*

Quantum Hall effect

o Further reading

R A very large number of papers have appeared in the literature that calcu-
B late the transmission properties of small conductors. We have cited a few
} papers in the text that should provide a citation trail for the interested |
' reader. The very brief introduction to Green’s functions in Section 3.3 can
be supplemented with standard texts such as _
[3.1] Inkson, J. C. (1984), Many-body Theory of Solids, (New York,
Plenum). See Chapter 2. p
[3.2] Economou, E. N. (1983), Green’s Functions in Quantum Physics, |
Springer Series in Solid-state Sciences, vol.7, (Heidelberg, Springer- |
Verlag). ,
[3.3] Schiff L. I. (1968). Quantum Mechanics, Chapter 9, Third Edition,
(New York, McGraw-Hill). )

= 4.1 Origin of ‘zero’ resistance
© 4.2 Effect of backscattering

¢ One of the most significant discoveries of the 1980s is the quantum Hall
| effect (see K. von Klitzing, G. Dorda and M. Pepper (1980), Phys. Rev.
. Lett., 45, 494). Normally in solid state experiments, scattering processes
. introduce enough uncertainty that most results have an ‘error bar’ of plus
. or minus several per cent. For example, the conductance of a ballistic
. conductor has been shown (see Fig. 2.1.2) to be quantized in units of
- (h/2€”). But this is true as long as we are not bothered by deviations of a
few per cent, since real conductors are usually not precisely ballistic. On
.~ the other hand, at high magnetic fields the Hall resistance has been ob-
. served to be quantized in units of (h/2e*) with an accuracy that is
' specified in parts per million. Indeed the accuracy of the quantum Hall ef-
fect is so impressive that the National Institute of Standards and
- Technology is interested in utilizing it as a resistance standard.

‘: This impressive accuracy arises from the near complete suppression of
. momentum relaxation processes in the quantum Hall regime resulting in a
. truly ballistic conductor of incredibly high quality. Mean free paths of
. several millimeters have been observed. These unusually long mean free
- paths do not arise from any unusual purity of the samples. They arise
. because, at high magnetic fields, the electronic states carrying current in
E one direction are localized on one side of the sample while those carrying
. current in the other direction are localized on the other side of the
- sample. Due to the formation of this ‘divided highway’ there is hardly any
* overlap between the two groups of states and backscattering cannot take
| place even though impurities are present.
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the resistance is so close to zero shows that the electrons are able to
travel such huge distances without losing their mom.emum. -Chl:ad);
something rather special must be happening at the m!croscoplc eve
leading to this fantastic suppression of momentum n?laxauon processes. '
We have already seen in Section 1.6 that as we increase Fhe magr_letnc
¥ field in a finite-width conductor, the states carryi'ng current l_n one direc-
tion get spatially separated from the states carr‘ymg‘ current m. the Opi;O—
site direction. The result is a significant reduction in the spa‘llal overlap
| between the forward and the backward propagating states which lea(lis to
2 suppression of backscattering (and hence momentum relaxatlo'n).
Indeed at high magnetic fields the forward and backward propagz;tmg
b states are spatially separated by the width of the conductor and thus have
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that lead to zero longitudinal resistance and consequently the quantiza-
tion of the Hall resistance. We then discuss (Section 4.2) some of the |
surprising experiments in the quantum Hall regime reported in the late

1980s where controlled amounts of backscattering are deliberately intro- :
duced.

4.1 Origin of ‘zero’ resistance

We know that at high magnetic fields the longitudinal resistance |
(measured using a macroscopic Hall bridge) oscillates as a function of |
the magnetic field (see Fig. 1.4.2). As we discussed in Section 1.5 the |
density of states at high magnetic fields develops sharp peaks spaced by #
hw. (see Fig. 1.5.1) and the resistivity oscillates as the position of these
peaks is changed relative to the Fermi energy. This can be done either by |
changing the magnetic field as shown in Fig. 1.4.2 or by keeping the |
magnetic field fixed and changing the electron density (and hence the |
Fermi energy) by means of a gate voltage. Indeed the first experiment re-
porting the quantum Hall effect was performed on a silicon inversion |
layer as a function of the gate voltage at a magnetic field of B = 18 T. :

