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1. Introduction

One dimensional (1D) quantum scattering theory is usually formulated for potentials

that vanish asymptotically both for large positive and negative values of the coordinate

x. It is well known that the degeneracy of the energy makes the full-line scattering

problem somewhat more involved than partial-wave scattering on the half-line.

Additional complications arise for step-like potentials, namely, when the potential tends

to different constant values on both sides,

lim
x→−∞V (x) = 0 , lim

x→∞V (x) = V0 > 0 .

These conditions apply for example to electron collisions between different metals, in

models of time-of-arrival measurement [1, 2], or in experiments with evanescent waves.

In some cases it is enough to solve the Schrödinger equation numerically, subject to

scattering boundary conditions, in order to obtain the transmission and reflection

amplitudes. There are however applications where a formal theory of scattering

is needed. By “formal theory” we mean the network of operators (Moller, Ŝ, T̂ ,

and resolvents), which, together with their generic properties and relations, are used

to describe the collision. These applications include the obtention of approximate

analytical formulae, perturbative analysis, inverse scattering methods based on “two-

potential formulae”, kinetic theory, or the study of characteristic times [3]. The work

on the scattering theory of step-like potentials has concentrated on the inverse problem

[4, 5, 6], characterizations of scattering data for classes of potentials [5], zero energy

limits [7], Levinson’s theorem [7], and compact formulae for the evolution of states

with initial support on one half-line [8, 9]. This paper complements those mentioned
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by focusing on the formal setting of the theory. In particular, we stress the fact

that several partitionings of the Hamiltonian are possible, and work out, compare and

relate the Moller operators and the corresponding Lippmann-Schwinger (LS) equations

derived from them. Compact expressions of the asymptotic transmission and reflection

amplitudes are given in terms of different potential-dependent matrix elements. The

formalism is presented with “physicist’s rigor”. Its validity is in any case easily checked

for cut-off potentials that deviate from the two asymptotic values 0 and V0 only in a

finite domain, [a, b], which is the case explicitly considered throughout. It is expected

though that it will apply for other potentials as well, having smooth but sufficiently

rapid decay.

For completeness, and in order to introduce the relevant concepts and notation, in

section II we present a lightnight review of Moller operators and Lippmann-Schwinger

equations for potentials that vanish on both sides (the “ordinary case” hereafter), while

some properties of scattering states of the Hamiltonian Ĥ for step-like potentials are to

be found in section III. We discuss several partitionings of the Hamiltonian, together

with the corresponding Moller operators and Lippmann-Schwinger equations in the

following sections IV, V and VI. So as best to illustrate the differences among the

formalisms we address the issue of the existence of Born’s approximation in section VII.

2. Moller operators for potentials that vanish on both sides

In ordinary 1D scattering the Moller operators Ω̂±, defined by the strong limits

Ω̂± = lim
t→∓∞ e

iĤt/h̄e−iĤ0t/h̄, (1)

link the actual state ψ with its asymptotic free-motion reference states, φin and φout,

lim
t→−/+∞

||ψ(t)− φin/out(t)|| = 0 ,

The operator Ω̂+ (respectively Ω̂−) provides the scattering state by acting on the

incoming (resp. outgoing) asymptote, φin (resp. φout) ,

Ω̂+/−|φin/out(t)〉 = |ψ(t)〉, (2)

for all t.

The total Hamiltonian, Ĥ = Ĥ0 + V̂ , is composed by a free motion Hamiltonian,

Ĥ0 = p̂2/2m, that governs the motion of the asymptotes, and a potential operator, V̂ ,

with a local coordinate representation 〈x|V̂ |x′〉 = δ(x−x′)V (x). The potential function

V (x) vanishes as |x| → ∞, in such a way that the Moller operators in (1) exist. For

concreteness, we shall in fact assume that V (x) vanishes outside the finite interval [a, b],

with a ≤ 0 and b ≥ 0.

