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We analyze nonadiabatic non-Abelian holonomic transformations of spin-qubits confined

to a linear time-dependent harmonic trap with time-dependent Rashba interaction. For
this system, exact results can be derived for spin-rotation angle which also enables exact

treatment of white gate-noise effects. We concentrate, in particular, on the reliability of

cyclic transformations quantified by fidelity defined by the probability that the qubit
after one full cycle remains in the ground-state energy manifold. The formalism allows

exact analysis of spin transformations that optimize final fidelity. Various examples of

time-dependent fidelity probability distributions are presented and discussed.
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1. Introduction

Spintronics, as a new branch of electronics, is a quantum information technology

promising better performance with smaller power consumption.1–3 The spin of elec-

trons plays the central role4 and the main challenge is to manipulate the spin of

a single electron precisely and locally. Employing magnetic fields, a natural way of

spin rotation, usually cannot be applied locally in a small region so other mech-

anisms should be applied. A possible such solution is to use semiconductor het-

erostructures5,6 with spin–orbit interaction (SOI) and particularly strong Rashba

interaction7,8 that can be tuned externally using voltage gates.9–19
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Recently, a simple scheme for the spin-qubit manipulation was proposed in which

an electron is driven along a linear quantum wire with time-dependent SOI, tuned

by external time-dependent potential.20,21 One limitation of such linear systems

is posed by fixed axis of spin rotation, but it can be eliminated in quantum ring

structures, exhibiting a rich range of phenomena.22–29 For quantum ring structures

consisting of a narrow ring with superimposed time-dependent harmonic trap and

controllable time-dependent Rashba interaction, the exact solutions were presented

most recently.30,31

In linear as well as in ring systems controlled by external gates there are sev-

eral possible sources of noise which cannot be avoided. In particular, noise can be

induced due to fluctuating electric fields, caused by the piezoelectric phonons32–35

or due to phonon-mediated instabilities in molecular systems with phonon-assisted

potential barriers, which introduce noise in the confining potentials.36,37 For qubits

realized as spin of electrons carried by surface acoustic waves the noise can be caused

by the electron–electron interaction.38–40 Since exact solutions for qubit manipu-

lation scheme considered here are possible, the analysis of environment effects can

for some sources of noise be performed analytically.41

The paper is organized as follows. After the introduction, Sec. 2 presents the

model where also a brief overview of the exact solution together with the analysis

of effects due to white noise is revealed. Section 3 is devoted to the fidelity of qubit

transformations. The derivation of influences of noise on fidelity is presented in

detail and explicit examples are given. Results are summarized in Sec. 4.

2. Model, Exact Solution and White Noise

We consider an electron in a quantum wire confined in a harmonic trap.20,21 The

center of such one-dimensional quantum dot, ξ(t), can be arbitrarily translated

along the wire by means of time-dependent external electric fields. Spin–orbit

Rashba interaction couples the electron spin with orbital motion, resulting in the

Hamiltonian

H(t) =
p2

2m∗
I +

m∗ω2

2
[x− ξ(t)]2I + α(t)pn·σ, (1)

where m∗ is the electron effective mass, ω is the frequency of the harmonic trap, α(t)

is the strength of SOI, possibly time-dependent due to appropriate time-dependent

external electric fields. The spin-rotation axis n is fixed and depends on the crystal

structure of the quasi-one-dimensional material used and the direction of the applied

electric field.44 σ and I are Pauli spin matrices and unity operator in spin space,

respectively, and p is the momentum operator. Exact solution of the time-dependent

Schrödinger equation corresponding to the Hamiltonian equation (1) is given by21

|Ψms(t)〉 = e−i[θ(t)I+φ(t)n·σ/2)]AαXξ|ψm(x)〉|χs〉, (2)

θ(t) = ωmt+ φα(t) + φξ(t) +m∗ȧc(t)ac(t)/ω
2, (3)

Aα = e−iȧc(t)pn·σ/ω
2

e−im
∗ac(t)xn·σ, (4)
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Xξ = eim
∗[x−xc(t)]ẋc(t)e−ixc(t)pI. (5)

Here ψm(x) represents the mth eigenstate of a harmonic oscillator with eigenenergy

ωm = (m+1/2)ω and |χs〉 is spinor of the electron in the eigenbasis of operator σz.