Intuitively it might appear that the resistance should be a minimum |
whenever the Fermi energy coincides with a peak in the density of states, |
that is, with a Landau level. However, the correct answer is just the oppo-
site. The resistance is a minimum when the Fermi energy lies between |
two Landau levels so that the density of states at the Fermi energy is a .
minimum! But how does a sample carry any current unless there are |
states at the Fermi energy? The answer is that there are states at the |
Fermi energy which are located near the edges of the sample. Normally -
in wide conductors we tend to ignore the edges since they form an in-
significant fraction of the entire conductor. But these edge states play a
very important role in carrying the current at the resistance minimum as |
discussed by several authors (see, for example, B. I. Halperin (1982), |
Phys. Rev. B, 25, 2185, and A. H. MacDonald and P. Streda (1984), Phys. *
Rev. B, 29, 1616). This is reminiscent of the boundary problems encoun- |
tered in calculating the diamagnetism of a free electron gas (see Section |
4.3 of R. Peierls (1979), Surprises in Theoretical Physics, Princeton
University Press).

An important point to note from Fig. 1.4.2 is that at the minima the
resistance is very nearly zero. This is particularly surprising since the

i in wi tors.
. practically zero overlap in wide conduc ‘ . .
: In Section 1.6 we assumed a parabolic confining potential

. U(y) = mwiy*/2. This allowed us to obtain the eigenfunctions of the
'_ Schrodinger equation (see Eq.(1.2.2))

+U) |¥(x,y) = E¥(x,y) (4.1.1)

(ihV + eA)’
* 2m
i analytically. A parabolic potential often provides a good descnphgn. :f
' narrow quantum wires. But for wide conductorls, th.e transverse con maig
i potential usually looks more like that shown in Fig. 4.1.1.a. In gentx?rl ;
analytical solutions are not available for arbitrary confining p?ten ials.

However, there is an approximate solution that we cz‘m u_se at high mag}-1
: netic fields. It is quite accurate if the cyclotron radius is small enougl
 that the confining potential can b_e assumed to be nearly constant on this
-~ scale. Let us start by deriving this approximate result.

Magneto-electric subbands at high magnetic fields

| We know that if the confining potential were absent (U(y) = 0) then the
solutions to Eq.(4.1.1) would be given by (see Eqs.(1.6.8a,b))

W (x,) = %exp[ua]un(m)e In,k) (4.1.2)

E(n,k)=E +(n+4)hwe, n=012,..
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No net current

Electrons carrying
a net current

iform in the x-direction. (a). %
ig. 4.1.1. A rectangular conductor assumed to be uni . ‘ (@) §
g{itch of confining potential U(y) versus y. (b) Sketch of the approximate dispersion :

relation assuming that the confining potential varies slowly over a cyclotron radius.

where un(q) = exr’[—qzﬂ]Hn (@)

q=+mwfhy and g = maw.hy
hE and w. = |e|B
Ve = E c -

H,(q) is the nth Hermite polynomial.

Now let us use lowest order perturbation theory to include the effect of ;

the confining potential U(y):
E(n,k) ~ E; +(n + $)hwe + (n, k|U(y)|n, k)

PO TTTSTT mavau uuaeicuL 10CAon y = Vi
in the transverse direction and has a spatial extent of ~ (A/mw,)"?,

'\ Assuming that the potential U(y) is nearly constant over the extent of
i each state, we can write

E(mk)~E, +(n+3$)hw. +U(ye) where Ye=hkleB  (4.1.3)
| Figure 4.1.1b shows a sketch of the dispersion relation E(nk) vs. k. It
| looks just like the confining potential U(y), with the coordinate ¥y mapped
. onto the wavenumber k by the relation y, = ik/eB. In the middle of the
-sample the states look just like the Landau levels of an unconfined 2-D
- conductor spaced by Aw,. Near the edges there are allowed states with a
. continuous distribution of energies. These are referred to as the edge
- states and they play a very important role in carrying the current at the
resistance minimum.

What is the current carried by an edge state? From Eq.(4.1.3) we can
| calculate the velocity:

