
PHYSICAL REVIEW B 15 FEBRUARY 1998-IIVOLUME 57, NUMBER 8
Spatial structure of spin polarons in the t-J model
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The deformation of the quantum Ne´el state induced by a spin polaron is analyzed in a slave fermion
approach. Our method is based on the self-consistent Born approximation for the Green’s function and wave
function for the quasiparticle. The results of various spin-correlation functions relative to the position of the
moving hole are discussed and shown to agree with those available from small cluster calculations. Antifer-
romagnetic correlations in the direct neighborhood of the hole are reduced, but they remain antiferromagnetic
even forJ as small as 0.1t . These correlation functions exhibit dipolar distortions in the spin structure, which
sensitively depend on the momentum of the quasiparticle. Their asymptotic decay with the distance from the
hole is governed by power laws, yet the spectral weight of the quasiparticles does not vanish.
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I. INTRODUCTION

The problem of spin polarons moving in a quantum an
ferromagnet has received considerable attention, since
important for a description of Mott insulators at low doping1

While the major part of investigations for thet-J model was
concerned, e.g., with the polaron dispersion and spec
function using a variety of techniques such as ex
diagonalization,2–7 self-consistent Born approximatio
~SCBA!,8–11 string theory,12,13 and other methods14–17—our
focus here is on the spatial structure of the spin polariza
and its asymptotic behavior. The study of the deformation
the spin system due to spin-polaron formation was ma
performed by exact diagonalization techniques.3,18 However,
there are important questions which can only be studied
analytical approaches, such as the asymptotic decay o
polarization of the medium.19,20The latter property is closely
related to the question whether a quasiparticle~QP! descrip-
tion applies. The first successful measurement of single-h
dispersion in the Mott insulator Sr2CuO2Cl 2 by angular-
resolved photoemission21 revived this interest, and stimu
lated investigations of thet-t8-J model22 and more complex
Hamiltonians.23

The Green’s function for a hole moving in afixed spin
background was already discussed in the context
transition-metal oxides by Bulaevskii, Nagaev, a
Khomskii24 in the late 1960s, and by Brinkman and Rice25

In those approaches the Green’s function turned out to
local and fully incoherent. The first prediction that low
energy single-particle excitations in the two-dimensio
~2D! t-J model26 and its anisotropic generalization (0<a
<1),
570163-1829/98/57~8!/4308~13!/$15.00
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1J(̂
i j &

FSi
zSj

z1
a

2
~Si

1Sj
21Si

2Sj
1!G , ~1!

are propagating QP’s with a bandwidth of orderJ was made
by Kane, Lee, and Read,9 and was confirmed by a number o
exact diagonalization studies.2,3 The problem is complicated

due to the constraint on the fermion operatorsc̃ i ,s
† 5ci ,s

† (1
2ni ,2s), and by the fact that quantum fluctuations play
crucial role. This model was widely studied particularly b
cause it is believed to contain much of the low-energy ph
ics of the high-Tc superconductors.26,1

Nevertheless, fundamental issues are still unclear, suc
the spin dynamics and the form of the Fermi surface at m
erate doping, i.e., in the regime corresponding to underdo
high-temperature superconductors. However, even in
case of a single hole there are different views, e.g., whe
the quasiparticle spectral weight is finite or vanishes in
thermodynamic limit. In particular, Anderson argued th
holes introduce a deformation in the spin background wh
decays as a power law and as a consequence the sp
weight should vanish, leading to non-Fermi-liqu
behavior.27 According to this argument, non-Fermi-liquid be
havior is connected with the property of a single hole. R
cently, Wenget al.28 argued that the quasiparticle weightZk
should vanish as a consequence of string formation ass
ated with the Marshall’s sign, which is a characteristic pro
erty of the undoped Heisenberg ground state. These a
ments are based on the appearance of an orthogon
catastrophe in the matrix element^Ck

exactucksu0&, between
4308 © 1998 The American Physical Society
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57 4309SPATIAL STRUCTURE OF SPIN POLARONS IN THE . . .
the exact, i.e. fully relaxed, single-hole ground state, and
statecksu0&, whereu0& is the ground state of the Heisenbe
model without holes.

The asymptotic decay of the polarization cloud cannot
analyzed by numerical methods, such as exact diagona
tion ~quantum Monte Carlo results for the 2Dt-J model are
still not available!, since such studies are confined to sm
clusters and thus can only provide insight into the sho
range deformation of the spin background.

