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Abstract
Weconsidered various types of potential noise in gates controlling non-adiabatic holonomic
transformations of spin-qubits in one and two-dimensional systemswith the Rashba interaction. It is
shownhow exact results can be derived for deviations of spin rotation angle andfidelity of the qubit
transformation after a completed transformation. Errors in initial values of gate potentials and time-
dependent drivings are considered and exact results forwhite gate noise are derived and analysed in
detail. It is demonstrated how the drivings can be tuned to optimise the finalfidelity of the
transformation and tominimise the variances of qubit transformations.

1. Introduction

The newbranch of electronics, spintronics, has been the object of intense activity over the past decade since it
promises enhanced performance with smaller power consumption comparedwith classical electronics [1].
Spintronics has potential for realising the fundamental building blocks of a quantum computer via electron spin
qubits. Implementation of such qubits is relatively simple in gated semiconductor devices based on quantum
dots and quantumwires [2]. Qubitmanipulationmay be achieved by rotating the electron’s spin by the
application of an externalmagnetic field [3]. However, this is unwieldy and not easily confined and controlled in
small regions occupied by qubits. Themain challenge is therefore how to accuratelymanipulate the spin of a
single electronwithout using an externalmagnetic field.

A possible solution is tomake use of the spin–orbit interaction (SOI). In semiconductor heterostructures
there are two types of SOI, theDresselhaus interaction [4] due to bulk inversion asymmetry of a crystal, and the
Rashba interaction [5]which is a consequence of structural inversion asymmetry of the confining potential of
the two-dimensional (2D) electron gas. In spintronic devices the latter is particularly suitable for qubit
manipulation since it can be tuned locally via electrostatic gates. Furthermore, since the Rashba interaction
couples electron’s spin to its orbitalmotion, qubit spin rotation can be performed by adiabatic spatial translation
of a quantumdot containing a single electron, for a distance of the order of the spin–orbit length [6–11]. In one-
dimensional (1D) quantum systems also electric-field-induced resonance canmanipulate electron spin [12],
tunnel-coupled spin qubits can be driven by acfields [13], andmost recently it was shown that time dependent
Rashba interaction in a quantumwire can contribute to the rotation of electron spin [14–16]. Experimentally
such systemswith the ability of controlling electrons have been realised in InSb [17], InAs [18–20] andGe [21]
quantumwires. Recently this type of qubitmanipulation has been generalised to non-adiabatic quantumdot
motions due to external time-dependent potentials [22], thus opening up the possibility ofmuch faster spin-
qubit transformations.

The simplest non-adiabatic qubitmanipulationwith exact analytical solution is achieved by translating a
qubit in one-dimension in the presence of constant Rashba interaction [22]. A drawback of suchmanipulation is
that after the transformation, the qubit is trapped in a displaced quantumdot. This deficiency can be remedied
by applying a time-dependent electric fieldwhich produces a time-dependent Rashba coupling [23, 24]. The
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qubitmanipulation then consists offirst displacing the quantumdot, followed by changing the Rashba coupling,
then returning the quantumdot to the original spatial position and finally tuning the Rashba coupling to its
initial value. Such a system thus represents a 1D spatialmotion in a 2Dparametric space—spanned by the
position of the quantumdot and the strength of the Rashba coupling. For quantumdots with harmonic
confining potential the exact analytical solution is known for various quantumphases [25] including non-
adiabatic non-Abelian Anandan phase [26]which opens the possibility of qubit holonomic transformations
[27, 28]where the non-Abelian phase acquired during one cycle in the parametric space can be studied exactly as
is discussed in detail in [25]. However, the transformations are limited to cases of rotationswithfixed axis.Most
recently this limitation posed byfixed axis of spin rotationwas also eliminated in a quantum ring structure
where full coverage of the Bloch sphere is possible [29, 30].

Exact solutions for all threemethodsof qubitmanipulation also simplifies the analysis of possible effects of
environmentwhich result indecoherence and relaxationof the qubit’s state.The stability of holonomic
transformationsdependsonprecise driving controlwhich canbeuncertaindue to various sources of parametric
noise [31]. For example, due tofluctuating electricfields, causedby thepiezoelectric phonons and conduction
electrons in the circuit [9, 32] anddue to ioniseddopant nuclei in aheterostructure [33]or thehyperfine interaction
with thenuclei [34]. Inmolecular systemswithphononassistedpotential barriers phonon-mediated instabilities
could introducenoise in the confiningpotentials [35, 36] and innon-adiabatic qubit transformations the effects are
also related to the speedof themoving quantumdot [25]. Electrons couldbe carried alsoby surface acousticwaves,
where additional noise couldbe introducedby the electron–electron interaction [37, 38]. In a two-qubit systemof
coupledquantumdots the tunnelling can cause double occupancy leading toprocessing errors [39].