The infinite time limits in the definition of Ω̂±, (1), may also be expressed with the

alternative forms

Ω̂± = lim
ε→0±∓ε

∫ ∓∞

0
dt′ e±εt′eiĤt′/h̄e−iĤ0t′/h̄ .
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Inserting a resolution of the identity in momenta between Ω̂± and |φin(t)〉 or |φout(t)〉,
and integrating over t′, there results

|ψ(t)〉 =
∫ ∞

−∞
dp e−iEpt/h̄|p+/−〉〈p|φin/out(0)〉, (3)

where we have introduced the (improper) eigenstates of Ĥ , with eigenvalue Ep,

|p±〉 = Ω̂(Ep ± i0)|p〉 ≡ |p〉+
1

Ep ± i0− Ĥ
V̂ |p〉, Ep = p2/2m. (4)

The states |p〉 (or |q〉, to be used in the following) are the usual plane wave states,

〈x|p〉 = exp(ipx/h̄)/
√

2πh̄ (resp. 〈x|q〉 = exp(iqx/h̄)/
√

2πh̄). Ω̂(z) is a parameterized

Moller operator (to be distinguished from the abstract ones in (1)) which, unlike Ω̂±,

can be applied to plane waves, and can be defined through

Ω̂(z) = 1 + Ĝ0(z)T̂ (z).

In this equation,

T̂ (z) = V̂ + V̂ Ĝ(z)V̂ (5)

is the parameterized “T -operator”, or transition T operator, and the operators

Ĝ(z) ≡ (z − Ĥ)−1 , and Ĝ0(z) ≡ (z − Ĥ0)
−1

are the resolvents for the Hamiltonians Ĥ and Ĥ0 respectively. Equation (5) is called

the operator Lippmann-Schwinger equation. Expressions equivalent to (4) are obtained

by using the operator Lippmann-Schwinger equation (5) and the operator identity

Ĝ0(z)T̂ (z) = Ĝ(z)V̂ ,

which lead to

|p±〉 = |p〉+
1

Ep ± i0− Ĥ0

T̂ (Ep ± i0)|p〉 = |p〉+
1

Ep ± i0− Ĥ0

V̂ |p±〉. (6)

Equations (4) and (6) are different alternative forms of the Lippmann-Schwinger integral

equation for the states |p±〉. Note the structure of these states, composed by a free plane

wave (incoming for |p+〉, outgoing for |p−〉) and a scattering part. The forms (6) are

useful to determine the asymptotic behaviour of the states at large distances (for cut-off

potentials this means x < a, x > b) since the matrix elements of G0(Ep ± i0) (the

Green’s function) are known,

〈x| 1

z − Ĥ0

|x′〉 = − im

h̄(2mz)1/2
ei(2mz)1/2|x−x′|/h̄.

In this expression the square root is defined with a branch cut along the positive axis.

Using delta-function normalization (i.e., 〈p±|p′±〉 = δ(p−p′)), the states behave outside

[a, b] as

〈x|psign(p)〉 =
1

h1/2
×
 exp(ipx/h̄) +Rl(p) exp(−ipx/h̄), x < a,

T l(p) exp(ipx/h̄), x > b,
(7)
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〈x|p−sign(p)〉 =
1

h1/2
×
 T

r(−p) exp(ipx/h̄), x < a,

exp(ipx/h̄) +Rr(−p) exp(−ipx/h̄), x > b.
(8)

Both in (7) and (8) p is a label for the energy. Let us first interpret the states in (7):

for p > 0, there is an incident plane wave from the left, with wavenumber p/h̄, and

Rl(p) and T l(p) are the corresponding reflection and transmission amplitudes for left

incidence; on the other hand, if p < 0, there is an outgoing plane wave towards the left,

with wavenumber |p|/h̄, and the corresponding amplitudes are not properly related to

“transmission” and “reflection”. However, since they are analytical continuations of the

amplitudes for p > 0, the same notation is mantained. Similar considerations apply to

the set of states described by (8).

The particular form of the amplitudes T l,r(p) and Rl,r(p) for potentials composed

by square barriers is easily obtained by matching the wave function and its derivative

at the edges. However, this procedure is useless in more general cases. Expressions of

the amplitudes for the general case are obtained by comparing (7) and (8) with the

coordinate representation of (6). In this way they can be related to on-the-energy-shell

elements of the transition operators T̂ (Ep ± i0). We shall work out one case in detail,

as a reference for later results. Assume p > 0 and x > b. In

〈x|p+〉 = 〈x|p〉+
∫ ∞

−∞
dx′〈x|Ĝ0(Ep + i0)|x′〉〈x′|T̂ (Ep + i0)|p〉,

we can substitute |x − x′| in the Green’s function by x − x′, since the support of