A particularly powerful tool in the study of the spin po
laron problem is the slave fermion approach combined wit
self-consistent Born approximation for the calculation of t
polaron Green’s function.8,9 This approach was successful
reproducing the diagonalization results for the full Gree
function obtained by diagonalization.2 Therefore we shall
follow this route here. Furthermore the method properly
counts for the low-energy spin excitations, which are cruc
for the long-range distortion of the spin-background arou
the moving hole. This method has also been applied to
finite doping case.29–31 A further important step was the ex
plicit construction of the quasiparticle wave function with
the SCBA by Reiter.32 This wave function implicitly con-
tains all information about the deformation of the spin s
tem, and can be used to calculate this perturbation in te
of correlation functions.

Of particular interest is here the study of relative corre
tion functions ~RCF’s!, i.e., relative to the position of the
hole, as for exampleCR5^n0(SR1

•SR2
)&, which measures

the nearest-neighbor correlation function for a bond at a
tanceR5(R11R2)/2 from the hole atR50 ~assuming here
thatR1 andR2 differ by a lattice unit vectoru). Such corre-
lation functions are usually not studied because of their co
plexity. However, they provide detailed information abo
deformation of the spin system around the moving hole
contrast to the averaged correlation function^SR1

•SR2
&,

which measures only the global change in spin correlati
due to the holes.

The results for the RCF’s clearly show that neare
neighbor spin correlations in the neighborhood of the h
are reduced, yet they remain antiferromagnetic~even forJ as
small as 0.1t). Therefore the frequently invoked ferroma
netic polaron picture, where the hole is assumed to mov
a ferromagnetically aligned neighborhood of spins, does
apply to thet-J model.

The main purpose of this work is to use Reiter’s wa
function for the calculation of correlation functions, and
present a quantitative picture of the shape and size of
quasiparticle. While a short summary of selected results
given earlier,20 the present work focuses on the descripti
of the technique employed for the calculation of the corre
tion functions. The technique discussed here may also
useful in other cases where the noncrossing approximatio
employed, such as more complex models including electr
phonon coupling.33,34 Results for various correlation func
tions describing the deformation of the spin backgrou
around the hole will be presented for thet-J model@a51 in
Eq. ~1!#, as well as for the simplert-Jz (a50) model35

which has no spin dynamics and has a simple classical N´el
ground state. For thet-J model the relative correlation func
tions are found to be strongly dependent on the momen
e
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of the quasiparticle, and in good agreement with known
sults from exact diagonalization.

Furthermore, a detailed investigation of the asympto
decay of various correlation functions is given. For examp
the perturbation of the nearest-neighbor spin-correlat
functionCR is found to decay as 1/R4 with the distance from
the hole. Since the asymptotic behavior of these correla
functions is closely connected with the question of whet
Zk is finite or not, it is important to calculate the deformatio
of the spin system within the different existing approach
In the present framework it is found that all perturbatio
introduced by the hole in the quantum antiferromagnet de
at large distance as power laws with dipolar or more comp
angular dependence depending on the momentum of the
siparticle. Nevertheless this does not lead to a vanishing q
siparticle spectral weight, consistent with earlier numeri
results based on the study of the polaron Green’s func
within the SCBA.10

The plan of the paper is as follows: In Secs. II and III, w
briefly summarize the self-consistent Born treatment for
Green’s function and wave function of the quasiparticle, a
provide the framework to calculate expectation values w
respect to Reiter’s wave function. Section IV deals with t
quasiparticle spectral weight and the magnon distribut
function, and provides a discussion of the convergency of
approach. The more complex RCF’s are studied in Sec. V
two generic cases, thet-J andt-Jz models, i.e., one with spin
dynamics and the other without. This section also contain
discussion of the asymptotic behavior of the different cor
lation functions. The paper concludes with a summary
Sec. VI.

