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Abstract

The purpose of this seminar is to present the phenomena of conductance quan-
tization and of the quantum Hall effect. First, I will describe the experiment and
comment on results. Then, I will present the theoretical background, which explains
both phenomena by describing subband opening in a narrow constriction. Finally,
I will focus on the latest breakthrough, that is imaging of electron flow through a
constriction, confirming the theory.
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1 Introduction

The latest development in technology offers a lot of technics to build smaller and smaller
devices, even on the nanoscale. In such systems, classically defined quantities often do not
obey the same classical laws they do in the macroscopic world and quantum mechanics
steps in sooner or later. An example are the so-called quantum wires, which confine
electrons in a long and narrow channel [1].

The purpose of this seminar is to present measurements of electrical and Hall conduc-
tance in a constriction, and present a simple theoretical explanation.

Electrons are confined in a 2-dimensional electron gas ( 2DEG ) in a semiconductor
heterostructure, and a gate is placed upon using lithography. In this way, we are dealing
with quasi one dimensional problem, as the confined electrons can freely move only in
one direction. Measured longitudinal conductivity is not linearly dependent on the gate
width, as classical equations would tell, but is increased in very clear steps.

When we apply a perpendicular magnetic field, and measure the Hall conductivity in
the transverse direction, steps are clearly visible also.

The latest development in this field and the final confirmation is the direct imaging of
electron flow, using the newest tunneling microscopic techniques.

2 The experiment

The first experiment, which spurned the in-
terest in measuring conductance quantiza-
tion was made by von Klitzing [2]. His group
measured the quantization of the Hall resis-
tance of a degenerate electron gas in a MOS-
FET inversion layer. The reason why the
first measurement of the quantization was
performed in presence of a large magnetic
field ( B ∼= 15 T) is probably because of
the absence of backscattering, which was ex-
plained later by Buttiker [3] and which we
will also discuss further on. The inset in fig-
ure 1 shows a top view of the device used in
the experiment with a length L = 400 µm
and width of W = 50 µm. A constant mag-
netic field is applied perpendicular to the de-
vice. The graph shows the Hall voltage UH

and the probe potential drop Upp. We can
clearly see the plateaus in the UH which is
accompanied with a large drop of Upp.

Figure 1: Recordings of the Hall voltage
UH and the voltage drop between potential
probes Upp at T = 1.5 K in a constant mag-
netic field B = 18 T and the source drain
current I = 1 µA
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This early experiment gave rise to many questions regarding the transport of electrons.
However, as a result of a high mobility attained in a 2DEG trapped in a semiconductor
heterostructure, the van Wees group [4] was able to measure the actual longitudinal
conductance. The mean path of the electrons, due to their high mobility is actually
significantly longer than the length of the constriction. Such constrictions are an ideal
tool for studying ballistic transport of electrons and are called Sharvin point contacts. A
classical description suffices, when the dimensions of the constriction are large compared
to the electron Fermi wavelength λF , but when dimensions become comparable to λF the
quantum ballistic regime is entered.

Figure 2: A 2DEG in a GaAs-AlGaAs heterostruc-
ture and the effective potential [5].

The point contacts are
made on a high-mobility
molecular-beam-epitaxy-
grown GaAs-AlGaAs
heterostructures, shown
on figure 2. The electron
density of the material is
3.56 × 1015/m2 and the
mobility 85m2/V s at 0.6
K. At such low tempera-
tures both le and li can
become relatively large
(10 µm), as also λF which
is typically 40 nm. Both
conditions (le >> W and
λF ≤ W ) were satisfied in
the experiment described
below.

The constriction was made on top of the heterostructure by creating a metal gate
using electron-beam lithography (inset in Fig. 3). The geometric width of the gate was
250 nm, but the actual width is defined by applying gate voltage. At Vg = 0.6V , the
electron gas beneath the gate is depleted, so the only way electrons can move is through
the gate, not underneath. This is the maximum width. By reducing the voltage, the
constriction is being tightened, so that when we reach Vg = −2.2V , the gate is fully shut
and electrons cannot move through.

One would expect the conductance to increase linearly in respect to the width W of
the constriction

G =
2e2

h
kF W/π, (1)

but the conductance measurements shown in Fig. 3 show a striking difference. The
dependance is not linear at all, as we can clearly see the plateaus at the integer multiples
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of 2e2/h.

Figure 3: Left: Resistance of the point contacts as a function of gate voltage at 0.6 K.
Inset: Point-contact layout. Right: Point-contact conductance obtained from resistance
after subtraction of the lead resistance [4], [6].