〈x′|T̂ (Ep+i0)|p〉 is necessarily restricted to be between a and b because of the dependence

of T̂ on V̂ , see (5), and the finite support of V (x). Therefore,

〈x|p+〉 = 〈x|p〉 − 2πmi

h

eipx/h̄

p

∫ ∞

−∞
dx′ e−ipx′/h̄〈x′|T̂ (Ep + i0)|p〉

= 〈x|p〉 − 2πmi

p
〈x|p〉T+

p,p ,

where

T±p,p′ ≡ 〈p|T̂ (Ep ± i0)|p′〉, |p| = |p′|.
Straightforward comparison with (7) leads to an explicit expression for T l(p). The rest

of the amplitudes can be worked out similarly to obtain the following table

T (p) = 1− 2iπm

p
T sign(p)

p,p ,

Rl(p) = − 2miπ

p
T

sign(p)
−p,p , (9)

Rr(p) = − 2miπ

p
T

sign(p)
p,−p .

Note that time reversal invariance implies T±p,p = T±−p,−p, and therefore T r(p) = T l(p) =

T (p).
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3. Scattering eigenstates of the Hamiltonian for step-like potentials

In the case of step-like potentials, the potential function V (x) does not go to zero both

for positive and negative x, when |x| → ∞. We shall assume in what follows that V (x)

does indeed tend to zero as x → −∞, and to V0 when x → +∞. In other words, we

shall assume that V (x) equals Vθ(x) = V0θ(x) plus some localized additional potential

of finite support or that tends to zero sufficiently fast when |x| → ∞. In such a case, the

scattering part of the energy spectrum is doubly degenerate above V0, as corresponds

physically to incidence from one side or the other. Below V0, however, there is only

one linearly independent solution with an evanescent wave at x > 0. There may be

bound states too, with energy Ej < 0. The resolution of the identity may be written in

different ways, in particular as [8]

1̂ =
∑
j

|Ej〉〈Ej|+
∫ −p0

−∞
dp |p±〉〈p±|+

∫ ∞

p0

dp |p±〉〈p±| ±
∫ ±p0

0
dp |p±〉〈p±|,

where p0 = (2mV0)
1/2 and the states |p±〉, to be defined below, have as in the ordinary

case an energy Ep = p2/(2m). As pointed out above, p is a label of the energy. It can

be positive or negative because of the degeneracy in energy.

The states |p+〉, with p > 0, have an incident plane wave of wavenumber p/h̄, and

the states |p−〉, p < 0, a corresponding outgoing one,

〈x|psign(p)〉 =
1

h1/2
×
 exp(ipx/h̄) +Rl(p) exp(−ipx/h̄), x < a

T l(p) exp(iqx/h̄), x > b
, (10)

where q = (p2 − 2mV0)
1/2, with a branch cut that joins the branch points p = ±p0,

going slightly below Im(p) = 0. In this way the sign of q is the same as the sign of p for

p2 > p2
0, whereas it becomes positive imaginary for −p0 < p < p0.

The states |p+〉 for p < −p0 are defined by an incident plane wave from the right

with wavelength −h̄/q(> 0), and states |p−〉 with p > p0 by an outgoing plane wave

with wavelength h̄/q,

〈x|p−sign(p)〉 =
1

h1/2

(
p

q

)1/2

×
 T

r(−p) exp(ipx/h̄), x < a

exp(iqx/h̄) +Rr(−p) exp(−iqx/h̄), x > b
,(11)

(always for |p| > |p0|). The factor (p/q)1/2 is necessary for the proper delta

normalization, that is, 〈p+|p′+〉 = δ(p−p′), and the corresponding expression for the |p−〉
scattering states. As in the ordinary case, the arguments of transmission or reflection

amplitudes are always positive for states |p+〉, and negative for states |p−〉 independently

of the sign of p.

The S matrix elements are defined as the coefficients multiplying the outgoing plane

waves when the incident plane wave is normalized to unit flux. When both channels are

open (p > p0), the S matrix reads

S(p) =

( q
p

)1/2
T l(p) Rl(p)

Rr(p)
(

p
q

)1/2
T r(p)

 .
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One may also obtain these matrix elements from 〈p′−|p+〉 by factoring out a delta

function in the scattering energy. The unitarity of the S matrix, SS† = 1, implies

relations among the amplitudes,
p

q
|T r(p)|2 + |Rr(p)|2 = 1 ,

|Rl(p)|2 +
q

p
|T l(p)| = 1 , (12)

p

q
T r(p)Rl(p)∗ +Rr(p)T l(p)∗ = 0 .