II. SLAVE FERMION APPROACH

In a first step of the reformulation of the problem, hol
are described as spinless~slave! fermion operators; i.e., on
the A sublattice a spinless fermion creation operator is
fined as hi

15ci↑ while the corresponding operatorci↓
5hi

1Si
1 is expressed as a composite operator, and simil

for the B sublattice.10 The kinetic energy then consists o
terms of the form2thihj

1Sj
2 , that is, each hop of the fer

mion is connected with a spin flip. The spin dynamics
described within linear spin-wave~LSW! theory, which pro-
vides a satisfactory approximation for the 2D spin-1

2 Heisen-
berg antiferromagnet.

Here we follow Refs. 8–10 and 36, and express spin
erators via the Holstein-Primakoff transformation, and si
plify the notation by performing a 180° rotation of the spi
on theB sublattice,

Si
15 1

2 ~11eiQ•Ri !~2S2ai
†ai !

1/2ai

1 1
2 ~12eiQ•Ri !ai

†~2S2ai
†ai !

1/25~Si
2!†, ~2!

Si
z5eiQ•Ri~S2ai

†ai !.

Here the originR050 belongs toA sublattice~spin up! and
Q5(p/a,p/a). The lattice constant isa[1. The spin inter-
action term is further diagonalized after linearizing spin o
erators and performing the Bogoliubov transformation
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S a2q

aq
† D 5S uq 2vq

2vq uq D S b2q

bq
† D , ~3!

wherebq
†5N21/2( ie

2 iq•Riai
† , andN is the number of lattice

sites. Here we use the usual Bogoliubov coefficientsuq and
vq , and the spin-wave dispersion isvq52JA12(agq)

2

with gq5(cosqx1cosqy)/2. After fermion operators are de
coupled into slave fermions and bosons,

c̃ i↓5
1
2 ~11eiQ•Ri !hi

†1 1
2 ~12eiQ•Ri !hi

†Si
2 ,

c̃ i↑5
1
2 ~11eiQ•Ri !hi

†Si
21 1

2 ~12eiQ•Ri !hi
† , ~4!

the fermion-magnon Hamiltonian emerges:8

H5
1

AN
(
kq

~M kqhk2q
† hkaq

†1H.c.!1(
q

vqaq
†aq . ~5!

A constant term irrelevant to the present discussion has b
dropped here. One recognizes that the kinetic energy
appears as a fermion-magnon coupling with a coupling fu
tion given byM kq54t(uqgk2q1vqgk). This Hamiltonian is
similar to the small polaron model, except that a kinet
energy term for the spinless fermions is absent. In the cas
the cuprate superconductors, wheret.J, the model is in the
intermediate- or strong-coupling regime, and a se
consistent calculation technique must therefore be chose

In the following we will use the hole Green’s function

Gk~v!5
1

v2Sk~v!
5

Zk

v2ek
1Gk

inc~v!, ~6!

where the QP band energyek and the pole strengthZk are
related to the fermion self-energySk(v) asek5Sk(ek) and
Zk

21512]Sk(v)/]vuek
, respectively.

We calculateSk(v) within the self-consistent Born ap
proximation

Sk~v!5
1

N(
q

M kq
2 Gk2q~v2vq!. ~7!

Such an approximation amounts to a summation of noncr
ing diagrams to all orders. The validity of this approach
well established. The QP dispersion and spectral weight
culated within the SCBA~Ref. 10! agree very well with the
exact diagonalization results for small clusters.6 The spectral
weight in the limit N→` is finite.10 In the extremeJ/t@1
limit,37 however, this method leads toZk→1, i.e., an over-
estimation in comparison to 0.82 obtained fort50 in Ref.
38. The success of the SCBA has roots in the vanishing
low-order vertex corrections as pointed out by several
thors for systems where the hole is coupled to an antife
magnetic~AFM! spin background.36,10,39

III. QUASIPARTICLE WAVE FUNCTION

Given the Green’s function in the self-consistent Bo
approximation, it would be interesting to have a wave fun
tion of the quasiparticle which corresponds to the pole in
~6! at energyek5Sk(ek). The knowledge of this wave func
tion will allow us to calculate in principle all equal-tim
en
w
-

-
of

-
.

s-

l-

of
-
-

-
.

correlation functions which define the perturbation of t
AFM background around the hole. Here we follow Reiter’s32

original approach closely, and prove in addition that the q
siparticle weight derived from the wave function is cons
tent with the well-known expression obtained from t
Green’s function.

The quasiparticle wave function is defined as the eig
state ofH,

HuCk&5ekuCk&, ~8!

which gives rise to the quasiparticle peak in the spectral r
resentation for the Green’s function,

Gk~v!5(
m

z^Ckmuhk
1u0& z2

v2ekm
. ~9!