We do not know though, how accurate the quantization is. In this particular exper-
iment [6] the deviations from integer multiples of 2e2/h might be caused by uncertainty
in the resistance of the 2DEG leads.

In general, there are several factors,
which determine the accuracy of
quantization. This experiment
was performed at 0.6 K. When we
perform the experiment at higher
temperatures, the effect decreases
and we obtain an almost linear
dependance at T = 4.2 K as seen
if Fig. 4. The reason for this tem-
perature averaging will be discussed
later.

The other reason for deviations is
the backscattering process. If we are
dealing with a very ”dirty” sample
with a lot of impurities, we get a sub-
stantial decrease of conductance due
to backscattering. The effect, how-
ever can be reduced by applying a
strong magnetic field [3].

Figure 4: Breakdown of the quantization
due to temperature averaging. The curves
have been offset for clarity [6].
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In an ideal material, the quantization is determined also by the shape of the constric-
tion and especially by the potential. Such calculations have been done, considering sharp
potential drop [7] and a smooth, saddle-like constriction [8].

A resumé of quantum ballistic and adiabatic electron transport was published by the
van Wees group [6] and covers most of the measurements, including anomalous integer
quantum Hall effect, which we will not discuss in this seminar.

3 Theoretical background

Now, we will discuss the theoretical background of the measurements we saw in the
previous section. First, we will take a look at the description of transverse modes of
an electron wavefunction in a narrow conductor, which is often refered to as an electron
waveguide or a quantum wire. This is an introduction, but it is essential in many ways
to understand the nature of the ballistic transport, especially in the presence of a large
magnetic field.

Consider a long rectangular conductor that is uniform in x-direction and has some
transverse confining potential U(y) (see fig. 5).

Figure 5: A rectangular conductor and a transverse confining potential.

We start with the general effective mass Schrödinger equation in an external magnetic
field [

Es +
(ih̄∇+ eA)2

2m
+ U(y)

]
Ψ(x, y) = EΨ(x, y). (2)

We apply a constant magnetic field B in a z direction, perpendicular to the x-y plane
using the gauge

Ax = −By and Ay = 0. (3)

The solution to Eq.2 can be expressed in the form of plane waves and a transverse
function χ(y)

Ψ(x, y) =
1√
L

exp(ikx)χ(y). (4)
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The transverse function χ(y) must satisfy the equation

[
Es +

(h̄k + eBy)2

2m
+

p2
y

2m
+ U(y)

]
χ(y) = Eχ(y). (5)

We have not yet defined confining potential U(y). In general there are no analyti-
cal solutions for an arbitrary confining potential, therefore we have to make numerical
calculations. However, analytical solutions are known for a potential well or a parabolic
potential, which is a good description of the actual potential in many electron waveguides
and which we will use in our discussion. We will consider confined electrons in three cases.
First, we will compute the eigenenergies and eigenfunctions in the absence of the magnetic
field (B = 0, U 6= 0), secondly the system with no potential, only magnetic confinement
(B 6= 0, U = 0) and conclude with both, magnetic and potential confinement.

3.1 Confined electrons (U 6= 0) in zero magnetic field (B = 0)

In the case of zero magnetic field and parabolic potential

U(y) =
1

2
mω2

0y
2, (6)

Eq. 5 reduces to

[
Es +

h̄2k2

2m
+

p2
y

2m
+

1

2
mω2

0y
2
]
χ(y) = Eχ(y). (7)

This equation is equal to that of a harmonic oscillator with an energy shift of Es+
h̄2k2

2m
,

and the eigensystem is given by

χn,k(y) = un(q) where q =
√

mω0/h̄y, (8)

where

un(q) = exp(−q2/2) Hn(q), (9)

Hn beeing the n-th Hermite polynomial. The shifted eigenenergies are

E(n, k) = Es +
h̄2k2

2m
+ (n +

1

2
)h̄ω0, n = 0, 1, 2, ... (10)

The electron group velocity, which we will later need to compute electric current is
proportional to the slope of the dispersion curve E(k)

vg(n, k) =
1

h̄

∂E(n, k)

∂k
, (11)

which is h̄k
m

in our case.
States with different n-s are said to belong to different subbands. The energy spacing

between subbands equals h̄ω0 and the tighter the confinement the larger ω0 and further
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Figure 6: Comparison of the dispersion relation for the three aforementioned cases. a)
U 6= 0 and B = 0, b) U = 0 and B 6= 0, c) U 6= 0 and B 6= 0.

apart the energy subbands. This mechanism is directly responsible for the steps observed
in the conductance measurements in Fig.3. One is able to regulate the energy spacing
h̄ω0 by applying voltage between quantum point contacts.

