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Recommended Books and Resources

• L. Hand and J. Finch, Analytical Mechanics

This very readable book covers everything in the course at the right level. It is similar

to Goldstein’s book in its approach but with clearer explanations, albeit at the expense

of less content.

There are also three classic texts on the subject

• H. Goldstein, C. Poole and J. Safko, Classical Mechanics

In previous editions it was known simply as “Goldstein” and has been the canonical

choice for generations of students. Although somewhat verbose, it is considered the

standard reference on the subject. Goldstein died and the current, third, edition found

two extra authors.

• L. Landau an E. Lifshitz, Mechanics

This is a gorgeous, concise and elegant summary of the course in 150 content packed

pages. Landau is one of the most important physicists of the 20th century and this is

the first volume in a series of ten, considered by him to be the “theoretical minimum”

amount of knowledge required to embark on research in physics. In 30 years, only 43

people passed Landau’s exam!

• V. I. Arnold, Mathematical Methods of Classical Mechanics

Arnold presents a more modern mathematical approach to the topics of this course,

making connections with the differential geometry of manifolds and forms. It kicks off

with “The Universe is an Affine Space” and proceeds from there...
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1. Newton’s Laws of Motion

“So few went to hear him, and fewer understood him, that oftimes he did,

for want of hearers, read to the walls. He usually stayed about half an hour;

when he had no auditors he commonly returned in a quarter of that time.”

Appraisal of a Cambridge lecturer in classical mechanics, circa 1690

1.1 Introduction

The fundamental principles of classical mechanics were laid down by Galileo and New-

ton in the 16th and 17th centuries. In 1686, Newton wrote the Principia where he

gave us three laws of motion, one law of gravity and pretended he didn’t know cal-

culus. Probably the single greatest scientific achievement in history, you might think

this pretty much wraps it up for classical mechanics. And, in a sense, it does. Given

a collection of particles, acted upon by a collection of forces, you have to draw a nice

diagram, with the particles as points and the forces as arrows. The forces are then

added up and Newton’s famous “F = ma” is employed to figure out where the par-

ticle’s velocities are heading next. All you need is enough patience and a big enough

computer and you’re done.

From a modern perspective this is a little unsatisfactory on several levels: it’s messy

and inelegant; it’s hard to deal with problems that involve extended objects rather than

point particles; it obscures certain features of dynamics so that concepts such as chaos

theory took over 200 years to discover; and it’s not at all clear what the relationship is

between Newton’s classical laws and quantum physics.

The purpose of this course is to resolve these issues by presenting new perspectives

on Newton’s ideas. We shall describe the advances that took place during the 150

years after Newton when the laws of motion were reformulated using more powerful

techniques and ideas developed by some of the giants of mathematical physics: people

such as Euler, Lagrange, Hamilton and Jacobi. This will give us an immediate practical

advantage, allowing us to solve certain complicated problems with relative ease (the

strange motion of spinning tops is a good example). But, perhaps more importantly,

it will provide an elegant viewpoint from which we’ll see the profound basic principles

which underlie Newton’s familiar laws of motion. We shall prise open “F = ma” to

reveal the structures and symmetries that lie beneath.
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Moreover, the formalisms that we’ll develop here are the basis for all of fundamental

modern physics. Every theory of Nature, from electromagnetism and general relativity,

to the standard model of particle physics and more speculative pursuits such as string

theory, is best described in the language we shall develop in this course. The new

formalisms that we’ll see here also provide the bridge between the classical world and

the quantum world.

There are phenomena in Nature for which these formalisms are not particularly

useful. Systems which are dissipative, for example, are not so well suited to these

new techniques. But if you want to understand the dynamics of planets and stars and

galaxies as they orbit and spin, or you want to understand what’s happening at the

LHC where protons are collided at unprecedented energies, or you want to know how

electrons meld together in solids to form new states of matter, then the foundations

that we’ll lay in in this course are a must.

1.2 Newtonian Mechanics: A Single Particle

In the rest of this section, we’ll take a flying tour through the basic ideas of classical

mechanics handed down to us by Newton. We’ll start with a single particle.