Hereu0& represents the vacuum state with respect to ferm
and magnon operators, anduCkm& is an eigenstate of Hamil
tonian Eq.~5! with eigenenergyekm . The spectral weight of
the quasiparticle stateuCk&,

Zk5 z^Ckuhk
†u0& z2, ~10!

can be quite small; however, it should not scale to zero in
thermodynamic limit, whereas the matrix elements contr
uting to the incoherent part are ofO(1/N) or smaller.

Given the Hamiltonian Eq.~5!, we expect the quasiparti
cle wave functionuCk& to have the form

uCk&5a0~k!hk
1u0&1

1

AN
(
q1

a1~k,q1!hk2q1

† aq1

† u0&

1
1

N(
q1q2

a2~k,q1 ,q2!hk2q12q2

† aq2

† aq1

† u0&1•••,

~11!

where the coefficientsan(k,q1 , . . . ,qn) are to be deter-
mined.

From the Schro¨dinger equation we obtain the followin
system of equations for the expansion coefficients:

va0~k!2
1

N(
q1

a1~k,q1!M kq1
50 ~12!

and

~v2vq1
!a1~k,q1!2a0~k!M k,q1

2
1

N(
q2

a2~k,q1 ,q2!M k2q1 ,q2
50. ~13!

To obtain these equations which correspond to the noncr
ing approximation for the Green’s function, one has to ad
the following contraction rule: When one magnon is anni
lated in then-magnon component of the wave function@Eq.
~11!#, only the contribution is considered, where the la
magnon in the sequence, i.e.,aqn

† , is annihilated. This is

reminiscent of the retraceable path approximation in mom
tum space. The general equation forn.0 reads



s

d
to

-

t
e

th
-
It

rely
ian

the
he
-

-
-

, in

tent
ller
in-
e

of

d:

on
e-

oss-
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~v2vq1
•••2vqn

!an~k, . . . ,qn!

2an21~k, . . . ,qn!M kn21 ,qn

2
1

N (
qn11

an11~k, . . . ,qn11!M kn ,qn11
50,

~14!

wherekn5k2q12•••2qn .
As first shown by Reiter,32 this sequence of equation

~12!–~14! has the general solution

an11~k, . . . ,qn11!5an~k, . . . ,qn!gkn ,qn11
, ~15!

where we introduced the abbreviation

gkn ,qn11
5M kn ,qn11

Gkn11
~v2vq1

2•••2vqn11
!.

~16!

Substituting Eq.~15! into the last term on the left-han
side of Eq.~14!, we recognize that this term is identical
the expression Eq.~7! for the self-energySk(v) times an.
For Eq.~14!, this yields

@v2•••2vqn
2Skn

~v2•••2vqn
!#an~k, . . . ,qn!

2an21~k, . . . ,qn21!M kn21 ,qn
50. ~17!

Since the prefactor ofan is the inverse of the Green’s func
tion Gkn

(v2vq1
2•••2vqn

), this equation is identical to

Eq. ~15!, with n replaced byn21. It only remains to be
shown that Eq.~12! also is solved. Equation~12! becomes

a0~k!@v2Sk~v!#50, ~18!

which has a nontrivial solutiona0(k)Þ0 at the QP energy
v5ek . The knowledge of the Green’s function Eq.~6! is
sufficient to calculate from Eq.~15! iteratively the coeffi-
cientsan(k,q1 , . . . ,qn).

The coefficienta0(k) which determines the QP weigh
Zk5@a0(k)#2 follows from the normalization of the wav
function ^CkuCk&5(n50

` uan(k, . . . ,qn)u251,

^CkuCk&5@a0~k!#H 11
1

N(
q1

gk,q1

2

1
1

N2(q1q2

gk,q1

2 gk2q1 ,q2

2 1•••J . ~19!

When one calculates the derivative]Sk(v)/]v from Eq.~7!,
and compares the result with Eq.~19!, it is easy to see that20

^CkuCk&5@a0~k!#2S 12
]Sk~v!

]v D
v5ek

. ~20!

As uCk& is normalized to 1,@a0(k)#2 is indeed identical to
the QP spectral weight as calculated directly fromG. This
latter step is important, since it accomplishes the proof of
internal consistency ofG andC, i.e., where both are calcu
lated within the self-consistent Born approximation.
e

should be emphasized that the above derivation does not
on the assumption that the coupling term in the Hamilton
is small.