3.2 Free electrons (U = 0) in non-zero magnetic field (B 6= 0)

In this case the Eq.(5) is reduced to

[
Es +

(h̄k + eBy)2

2m
+

p2
y

2m

]
χ(y) = Eχ(y), (12)

by defining yk = h̄k/eB and ωc = |e|B/m Eq.(12) is rewritten in the form

[
Es +

p2
y

2m
+

1

2
mω2

c (y + yk)
]
χ(y) = Eχ(y). (13)

Eigenfunctions remain the same as in the previous case, the only difference is, they
are centered around qk instead of zero

χn,k(y) = un(q + qk) where q =
√

mωc/h̄y qk =
√

mωc/h̄yk. (14)

The mathematics describing these Landau levels i.e. magnetic subbands is thus very
similar to the mathematics describing the electronic subbands for a parabolic confining
potential. Physical content, however is completely different. Eigenenergies lose their
k-dependence

E(n, k) = Es + (n +
1

2
)h̄ωc, n = 0, 1, 2, ..., (15)

therefore their group velocity is 0! Although the eigenfunctions have the form of plane
waves, a wave packet constructed of these localized states would not move. That is in
accordance with classical dynamics, which predicts an orbital movement in an x-y plane.
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The other important difference is that the eigenfunction offset yk is proportional to
the wave vector k in the longitudinal direction.

3.3 Confined electrons ( U 6= 0 ) in an external magnetic field (
B 6= 0)

Finally we consider the general case of confined electrons in an external magnetic field.
We use the previously defined variables to convert Eq.(5) to a harmonic oscillator form(

Es +
p2

y

2m
+

1

2
m

ω2
0ω

2
c

ω2
c0

+
1

2
mω2

c0

[
y +

ω2
c

ω2
c0yk

]2)
χ(y) = Eχ(y), (16)

where

ω2
c0 = ω2

0 + ω2
c .

We can now easily write down the eigenfunctions and energies in the same manner we
have done in the previous two cases

χn,k(y) = un

[
q + qk

]
where q =

√
mωc0/h̄y qk =

√
mωc0/h̄yk, (17)

E(n, k) = Es + (n +
1

2
)h̄ωc0 +

h̄2k2

2m

ω2
0

ω2
c0

, n = 0, 1, 2, .... (18)

And the electron group velocity:

vg(n, k) =
1

h̄

∂E(n, k)

∂k
=

h̄k

m

ω2
0

ω2
c0

. (19)

Comparing the group velocity to h̄k/m, it would seem that the effect of the magnetic
field is the transformation of the effective mass,

m → m
[
1 +

ω2
0

ω2
c0

]
which increases, as the magnetic field is increased.
If we compare the energy dispersion relations in Fig. 6, we see that the curves are

stretched a little in the last case, when the magnetic field is increased. The number of
levels below the Fermi energy depends on the gate width and/or the magnitude of the
applied magnetic field.

4 Conductance quantization

In this section we will see, how to understand the plateaus measured in the experiment.
First we will describe the conduction quantization in zero magnetic field, then we will
discuss the effect of finite temperature and presence of a finite voltage in the samples.
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Finally we will turn our attention to the effect of the magnetic field in a sample, and lay
ground for understanding of the quantum Hall effect, which is the subject of the next
section.

4.1 Quantization

Our task is to find an expression for conductivity, defined by a change of current, when
voltage is applied

G =
δI

δU
. (20)

We are familiar with the classical expression for the current density

dj = e vg dn, (21)

which is well defined for the case of free electrons, but we have to find the appropriate
expression for each quantity in our case, when electrons flow through a potential barrier.
First we have to be aware that each of the subbands contributes to the current, therefore
we have to make a sum over all channels

dI = −eS
∑
m

(dnm vgm

∑
n

Tmn(E − V0)). (22)

It could quite possibly happen, that a wave function entering the constriction in a n
= 3 transverse mode, would ”split up”, and leave the waveguide, say in 95% n=3 and 5%
n = 2 mode. This is called channel mixing. To account for such phenomena, we define
a transitivity matrix, which describes how the wave is transmitted. The matrix depends
on the shape of the conductor and energy, we have also accounted for the shift of the
potential in the constriction V0. To count all the contributions in the channel we use
the inner sum over n in Eq. 22 and finally perform the outer sum over all m to get the
complete current through a constriction.