A particle is defined to be an object of insignificant size. e.g. an electron, a tennis

ball or a planet. Obviously the validity of this statement depends on the context: to

first approximation, the earth can be treated as a particle when computing its orbit

around the sun. But if you want to understand its spin, it must be treated as an

extended object.

The motion of a particle of mass m at the position r is governed by Newton’s Second

Law F = ma or, more precisely,

F(r, ṙ) = ṗ (1.1)

where F is the force which, in general, can depend on both the position r as well as

the velocity ṙ (for example, friction forces depend on ṙ) and p = mṙ is the momentum.

Both F and p are 3-vectors which we denote by the bold font. Equation (1.1) reduces

to F = ma if ṁ = 0. But if m = m(t) (e.g. in rocket science) then the form with ṗ is

correct.

General theorems governing differential equations guarantee that if we are given r

and ṙ at an initial time t = t0, we can integrate equation (1.1) to determine r(t) for all

t (as long as F remains finite). This is the goal of classical dynamics.
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Equation (1.1) is not quite correct as stated: we must add the caveat that it holds

only in an inertial frame. This is defined to be a frame in which a free particle with

ṁ = 0 travels in a straight line,

r = r0 + vt (1.2)

Newtons’s first law is the statement that such frames exist.

An inertial frame is not unique. In fact, there are an infinite number of inertial frames.

Let S be an inertial frame. Then there are 10 linearly independent transformations

S → S ′ such that S ′ is also an inertial frame (i.e. if (1.2) holds in S, then it also holds

in S ′). These are

• 3 Rotations: r′ = Or where O is a 3× 3 orthogonal matrix.

• 3 Translations: r′ = r+ c for a constant vector c.

• 3 Boosts: r′ = r+ ut for a constant velocity u.

• 1 Time Translation: t′ = t+ c for a constant real number c

If motion is uniform in S, it will also be uniform in S ′. These transformations make

up the Galilean Group under which Newton’s laws are invariant. They will be impor-

tant in section 2.4 where we will see that these symmetries of space and time are the

underlying reason for conservation laws. As a parenthetical remark, recall from special

relativity that Einstein’s laws of motion are invariant under Lorentz transformations

which, together with translations, make up the Poincaré group. We can recover the

Galilean group from the Poincaré group by taking the speed of light to infinity.

1.2.1 Angular Momentum

We define the angular momentum L of a particle and the torque τ acting upon it as

L = r× p , τ = r× F (1.3)

Note that, unlike linear momentum p, both L and τ depend on where we take the

origin: we measure angular momentum with respect to a particular point. Let us cross

both sides of equation (1.1) with r. Using the fact that ṙ is parallel to p, we can write
d
dt
(r×p) = r× ṗ. Then we get a version of Newton’s second law that holds for angular

momentum:

τ = L̇ (1.4)
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1.2.2 Conservation Laws

From (1.1) and (1.4), two important conservation laws follow immediately.

• If F = 0 then p is constant throughout the motion

• If τ = 0 then L is constant throughout the motion

Notice that τ = 0 does not require F = 0, but only r × F = 0. This means that F

must be parallel to r. This is the definition of a central force. An example is given by

the gravitational force between the earth and the sun: the earth’s angular momentum

about the sun is constant. As written above in terms of forces and torques, these

conservation laws appear trivial. In section 2.4, we’ll see how they arise as a property

of the symmetry of space as encoded in the Galilean group.

1.2.3 Energy

Let’s now recall the definitions of energy. We firstly define the kinetic energy T as

T = 1

2
m ṙ · ṙ (1.5)

Suppose from now on that the mass is constant. We can compute the change of kinetic

energy with time: dT
dt

= ṗ · ṙ = F · ṙ. If the particle travels from position r1 at time t1
to position r2 at time t2 then this change in kinetic energy is given by