In this paperwe concentrate on the analysis of errors of such qubit transformations and decoherence.
Essential for a correct transformation is the precise application of external electric fields via various top gates. An
important consideration in the practical implementation of this scheme is the effect of random fluctuations in
both the time-dependent SOI and theQDmotion as well as the influence of errors in the initialisation of qubit
states. The paper is organised as follows. After the introduction, in section 2we introduce themodel and show
exact solutions of the time-dependent Schrödinger equation. In section 3 errors in spin-qubit transformations
in one- and 2Dparametric space are analysed. Exact expressions are given for white noise in electric potentials
and an explicit example is presented. Next in section 4 exact results forfidelity due to thewhite noise are derived
and section 5 is devoted to the summary and conclusion.

2.Model

Weconsider an electron in a quantumwire confined in a harmonic trap [22, 25]. The centre of the potential (1D
quantumdot), tx ( ), can be arbitrarily translated along thewire bymeans of time dependent external electric
fields. Spin–orbit Rashba interaction between electric field and electron spin couples with orbitalmotion,
resulting in the followingHamiltonian

H t
p

m
I

m
x t I t pn

2 2
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2 2
2

*
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sw
x a= + - + ·( ) [ ( )] ( ) ( )

wherem* is the electron effectivemass,ω is the frequency of the harmonic trap, ta( ) is the strength of SOI,
possibly time dependent due to appropriate time dependent external electric fields. Throughout the paper, we
use units with 1� = . The spin rotation axis n isfixed and depends on the crystal structure of the quasi-1D
material used and the direction of the applied electric field [17].s and I are Pauli spinmatrices and unity
operator in spin space, respectively. Exact solution of the time dependent Schrödinger equation corresponding
to theHamiltonian equation (1) is given by [22, 25, 40]
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Here xmy ( ) represents themth eigenstate of a harmonic oscillator with eigenenergy m 1 2mw w= +( ) and sc ñ∣
is spinor of the electron in the eigenbasis of operator zs . Unitary transformations �a and0x transform the
system into the ‘moving frame’ of SOI and position, respectively, and therefore t- ( )† transforms the
Hamiltonian equation (1) into a simple time independent harmonic oscillatorHamiltonian. The phase

t L t td
t

0òf = - ¢ ¢x x( ) ( ) is the coordinate action integral, with L t m x t m x t t2 2c c
2 2 2* *w x= - -x ( ) ˙ ( ) [ ( ) ( )]

being the Lagrange function of a driven harmonic oscillator and xc(t) is the solution to the equation ofmotion of
a classical driven oscillator
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x t x t t¨ . 6c c
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Another phase factor is the SOI action integral phase t L t td
t

0òf = - ¢ ¢a a( ) ( ) ,where L t m a t 2c
2 2* w= -a ( ) ˙ ( ) ( )

m a t m a t t2c c
2* * a+( ) ( ) ( ) is the Lagrange functionof another drivenoscillator, satisfying
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Spin-qubits are rotated around n by two ‘dynamical’ terms proportional to operators a t xc ( ) , a t pc˙ ( ) , and by the

angle t m a t t t2 dA
t

c0
*òf x= - ¢ ¢ ¢( ) ˙ ( ) ( ) , the Anandan phase for the case of cyclicmotions, as analysed in [25]

where it is shown also that the phase in the adiabatic limit reduces to theWilczek–Zee non-Abelian phase [41].
By the application of an externalmagnetic field the degeneracy is lifted and the phase reduces to the non-
adiabatic Aharonov–Anandan phase [42] in the adiabatic limit simplified further to the ordinary Berry
phase [43].

3. Spin-qubit transformations

3.1. 1Dparametric space
First we consider a special case of constant SOI, t 0a a=( ) , whichmeans that the parameter space is 1D. The
exact solution, equation (2) is completely determined by the classical response of the oscillator, equation (6),
whichmakes exact analysis of the qubit transformation very simple. For example, if the electron is initially in the
mth excited state ofH(0), the spin is rotated around n for angle,

T m x T2 , 8c0*f a=( ) ( ) ( )
whereT is the transformation time [22].When the driving tx ( ) is chosen to give full spin-flip Tf p=( ) , the
final displacement of the electron is x T m2c 0*p a=( ) ( ) and no residual angle oscillations are present. This is
fulfilled exactly when the final state of the electron is in themth eigenstate ofH(T), that is when x T Tc x=( ) ( )
and x T 0c =˙ ( ) .