The group velocity in the m channel is vgm = 1/h̄dEm/dkm and the density of states
in the volume unit is 2/Sdkm/2π, the 2 accounting for the two spin states. This would
be true at very low temperatures, where all the electrons would be filled up to the Fermi
energy. If the temperature is higher than 0 K, the states are filled up to the electrochemical
potential µ and one has to multiply dnm with the Fermi distribution function

f(E, T ) =
1

e(E−µ)/kT + 1
. (23)

Eq. 22 yields

dI = −2e

h
T (E − V0)f(E, T )dE. (24)

This is the contribution to the current from one of the electrodes. If no voltage is
applied, no current flows, since the contributions are the same. But when we apply the
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voltage, electrons in one of the electrodes are filled to, say µL for the left and up to µR

for the left electrode. The difference equals to δµ = eδU , where δU is the applied voltage,
see Fig.7.

Therefore, we have to subtract the contributions to get the net current, the result
being

δI = −2e

h

∫ ∞
−∞

T (E − V0)
(
f(E − eδU, T )− f(E, T )

)
dE. (25)

Figure 7: A sketch of the potential through the constriction.

When we use Eq. 20 and Eq.25, we get the final result

G(V0, T ) =
2e2

h

∫ ∞
−∞

T (E − V0)(−
∂f(E, T )

∂E
)dE. (26)

If the potential is smooth there is no channel mixing, we get the adiabatic transport
of the electrons and every electron is transmitted in the same state it is entered. If we
idealize the case, all the current in each of the channels is transmitted completely, so that
T (E − V0) = 1.

In the low temperature (T → 0) limit, all the electrons are filled up exactly to the
Fermi energy and the Fermi distribution function is actually δ(E − EF ). Eq. 26 is
simplified

G(V0, T = 0K) =
2e2

h
N(V0), (27)

where N is the number of the opened channels. This number depends on the gate
voltage and can be inferred from the dispersion relation, e.g. from Eg. 18

N = int
[
EF − eV0

h̄ωc0

+
1

2

]
.

Now we can understand the origin of the quantization. The conductance is propor-
tional to N, which is the number of opened channels. This number, however is defined
by the number of subbands below the Fermi energy, see Fig. 6. When we tighten the
constriction, either by applying gate voltage or increasing the magnetic field i.e. ω0 or
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ωc, the energy gap increases, and the number of subbands with En ≤ EF decreases. So,
the tighter the constriction, the smaller the number of open channels, hence the smaller
conductance. This is the fundamental mechanism behind both experiments, conductance
quantization and integer quantum Hall effect.

4.2 Energy averaging of the conductance

We have also mentioned that quantization breaks down when temperature is increased,
see Fig. 4. We can now understand this, if we take a look at Eq. 26. When performing
the experiment a finite voltage V is applied across the device. In this case conductance
is given by

G(V ) =
2e2

h

1

V

∫ EF +eV

EF

T (E − V0)dE (28)

Equations 26 and 28 show that in both cases, the physics
is the same, only the weighing factors are different. The
temperature averaging has a Gaussian weighing factor
(∂f(E, T )/∂E) which has an effective width ∆E ≈ 4kT ,
for voltage averaging ∆E = eV . In the Fig. 8 trans-
mission resonances are visible at ∆E < 0.45meV and
disappear at higher ∆E. When temperature is further
increased, the plateaus gradually disappear, see Fig. 3.
The averaging becomes effective at 0.6 K and plateaus
have almost disappeared at 4.2 K.
The mechanism for the destruction is that not all elec-
tron states are occupied at low-lying bands, some of the
next subband is occupied also. This is why we put in
the averaging factors that smooth the stepped curve.

Figure 8: Voltage averaging
of the resonances of G in the
second subband.

5 Quantum Hall effect

In the previous section we have measured the longitudinal resistance of the 2DEG. Now,
we will show that we can explain the quantization of the Hall resistance, which is measured
in the perpendicular direction. First, we will take a look at the dispersion relation of the
electrons in the 2DEG:

En(kx) = eV (y) + (n− 1

2
)h̄ωc ± gµBB (29)

We added the Zeeman splitting factor, which eliminates the spin degeneration and
omitted other terms, which are small in the high field limit. As we have already mentioned,

12



Figure 9: Classical Hall ex-
periment

This is the setup of a classical experiment, which mea-
sures the Hall resistance. When a magnetic field is ap-
plied in the z direction and electrons travel in the x
direction, the field moves the electrons to the left part
of the sample as indicated in Fig. 9. The Hall voltage
is defined by this field in the y direction: UH = EyY .
The Hall resistance is then calculated as RH = UH/Ix,
where Ix = nevY Z and n is the electron density and v
the velocity (X, Y and Z are the sample dimensions).
The velocity is obtained from equation: eEy = evB,
obtaining the final result : RH = B/Zne

the eigenfunctions of the electrons are shifted along the y direction, depending on their
group velocity. This means that the electrons coming from the left move on the upper
part of the constriction and the ones coming from the left on the lower part. This is the
mechanism that enables the formation of the edge channels.