T (t2)− T (t1) =

∫ t2

t1

dT

dt
dt =

∫ t2

t1

F · ṙ dt =

∫

r2

r1

F · dr (1.6)

where the final expression involving the integral of the force over the path is called the

work done by the force. So we see that the work done is equal to the change in kinetic

energy. From now on we will mostly focus on a very special type of force known as a

conservative force. Such a force depends only on position r rather than velocity ṙ and

is such that the work done is independent of the path taken. In particular, for a closed

path, the work done vanishes.
∮

F · dr = 0 ⇔ ∇× F = 0 (1.7)

It is a deep property of flat space R3 that this property implies we may write the force

as

F = −∇V (r) (1.8)

for some potential V (r). Systems which admit a potential of this form include gravi-

tational, electrostatic and interatomic forces. When we have a conservative force, we
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necessarily have a conservation law for energy. To see this, return to equation (1.6)

which now reads

T (t2)− T (t1) = −

∫

r2

r1

∇V · dr = −V (t2) + V (t1) (1.9)

or, rearranging things,

T (t1) + V (t1) = T (t2) + V (t2) ≡ E (1.10)

So E = T + V is also a constant of motion. It is the energy. When the energy is

considered to be a function of position r and momentum p it is referred to as the

Hamiltonian H . In section 4 we will be seeing much more of the Hamiltonian.

1.2.4 Examples

• Example 1: The Simple Harmonic Oscillator

This is a one-dimensional system with a force proportional to the distance x to the

origin: F (x) = −kx. This force arises from a potential V = 1

2
kx2. Since F 6= 0,

momentum is not conserved (the object oscillates backwards and forwards) and, since

the system lives in only one dimension, angular momentum is not defined. But energy

E = 1

2
mẋ2 + 1

2
kx2 is conserved.

• Example 2: The Damped Simple Harmonic Oscillator

We now include a friction term so that F (x, ẋ) = −kx−γẋ. Since F is not conservative,

energy is not conserved. This system loses energy until it comes to rest.

• Example 3: Particle Moving Under Gravity

Consider a particle of mass m moving in 3 dimensions under the gravitational pull of

a much larger particle of mass M . The force is F = −(GMm/r2)r̂ which arises from

the potential V = −GMm/r. Again, the linear momentum p of the smaller particle

is not conserved, but the force is both central and conservative, ensuring the particle’s

total energy E and the angular momentum L are conserved.

1.3 Newtonian Mechanics: Many Particles

It’s easy to generalise the above discussion to many particles: we simply add an index

to everything in sight! Let particle i have mass mi and position ri where i = 1, . . . , N

is the number of particles. Newton’s law now reads

Fi = ṗi (1.11)
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where Fi is the force on the ith particle. The subtlety is that forces can now be working

between particles. In general, we can decompose the force in the following way:

Fi =
∑

j 6=i

Fij + Fext

i (1.12)

where Fij is the force acting on the ith particle due to the jth particle, while Fext

i is the

external force on the ith particle. We now sum over all N particles

∑

i

Fi =
∑

i,j with j 6=i

Fij +
∑

i

Fext

i

=
∑

i<j

(Fij + Fji) +
∑

i

Fext

i (1.13)

where, in the second line, we’ve re-written the sum to be over all pairs i < j. At this

stage we make use of Newton’s third law of motion: every action has an equal and

opposite reaction. Or, in other words, Fij = −Fji. We see that the first term vanishes

and we are left simply with

∑

i

Fi = Fext (1.14)

where we’ve defined the total external force to be Fext =
∑

i F
ext

i . We now define the

total mass of the system M =
∑

i mi as well as the centre of mass R

R =

∑

imiri

M
(1.15)

Then using (1.11), and summing over all particles, we arrive at the simple formula,

Fext = MR̈ (1.16)

which is identical to that of a single particle. This is an important formula. It tells that

the centre of mass of a system of particles acts just as if all the mass were concentrated

there. In other words, it doesn’t matter if you throw a tennis ball or a very lively cat:

the center of mass of each traces the same path.

1.3.1 Momentum Revisited

The total momentum is defined to be P =
∑

i pi and, from the formulae above, it is

simple to derive Ṗ = Fext. So we find the conservation law of total linear momentum

for a system of many particles: P is constant if Fext vanishes.
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Similarly, we define total angular momentum to be L =
∑

i Li. Now let’s see what

happens when we compute the time derivative.