For 0 < p < p0 only one channel is open, the S matrix reduces to a number, Rl(p), and

unitarity implies

Rl(p)Rl(p)∗ = 1. (13)

All these equations, the set (12) and (13), are also valid for negative label p, thus

providing relations for the amplitudes associated with |p−〉 states.

4. Step-like potentials. Multichannel formalism.

The straightforward application of the Moller operators of section II, based on the

partitioning Ĥ = Ĥ0 + V̂ , to step-like potentials is justified physically only for certain

states. The key point is that Ĥ0 by itself only governs the asymptotic states that

enter from the left (with incident positive momentum), or escape to the left (with

negative outgoing momentum). So the Lippmann-Schwinger equations presented in the

previous section (that is, eqns. (4) and (6)), will only be applicable for {|psign(p)〉}.
It will prove useful to rename Ĥ0 as Ĥl ≡ Ĥ0, since it is the Hamiltonian associated

with the “left” asymptotic channel. Correspondingly we define V̂l ≡ V̂ , so that the

total Hamiltonian is partitioned as Ĥ = Ĥl + V̂l, and Ω̂l
± ≡ Ω̂±. Similarly, the states

|p−sign(p)〉, |p| > |p0|, “start” (for p < −p0) or “end up” (p > p0) in the right, where

the asymptotic Hamiltonian is Ĥr ≡ Ĥ0 + V0. We thus define V̂r ≡ V̂ − V0, so that

Ĥ = Ĥr + V̂r, and the corresponding Moller operators

Ω̂r
± ≡ lim

t→∓∞ e
iĤt/h̄e−iĤrt/h̄.

The asymptotic Hamiltonians have their own resolvents,

Ĝα(z) ≡ 1

z − Ĥα

,

where α = r, l is the subscript to indicate the channel. Notice that Ĝl(z) = Ĝ0(z),

using the notation of section II, whereas Ĝr(z) = Ĝ0(z − V0). Using the abstract

Moller operators one may define parameterized ones, the corresponding LS equations

thus taking the form

|psign(p)〉 = |p〉+ Ĝl[Ep + sign(p)i0]V̂l|psign(p)〉 =

= |p〉+ Ĝ[Ep + sign(p)i0]V̂l|p〉, (14)

|p−sign(p)〉 = |qN〉+ Ĝr[Ep − sign(p)i0]V̂r|p−sign(p)〉 =

= |qN〉+ Ĝ[Ep − sign(p)i0]V̂r|qN〉, |p| > |p0|, (15)
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where 〈x|qN 〉 = (p/hq)1/2 exp(ixq/h̄). A noticeable difference with the ordinary case is

that now the potential functions Vα(x) are not localized (Vl(x) and Vr(x) do not vanish

for x > b and x < a respectively), so that the simple manipulations leading, for example,

to (9), are not valid any more to obtain expressions for T l and T r. We cannot separate

the exponential eip|x−x′|/h̄ into x and x′ dependent exponentials, and extract right away

the x dependence. The separation can be done however to obtain Rl and Rr, which take

the form

Rl(p) =
−2πim

p
〈 − p|V̂l|psign(p)〉, (16)

Rr(p) =
−2πim

p
〈qN |V̂r| − psign(p)〉, (17)

To obtain expressions for the transition amplitudes we rewrite the LS equations in terms

of the potential of the other channel, see Appendix A,

|psign(p)〉 = Ĝr(Ep + sign(p)0)V̂r|psign(p)〉, (18)

|p−sign(p)〉 = Ĝl(Ep − sign(p)0)V̂l|p−sign(p)〉 |p| > |p0|. (19)

Since the potentials in (18) and (19) vanish in regions of space different from the ones in

(14) and (15), we may now find the missing expressions for the transmission amplitudes,

T l(p) =
−2πim

q
〈q|V̂r|psign(p)〉, (20)

T r(p) =
−2πim

p
〈 − p|V̂l| − psign(p)〉. (21)

5. Jaworski-Wardlaw Moller operators

In their study of the time spent by a quantum particle in a given spatial region [3],

Jaworski and Wardlaw introduced two different asymptotic Hamiltonians for incoming

and outgoing asymptotes,

Ĥin =
p̂2

2m
+ V0F̂−

Ĥout =
p̂2

2m
+ V0F̂+

where F̂− and F̂+ are complementary projectors, F̂−+F̂+ = 1̂, over negative and positive

momenta respectively,

F̂± = ±
∫ ±∞

0
dp |p〉〈p|.