v(nk)_lm,lmglﬁty_)iyi_im
T h ok h ok h & & eB g

The edge states located at the two edges of the sample carry currents in
opposite directions, since the quantity dU(y)/dy changes sign. The bulk
. states too could carry current if there are electric fields in the interior of
. the sample due to, say, the Hall voltage. If u; > w, (as shown in Fig. 4.1.1)
. then the states below H2 are all filled (assuming ‘zero’ temperature) and
b essentially in equilibrium, so that they do not carry any net current. Any
| net current arises from the filled states between M1 and u» (see Fig.
4.1.1b). The resistance of the sample is determined by the rate at which
| the electrons in these states can relax their momentum,
~ The situation is quite similar to that in an ordinary conductor carrying
- current. The positive k-states are occupied to a higher quasi-Fermi level
- than the negative k-states (see Fig. 1.7.2). The resistance at low tem-
. peratures is determined by the momentum relaxation time of the excess
carriers in the positive k-states. What is unusual here is that the states
carrying current in one direction are spatially separated from those
'carrying current in the opposite direction. To relax momentum an electron
 has to be scattered from the left of the sample to the right of the sample.
 This is all but impossible since the overlap between the wavefunctions js
. exponentially small and there are no allowed states in the interior of the
'-sample in this energy range (u, > £ > Uz).
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What is the current?
imply by noting that the situation
Chapter 2 for a ballistic conduc-
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fhe current can be written down very s

. very similar to what we had argued in 4.1t
'r (sz:e Fig. 2.1.1). The number of edge states (which is equal to the
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cavbrom ) i lays the role played by the
equilibrium with g jumber of filled Landau levels in the bulk) play Lok b
fumber of modes in a ballistic conductor sO that we
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Fig. 4.1.2, A conductor in the quantum Hall regime. The edge states (two shown in thg
figure) carrying current to the right are in equilibrium with the left contact while thosé
carrying current to the left are in equilibrium with the right contact. '

P -zhﬁM(uL ~ ur) (4.1.4b)

; e could derive this formally as follows (k. and kg are the wavenumbers
corresponding to E = p and E = pr respectively)

By BL
1 ) J‘_l_l EMK) 4
I =2e2f-£r-v(n,k)dk 262“2“ S
LTS

As a result of this complete suppression of backscattering, electrons
originating in the left contact enter the edge states carrying current to the
right and empty into the right contact, while electrons in the right contact!
enter the edge states carrying current to the left and empty out into the
left contact. Consequently, the edge states carrying current to the right
are completely in equilibrium with the left contact and have a quasi
Fermi energy equal to .. They are unaffected by ur since no electron
originating in the right contact ever makes it to these states. Similarly we’
can argue that the edge states carrying current to the left all original'
from the right contact and have a quasi-Fermi energy equal to pg (seg
Fig. 4.1.2):

ML
2e 2e B
D

iR

'i-Ience from Eqs.(4.1.4a, b) we can write down the longitudinal and Hall

resistances:

LiC g ot (4.1.5)
RL-=—1--=0 and RH 1 282M

t=p, and  po = pg ¢ i

" measurement would yield the Hall

Note that a two-terminal resistance :
resistance. Only a four-terminal measurement with voltage probes located
| i i istance.

® 1 the same side of the sample yields zero resl

. Thus whenever the Fermi energy lies between two bulk Lancl.au leveLs,
ﬁe longitudinal resistance is very nearly zero and correspon.dmg to t lei
seros in the longitudinal resistance, there appear plateaus in the Ha
| resistance (see Fig. 1.4.2). At these plateaus the Hall resistance has the

 value

Clearly the longitudinal voltage drop V. as measured by two voltagg
probes located anywhere on the same side of the sample is zero, while,
the transverse (or Hall) voltage Vi measured by two probes located anyy '
where on opposite sides of the sample is equal to the applied voltage:

Vi=0 and eV =y - px (4.1.44)

Note that this situation arises only when the electrochemical potentials|
lie between two bulk Landau levels. If the electrochemical potentials lig!
on a bulk Landau level then there is a continuous distribution of allowed§
states from one edge to the other. Electrons can scatter from the left 0
the sample to the right of the sample through the allowed energy states i}
the interior of the sample. This backscattering gives rise to a maximum in’

B 25.8128kQ
“2eM  2M

Ru
'{Where M = number of edge states at the Fermi energy = number of bulk
‘Landau levels below the Fermi energy. M takes on integer values that
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striking accuracy (better than one part per million) of this quantization of
Ry that is obtained at high magnetic fields. This phenomenon is known g
the quantum Hall effect (or QHE) and was discovered in 1980. It i
characteristic of 2-D semiconducting films and is not observed in bull
materials, ; ‘

Note that the quantized Hall resistance has the same form as the quany
tized resistance of ballistic conductors (see Section 2.1) with the numbgj
of edge states playing the role of the number of modes. In ordinary ballig
tic conductors the quantization is not very precise because backscatterin
processes are not completely eliminated. But in the quantum Hall regi me
we have a ballistic conductor of incredibly high quality due to the spatial
separation of the forward and the backward propagating states. As a resu
the quantization is extremely precise. :

Fig. 4.1.3. Hall bridge at high magnetic fields showing two edge states at each edge.

