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ABSTRACT. A proof of the Bogoliubov inequality that does not require of the Baker-Cambell-
Hausdorff expansion is presented. The inequality is used to get an approximation to the Helmholtz
free energy of an isotopically disordered harmonic chain.

RESUMEN. En este trabajo se presenta una demostracién de la desigualdad de Bogoliubov que
no requiere de la férmula de Baker-Cambell-Hausdorff. La desigualdad es usada para obtener la
energia libre de Helmholtz aproximada para una cadena arménica con desorden isotopico.

PACS: 05.30.—d; 63.50.4x

1. BOGOLIUBOV INEQUALITY

The variational method is one of the most powerful tools to find approximate solutions for
physical systems that are not amenable to analytical treatment. In statistical mechanics
the Bogoliubov inequality (BI), that satisfies the free energy of a Hamiltonian system,
provides us with the frame in which a variational scheme can be implemented. The proof
of the BI is shown in Callen’s second edition book on thermodynamics [1] for the case when
the unperturbed Hamiltonian and the perturbation commute. For the general case, the
reader is referred to Feynman’s book on statistical mechanics [2] where an elegant proof can
be found. Feynman uses Baker-Cambell-Housdorff expansion for the exponential of a sum
of two non commuting operators. This expansion is also used by H. Falk [3] to prove what
he calls iniquality of J.W. Gibbs. Applications of BI have been done by M. Girardeau [4]
and R. Griffiths [5]. Due to the usefulness of this inequality we think that it is convenient to
have at hand a proof that does not require of the expansion above mentioned. We present
here a proof that only uses some of the elements of matrix algebra and perturbation theory
therefore making it accessible to any student with an elementary course on quantum
mechanics. Besides the proof of the inequality a perturbation expansion of the free energy
is obtained in the procedure. The BI is applied to a isotopically disordered harmonic chain
in thermodynamic equilibrium.
Given a physical system whose Hamiltonian can be written as the sum

H=H’+)H', (1)

where H? is the unperturbed Hamiltonian, H' the perturbation and A is a control param-
eter, assume that the free energy FO of the unperturbed system is known and we want to
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know F(A) the free energy for different values of the parameter . Bogoliubov inequality
states that

F=F) =1) 2 F 4 (HY),, (2)
where the average (...)g means

_ D Aexp(—BH°)
0 = fexp(—pH")] o

with 3 = (ksT)~1. We proceed now to prove BI [Eq. (2)]. The free energy F()) is defined
by
F(X) = =7 InTr[exp(—BH))]
= -3 ' InTr[exp(—BH® — BAHY)). (4)

We are going to show first that F()) is a concave function of the parameter ), i.e.

d*F
<0

o = YA (5)

Assuming that our basis is the set of eigenvectors of the operator H?, it means that the
representation of this operator is given by a diagonal matrix whose elements are

H) = H?§;;. (6)

In case that H? is n—fold degenerated, i.e., ¥P, 92 have the same eigenvalues H?, we may
choose our basis such as Hfllgk = 0 for i; # ix and i;, tx = 11,19,...,%,. With this election
all the following calculation are valid.

Let S be the matrix that diagonalizes H, then
(H° + AHY)S = SD, (7)

where D is a diagonal matrix. Taking an expansion of S and D in power of A we have

. 2..
(H® + AHY) 1+As+i\2-s+---

S V2
= [1+/\S+?S+---

4 . | X2
H +)\D+?D+"' .
(8)

where the dot means derivative with respect to the parameter A evaluated at A = 0.
Equating the different order in A in (8) we get

H°S + H' = SHO + D,
H°S +2H'S = SH°+ D+ 25D, (9)
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From the first of (9) we obtain
: 1 : (g0 _ g0\ ' oz
D; = Hy; Siszij(Hj "Hi) (¢ #7)
and from the unitarity condition for the matrix S
SSt=I=(I+X5+--)T+A5"+--)
up to terms linear in A we have
S+ 8" =0,

which can be satisfied if we choose S real and antisymmetric.
Taking the diagonal elements of the second of Eqgs. (9)

1 1
Z»’Hl _lD z I;{{)UH

3

with the sum carried over j # i.
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(13)