Correspondingly, they defined Moller operators

Ω̂JW
+/− = lim

t→−/+∞
eiĤt/h̄e−iĤin/out/h̄. (22)

Note that, as in the previous section, two different partitionings of the Hamiltonians

are required, one for each Moller operator. They are however not based on right/left

channels, but on a distinction between incoming and outgoing states. The physical
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reason for these definitions is clear: the positive momentum part of the incoming

asymptotes travels on the lower level at long negative times, whereas the negative

momentum parts travels on the upper level. The outgoing asymptotes behave in the

opposite way, with positive momenta on the upper level and negative momenta on the

lower level at large positive times.

We shall now extend this formalism to produce the asociated Lippmann-Schwinger

equations. First it is convenient to introduce a delta-normalized eigenbasis for Ĥin and

Ĥout, (explicitly, 〈in(p)|in(p′)〉 = δ(p− p′), and similarly for |out(p)〉)

〈x|in(p)〉 = h−1/2 ×
 e

ipx/h̄ p > 0

|p/q|1/2eiqx/h̄ p < −p0

〈x|out(p)〉 = h−1/2 ×
 |p/q|

1/2eiqx/h̄ p > p0

eipx/h̄ p < 0

so that

Ĥin/out|in/out(p)〉 = Ep|in/out(p)〉.
Aside from the ordinary (momentum) resolution of the identity, 1̂ =

∫∞
−∞ dp |p〉〈p|,

1̂ =
∫ −p0

−∞
dp |in(p)〉〈in(p)|+

∫ ∞

0
dp |in(p)〉〈in(p)| =

=
∫ 0

−∞
dp |out(p)〉〈out(p)|+

∫ ∞

p0

dp |out(p)〉〈out(p)|.

The connection between the abstract Moller operators (22) and Lippmann-Schwinger

equations for eigenstates of Ĥ follows now closely the steps from (2) to (6), but making

use of the above resolutions of the identity. We thus find

|ψ(t)〉 =
∫ −p0

−∞
dp |p+〉〈in(p)|φin(t)〉+

∫ ∞

0
dp |p+〉〈in(p)|φin(t)〉 ,

|ψ(t)〉 =
∫ 0

−∞
dp |p−〉〈out(p)|φout(t)〉+

∫ ∞

p0

dp |p−〉〈out(p)|φout(t)〉 ,
with

|p+〉 = |in(p)〉+ Ĝin(Ep + i0)T̂in(Ep + i0)|in(p)〉, (23)

|p−〉 = |out(p)〉+ Ĝout(Ep − i0)T̂out(Ep − i0)|out(p)〉, (24)

and

Ĝin/out(z) = (z − Ĥin/out)
−1, (25)

T̂in/out(z) = V̂in/out + V̂in/outĜ(z)V̂in/out, (26)

corresponding to the two partitionings of the Hamiltonian, Ĥ = Ĥin + V̂in = Ĥout + V̂out,

where

V̂in = V̂ − V0F̂− , and V̂out = V̂ − V0F̂+ .

However, the potentials V̂in and V̂out are not localized. They do not vanish as x → ∞
and this leads to similar problems to the ones encountered before when searching
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for expressions for the transmission amplitudes. They are actually more severe now

because these potentials do not have a semibounded support; in addition, the zeroth

order Green’s functions, which can be explicitly obtained by integration in the complex

momentum plane, are cumbersome to work with,

〈x|Ĝin(z)|x′〉 = 〈x| F̂+

z − Ĥ0

|x′〉+ 〈x| F̂−
z − V0 − Ĥ0

|x′〉, (27)

〈x|Ĝout(z)|x′〉 = 〈x| F̂+

z − V0 − Ĥ0

|x′〉+ 〈x| F̂−
z − Ĥ0

|x′〉. (28)

The summands are particular cases of

〈x| F̂ξ

ζ − Ĥ0

|x′〉 = Aξsign(x− x′) + θ[ξ(x− x′)]〈x|Ĝ0(ζ)|x′〉,

with ξ = ± and

A =
2mi

h(2mζ)1/2
[ci(y) sin(y)− si(y) cos(y)],

y = (2mζ)1/2|x− x′|/h̄, (29)

where the square root with positive imaginary part is taken.

