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Mesoscopic physics

macroscopic systems

succesfully described with scale
independent quantities

coherence length

mesoscopic (nanoscopic) systems
guantum interference, multi-particle
entanglement

basic physics technological applications
* better understanding of * computer industry
microscopic objects * gquantum computers (g-bit)
* new phenomena in * chemical & biological sensors, ...

nanoscopic systems
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Model Hamiltonian

hQ
B 2m*

VA (r,0,2) + V (r,2) ¥ (r,0,2) = BV (1,0, 2)

U(r, p,z) = Z Z Ymn (2) Prn (7, @5 2)

n=0 m=—n

¢7/7,m (z) + [kz — k?nn (2) + Gmnn (Z)] Winn (2) +

n#n' n#n/

h? d2

H = + e(2)

om* dz2

Coulomb interaction:

U(z,2') =

e 1 _/ |<I>00(r 2|7 [®oo (r'; 2) |
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Extended Anderson model

d! creates an electron in the single-electron bound

80 mK 320 mK

State 1 100 mK 430 mK

210 mK 560 mK

670 mK

; ‘ ..__1___7_::'{/'- \
c! _creates an electron in a scattering state |k) 3 [ AN

we retain only those Coulomb matrix elements which
Involve both localized and conduction electrons,
omitting all terms which would give rise to states in
which the localized state is unoccupied

Vgd (mV)

H = Z €ELNng + €qng + Z (andaclgdg —+ h.C.) +
k

ko

+Unagna, + Y Mymach ey + > JuwSa - S Kondo physics at
kk!o kk! low temperatures
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Model Hamiltonian
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Conductance formulae for noninteracting systems
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Conductance formulae for noninteracting systems
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Conductance formulae for noninteracting systems
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Proof of validity for Fermi liquid systems

In Fermi liquid systems, the T' = 0 conductance is still given with the
Landauer-Buttiker formula

2e?
G=— t (ep)|”
If the transmission amplitude is defined by the Fisher-Lee relation
Ee) = — e~ * ()G (e 1 id) .
—i7p (€) o

Alternatively, the transmission amplitude for the corresponding
(noninteracting) quasiparticle Hamiltonian may be used

03 (w + 19)
Ow

H = 7/? [H@) + S (ep+i0)| 22, Zl=1—

as B
Grin (EF + 25) = G, (EF + 25) :
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Proof of validity for Fermi liquid systems

If we knew the matrix elements of the quasiparticle Hamiltonian, we could
form a finite ring system

H (N, ¢; M) = Z'/ [H(O) (N, ¢) + X (ep + z'(s)] Z'/?

and proceed as we did for noninteracting 7 (@)

systems. Alternatively, the single-electron {

energy of the quasiparticle Hamiltonian at )

the Fermi energy can be extracted from |

the ground-state energy of the interacting ol ‘ | | ‘ |

system T
(b)

E[N,¢; M +1] - B[N, ¢; M] = ‘b \ \
— (]\f7 ¢, ]\47 1) — O (N_%) f)(;.‘lS 0.1 -0.05 ot 0.05 0.1 0.15

w/
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Tests

— Bethe ansatz
— Variational, 3

— Variational, 7

0

o Bethe Ansatz
e—e Variational

(e,+UI2)1 = 0.2
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Summary

1.0 | |
weak potential well in a quantum wire gives rise to spin- 0.8 -/ o
dependent conductance structures (0.7 and 0.3 anoma- o 06l ,{./-"‘ |
lies) on the rising edge of the first conductance plateau % 0.4 ,"L. ?ﬁi i

02| | = |
an extended Anderson model could explain the Kondo-like 0.0 (')' L A~ i
low-temperature behavior of these anomalies E (meV)

T = 0 conductance of a Fermi liquid system is related to the ground-state energy of a ring
system threaded by a magnetic flux

2¢e?

G =2 sin® (INp (er) |E ()~ B ©0)])

variational methods can be employed to obtain the conductance (no need to calculate the
Green’s function)
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