The phase φξ(t) = −
∫ t

0
Lξ(t

′)dt′ is the coordinate action integral, where Lξ(t) =

m∗ẋ2
c(t)/2 −m∗ω2[xc(t) − ξ(t)]2/2 is the Lagrange function of a driven harmonic

oscillator and xc(t) is the solution to the equation of motion of a classical driven

oscillator

ẍc(t) + ω2xc(t) = ω2ξ(t). (6)

Another phase factor is the SOI action integral phase φα(t) = −
∫ t

0
Lα(t′)dt′, with

Lα(t) = m∗ȧ2
c(t)/(2ω

2)−m∗[ac(t)−α(t)]2/2+m∗α2(t)/2 being the Lagrange func-

tion of another driven oscillator, satisfying äc(t) + ω2ac(t) = ω2α(t).

In this paper, we consider particularly interesting cyclic transformations with

periodic drivings ξ(T ) = ξ(0) and α(T ) = α(0) with zero values and time derivatives

of responses xc and ac at times t = 0 and t = T . The spin-qubit is for such drivings

rotated around n by the angle φ = −2m∗
∫ T

0
ȧc(t

′)ξ(t′)dt′.21

We assume noise in the driving function ξ(t) = ξ0(t) + δξ(t) consisting of ideal

driving part without noise ξ0(t) with superimposed stochastic part with vanishing

mean 〈δξ(t)〉 = 0. We consider the Ornstein–Uhlenbeck colored noise42,43 charac-

terized by the autocorrelation function 〈δξ(t′)δξ(t′′)〉 =
σ2
ξ

2τξ
e|t
′−t′′|/τξ , with noise

intensity σ2
ξ and correlation time τξ. A general solution of equation (6) xc(t) with

xc(0) = ξ0(0) and ẋc(0) = 0 is given by

xc(t) = ξ0(0) + ω

∫ t

0

sin[ω(t− t′)]ξ(t′)dt′, (7)

which due to the noise term δξ is normally distributed with the variance evaluated

as equal-times autocorrelation function,

σ2
x(t) = ω2 lim

∆t→0

〈∫ t

0

sin[ω(t− t′)]δξ(t′)dt′
∫ t+∆t

0

sin[ω(t− t′′)]δξ(t′′)dt′′
〉
. (8)

For the Ornstein–Uhlenbeck noise considered here, the integrals can be evaluated

exactly. Nevertheless, here we consider only the white noise limit where τξ → 0 and

〈δξ(t′)δξ(t′′)〉 = σ2
ξδ(t

′ − t′′) leading to the variances

σ2
x(t) =

1

4
ωσ2

ξ (2ωt− sin 2ωt) and σ2
ẋ(t) =

1

4
ω3σ2

ξ [2ωt+ sin(2ωt)], (9)

corresponding to xc(t) and ẋc(t), respectively.

In addition to the noise in the potential minimum position ξ(t), we consider also

noise in SOI driving function α(t) = α0(t) + δα(t), where α0(t) is ideal noiseless

driving. SOI noise δα(t) is similar to the previous case of spatial driving and is

again of the Ornstein–Uhlenbeck type of autocorrelation function 〈δα(t′)δα(t′′)〉
with noise intensity σ2

α and correlation time in the white noise limit τα → 0, leading

to the time-dependent variances σ2
a(t) = (σα/σξ)

2σ2
x(t) and σ2

ȧ(t) = (σα/σξ)
2σ2
ẋ(t)

for ac(t) and ȧc(t), respectively.
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3. Fidelity of Noisy Qubit Transformations

As an example of effects of noise to spin-qubit transformations, we consider driving

corresponding to the class of circular paths in two-dimensional coordinate-SOI space

Cad ∼ α0[ξ],

ξ0(t) = ξ0 cos(ωt/n) and α0(t) = α0 sin(ωt/n), (10)

where n ≥ 2 is integer, and the period of the transformation is T = 2πn/ω. Periodic

responses represent contours C ∼ a0
c [ξ], where

a0
c(t) = α0

n[n sin(ωt/n)− sin(ωt)]

n2 − 1
, (11)

with the phases given by the area in the coordinate-SOI plane,

φad = −2m∗
∫ T

0

α̇0(t′)ξ(t′)dt′ = −2m∗
∮
Cad

α0[ξ]dξ = −2πm∗ξ0α0, (12)