The relevant electrons for transport are those at the Fermi energy and the electron in
the n-th Landau level flows along the equipotential line defined by the condition

eV (y) = EF − (n− 1

2
)h̄ωc ± gµBBµBB (30)

This condition is satisfied at the edges of the sam-
ple, so the edge channels are located at the inter-
section of the Landau levels and the Fermi energy
as already indicated in Fig. 5. The sketch in Fig.
11 shows the occupied electron states in presence
of a net current I in the 2DEG, which is a result
of the difference in occupation of the right - and
left-hand edge channels which carry the current in
the opposite direction.

Figure 10: Cross section of a
2DEG showing the occupied elec-
tron states of two Landau levels
in the presence of a current flow.

It can be shown that the net current I is independent of the details of the dispersion
of the Landau levels and is given by

I = NL
e

h
(µL − µR) (31)

This is a direct consequence of Eq. 24 at low temperature when there is no need for
a distribution function. Secondly, we measure the voltage in such a way we couple to all
the opened channels, therefore the transmission coefficient is taken to be 1, which is true
in a smooth potential where no channel mixing occurs.

The net current is given by the number of states in a Landau level multiplied by
e/h and by the electrochemical potential difference µL − µR between right and left edge
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channels. Voltages probes attached to either side of the 2DEG will measure the potential
difference, and the Hall resistance is

RH =
VH

I
=

(µL − µR)

eI
=

h

e2

1

NL

(32)

Figure 11: Number of subbands
as a function of inverse magnetic
field.

This is the simple explanation of the quantization
of the Hall resistance. The number of subbands is
proportional to 1/B, so that the Hall resistance is
proportional to B in accordance with the classical
expression we derived earlier.
This is true for the currents in the bulk of the
2DEG. In the constriction, however, the number
of occupied Landau levels is reduced relative to
the bulk and is again given by the N = int[(EF −
eV0)/h̄ωc+1/2]. The selective measurements of the
channels, which does not couple to all subbands(as
is the case in integer Hall effect), gives rise to a new
phenomena called the anomalous integer quantum
Hall effect, which we will not discuss here.

6 Imaging the electron flow

The latest breakthrough as already mentioned is the ability of imaging the electron flow
directly during the experiments [5]. Imaging is performed on a 2DEG described above,
as seen in Fig.2. Obtaining such images is not easy, because electrons are buried beneath
the surface and because the sample must remain at a low temperature to show quantum
behavior.

The Topinka group at Harvard used scanning probe microscopy to image the coherent
flow of electron waves through the constriction, formed by the applied gate voltage (a in
Fig.12).

This experiment was performed in absence of the magnetic field, or in presence of
a small field. This is exactly the regime needed to obtain conductance quantization
discussed above. They recorded the electron flow through the constriction and were able
to measure each of the channel as the conductance increased in steps (b in Fig. 12). The
inset shows the opening of the channels as the gate voltage is increased, as is the width
of the constriction.
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Figure 12: a Imaging the flow through QPC using a charged tip. b Conductance quanti-
zation

Results are represented in c, d and e in Fig. 12. The central part in the figure
is a simulation, which is accompanied by the actual measurements on the edges. This
is because we cannot measure the flow too near the constriction, as it would spoil the
quantization due to the backscattering. We can see the modes with one, two and three
maxima, as predicted by the calculated eigenfunctions of such a system. The ripples in
the imaging figures are the electron waves with the Fermi wavelength λF .

7 Conclusion

We have shown the mechanism behind the phenomena of the quantized conduction and
integer quantum Hall effect. We realized that the origin of the quantization lies in the
opening of the subbands, the number of which is controlled either by applying the gate
voltage and increasing ω0 or by applying a perpendicular magnetic field.

We have seen that the quantization is obvious at low temperature and in the presence
of a large magnetic field. The final confirmation is the imaging of the electron flow which
shows the eigenfunctions of the confined electrons.
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