Because of the presence of AFM long-range order,
quasiparticles move on one sublattice, while visiting t
other sublattice only virtually. In view of the ‘‘degenera
cies’’ ek1Q5ek andGk1Q5Gk , we define Bloch operators

hkt
† 5221/2~hk

†1thk1Q
† !, ~21!

which create holes on the↑ (↓) sublattice fort51(21),
respectively. The momentak are now restricted to the re
duced~AFM! Brillouin zone. The corresponding wave func
tions including magnon operators up to ordern, are

uCkt
~n!&5

1

A2
~ uCk

~n!&1tuCk1Q
~n! &), ~22!

with uCk
(n)& following from Eq. ~11!:

uCk
~n!&5Zk

1/2Fhk
†1N21/2(

q1

gk,q1
hk1

† aq1

†

1•••1N2n/2 (
q1 , . . . ,qn

gk,q1
gk2q1 ,q2

•••

3gk2q12•••2qn21 ,qn
hk2q12•••2qn

† aq1

†
•••aqn

† G u0&.

~23!

Here gk,q5M kqGk2q(ek2vq), as defined in Eq.~16!. We
note that the Green’s functionG in gk,q is always evaluated
below the lowest pole and are therefore real. For example
Gk2q(ek2vq) the energyek2q.ek2vq , hencegk,q is real.
This is actually a subtle consequence of the self-consis
evaluation of the Green’s function which leads to a sma
energy variation of the QP energy compared to the sp
wave dispersion.10 We stress that this also holds true in th
strong-coupling case, where theek variation is also of order
J, i.e., comparable with spin-wave energies. The choice
sublattice wave functions Eq.~22! is convenient, since they
are eigenstates ofStot

z with eigenvalues6 1
2.

The diagrammatic structure of the wave functionuCk↑
(n)& is

shown in Fig. 1~a!. The translation rules are straightforwar

FIG. 1. Diagrammatic representation of the wave functi
uCkt

(n)& for t5↑. ~a! The first three terms contain no-magnon, on
magnon, and two-magnon excitations, respectively.~b! The double
line represents the single-particle Green’s function in the noncr
ing approximation.
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~1! Open ends on the right correspond to operat
hk2q12•••2qn

† and aq1

†
•••aqn

† , ~2! thin lines are associate

with AZk, ~3! a vertex~dot! connected with a double line
corresponds togk,q , and ~4! there is a momentum sum fo
each magnon line. It is obvious that the wave function d
not correspond to a strict ordern expansion with respect to
the fermion-magnon coupling, since the Green’s funct
@Fig. 1~b!#, is already evaluated self-consistently with resp
to this interaction. In Sec. IV we will investigate the relativ
importance of the different terms in the wave function E
~23!, and address the question under which conditions
series can be truncated.

IV. MAGNON DISTRIBUTION FUNCTION

The first question one may ask is the following: ‘‘Ho
many magnons are involved in the formation of the pol
on?’’ As the coupling between hole and spin excitations
the kinetic energy of thet-J model, small values ofJ/t cor-
respond to strong coupling~small spin stiffness!, where
many magnons are excited by the hole motion. In orde
estimate the numbern of magnon terms needed in the wa
function, we calculated the normNk ,

Nk5^Ckt
~n!uCkt

~n!&5 (
m50

n

Ak
~m! . ~24!

The distribution functionAk
(m) defines the probability for the

n-magnon contribution in the wave function. A similar stud
on a small cluster was presented in Ref. 40.

In Fig. 2 the norm is presented diagrammatically cons
tent with Eq.~19!. Each termAk

(m) corresponds to a singl
noncrossing diagram withn magnons. Vertices denoted wit
dots correspond to the fermion-magnon coupling matrix e
ments M kq and the double line to thesquare of Green’s
function Eq.~6! calculated within SCBA. The analytical ex
pression forAk

(m) is independent oft, and given by

Ak
~m!5

Zk

Nm (
q1 , . . . ,qm

gk,q1

2 gk2q1 ,q2

2 •••gk2q12•••,qm

2 ~25!

for m.0, while Ak
(0)5Zk . From Eq. ~19! we know that

Nk→1 in the limit n→`. This normalization condition will
serve as a check of our numerical procedure.