φ0 = −2m∗
∮
C
a0
c [ξ]dξ =

n2

n2 − 1
φad. (13)

The adiabatic angle φad corresponds to the one when circular driving is of type

n→∞. Transformation angle φ = φ0 + δφ is due to the noise distributed normally

around the mean φ0, with the variance after one cycle given by41

σ2
φ,n

φ2
ad

=
n(1 + n2)

π(n2 − 1)2

ωσ2
ξ

ξ2
0

+
2n3

π(n2 − 1)2

ωσ2
α

α2
0

+ n2

(
ωσξσα
ξ0α0

)2

. (14)

Figure 1(a) shows spin–orbit responses as a function of time and Fig. 1(b)

shows the contour C for the case of circular driving equation (10) with n = 6.

In both panels, the dashed black lines denote noiseless spin–orbit driving α0(t)

and the red line denotes noiseless spin–orbit response a0
c(t). The focus is on the

set of 10 spin–orbit responses ac(t) to 10 different realizations of white noise in

(a) (b)

C Cad
• • •

Fig. 1. (Color online) Responses to circular driving with n = 6 are shown. In (a) are as functions

of time shown noiseless driving α0(t) (dashed line), noiseless response a0c(t) (red) and 10 responses
ac(t) (black lines) to different realizations of white noise δα(t) with intensity σα = α0/(20

√
ω).

Bullets denote noiseless starting [a0c(0), ξ0(0)] and ending positions [a0c(T ), ξ0(T )]. In (b) are shown
the same quantities as in (a) but as a function of coordinate driving ξ(t) with σξ = ξ0/(20

√
ω).

The noiseless contours α0[ξ] and a0c [ξ] form closed loops, Cad and C, respectively. Note that φ is

proportional to pink shaded area enclosed by C.
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α(t). σ2
a(t) manifests as a spread of these curves around the ideal noiseless red line.

Bullets correspond to initial [a0
c(0), ξ0(0)] and final noiseless values [a0

c(T ), ξ0(T )] of

noiseless response and show that the final values of ac(T ) deviate from the desired

ones. The noisy response is not periodic, resulting in open loop in parameter space

unlike the case of noiseless C and noiseless adiabatic driving Cad. Consequently, the

angle of spin rotation cannot be expressed as an area enclosed by the contour as

in Eq. (13) and in Fig. 1(b) (pink shaded). It should be noted that, in general, the

total angle of spin rotation φ is less prone to noise because the noisy curves oscillate

around the ideal value and so contributions to final error partially cancel out.41

This analysis of spin-rotation angle demonstrated that due to gate noise in the

driving functions, spin transformations are not completely faithful. For nonadia-

batic qubit manipulations, the electron state is determined by the time-dependent

Hamiltonian during the evolution and is, in general, a superposition of excited

states, ultimately becoming the ground state when the transformation is complete.

Therefore, in addition to correct transformation of the spin direction, one has also

to take care that the electron state has not left the starting energy manifold at

the final time. As shown in Refs. 20, 21 and 30 such motions in parametric space

can easily be performed if the driving functions are appropriately chosen. Here, an

important question is relevant: how well does the final state of the electron relax

to the desired final state energy manifold after the transformation if the driving

function is not ideal as in the presence of noise?

In order to demonstrate how to answer this question, in general, we consider the

qubit wave function |Ψ0 1
2
(t)〉, Eq. (2), which is at t = 0 in the ground state of the

harmonic quantum dot (with m = 0) and spin 1
2 . We observe its relaxation to

the ground state manifold that is spanned by two basis states20 of time-dependent

Hamiltonian equation (1) at time t,

|Ψ̃0s〉 = e−im
∗[x−ξ(t)]α(t)n·σ|ψ0[x− ξ(t)]〉|χs〉. (15)