In qubit transformations of this type it is essential to control precisely the initial state and driving electric
fields. Noise in fields of gate electrodes is reflected in fields which translate the trap potential minimum and is
consequentlymanifested as noise in the initial position x 0cd ( ), initial velocity x 0cd ˙ ( ) and driving function

tdx ( ). This produces noise in xc(T)which further induces noise in Tf ( ). Using the exact solution, equation (2)
it is straightforward to analyse the noise in the transformation anglef, which is dispersed by some probability
distribution, given by a change of variables when the probability density function of xc is known.

We assume that errors in initial position and velocitymay be described by normal distributions with
variances x0

2s and x0
2s ˙ , respectively,
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The driving function t t t0x x dx= +( ) ( ) ( ) consists of ideal driving part without noise, t0x ( )with super-
imposed stochastic part with vanishingmean t 0dxá ñ =( ) and characterised by the time autocorrelation
function t tdx dxá ¢ ´ ñ( ) ( ) [44].We consider here coloured noise, in particular theOrnstein–Uhlenbeck process

[45–47]with exponential correlations t t e t t
2

2

dx dxá ¢ ´ ñ =
s

t
t¢- ´x

x

x( ) ( ) ∣ ∣ with noise intensity 2sx and correlation

time tx .
A general solution of equation (6) xc(t) is given by
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where all three terms are stochastic, independent and normally distributed variables. Their sum is also normally
distributedwith variance equal to the sumof variances of all variables [48]. The variance of the first two terms is
obtained by the change of variables formulawhile the variance corresponding to the third term is evaluated as
equal-times autocorrelation function [49],

t t t t t t t t tlim sin d sin d . 11x
t

t t t
2 2

0 0 0ò òs w w dx w dx= á - ¢ ¢ ¢ - ´ ´ ´ñ
D l

+D
( ) [ ( )] ( ) [ ( )] ( ) ( )

For theOrnstein–Uhlenbeck noise considered here the integrals can be evaluated exactly and thefinal result is
that the angle of spin is distributed normally with the time dependent variance
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with t t t2 sin 2x
2 1

4
2 's ws w w t= - +x x( ) ( ) ( ), where only the short correlation time ( 0t lx ) contributions—

corresponding to thewhite noise in driving—are explicitly shown here. Thefirst two terms in equation (12) are
limited by the precision of the initial conditionswhile the third contribution, related to the noise in driving,
diverges at large tw , since the Lorentzian noise power spectrum f1 22 2s p t+x x[ ( ) ]considered here consists of
different driving frequencies including the resonant value f2w p= , resulting in the asymptotic response

t tx
2s µ( ) —similar to the 1D randomwalk problem [45]. In order to keep the noise in the final results low, fast,

non-adiabatic transformations are therefore favourable.

3.2. 2Dparametric space
Although the 1D spin transformation scheme can be implemented in a controllablemanner and also the driving
noise level optimised by a suitable driving, an important drawback is the fact that after the transformation is
completed the electron is spatially shifted from its initial position. This problem is resolved if the position of the
quantumdot and the Rashba interaction are both time dependent, thus spanning a 2Dparameter space. As
demonstrated in [25], the quantumdot can, for example, befirst spatially shiftedwith some initial Rashba
coupling value 1a and then displaced back to the starting position, while keeping theRashba couplingfixed at
different value 2a and finally setting the Rashba coupling back to its initial value 1a . This transformation
depends only on the area of the loop in the 2Dparameter space. In particular, when the system is driven by a
cyclic evolution, that is t T tx x+ =( ) ( ), t T ta a+ =( ) ( ), x t T x tc c+ =( ) ( ), x t T x tc c+ =˙ ( ) ˙ ( ),
a t T a tc c+ =( ) ( ) and a t T a tc c+ =˙ ( ) ˙ ( ), the angle of the spin rotation around direction n is given by

T T m a t t t m a2 d 2 d , 13A

T

c c
0 1

* *
�òf f x x x= = - = ∮( ) ( ) ˙ ( ) ( ) [ ] ( )

where ac x[ ] represents the contour 1� in 2Dparametric space t a t, cx[ ( ) ( )] for t T0 - - thus the spin rotation
angle is simply given by the area enclosed by 1� .