The scattering states defined through (23) and (24) are the same as those defined

previously by the LS equations of the multichannel method presented in the previous

section. In order to check the veracity of this statement, it is convenient to use the

identity Ĝin/out(z)T̂in/out(z) = Ĝ(z)V̂in/out, together with the forms of the resolvents Ĝ

given in (14) and (15), and the defining expressions of the different potential operators

involved.

6. Pure-step Hamiltonian as zeroth order

In this section we shall study one more possible partitioning of the Hamiltonian, by

considering the Hamiltonian Ĥs = Ĥ0 + V̂θ for the pure step potential V̂θ ≡ V0θ(x̂), as

the zeroth order term for the complete Hamiltonian,

Ĥ = Ĥs + V̂s.

In other words, the total potential energy is decomposed into the pure step potential part

and a localized part, as V̂ = V̂θ+V̂s. It is easy to compute two different eigenbases of Ĥs,

whose elements are |p±s 〉 respectively (labeled by p as before). Their explicit expression

lends itself to identification of transmission and reflection amplitudes by comparison

with expressions (10) and (11):

T l
s(p) =

2p

q + p
, Rl

s(p) =
p− q

q + p
,

T r
s (p) =

2q

p + q
, Rr

s(p) =
q − p

p+ q
. (30)
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Green’s function for Ĥs is also known exactly [10],

〈x|Ĝs(Ep±i0)|x′〉 = ±m
ih̄



1

|p| [e
±i|p||x−x′|/h̄ + r±e∓i|p|(x+x′)/h̄], x′ < 0, x < 0

1

|p|t±e
±i(µ±x−|p|x′)/h̄, x′ < 0, x > 0

1

|p|t±e
±i(µ±x′−|p|x)/h̄, x′ > 0, x < 0

1

µ±
[e±iµ±|x−x′|/h̄ − r±e±iµ±(x+x′)/h̄], x′ > 0, x > 0

(31)

where Ep = |p|2/2m,

t± =
2|p|

|p|+ µ±
,

r± =
|p| − µ±
|p|+ µ±

,

and

µ± =

 [2m(Ep − V0)]
1/2, Ep > V0

±i[2m(V0 − Ep)]
1/2, Ep < V0

.

A first advantage of this decomposition is that the state is governed asymptotically by

Ĥs both before and after the collision, to the right and to the left, so that the physically

meaningful Moller operators can be defined, as in the ordinary case, by the two limits

of a unique operator expression,

Ω̂s
± = lim

t→∓∞ e
iĤt/h̄e−iĤst/h̄,

which amounts to a formal simplification with respect to the partitionings of the two

previous sections, and absence of extra indices. Analogous steps to those leading to (3),

with the decomposition of unity in the basis of Ĥs, provide us with

|ψ(t)〉 =
∫ −p0

−∞
dp |p+〉〈p+

s |φin(t)〉+
∫ ∞

0
dp |p+〉〈p+

s |φin(t)〉 ,

|ψ(t)〉 =
∫ 0

−∞
dp |p−〉〈p−s |φout(t)〉+

∫ ∞

p0

dp |p−〉〈p−s |φout(t)〉
where

|p±〉 = |p±s 〉+ Ĝs(Ep ± i0)T̂s(Ep ± i0)|p±s 〉 (32)

and

T̂s(z) = V̂s + V̂sĜ(z)V̂s .

A second advantage of this decomposition is that the potential function Vs(x) =

V (x)−V0θ(x) is now localized. One may thus obtain easily the explicit x-dependence of

the coordinate representation of (32) and identify expressions for the transmission and
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reflection amplitudes in terms of the localized potential,

T l(p) = T l
s(p)−

2πmi

q

(
q

p

)1/2

〈p−sign(p)
s |T̂s[Ep + sign(p)i0]|psign(p)

s 〉 ,

T r(p) = T r
s (p)− 2πmi

p

(
q

p

)1/2

〈 − p−sign(p)
s |T̂s[Ep + sign(p)i0]| − psign(p)

s 〉 ,

Rl(p) = Rl
s(p)−

2πmi

p
〈 − p−sign(p)

s |T̂s[Ep + sign(p)i0]|psign(p)
s 〉 (33)

Rr(p) = Rr
s(p)−

2πmi

p
〈p−sign(p)

s |T̂s[Ep + sign(p)i0]| − psign(p)
s 〉 ,

The time-reversal antiunitary operator Θ changes the sign of Ω̂s
±, ΘΩ̂s

± = Ω̂∓Θ, as in

the ordinary case. From the time reversal invariance of the Hamiltonian it follows that

〈p|T̂s[Ep + sign(p)i0]|p′〉 = 〈 − p|T̂s[Ep + sign(p)i0]| − p′〉 (on the energy shell), so that

the transmission amplitudes are related by T r(p) = (q/p)T l(p).