As the appropriate measure of the relaxation accuracy, we define fidelity F =

〈Ψ0 1
2
(t)|P0|Ψ0 1

2
(t)〉, where P0 =

∑
s |Ψ̃0s〉〈Ψ̃0s| is the projector onto the ground

state manifold. We choose n perpendicular to the z-axis and a straightforward

derivation leads to the expression for overlaps of |Ψ0 1
2
(t)〉 with the basis states at

time t,

〈Ψ̃0± 1
2
(t)|Ψ0 1

2
(t)〉 =

1

2
[e−

1
2E+(t) ± e− 1

2E−(t)], (16)

where

E±(t) =
m∗

2ω
{[ω(xc(t)− ξ(t))± ȧc(t)/ω]2 + [ẋc(t)∓ (ac(t)− α(t))]2} (17)

resembles classical energy with additional terms for spin–orbit coupling and is equal

to the classical energy if the spin–orbit driving is constant.20 Ideal qubit transfor-

mations with spin-fidelities Fs = |〈Ψ̃0s|Ψ0 1
2
〉|2 = δs 1

2
are achieved by applying ideal

drivings, where the energies E± vanish at final time t = T , i.e., when xc = ξ,

ac = α, ẋc = 0 and ȧc = 0.
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The fidelity at arbitrary time t is obtained by summation over final spin states,

F (t) =
∑
s

Fs(t) =
1

2
[e−E+(t) + e−E−(t)]. (18)

The presence of noise in spin–orbit and spatial driving terms makes fidelity a ran-

dom quantity, F (t) = F 0(t) + δF (t), where F 0(t) represents the result of noiseless

driving and δF (t) is the deviation from this value. Fidelity is therefore characterized

by some probability density function dP (F )
dF . It can be calculated from the probabil-

ity density for variables E± which are functions of independent random variables

and normally distributed. The probability density functions for E± at time t can

be calculated using the formula

dP±(E)

dE

∣∣∣∣
t

=

∫∫∫∫
δ[E − E±(xc, ẋc, ac, ȧc)]

× dPx(xc)

dxc

dPẋ(ẋc)

dẋc

dPa(ac)

dac

dPȧ(ȧc)

dȧc
dxcdẋcdacdȧc. (19)

The result is obtained by first calculating the characteristic functions,

p±(k) =

∫ ∞
−∞

dP±(E)

dE
eikEdE =

2σ−1
1 σ−1

2√
(2σ−2

1 − ik)(2σ−2
2 − ik)

, (20)

with

σ2
1(t) =

(
2m∗

ω

)
[ω2σ2

x(t) + σ2
ȧ(t)/ω2], (21)

σ2
2(t) =

(
2m∗

ω

)
[σ2
ẋ(t) + σ2

a(t)]. (22)

Note the equality p+(k) = p−(k) which after the inverse Fourier transform yields

equal functional forms for E+ and E−,

dP±(E±)

dE±

∣∣∣∣
t

= 2σ−1
1 σ−1

2 I0[(σ−2
1 − σ−2

2 )E±]e−(σ−2
1 +σ−2

2 )E± , (23)

where I0(z) is the modified Bessel function of the first kind.

Since the fidelity is a sum of two dependent random variables, its probability

distribution is calculated from the joint probability distribution function for those

two variables, which in general cannot be evaluated analytically. However, one can

examine dP
dF exactly when σ2

x(t) = σ2
ȧ(t)/ω4 and σ2

ẋ(t) = σ2
a(t), which is satisfied

for t = T if the coordinate and the SOI driving noise intensities are equal, i.e.,

σα = ωσξ. In this case, E+ and E− become independent random variables and
dP
dF can be calculated as the convolution of probability distributions for e−E+ and

e−E− . At t = T , the exact result for F ≥ 1
2 is given by

dP (F )

dF

∣∣∣∣
t=T

= 2σ−4
F

[
B

(
1

2F
, σ−2
F , σ−2

F

)
−B

(
1− 1

2F
, σ−2
F , σ−2

F

)]
(2F )2σ−2

F −1,

(24)
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where B(x, a, b) is the incomplete beta function and σ−2
F = σ−2

1 + σ−2
2 . For F < 1

2 ,

the probability distribution is dP
dF = 2σ−4

F B(σ−2
F , σ−2

F )(2F )2σ−2
F −1, where B(a, b) is

the beta function. In practice, where noise intensities are small, the most relevant

regime is σF → 0 for which the probability distribution equation (24) simplifies

to dP
dF ∝ (1 − F )F 2σ−2

F . Due to similar dependence of Fs and F on E±, it is easy

to derive analytical results also for spin-fidelity probability distributions dPs
dFs (not

shown here).