.hly if (pé q) is equal to (1< 6), (2« 1), (3+2), (4<3), (ST— 4) :r
6*—5) All other transmission coefficients are zero.'Negle.ctm.g any
ackscz;ttering we can write down the conductance matrix (which is pro-

portional to the transmission function) by inspection:
Application of the Biittiker formula _

So far we have not worried explicitly about the voltage probes used 10
measure the longitudinal or the transverse voltage drops. We have

Gp: q=1 q=2 q=3 g=4 g=5 =6
p=1 0 0 0 0 0 Gc

; 2 ] =2 G 0 0 0 0 0
assumed that such probes would measure the local quasi-Fermi energy fog P ¢ 0 0
the corresponding edge states. The Biittiker formula discussed in Sectios p=3 0 Ge 0 a
2.4 (see Eq.(2.4.4) or (2.5.8)) provides a natural framework for the analy= p=4 0 0 Gc 0 0 0
sis of multi-terminal conductors taking the probes explicitly into accoun| p=5 0 0 0 Ge 0 0
Both the zero longitudinal resistance and the quantized Hall rcsistan' p=6 O 0 0 0 Gc 0

follow readily from the Biittiker formula, if we postulate that electrong
can travel from one terminal to another without scattering. The transmis-
sion functions can be written down by inspection without any messy cal- S here - Ge=
culations of the type discussed in the last chapter. We will assume th' '
bias and temperature to be low enough that the transmission function i
essentially constant over the energy range where transport occurs. Thif
allows us to use the linear response formula (Eq.(2.5.8)) without worrying
about vertical flow (see Section 2.7). h

Consider an ordinary macroscopic Hall bridge hundreds of microns if
length and in width. We assume that electrons can travel from one termjs
nal to another without momentum relaxation due to the formation of edge
states. Since there is no backscattering, the transmission function T, is
very easy to evaluate. We just have to count the number of current carry=
ing channels that start from terminal p and end in terminal q. For the Hall
bridge depicted in Fig. 4.1.3 having M (=2 shown in the figure) edge
states that carry current around the sample, it is evident that T, =M

2e*M
h

- e can solve for the terminal currents and voltages sta.rtmg fr:J.m
E hich yields a system of six equations. As explained earlier
s on o i not independent
J'see discussion preceding Eq.(2.4.6)) these equatxons' are e
:. nd we can choose the voltage at one of the terminals to'be ze:ro0
it the row and column corresponding to that terminal. Setting Vi =0,

I Gc 0 0 0 -Gcl(W

I -Gc Gc 0 0 0 ||Va
Li=]| 0 -Gc Gc¢ 0 0 Va
Is 0 0 0 Gc 0 ||V
Is 0 0 0 -Gc Gc ||Ve
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necessary. We can easily write down the solution to the above set o
equations noting that the currents at the voltage terminals’ are all ze .
(=1 =1Is=Is = 0): :
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pantum Hall conductor provides a very good example of thls At low
gmperatures the current is carried by the states near the Fermi energy.
ftates lying deep inside the Fermi sea have no effect on the conductance.
But the local current density due to these states is not zero. These states
give rise to circulating currents in the sample even at equilibrium. An ap-
'ed electric field can induce a change in this circulating current flow
jattern thus contributing to the conductivity tensor defined by the relation
] = oSE. Thus electrons deep inside the Fermi sea can contribute to the
‘nductwlty, even though they do not contribute to the conductance.

Va=Vi=W, Vi=V=0

This is of course precisely what we had assumed, namely, that any vol.

age probe on one side floats to a potential equal to the right contact whilg
any probe on the other side floats to a potential equal to the left contac

Also the current is given by
5L =GV
Why should the Fermi energy ever lie between Landau levels?

The above discussion shows that the longitudinal resistance can be ex-
‘emely small if the electrochemical potentials i and u, were located
between bulk Landau levels as shown in Fig. 4.1.1. This requires that the
Lquilibrium Fermi energy E; must be located between the Landau levels
Since at low bias p ~ iz ~ Er. How is the location of E; determined?

At low temperatures we can write

so that the longitudinal resistance Ri. measured between probes 2 and 3 of
between 5 and 6 is zero 3
a-% W

<
Rimes — S O oD
il I

while the Hall resistance Ry measured between probes 2 and 6 or between
3 and 5 has the quantized value stated earlier (see Eq.(4.1.5)).
-V V-V

RH'_“—_:—'-G
I, L ¢

Eq

n = fN,(E,B)dE

where 71, is the electron density and N is the density of states. The elec-
tron density increases with the Fermi energy as shown in Fig. 4.1.4. The
'portant point to note is that the electron density increases rapidly
fwhenever the density of states is high. This is because a change in the
'_lec(ron density is related to the change in the Fermi energy by the rela-

Does the current flow only at the edges?