Additionally to coordinate noises in 1D spin transformations, in 2D spin transformations are also normally
distributed noise in initial SOI response a 0c ( ), initial time derivative of the response a 0c˙ ( ) and stochastic noise in
SOI driving function t t t0a a da= +( ) ( ) ( ), where t0a ( ) is ideal noiseless driving. SOI noise tda( ) is similar to
the previous case of spatial driving and is again of theOrnstein–Uhlenbeck typewith autocorrelation function

t tda daá ¢ ´ ñ( ) ( ) , noise intensity 2sa and correlation time ta. One should note that although the driving
parameters tx ( ) and ta( ) are directly subjected to the noise, error in qubit transformation is related to the noise
in tx ( ) and noise in the response function ac(t) as seen from equation (13).

As an example of a 2Dqubit rotationwe present the family of transformations with sinusoidal driving
parametrised as

t t T t t Tcos 2 , sin 2 , 14n n0 0x x p a a p= =( ) ( ) ( ) ( ) ( )

with transformation timesT nTn 1= , whereT 21 p w= is the period of the confining potential and n 1> . In
figure 1 are shown some paths in the parametric space t a t, cx[ ( ) ( )]during the 2D transformation t T0 n- - .
Thin lines represent ten different results withwhite noise. Time dependent variance ta

2s ( ) ismanifested as a
spread of these curves around the ideal closed line 1� (red). Thick black lines represent typical case starting at
positions 0 , 0x a[ ( ) ( )] (bullets) and ending at T a T, cdx d[ ( ) ( )] (circles). It should be noted that accumulated

. .. ...

Figure 1.Contours 1� corresponding to equation (14), i.e., t a t, cx[ ( ) ( )] for t T0 n- - for n=2 (a), 4 (b) and 16 (c)without noise
(red lines) and 10 examples of results with superimposedwhite noisewith 2

0
2 2

0
2 1

400
ws x ws a= =x a (thin grey lines). Thick black

lines show typical results, starting at positions 0 , 0x a[ ( ) ( )] (labelled by bullets) and ending at T a T, cdx d[ ( ) ( )] (circles). Note that
coloured area enclosed by 1� is proportional to the angle of spin rotation and that the limit n l ¥ corresponds to the adiabatic
regime of drivingwhere 1� progressively approaches t t,x a[ ( ) ( )] (dashed lines).
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errors in a T a Tc cd=( ) ( ), with variance a
2s , aremuch larger than the corresponding Tdx ( )which has only an

instantwhite noise contribution. Finally, it should be noted also that the transformation anglef—proportional
to the coloured area enclosed by 1�—is due to oscillations of individual noisy curves around the ideal value
relatively less prone to the noise.

The fact that, in comparison to 1D spin transformations, these transformations include noise in 2D
parameter space, where transformations need to be periodic, already indicates that fundamental differences
might arise. One such difference is in the effect of noise of initial conditions. As seen from equation (10),
eventual non-zero initial conditions directly contribute to responsewith cosine and sine time-dependency. Spin
transformations in 2D fulfil the condition of periodic response x t T x tc c+ =( ) ( ) and a t T a tc c+ =( ) ( ) and
have transformation timesT amultiple of the oscillator period 2p w. The errors in initial conditions then only
translate the curve 1� in the parametric space but do not change the area enclosed by the contours and thus the
angle of rotation is not affected.

The only relevant source of gate noise is thus the noise in driving functions tx ( ) and ta( ), which induce
noise in the appropriate variables which are for the case of white noise all independent, stochastic and normally
distributedwith the corresponding variances [50]. As before, only short correlation times are consideredwith
approximation, , 0t t lx a , leading to the time-dependent variances, tx

2s ( ) as in equation (12),

t t t
1

4
2 sin 2 , 15x

2 3 2s w s w w= +x( ) [ ( )] ( )˙

t t t tand , 16a x a x
2

2

2
2 2

2

2
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s
s

s s
s
s

s= =a

x

a

x
( ) ( ) ( ) ( ) ( )˙ ˙

corresponding to xc(t), x tc˙ ( ), ac(t) and a tc˙ ( ), respectively.
Induced noise in the angle of spin qubit rotationf is given by

m a t t t m a t t t m a t t t2 d 2 d 2 d , 17
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0˙ ( ) being responsewithout noise. df is the sumof three independent and
normally distributed stochastic processes which lead to the variance 2

I
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2s s s s= + +f , where I
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variance of the first, II

