’ = b’ /b? the latter equation becomes
36" = —8rGM)kb6(2).
After integrating over z we have

3(8'(0%) — B'(07)) = —87GMkb®(0),

where
gt)y=c _6A, 5’(0)=—C4\/%A, b(0) = —C~!
Hence

(8.70)

(8.71)

(8.72)

(8.73)

(8.74)

(8.75)

(8.76)

(8.77)

If we take C' = 1 then the last relation coincides with (8.68). The metric in
the Ansatz (8.69) is of course obtained from that in (8.59) by a coordinate

transformation.
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THE METRIC AROUND A BRANE IN A
HIGHER-DIMENSIONAL BULK

It would be very interesting to explore what happens to the gravitational
field around a brane embedded in more than five dimensions. One could
set an appropriate Ansatz for the metric, rewrite the Einstein equations
and attempt to solve them. My aim is to find out whether in a space of
sufficiently high dimension the metric — which is a solution to the Einstein
equations — can be approximated with the metric (8.3), the conformal
factor being localized on the brane.

Let us therefore take the Ansatz

Yab = D Fap - (8.78)
We then find
R’ =Q72RY + (N —2)Q73Q.,,* — 2(N - 2)Q71Q ,Q°
+07365,°0.5¢ + (N — 3)Q715,°Q,.0° (8.79)

R=0Q72R+2(N - 1)Q73QC+ (N - 1)(N —4)Q71Q.0°  (8.80)

Splitting the coordinates according to
= (2", y"), (8.81)

where y# are the transverse coordinates and assuming that Q depends on
y* only, the Einstein equations become

Gy’ = QTG+, [(2 - N7 + (N = 3)071Q, g0
= —8rGWMT,Y — A3, (8.82)
Gi7 = Q7GL+ Q7P [(N = 2)0;7 - 2(N - 2)07'0,;07

+057 (2= N)Qa'™ + Q710207 (N = 3) + (N = 1)(N - 4))) ]

)

= 8rGWMT,” — As,”. (8.83)

Let T, be the stress—energy tensor of the brane itself. Then T,—ﬁ =0 (see
eq. (8.62). Using (8.83) we can express Q7 1Q ;0% in terms of Q.5 and
insert it into (8.82). Taking® N > 5, A = 0 and assuming that close to the

41f dimension N = 5 then A must be different from zero, otherwise eq. (8.83) gives Q 5% = 0,
which is inconsistent with eq. (8.82).



268 THE LANDSCAPE OF THEORETICAL PHYSICS: A GLOBAL VIEW

brane the term Q72G? can be neglected we obtain the Laplace equation for
Q
Q7 = 160G T Q%A (8.84)

where

A = (N=2)(N-1) (8.85)

— (N —4)—

7 being the dimension of the transverse space, i = 65/, and T = T,% = T,".

The above procedure has to be taken with reserve. Neglect of the term
Q72G% in general is not expected to be consistent with the Bianchi iden-
tities. Therefore equation (8.85) is merely an approximation to the exact
equation. Nevertheless it gives an idea about the behavior of the function

Q(y").
The solution of eq. (8.84) has the form
k

where r is the radial coordinate in the transverse space. For a large trans-
verse dimension 7 the function €2 falls very quickly with r. The gravitational
field around the brane is very strong close to the brane, and negligible any-
where else. The interaction is practically a contact interaction and can
be approximated by the J-function. Taking a cutoff r. determined by the
thickness of the brane we can normalize ) according to

k
/ L T (8.87)
and take Q(r) ~ (r).

The analysis above is approximate and requires a more rigorous study.
But intuitively it is clear that in higher dimensions gravitational interaction
falls very quickly. For a point particle the gravitational potential has the
asymptotic behavior yoo—1 oc r~(N=3) and for a sufficiently high spacetime
dimension N the interaction is practically contact (like the Van der Waals
force). Particles then either do not feel each other, or they form bound
states upon contact. Network-like configurations are expected to be formed,
as shown in Fig.8.6. Such configurations mimic very well the intersecting
branes considered in Secs. 8.1-8.3.

In this section we have started from the conventional theory of gravitation
and found strong arguments that in a space of very high dimension the
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Figure 8.6. In a space of very large dimension separated point particles do not feel
gravitational interaction, since it is negligible. When two particles meet they form a
bound system which grows when it encounters other particles. There is (practically) no
force between the ‘tails’ (e.g., between the points A and B). However, there is tension
within the tail. (The tail, of course, need not be 1-dimensional; it could be a 2, 3 or
higher-dimensional brane.)

gravitational force is a contact force. Various network-like configurations
are then possible and they are stable. Effectively there is no gravity outside
such a network configuration. Such a picture matches very well the one we
postulated in the previous three sections of this chapter, and also the picture
we considered when studying the M-space formulation of the membrane
theory.