We stated above that if p, > u, (as shown in Fig. 4.1.1) then the sta
below wu, are all filled and do not carry any net current. Any net curren
can be calculated from the filled states on the left between Uy and y;'
However, this does not mean that current flows only near the edge havm
the potential u;. There are currents everywhere in the sample. We coul
choose to do our bookkeeping in a different way so that the net current
appears at a different spatial location. We have identified all the states.
below w, (note that u; > u,) as our Fermi sea which does not carry anf

Hs = Ns (Efa B)BEf

ng

net current. Consequently the net current is carried by electrons in the Figh deanlty

edge states on one side of the sample with energies lying in the rang‘ o

t > E > p2. But we could just as well identify all the states below 1 s —P E
£

our Fermi sea. The net current would then be carried by the holes occupy-
ing the edge states on the other side of the sample! |

: _4.1.4. Electron density vs. Fermi energy. Note that the electron density changes
We mentioned in Section 1.7 that while the conductance at low y gy. Yy g

rapidly whenever the density of states is high.
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region where the density of states N, is very small. A slight change in th
electron density would cause a large shift in the Fermi energy. The Fern
energy thus tends to be pinned to energies where the density of states |
high. 1

From this point of view we would expect the the Fermi‘energy to b§

.

pinned to one Landau level or another, where the density of states is high

If this were true then the low resistance condition discussed earlier woul

i

\ Global

equipotentials

tween two Landau levels. This is not a problem in narrow conductorg|
where the edge states provide a significant density of states between the
Landau levels. But in wide conductors the edge states represent a negli
gible fraction of the total density of states. How can the Fermi energy in §
wide conductor ever lie between the bulk Landau levels, leading to
low resistance condition that we have been discussing?

It is believed that in practice the density of states between two Landi
levels is quite significant because real samples have potentil¥
fluctuations leading to the formation of localized states (see for exampf
the introductory article in Ref.[4.3] by Prange). This can be understood by
noting that potential fluctuations in the interior of the sample lead to th
formation of local equipotential contours that close on themselves 2§
shown in Fig. 4.1.5a. Since cyclotron orbits drift along equipotential con:
tours they get stuck at these spots forming localized states. These sla(
do not contribute to the current flow but they help stabilize the Fe n:
energy between Landau levels by providing a respectable density ..
states between Landau levels as sketched in Fig. 4.1.5b. 3

kyg

A

i i i interi le lead to local
tig. 4.1.5. (a) Potential fluctuations in the interior of the samp
'ﬁipolcntials where cyclotron orbits get stuck forming localized states. (b) These
: localized states help stabilize the Fermi energy between Landau levels.

‘When the magnetic field reaches a value such that the electron density
n, = eB/h, we will have all the electrons in a single Landau level with
& one spin. For a carrier density of n, = 2 x 10''/cm?, this requires a field of
gbout 8 T. What happens if we increase the field further?
| From our earlier discussion we might expect that there will be no fur-
:'er plateaus with increasing magnetic field since the Fermi energy now
lies in the middle of a Landau level (the last!). Experimentally, however,
.T:u very pure samples one continues to observe plateaus in the Hall resis-

Fractional quantum Hall effect

We have seen that in the quantum Hall regime the Hall resistance takf
on quantized values given by 1

h__25.8128kQ

Pr = 2em 2M

where M is an integer. Actually at high fields the energy levels for he
two spins split apart due to the Zeeman effect and quantized plateaus arg
obtained with

"vity given by

: h  25.8128kQ
‘ Pyx &p p
h__258128kQ é

e’M M

i Where p is a rational fraction like +,%, 4 etc. This is referred to as the
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integral quantum Hall effect (or IQHE) that we have been discussing.
FQHE arises from the formation of a novel many-body gr‘:)und state (seel
R.B. Laughlin (1983), Phys. Rev. Lett. 50, 1395) whose quasiparticl
excitations are very different from what we expect from the simple one
particle picture that we have been using to describe the IQHE. We refel
the reader to the references cited at the end of this chapter and also to the
book by T. Chakraborty and P. Pietilainen (1988), The Fractiona
Quantum Hall Effect, (New York, Berlin, Heidelberg, Springer-Verlag). |