In Fig. 2(a), different realizations of noisy fidelity (black lines) are compared

to the noiseless one (red) for n = 2. One can observe that noisy fidelity starts

to deviate from the noiseless one for t/T & 0.1, reaches maximum deviation at

t/T ∼ 0.5 and then deviations are again lowered when approaching t → T . The

same quantities are presented in Fig. 2(c) for circular driving with n = 8 where the

noiseless curve is denoted with blue color. Figure 2(b) shows noiseless curves ac[ξ] in

parametric space during the transformation with n = 2 (red), n = 8 (blue, dashed)

and n→∞ (black, dashed), the latter corresponding to the adiabatic limit. Bullets

denote initial and final values of ac(t) and ξ(t). Note that the motion is periodic

F (t)
F 0(t)

n = 2

∞

8

•

•

•

• •

(a) (b)

(c) (d) n = 2

Fig. 2. (Color online) In panel (a) the noiseless fidelity F 0(t) (red line) and 10 fidelities F (t)
(black lines) for different realizations of white noise with intensities σξ/ξ0 = σα/α0 = 1/(20

√
ω)

are shown as functions of time when driving the system circularly with n = 2. Orange, gray
and green shaded regions at times t/T = 0.5, 0.75, 1, correspondingly, show the spread of noisy
fidelities around the exact value. Noiseless contours in parameter space [ac, ξ] are for n = 2 (red),
8 (blue, dashed) and n → ∞ (black, dashed) presented in panel (b). Panel (c) shows the same
as panel (a) for circular driving with n = 8 and the noiseless fidelity is denoted with blue line.

Bullets mark initial and final values of noiseless fidelity in (a) and (c) and contour in parameter

space in (b). In panel (d) probability density distributions of fidelity for n = 2 at times t/T = 0.5
(orange), t/T = 0.75 (green) and t = T (gray) are shown. Color codes coincide with the area of

fidelity spreading shown in (a). Distributions were generated from N = 107 samples.
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with period T and that ac(0) = ac(T ) = α(0) = α(T ) as is manifested also in

noiseless fidelity being equal to 1 at t = 0 and t = T , as a demonstration that the

system returns to the ground state manifold with probability 1. This can be seen

from positions of bullets in Figs. 2(a) and 2(c). Figure 2(d) shows the probability

density distribution of fidelity at times t/T = 0.5 (orange), t/T = 0.75 (green) and

t = T (black). It should be mentioned that the distribution for t = T is given also

by the exact formula, Eq. (24). The color code of distributions corresponds to the

code of the shading of fidelity spreading around the noiseless value in Fig. 2(a).

Distributions are centered around noiseless values and their variances are propor-

tional to spreadings observed in Fig. 2(a), the distribution at t/T = 0.5 having the

largest variance which is lower at t/T = 0.75 and even lower at t = T .

4. Summary

We presented an analysis of spin-qubit nonadiabatic manipulation of an electron

trapped in a moving linear harmonic trap and in the presence of time-dependent

Rashba interaction. One of the main challenges here is a precise tuning of driving

fields since the electron starting from the ground state should after performing one

cycle with time-dependent Hamiltonian return to the ground state, although during

the cycle the state of the electron is a superposition of excited eigenstates of the

moving trap.

The problem is even more subtle because there will always be present some

noise in driving functions, which means that spin-qubit transformation will always

deviate from the ideal one. Since for the model considered here exact solutions are

available for a broad class of drivings, we concentrated also to the exact analysis of

the influence of small deviations from ideal qubit manipulation. In particular, we

focused to an explicit example and demonstrated how one can analyze the effects

of a general noise to the transformation angle and we showed the results for the

Ornstein–Uhlenbeck type of noise.

An example, considered in detail, is the case of circular driving in the space of

parameters for which exact analytical formulae are given and analyzed for white

noise. In view of the fact that for nonadiabatic regimes a nontrivial point is the

ability of the system to return to the ground state after an arbitrary time-dependent

driving, our analysis was focused to the fidelity — the overlap of the actual wave

function with the desired ideal. For white noise, explicit formulae are derived for

symmetric noise intensities in position and spin–orbit driving functions. A detailed

derivation and analysis of fidelity are presented. Additionally, analytical results are

illustrated by special cases of driving together with numerically generated noisy

drivings and the corresponding responses.
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38. T. Rejec, A. Ramšak and J. H. Jefferson, J. Phys. Condens. Matter 12, L233 (2000).
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