2s of the second and III
2s of the third term [48]. These terms are evaluated directly from the
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m a t t m a a a2 d 2 d , 18
T

c c c cI
2 2

0

0 2 2 0 0 0

a

* *
�òs s s= =x x� �∮( ) ( ) ( ) [ ] ( )

m t t t t t

t t t t t t t t t

sin 2 min ,

sin 2 min , cos d d , 19

T T
II
2 2 3 2

0
0

0
0

* ò òs w s x w

w w w x

= ¢ ¢ ´ - ¢ - ´

+ ¢ + ´ + ¢ ´ ¢ - ´ ´ ´ ¢

a ( ) { [ ( ( ) )]
[ ( )] ( ) [ ( )]} ( ) ( )

m T T
1

4
2 2 sin . 20III

2 2 2 2*s ws s w w= +x a( ) [( ) ( )] ( )

Thefirst contribution I
2s is proportional to the intensity of the ξ-noise and to the action integral associatedwith

the SOI response, which vanishes in the adiabatic limit of the Rashba-driving. The second term, II
2s , originates in

theα-noise and is non-trivially related to the time dependence of the spatial driving function t0x ( ). As shown
later in an example, this term can bemade small by appropriate choice of driving. The last contribution to the
angle variance, III

2s , is of higher order in position andRashba driving noise intensities and thus negligible for fast,
non-adiabatic qubit transformationswhile quadratically increasing for large T 1w � adiabatic-like spin
transformations. Variance 2sf of noise in the angle of qubit rotation is therefore due to terms I and II enhanced
for fast non-adiabatic drivings whereas it increases for large driving times due to the term III. This sets the
condition forminimal total induced noise.

In order to elucidate this point we investigate angle variance for the circular driving scheme given by
equation (14). At completion of the transformation at timeTn the variance is given by

n n

n

n

n
n

1

1

2

1
, 21

n,
2

0
2

2

2 2

2

0
2
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2 2

2
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2

2

0 0

2s

f p

ws

x p
ws
a

ws s
x a

=
+
-

+
-

+f x a x a⎛
⎝⎜

⎞
⎠⎟

( )
( ) ( )

( )

where m20 0 0*f p x a= is the qubit rotation angle equation (13) in the noiseless and n l ¥ limit.
Infigure 2(a) is presented Is as a function of time for various driving times for n 2, 4, 8= and 16with

corresponding contours a t a t,c c
0 0[ ( ) ˙ ( )] infigure 2(b). Note that at larger n the area within particular contour a� is

progressively smaller—as expected in the adiabatic limit. Figure 2(c) shows that the contribution IIs exhibits
oscillations with time, but atfinal times the level of noise isminimum, decreasing with increasing n. It should be
noted that the noise can not be avoided in any limit—thefirst two contributions to 2sf are larger at short
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transformation times, i.e., both decrease as n1µ for large n 1� while the third term III
2s increases as∝n2,

figure 2(d), therefore there exists someminimumvariance n, minsf at optimal driving time for nmin.
For larger n 1� such optimal regime can readily be evaluated,

n
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2
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= µf x a⎛
⎝⎜

⎞
⎠⎟ ( )

therefore in order tominimise the variance the parameters should be chosen such that the driving timeTnmin
is

minimal. The variance is forT Tnmin< limited by the extreme non-adiabatic value at n=2,

, 24
n,

2

0
2

2

0
2

2

0
2

s

f

ws

x
ws
a

< +f x a ( )

which is qualitatively correct also for other types of drivingwith the contour 1� approximately bounded by the
area 0 0x a , with noise intensities sx and sa.

4. Fidelity

A fundamental property of adiabatic quantumphase is its invariance to changes in time-dependentHamiltonian
parameters, the actual phase being given by the area enclosed by the path in the parametric space. For fast, non-
adiabatic holonomic transformations considered here, the phase is given by the area, in combined space of
driving and response parameters, which only in the adiabatic limit is independent of time.More importantly, for
non-adiabatic qubitmanipulations the electron state is determined by the time-dependentHamiltonian during
the evolution andwill in general be a superposition of excited states, becoming the ground state when the
transformation is complete. As shown in [22, 25, 29] suchmotions in parametric space can easily be performed if
the driving functions are appropriately chosen.