2
i -Z—Z—Mv,u-p)

M—-N No. of backscattered channels
griere p= M e Total no. of channels

The contact 2 ‘sees’ only the channels originating from the lef't Pavtnil:lg
a potential pr, while the contact 5 ‘sees’ only the channels originating

from the right having a potential pg.

wr=eVi and ps=0
4.2 Effect of backscattering

So far we have assumed that there is no backscattering so that each edge’
state has a transmission probability of 100%. Once we make this assump-
tion, zero longitudinal resistance and the quantized Hall resistance follow!
naturally from the Landauer—Biittiker formalism. However, the real powe ;
of this formalism lies in providing a clear description of the many exper-

The contact 6 ‘sees’ (M — N) channels that originate from. the left hand
have a potential . and N channels that originate from the right and have

: a potential pr. Consequently it floats to a potential of

“GB(M-N)#L'*NMR sl
M

Similarly the potential at contact 3 is given by

R S S

o = M2 V=T _ ez 1- p)
M

Suppose a split gate is used to pinch off the Hall bar (between probes 2.
and 3, see Fig. 4.2.1) so that only N (N < M) edge channels can propa-
gate through the constriction, then the remaining (M - N) channels will:
be completely backscattered. The net current from left to rigflt is given by S

RS G

| Hence the longitudinal resistance R. measured between probes 2 and 3 or
| between 5 and 6 is given by

_Vp__h [P -_"_[l_l] 4.2.1)
T L 2e*M|1-p| 2€

L T T YR Y SR

2e 2¢? . R
aE TN('HL ~Hn)= TNVl (setting pu = eV; and pg = 0)

' This ‘fractional quantization’ of the longitudinal resistance has been (tJ,b-
- served experimentally. The Hall resistance Ru measured betfveen pro 'es
E 2and 6 or between 3 and 5 is unchanged from its usual quantized value:

W) S 4.2.2)
T 26°'M

Ru

Application of the Biittiker formula

The above results follow quite readily from the Biittiker formula whlc‘h
] takes the voitage probes explicitly into account. The conductance matrix

Fig. 4.2.1. Hall bridge with split gate structure used to backscatter one edge channel

: : 3 ritten as
/ while the other can transmit. can be w
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e PR q - -v = =
p=1 0 0 qo 90* qoa qa-b
p=2 Ge 0 0 0 0 0C
p=3 0 (-pGe 0 0 pGe 0
p=4 0 0 Gz 0 0 0
p=5 0 0 0 Gc 0 0
p=6 0 pGe 0 0 (1-p)Ge 0

Hence from Eq.(2.5.8) (setting V4, =0 and leaving out the rows an

columns corresponding to terminal 4 as we did before)

L) [G 0 0 0 —-Ge[w
Ll |-G G 0 0o o |ln
Li=| 0 -(1-p)Gc Gc -pGe 0 [Iw
5[ ]Jo 0o 0o G o0 |ln
I [0 -pGe 0 -(-p)Ge Ge ||n

As before it is straightforward to write down the solution, noting tilat th
currents at the voltage terminals are all zero (=h=I=1I= 0):

V=V, V=0, Vi=(l-p¥, Vi=pV

and I = Gc(l - p)V1

Egs.(4.2.1) and (4.2.2) follow readily, noting that

=B _V-¥
.[1 11

V-V W-%
5 I

Ry

Disordered contacts

The fact that the Hall resistance is unaffected by the backscattering (see

?q.§4.2.2)) may seem obvious. After all, contacts 2 and 6 are located hun-
reds of microns away from the split-gate scatterers. Surely the effect of

the scatterers cannot be felt so far away! However, experimentally it has ]

be::n oriﬂ)szrved that often the Hall resistance too is affected by the split
gates. This can be understood if we postulate that there is no commuhica-

d-, Fig. 4.2.2. Same as Fig. 4.2.1 but with contact 6 ‘disordered’.

 tion among the edge states on the same side of the sample and the con-
tacts do not communicate equally with all the edge states. For example,
' suppose there is a defect or an impurity near contact 6 such that it only
| ‘sees’ the outer edge states and the remaining edge states bypass it and
| go directly to contact 1 (see Fig. 4.2.2).

i We would then expect contact 6 to float to a potential equal to ur = 0,
' instead of eVyp as we had reasoned earlier. Consequently the measured