L̇ =
∑

i

ri × ṗi

=
∑

i

ri ×

(

∑

j 6=i

Fij + Fext

i

)

(1.17)

=
∑

i,jwith i 6=j

ri × Fji +
∑

i

ri × Fext

i (1.18)

The last term in this expression is the definition of total external torque: τ ext =
∑

i ri×

Fext

i . But what are we going to do with the first term on the right hand side? Ideally we

would like it to vanish! Let’s look at the circumstances under which this will happen.

We can again rewrite it as a sum over pairs i < j to get

∑

i<j

(ri − rj)× Fij (1.19)

which will vanish if and only if the force Fij is parallel to the line joining to two particles

(ri − rj). This is the strong form of Newton’s third law. If this is true, then we have a

statement about the conservation of total angular momentum, namely L is constant if

τ
ext = 0.

Most forces do indeed obey both forms of Newton’s third law: 1

2

Figure 1: The

magnetic field for

two particles.

Fij = −Fji and Fij is parallel to (ri−rj). For example, gravitational

and electrostatic forces have this property. And the total momentum

and angular momentum are both conserved in these systems. But

some forces don’t have these properties! The most famous example

is the Lorentz force on two moving particles with electric charge Q.

This is given by,

Fij = Qvi ×Bj (1.20)

where vi is the velocity of the ith particle and Bj is the magnetic

field generated by the jth particle. Consider two particles crossing

each other in a “T” as shown in the diagram. The force on particle

1 from particle 2 vanishes. Meanwhile, the force on particle 2 from

particle 1 is non-zero, and in the direction

F21 ∼ ↑ ×⊗ ∼ ← (1.21)
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Does this mean that conservation of total linear and angular momentum is violated?

Thankfully, no! We need to realise that the electromagnetic field itself carries angular

momentum which restores the conservation law. Once we realise this, it becomes a

rather cheap counterexample to Newton’s third law, little different from an underwater

swimmer who can appear to violate Newton’s third law if we don’t take into account

the momentum of the water.

1.3.2 Energy Revisited

The total kinetic energy of a system of many particles is T = 1

2

∑

i miṙ
2

i . Let us

decompose the position vector ri as

ri = R+ r̃i (1.22)

where r̃i is the distance from the centre of mass to the particle i. Then we can write

the total kinetic energy as

T = 1

2
MṘ2 + 1

2

∑

i

mi
˙̃r
2

i (1.23)

Which shows us that the kinetic energy splits up into the kinetic energy of the centre

of mass, together with an internal energy describing how the system is moving around

its centre of mass. As for a single particle, we may calculate the change in the total

kinetic energy,

T (t2)− T (t1) =
∑

i

∫

Fext

i · dri +
∑

i 6=j

∫

Fij · dri (1.24)

Like before, we need to consider conservative forces to get energy conservation. But

now we need both

• Conservative external forces: Fext

i = −∇iVi(r1, . . . , rN)

• Conservative internal forces: Fij = −∇iVij(r1, . . . , rN)

where∇i ≡ ∂/∂ri. To get Newton’s third law Fij = −Fji together with the requirement

that this is parallel to (ri−rj), we should take the internal potentials to satisfy Vij = Vji

with

Vij(r1, . . . r,N) = Vij(|ri − rj |) (1.25)

so that Vij depends only on the distance between the ith and jth particles. We also

insist on a restriction for the external forces, Vi(r1, . . . , rN) = Vi(ri), so that the force

on particle i does not depend on the positions of the other particles. Then, following

the steps we took in the single particle case, we can define the total potential energy

V =
∑

i
Vi +

∑

i<j
Vij and we can show that H = T + V is conserved.
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1.3.3 An Example

Let us return to the case of gravitational attraction between two bodies but, unlike

in Section 1.2.4, now including both particles. We have T = 1

2
m1ṙ

2

1
+ 1

2
m2ṙ

2

2
. The

potential is V = −Gm1m2/|r1− r2|. This system has total linear momentum and total

angular mometum conserved, as well as the total energy H = T + V .
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