The agreement with the previous compact expressions (16-17), and (20-21) is found

by using (16-17) and (20-21) themselves for the step potential V̂θ, and the following non

trivial generalizations of the standard “two-potential” formula to the two partitionings

of the multichannel formalism (see Appendix B),

〈p|V̂ | ± p−sign(p)〉 = 〈p|V̂θ| ± p−sign(p)
s 〉+ 〈psign(p)

s |V̂s| ± p−sign(p)〉,
〈qN |(V̂ − V0)| ± psign(p)〉 = 〈qN |(V̂θ − V0)| ± psign(p)

s 〉+ 〈p−sign(p)
s |V̂s| ± psign(p)〉.

The use of the bra-ket notation, while standard and very convenient most of the

time, requires some greater attention than usual to describe adequately the evanescent

case, when q = iγ, γ > 0. Irrespective of the value of p, 〈q|x〉 should always be

interpreted as h−1/2 exp(−iqx). Similarly, 〈p±s |x〉 should first be written for real q and

then continued analytically.

7. Born approximations

As an example to illustrate the differences of the three described formalisms we shall

obtain the Born approximation of the reflectance |Rl(p)|2 for the potential,

V̂ = V̂θ + V1δ(x̂). (34)

The exact result,

Rl(p) =
p− q − (2imV1/h̄)

p+ q + (2imV1/h̄)
,

may be obtained using (30), (33), δ(x̂) = |0〉〈0|, and

T̂s(z) =
V1|0〉〈0|

1− V1〈0|Ĝs(z)|0〉
,

or alternatively by straightforward computation.

We will now calculate the different Born approximations by retaining only the

terms linear in the potential corresponding to each partitioning of the Hamiltonian.
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To be more precise, we will look at the Lippmann-Schwinger equation for |p+〉 in each

approach, and retain terms of first order in the potential, that is, to first order in the

difference between the total hamiltonian and the incoming asymptotic hamiltonian of

reference. The resulting wavevector will be examined in the position representation for

x < 0, and the result compared to (10) to extract Rl(p). In fact this last step is not

necessary for the multichannel (MM - sec. IV) and the localized potential (LP - sec.

VI) approaches, since we have already carried out this comparison in an exact manner

(see (16) and (33)). Notice that we have indeed checked that in all three approaches we

obtain the same scattering state |p+〉.
In the multichannel method (MM), see (16), the first order term in V̂l (which in

this case is V̂l = V̂θ + V1δ(x̂)) is

Rl
Born−MM(p) =

−2πmi

p
〈 − p|V̂θ + V1δ(x̂)|p〉 =

m(V0 − 2ipV1/h̄)

2p2
. (35)

The analysis to second order is more delicate, involving limits (as in Ĝ(Ep + i0)), but it

reveals that the singularity in p = 0 for the MM formalism actually worsens (it becomes

of the form p−4). This was only to be expected, given the non locality of the perturbing

potential in that case, which produces infrared singularities to all perturbation orders,

which can only be resolved by a complete resummation of all terms.

We could also examine Rr(p), to first order in V̂r = V̂θ + V1δ(x̂) − V0, which in

this case can be obtained from Rl(p) by substituting p for q, and viceversa. This recipe

actually holds for the Born approximation in the MM formalism, which leads to the

result that the reflectance diverges for |p| → p0.

A Born approximation in the “in/out” formalism of section V is much more

problematic: for x < 0 and p > 0, the first order in V̂in of (23) is

〈x|p+〉(1) = 〈x|in(p)〉+
∫ ∞

−∞
dx′ 〈x|Ĝin(Ep + i0)|x′〉〈x′|V̂in|in(p)〉.

By substituting 〈x|Ĝin(Ep + i0)|x′〉, see (27) and (29), and taking the limit x→ −∞ to

eliminate transient terms,

〈x|p+〉(1) =
1√
h

[
eipx/h̄ +

(
p− q

2q
+
mV1

ih̄q

)
e−iqx/h̄

]
.