Hall resistance is given by
V-V W

L L

5L

e

h 1
2e°M 1-p

instead of

2¢*M

. and is affected by the presence of the split-gate structure through the fac-
 tor p. Note that this is only true if the edge states on the same side of the
I sample do not communicate with each other. If they do communicate,
| then they will tend to equilibrate and thereby acquire a common average
. potential equal to eVi(1 - p). Even if contact 6 ‘sees’ only one of the
] edge states it will register this average potential, so that the measured
Hall resistance will be independent of p. The fact that the measured Hall
. resistance is affected by the split gate shows that there is lack of equili-
| bration between edge states on the same side of the sample. These results
 (as well as those for other types of disordered contacts) can be obtained
readily from the Biittiker formula, as shown in Exercises E.4.1 and E.4.2 at

._ the end of this chapter (see also Refs.[4.1], [4.2]).

Non-ohmic behavior of Ry

: We know that when the Fermi energy lies on a bulk Landau level, the
'~ edge states are backscattered through the bulk level to a state on the
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flgld4%i; Ildeasured resistivity in two silicon field-effect transistors at a magneti(l: .
ield of B = 12T as_a function of the gate voltage (which changes the carrier
concentram‘an). The two structures are identical and have the same width W = 40 '
The only difference is the distance between the voltage probes: it is 80 pm for l;?c; ]
sample and 2880 m for the other. The resistivity p is deduced from the measured |
resistance assuming the ohmic scaling law. The strong discrepancy between th i
resistivities in the two samples shows the breakdown of ohmic scaling Th:

discrepancy goes away above 4 K. Reproduced with permission frgm Fig. 2 of R. ],

Haug and K. von Klitzing (1989), Europhys. Lett., 10, 489-92.

other side giving rise to a longitudinal resistance. These are the peaks in ‘
the SAH oscillations as discussed in Section 1.5. We would expect this !
peak resistance to scale linearly with the spacing between the voltage 1
probes in accordance with Ohm’s law. Experimentally it has been shown

that t'he resistance does not increase linearly (see Fig. 4.2.3).
This non-ohmic behavior can be understood if we postulate that at high

ficlds (when the Fermi energy lies on a bulk Landau level), it is only the
innermost edge state that is backscattered through the bulk level to a-
state on the other side. The remaining edge states can still propagate
hundrfads of microns without backscattering. As a result when we make
the distance between two voltage probes longer and longer, the net
backscattering in the region between them does not increase a;ymptoti- .
cally to one. Thus the longitudinal resistance measured between two volt-

Fage Prones QuEs UL wutibasy i
expected from Ohm’s law. Instead it saturates to a maximum value of

(see Bq.(4.2.1) with N = M - 1)

wrsy

Ry (maximum) = e
e

.
M-1 M
- If we assume ohmic scaling and divide the measured resistance by the
& probe spacing to obtain the resistivity, then samples with larger probe
| spacing will yield smaller resistivity values as observed experimentally
' (see Fig. 4.2.3).
.t is really quite surprising that states on the same side of the sample
can travel such huge distances (1000 um is actually 1 mm and is clearly
§ visible to the naked eye) without equilibration. This means that even a
- sample 1 mm long may exhibit mesoscopic behavior. A number of exper-
ave been reported by different groups that support this observa-
for example, P. L. McEuen et al. (1991), Phys. Rev. Lett, 64,

-_ iments h
. tion (see,
| 2062).

Summary

" In a two-dimensional conductor at high magnetic fields, the states carry-
. ing current in opposite directions are located on opposite sides of the
1 sample. If the Fermi energy lies between two bulk Landau levels then the
" states (at the Fermi energy) are completely decoupled from each other
| (see Fig. 4.1.1). This leads to a complete suppression of backscattering
processes resulting in a perfectly ballistic conductor. The longitudinal re-
sistance measured with two probes placed along an edge is zero while the
Hall resistance measured with two probes on opposite sides of the sample
is quantized in units of (h/2€*) with an impressive accuracy that is
specified in parts per million (Section 4.1). In this quantum Hall regime
even conductors with dimensions of the order of millimeters exhibit
‘mesoscopic’ phenomena that cannot be described in terms of a conduc-
tivity tensor. For example, the longitudinal resistance does not scale lin-
early with length according to Ohm’s law (see Fig. 4.2.3); measurements
can be affected by the mere presence of a floating probe even if it is not
used (see Exercise E.4.2); etc. The Landauer—Biittiker formalism provides
a simple framework for the description of such phenomena.
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| resistance is now given by

V-Va h
R - ———
S 2e'M

e extra terminal establishes equilibrium between the edge states and
janges the Hall resistance. This is a rather surprising result which has
en observed experimentally. In macroscopic conductors, we do not ex-
gct an extra floating probe (‘5) to affect the measurement.