Figure 2.Graphs are shown for different n of sinusoidal driving, equation (14), at ;2
0
2 2

0
2 1

400
ws x ws a= =x a scaled variances (a)

tI
2s ( ) and (c) tII

2s ( ), with coloured arrows pointing to final time T Tn= of corresponding drivings (colours of arrows and drivings
match). Phase space contours a� , a t a t,c c

0 0[ ( ) ˙ ( )], are shown in (b); note that grey shaded area is proportional to TI
2s ( ) (for n = 2,

equation (18)). In (d) is shown total variance n,
2sf (black), together with variances I,II,III

2s (red, violet and orange, respectively).
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In the previous section the analysis of spin-rotation angle variance demonstrated that due to gate noise in the
driving functions, spin transformations are not completely faithful and that additionalfine tuning is required in
order tominimise these noise effects.Moreover, for the present case of non-adiabatic qubit transformations, an
important additional question is relevant: howwell does the final state of the electron relax to the desired final
state energymanifold after the transformation if the driving function is not ideal as in the presence of noise?

In order to answer this questionwe consider the qubit wave function t0 1
2

Y ñ∣ ( ) , equation (2), at t=0 in the

ground state of the harmonic quantumdotwithm=0 and spin 1

2
.We observe the relaxation to the ground

state, spanned by the basis of the time dependentHamiltonian equation (1) at time t [22],

x te . 25s
m x t t

s
n

0
i

0
* y x cY ñ = - ñ ñ

~ sx a- -∣ ∣ [ ( )] ∣ ( )·[ ( )] ( )

As the appropriatemeasure of the relaxation accuracy we definefidelity F t P t0 0 01
2

1
2

= áY Y ñ( )∣ ∣ ( ) , where
P s s s0 0 0= å Y ñáY

~ ~∣ ∣ is the projector onto the ground statemanifold.We choose n perpendicular to the z-axis and a
lengthy but straightforward derivation yields the expression

F
1

2
e e , 26E E= +- -+ -( ) ( )

E
m

x t t a t x t a t t
2

, 27c c c c
2 2*

w
w x w a= - o + -o B{[ ( ( ) ( )) ˙ ( ) ] [ ˙ ( ) ( ( ) ( ))] } ( )

where E± resembles normalised classical energy with additional terms for spin–orbit coupling and is equal to the
normalised classical energy if the spin–orbit driving is constant [22]. Fidelity for 1Ddriving is obtained as a limit
of 2D casewhen one of the drivings is constant, for example a tc 0a=( ) , a t 0c =˙ ( ) thus 0a ac cs s s= = =a ˙ .
The expression forfidelity then simplifies to F e E= - , where E E E= =+ - is now equal to the normalised
classical energy of harmonic oscillator.

Ideal qubit transformations, F=1, are achieved by applying ideal drivings, where the energies Eo vanish at
final time t=T, i.e., when xc x= , ac a= , x 0c =˙ , and a 0c =˙ . However, the presence of noise in spin–orbit

and spatial driving termsmakesfidelity a randomquantity, described by a probability density function P F

F

d

d

( ) . It
can be calculated from the probability density for variables E f x x a a, , ,c c c c=o o( ˙ ˙ )which are functions of
independent random variables, normally distributed andwith variances equations (15) and (16). The probability
density functions forE± can be calculated using the formula

P E

E

P x

x

P x

x

P a

a

P a

a
E f x x a a x x a a

d

d
...

d

d

d

d

d

d

d

d
, , , d d d d . 28

c

c

c

c

c

c

c

c

c c c c c c c c

ò ò
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´ -

o

o -¥
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-¥

¥

o o

( ) ( ) ( ˙ )
˙

( ) ( ˙ )
˙

[ ( ˙ ˙ )] ˙ ˙ ( )
The result is obtained by first calculating the characteristic function, followed by the inverse Fourier transform
yielding distributionswith the same functional form for variables E+ and E-,

P E

E
I E

d

d
2 e , 29E

1
1

2
1

0 1
2

2
2 1

2
2

2
s s s s= - s so

o

- - - -
o

- +- -
o

( ) [( ) ] ( )( )

with

t
m

t t
2

, 30x a1
2 2 2 2 2*

s
w

w s s w= +
⎛
⎝⎜

⎞
⎠⎟( ) ( ( ) ( ) ) ( )˙

t
m

t t
2

, 31x a2
2 2 2*

s
w

s s= +
⎛
⎝⎜

⎞
⎠⎟( ) ( ( ) ( )) ( )˙

where I z0( ) is themodified Bessel function of thefirst kind.
Distributions for e E- o are calculated by using a simple change of variables formula. Since the fidelity is a sum

of two dependent random variables, its probability distribution is calculated from the joint probability
distribution function for those two variables, which in general cannot be evaluated analytically. However, one
can examine P

F

d

d
exactly in two convenient limiting cases. Thefirst is the case when the noise in one of the driving

variables, for example ta( ), ismuchweaker than the other, i.e., s sa x� . In this case, the noise properties are
essentially those of a 1Dproblem and the exact expression for probability density function offidelity is

P F

F
I F F

d

d
2 ln , , 32F1

1
2

1
0 1

2
2

2 1 2
1

2
2

2F
2

s s s s s s s= - = +s- - - - - - - --( ) [( ) ] ( )

which for 01,2s l leads to FP

F

d

d
F

2
µ s-

.