To this order, this approach provides a physically meaningless reflected wave with a

momentum smaller than the incident one. This indicates that we do not recover in

this manner a sensible approximation to the reflectance. Finally, the localized potential

(LP) approach of the previous section gives, to first order in V̂s,

Rl
Born−LP (p) =

p− q

p+ q
−2πmiV1

p
〈−p−s |0〉〈0|p+

s 〉 =
p2 − q2 − 4miV1p/h̄

(p+ q)2
.(36)

The results of (35) and (36) are compared in figure 1, which clearly demonstrate

the computational advantage of the localized potential approach, which starts from

much better adapted initial functions. In particular it is relevant to note that the

LP approach detects the change of regime in the reflectance due to the energy falling

below the asymptotic level, which the multichannel formalism cannot even suspect in a



Step-like potentials 13

0 2 4
p

0

0.5

1

1.5

R
ef

le
ct

an
ce

Figure 1. Exact reflectance (solid line), first order Born approximations for the
localized potential approach (dots) and multichannel method (dashed line), and second
order approximation for the multichannel method (squares) versus p. The potential is
given in (34). V0 = 1 a.u., V1 = 0.01 a.u., m = 1 a.u.

perturbative scheme. In other words, the fact that only one channel is open, and (13)

must hold is overlooked by the perturbative expansion in the MM scheme, while there

is a sharp change in behaviour of the perturbative expansion in the LP scheme from the

one channel to the two channel case (even though (13) does not generically hold if we

restrict ourselves to a finite number of terms).

8. Discussion

Given the simplicity of one dimensional step-like potentials, we could not fail to provide a

complete formal scattering theory for them. However, in pursuing this objective, we have

met several interesting novel aspects with respect to ordinary scattering. Among them,

the existence of different, all somehow “natural”, partitionings of the Hamiltonian is an

important one, since it leads to different formal frameworks. Working out the details is at

the very least laborious, frequently tedious, and we hope that our compact presentation

and focus on the final results may save some time and help the practitioners to avoid

pitfalls. With respect to the three possible methods described, the in/out-formalism

has some elegance, and this was historically our first choice. However, the zeroth order

Hamiltonians, non localized potentials, or Green’s functions are not easy to deal with.

This lead us to look for other possibilities. Certain manipulations may benefit from

the condensed forms of transmission and reflection amplitudes obtained following the

multichannel method, but in a practical calculation, the localized potential approach

will be generally preferable. It is also the most economical presentation since it reduces
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in half the number of equations needed, and is also the closest to ordinary scattering.
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Appendix A. Alternative forms of Lippmann-Schwinger equations

We give an example of the obtention of the alternative LS equations in (18) and (19).

Using

Ĝl(z) = Ĝr(z)[1− V0Ĝl(z)]

and V̂r = V̂l − V0, (14) for p > 0 may be written as

|p+〉 = |p〉+ Ĝr(Ep + i0)V̂r|p+〉+ V0Ĝl(Ep + i0)[1− Ĝr(Ep + i0)V̂r]|p+〉.
Acting with the operator in parenthesis on |p+〉, using Ĝ(z) = Ĝl(z)+ Ĝl(z)V̂lĜ(z), and

(14), one finds (when operating +i0 must be kept as a small imaginary number)

|p+〉 = |p〉+ Ĝr(Ep + i0)V̂r|p+〉+ V0Ĝr(Ep + i0)|p〉,
but the third term cancels the first one by acting with Ĝr on |p〉, so that (18) (for p > 0)

is obtained. One may proceed similarly for the other cases.

Appendix B. Two potential formulae

In this appendix we shall obtain one of the two potential formulae used in section VI.

The other cases may be obtained similarly. Assume that p < 0. Then,

〈p|V̂ | ± p+〉 = 〈p|V̂θ + V̂s| ± p+〉
= 〈p|(V̂θ + V̂s)[| ± p+

s 〉+ Ĝs(Ep + i0)T̂s(Ep + i0)| ± p+
s 〉]

= 〈p|V̂θ| ± p+
s 〉+ 〈p|V̂θĜs(Ep + i0)T̂s(Ep + i0)| ± p+

s 〉+ 〈p|V̂s| ± p+〉
= 〈p|V̂θ| ± p+

s 〉+ 〈p−s |V̂s| ± p+〉 ,
where we have used (32) and (14), the last one particularized for the pure step potential.
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