Fig. E.4.1. Same as in Fig. 4.2.2 but with terminals ‘3’ and ‘S’ omitted and termm

‘6’ renumbered as ‘3’. Further reading

\ detailed review of the work in the late 1980s applying the Landauer—
Biittiker formalism to the quantum Hall regime can be found in

.1] Beenakker, C. W. J. and van Houten, H. (1991), ‘Quantum transport
tin semiconductor nanostructures’ in Solid State Physics, vol.44, eds. H.
Ehrenreich and D. Turnbull (New York, Academic Press) (see part IV).
£14.2] Biittiker, M. (1991). Chapter in Nanostructured Systems, ed.
. Reed, Semiconductor and Semimetals, vol.35, p.191.

Exercises

E.4.1 Consider a slightly simplified form of the structure shown in Fig
4.2.2, as shown in Fig. E4.1.

(a) Write down the conductance matrix for this structure assuming t
there is no communication between edge states as they propagate fr
the constriction to terminal 3.

(b) Use the Biittiker formula (Eq.(2.5.8)) to show that the Hall resistan

is given by discussion of the earlier work on the quantum Hall effect (integer and

fractional) can be found in

.;;: 3] Prange, R. E. and Girvin, S. M. (1987), eds. The Quantum Hall Effect,
ew York, Springer).

4] Chakraborty, T. (1992), ‘The quantum Hall effect’, in Handbook on
iconductors, Chapter 19, ed. P. T, Landsberg (Amsterdam, New York,

Ax‘ford, North-Holland).

_h-Vi_ k1
I 2¢°M 1-p

as reasoned in the text.

E.4.2 Consider the same structure as in E.4.1 but with an extra termm'
‘5’ inserted, as shown in Fig. E.4.2. ;

Fig. E.4.2. Same as in Fig. E.4.1 but with an extra terminal £5’ i'nserted.




But |E-H+in) ,|G"] =1

Hence [G"]_n - [G‘]: 5

Since the advanced function is the conjugate transpose of the retarded
function we obtain the desired result (‘t’ denotes transpose):

[6*],=[¢"].,
From Eq.(3.4.6) (assuming zero magnetic field in the leads)
[5um s = ~Bm + VeV [J 2, 0) [GE 03 30)] , Xn )50
= =8y + iV [ X9 [CR 053 92)], , %a a)dvadlys

=[sm].s

Chapter 4

E.4.1(a)
Gp: gq=1 g=2 g=3 q=4
p=1 0 pGc (1-p)Gc O
p=2 Gc 0 0 0
p=3 0 0 pGe (1-p)Ge
p=4 0 (A-pGc O pGc

Note that we have written G33 = pGc in order to have all the sums and
columns add up to the same number Gc, assuming all leads to have the
same number of modes. However, the actual currents are unaffected by
what we choose for the diagonal elements of Gp,.

(b)
I3=0: V3= V‘
¢
L=1=pGc(Vi-V2)+(1- p)Gc(Vi - V5) = (1= p)Gc(V2 - V3)
Va-¥5 1 1
H Rym——— s ———
€nce H Il Gc ]_-p

E42 ,
' Gp: q=1 gq=2 q=3 g=4 q=5
p=1 0 0 (- p)Gc 0 pGe
p=2 Gc 0 0 0 0
p=3 0 0 pGc 0 (1- p)Gc
p=4 0 (-pGc 0 pGc 0
p=5 0 pGc 0 (1- p)Gc 0
Setting V4 =0,
12 =0: Vz = V1
13 =0: V3 = Vs
Is=0= p(Vs - Vz) + (1 —p)(Vs - Vq) Vs =sz
L=1 =ch(V1 -Vs)+ (1—p)Gc(V1 -V3)= Gc(Vi- Vs)
V-V3 1
Hence Ry I Ge
Chapter §
ES5.1 J=-0Vp, VJ=0 — V=0
In a circular geometry we can write
=Vin(r/Law) _, . Vir
ER e—————— r)=r—amn—mamm—r
L Al S 7 Ay
. oVir
Hence Jr)="F InLon/Lo)

so that the net current is given by

noV I no

I=[1ds= i) - OV /L)

E.5.2 We can write Eq.(5.5.30) in the form

—zAO' [\p 1 Bm (l_,_éw_)]
e‘/mh