The second limiting case is when t tx a
2 2 4s s w=( ) ( )˙ and t tx a

2 2s s=( ) ( )˙ , which is satisfied for t Tn= if the
coordinate and the SOI driving noise intensities are equal, i.e., s ws=a x. In this case E+ and E- are independent

randomvariables [48] and P

F

d

d
can be calculated as the convolution of probability distributions for e E- + and e E- -.
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The exact result for F 1

2
. is

P F

F
B

F
B

F
F

d

d
2

1

2
, , 1

1

2
, , 2 , 33F F F F F

4 2 2 2 2 2 1F
2
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⎝

⎞
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⎠
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where B x a b, ,( ) is the incomplete beta function. For F 1

2
< the probality distribution is given by B2P

F F
d

d
4s= -

F, 2F F
2 2 2 1F

2
s s s- - --( )( ) , where B a b,( ) is the beta function.

In practice themost relevant regime is 0Fs l for which the probability distribution equation (33) simplifies
to F F1P

F

d

d
2 F

2
µ - s-( ) . Atfirst glance the surprising result is that the probability distribution for F 1l tends to

zero, in other words, it is not possible to exactly achieve aflawless spin-flip transformationwith 2Ddriving. This
is quite different from transformationswith 1Ddriving, where the probability forflawless transformation at
F=1 ismaximum. For intuitive interpretation one can compare the noise in 1D and 2D transformations to
Brownianmotion in 1D and 2Dparameter space and the fidelity to the probability offinding a particle after
some time near the starting point [47, 51]. In 1D the particle always returns to the starting point while in 2D the
particle returns almost surelywithmaximumprobability at the annulus near the starting point.

Infigure 3(a) is shown thefidelity probability density function equation (33) for different Fs . It is clear that
although the probability for drivingflawlessly is zero, the position of themaximumof P

F

d

d
is for small Fs very

close to 1,

F 1
1

2
, 34Fmax

2s= - ( )

thewidth at halfmaximum is

e

2
, 35F2D

2s s= ( )

and linear growth of probability from zero tomaximumvalue indicates that when the noise is low enough, the
transformation is with very high probability achievedwith almost zero error. Note that thefidelity is less sensitive
to the noise than the transformation angle studied in section 3 as indicated by the quadratic dependence of the
shift infidelity distributionmaximumaway from F=1.Hence F F

2d s~ is of higher order in the noise
intensities than thewidth of the transformation angle, s s~f x (or sa).

Similar arguments apply to the qubit transformationswith 1Ddriving, where the position of themaximum
of P

F

d

d
is equal to 1 and full width at halfmaximum 1Ds is given by

ln 2 . 36F1D
2s s= ( )

Examples of numerically generated results for general sx and sa [52] are shown infigure 3(b), where in the limit
0s s la x the probability distribution gradually transforms from2D to 1D form and infigure 3(c) such 1D

results are presented for various 1 2s s= .
For the example of sinusoidal driving, equation (14) considered in the previous section, the lowest noise in

the angle of spin rotation is achieved for driving timesT n Tn min 1min = , equation (22). The corresponding
probability distribution offidelity is equal to equation (33), with

Figure 3. (a)Probability density function offidelity for 2D s ws=a x( , equation (33)) and (c) 1D transformations is shown for different
values of noise 0s =a( , equation (32)). (b)Numerical results for 2Dprobability density offidelity with different ratios of noise
intensity in coordinate and SOI driving. As ratio decreases from 1s ws =a x (red), probability density function of fidelity transforms
to the form of 1D transformations (black). Parameters sx and sa are such that 5F

2s =- at all ratios.
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m T
1

2
, 37F n

2 2 2 2
min*s w s s w= +x a( ) ( )

therefore regarding theminimisation of both variances, for rotation angle and forfidelity, faster transformations
with lowerTnmin

are favourable.