Taking into account the fact that the trace of a product of operators is invariant under

cyclic permutations we have the following expression for the free energy:
F(X\) = —kgT In Tr[exp(—(H)]
= —kgTIn T[S~ ! exp(—3D)S)
= —kgT In Tr[exp(—AD)),
therefore

dF _ Tx[Dexp(=AD)]

dx ~ Trlexp(~pD)] |

2F  Trlexp(=AD)] T[(~BD? + D) exp(~pD)] + H{ D exp(~pD)]}

oA’ ~{T‘l‘[exp(—ﬁD)l}2
_ 4 [TT[D exp(—ﬁmr _ DD exp(-8D)] _ Tr{D exp(~pD)
~ 7| Trlexp(-5D)] Trlexp(—AD)) Tr[exp(—BD)]
Evaluating these derivatives at A = 0 we have
dF
Do = 27 2 Husexl (-BHY), 7=} exp(~PH)),

@F _ o[ Hyexp(-HY) *_ pEH exp(=pH])
X2 Z Z

' -1
Fexpl—0H]) X, 20 H; [HP - H?]

* 7

(14)

(15)

(16)
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The third term of the last equation is a sum over all pairs of indices 7 and j (i # J) of the
positive quantities |H};|? with the weighting factor exp(—SH)/[H{ - HY], for every couple
of terms, ¢ and j, we have that their contribution is [exp(—B8H?) — exp(—ﬁHf)]mgi—Hﬁ
which is clearly negative. it

Using the Cauchy-Schwarz inequality

2
<Y lanl* S Ibml?, (17)

Zan by
n

with a, = H], exp(—8HY/2) and b,, = Z ! exp(—BHS /2) one proves that the absolut
value of the second term of Eq. (16) is greater than the first one, leaving us with the
inequality

d*F

| <0. (18)

In order to prove that F()\) is a concave function of the parameter A we redefine the
unperturbed Hamiltonian of the system and the control parameter:

H=H"+ ) H' = HO 4+ (A= A)H + AH!,

= A%+ (A —Xg)H! = H® + vH! (19)
so we have now
d*F d*F
0 — | ==—| . ¥ 20
0 Ao

The proof of the BI is completed with the observation of the fact that the value of a
concave function is always below the tangent line to any point of the curve. In particular
we have

F(N) € Fo4 L

—| A (21)

0

Finally taking A = 1 we get the BL

2. APPLICATION OF THE BI

We will use the Bl to get an approximattion to the Hemlholtz free energy for an isotopically
disordered harmonic chain with periodic boundary condition. We assume that the masses
of the chain are independent random variables with identical density of probability p(m;)
and the Hookean spring constant are all taken equal to unity.
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Considering the system in thermodynamic equilibrium at temperature T', we want to
determine the mass m of a homogeneous chain which gives a Helmholtz free energy closest
to the averaged exact one.

Consider the Hamiltonian of the system for a given realization of the desorder in the
masses

N

H=H{mi}=2

i=1

2

§;+%@Hrﬂgq, (22)

where z; is the displacement of the i*" mass from its equilibrium position, with zy4; = 2,
and p; its linear momentum. The Hamiltonian can be written in the form

N 2 N .2

B =5 | B 4 1 ) _PL(E_) 2

H=H'+H ;[27%—&—2(1:,“ x,)}-}-;?m - 1. (23)

The BI allows us to write for any realization of the disorder the following inequality:
F{m} < F'(m) + (H')o, (24)

where F°(m) is the free energy of the homogeneous harmonic chain with masses m. Taking
mean values over the masses distribution we get

(25)

where (%) is defined by

(2) = [ aoptm)dm. (26)

Using the fact that for an homogeneous harmonic chain the kinetic energy K is a half of
the total energy, Uj, we get the final expression for the upper bound of F:

F< Fo(m)+%0—(m<%>-l). (27)

Writting down the expression of F%(m) and Up(m) and using m as a parameter that
minimizes the right side of (27) we get

7n=<%>4. (28)
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Studing the dynamics of a isotopically disordered harmonic chain one finds that the
system behaves as an homogeneous chain of masses given by (28) for short times but, for
long times the behaviour corresponds to an homogeneous chain with masses given by (6, 7]

m = {m) = [mip(mi)dmi. (29)

Due to the thermodynamic equilibrium of the system one is inclined to think that its
behaviour would correspond to that of a dynamical situation after a long time.
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