5. Summary and conclusion

Recent theoretical analysis has revealed that holonomic spinmanipulation in linear systems [22, 25] or on an
appropriate ring support [29, 30] is feasible from adiabatic to strong non-adiabatic regime of driving. Thefirst
prerequisite here is the ability to control the position of the electron tx ( ) and the second is controllable
manipulation of the Rashba coupling, regarding the time dependent strength ta( ) and also the choice of
preferred direction n. For slow, adiabatic qubitmanipulation these requirements lead to an arbitrary
transformation, simply determined by the area in the space of driving parameters ,x a[ ]. During the process of
the transformation the electron remains permanently in the same spatial state, the ground state for example, and
only spin properties change.

Fast, non-adiabatic spinmanipulation is farmore challenging since the time-dependence of driving
functions have to be appropriately tuned.Unlike the adiabatic regime, the transformation angle of spin is given
by the combined space of both the driving function tx ( ) and the SOI response ac(t) to the driving function ta( ).
In addition to correct transformation of the spin direction, one has also to take care that the electron state has not
left the starting energymanifold at the final time. For example, starting from the ground state the electron
should, after performing one cycle with time-dependentHamiltonian, return to the ground state, although
during the cycle the state of the electronmay be a superposition of excited eigenstates of themoving potentials.
As shown in [22, 25, 29] such drivings are feasible to perform. As long as the approximation of the harmonic
potential is justified, the formalism yields exact time dependent wave functionswith simple tuning of driving
functions in order to achieve desired qubit transformations. However, noise in driving functionswill always be
present because of unavoidable gate noise, whichmeans that qubit transformationwill always deviate from the
ideal one.

In this paperwe examined in detail the influence on qubit transformations of various imperfections in
driving. The formalism allows analytical treatment of arbitrary driving, therefore we concentrated on the exact
analysis of the influence of small deviations from ideal qubitmanipulation. In particular, for 1Dmanipulation
we showhow errors in initial conditions give rise to variance in the transformation angle. It is shownhowone
can analyse the effects of a general coloured noise to the transformation angle and, as an example, we show the
result forOrnstein–Uhlenbeck noise in the limit of short correlation times (white noise) although the formalism
can be applied to other types of noise defined by their autocorrelation functions.

The results valid for 1Dparametric space are generalised tomore involved analysis of the transformation
angle for the case of 2D spinmanipulationwith time dependence of both quantumdot position and SOI. The
first result here is that, due to periodicity, holonomicmanipulation is completely insensitive to the initial
conditions, since the qubit rotation angle is given solely by the area in parameter space forwhich errors in the
starting point are irrelevant. Therefore the only source of errors here is the noise in driving functions. As in the
1D case exact results can be derived for a broad class of coloured noise with given autocorrelation functions and
appropriate formulae are given explicitly. As a typical example, considered in detail, is the case of circular driving
in the space of parameters for which exact analytical formulae are given and analysed forwhite noise. It is argued
that these particular results are qualitatively valid in general, providing similar size of the contour in parametric
space and similar noise intensities. In particular, for non-adiabaticmanipulations, errors increase due to the
detuning of sensitivity drivings in the presence of the noise, while in the adiabatic limit of driving the
accumulation of errors is similar to randomwalk process. In general we expect some optimum regime between
non-adiabatic and adiabatic driving andwe also show thatminimal variance can be achieved by suitable tuning.

As discussed above, for non-adiabatic regimes a non-trivial point of issue is the ability of the system to return
to the ground state after an arbitrary time-dependent driving. For that reason our analysis was focused onfidelity
—the overlap of the actual wave functionwith the desired ideal. For thewhite noise limit of coloured noise
explicit formulae are derived. For the 1D case and general time-dependent variances of response functions the
result is given explicitly. For 2D, exact analytical results are derived for symmetric noise in position and spin–
orbit driving functions. Formore general cases some examples are calculated numerically and shown to
demonstrate smooth transition between two limiting cases, totally symmetric 2D and asymmetric 1D.

We concludewith an interesting observation that the noise effects onfidelity have a structure similar to
probability density in randomwalk problems. In 1D randomwalk the particle always returns to the origin and
similarly the fidelity probability distribution F F

2
~ s-

for the 1Dparametric case which exhibits amaximumat
F=1, i.e., although the qubitmotion is influenced by the randomnoise, thewave function still returns with
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maximumprobability to the ground state. In a 2D randomwalk the classic result [51] is that the particle after
some elapsed time returns to the origin a.s. butwithmaximumprobability at annulus displaced from the origin.
Similarly in our case themaximumof thefidelity probability distribution F F1 2 F

2
~ - s-( ) is slightly shifted away

from F=1. Finally, we show that errors infidelity occur at a higher order in noise intensity comparedwith
errors in qubit rotation angle.
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