It is instructive to study the distribution functionAk
(m) first

in the case of the thet-Jz model (a50). In this limit of
model Eq.~1! the analysis becomes simple because ther
no intrinsic spin dynamics. The SCBA equations for the se
energy are independent ofk, and reduce to one equatio
Sk(v)54t2@v22Jz2Sk(v22Jz)#21.9 Equation ~25! can
then be expressed in a recurrence form

FIG. 2. Diagrammatic representation of the normNk . The first
term—containing no magnon line—is identical to the QP p
strengthZk .
s

s

n
t

.
is

-
s

o

-

-

is
-

Ak
~m11!5Ak

~m!@2tGk~ek22mJz!#2. ~26!

The normNk is shown in Fig. 3 as a function of the numb
of magnon termsn for variousJz/t. A crossover between the
weak- and strong-coupling regimes occurs atJz/t;0.3. For
smallerJz/t the number of magnon terms needed to ful
the sum ruleNk51 increases rapidly. In Fig. 4 the distribu
tion of magnonsAk

(m) is displayed for the strong-couplin
case,Jz/t!1 . In this regimeAk

(m) has a maximum at a finite
valuen, which increases with the coupling constantt/Jz.

The average number of magnons forming the spin pola
may be defined as

^n&5^Ckt
~n!u(

q
aq

†aquCkt
~n!&5(

m
mAk

~m! . ~27!

In the Ising limit, ^n& is identical to the average number o
spin deviations~local magnons! ^( iSi

1Si
2&5^( iai

†ai&. It is
evident that the latter expression is proportional to the av
age string lengthl av ~Ref. 19! of overturned spins in the Ne´el
state created by the hole motion. As the string potential is
approximately linear function of the string length, this im

FIG. 3. The normNk in the Ising limit as a function of the
numbern of magnons included in the wave function for variou
Jz/t.

FIG. 4. The distribution of the number of magnonsAk
(n) as a

function of n for variousJz/t.
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plies ^n&} l av}(t/Jz)1/3. This estimate is reasonable for lon
strings, i.e., smallJz/t. In Fig. 5 we present̂n& as a function
of Jz/t calculated with up to 40 magnon terms in the wa
function. For largeJz/t@1 only the leading termm51 in
Eq. ~27! is relevant, therefore the asymptotic result is^n&
5(t/Jz)2. For Jz/t!1 we find excellent agreement with th
result ^n&51.4(t/Jz)1/3 obtained by Mattis and Chen.41

From these results for thet-Jz model it is clear forJz/t
>0.4 the wave function can be truncated atn53 or even at
n52. We note that the same holds true for thet-J model.20

In Figs. 6~a! and 6~b! the numerical results for the norm
Nk of the t-J model are shown fork50 andk5(p/2,p/2),
respectively, both calculated with up ton53 magnons kept
in the wave function. ForJ50.4, three-magnon contribution
are necessary to fulfill the norm. The quasiparticle spec
weightZk , which corresponds to then50 term displayed in
Figs. 6~a! and 6~b!, is always finite except in the limit o
vanishing spin stiffnessJ50. Thus our wave function doe
not lead to an orthogonality catastrophe. This result will
further complemented in Sec. V by a detailed study of
asymptotic decay of the spin-polaron correlation function

The question whether the QP spectral weightZk for the t-
J model is finite or not is still not completely settled. Nu
merical results obtained on small clusters are in a g
agreement with the results obtained from the SCBA E
~7!.10 In the SCBA formalism Eq.~5!, Zk is finite,9,36,10 be-
cause the hole-magnon coupling matrix element forq→0 is
not singular, and therefore the hole is weakly coupled
low-energy spin waves. In Ref. 28 it was argued thatZk
should vanish nevertheless, because of stringlike phase
sociated with the hole motion~due to hidden Marshall signs!.
We stress that the Marshall sign convention is implicitly
cluded in our present formulation. In fact, the vacuum st
u0& ~originating via unitary transformation! is equivalent to
the quantum Ne´el ground state of theT50 Heisenberg
model, and thus by construction obeys the Marshall sign
in the original basis, i.e., before the 180° rotation of theB
sublattice. After the transformation Eq.~2!, there are no ad-
ditional phases in the transformed Hamiltonian due to
Marshall sign.

FIG. 5. Average number of magnons^n& in the Ising limit as a
function of Jz/t. The inset showŝn& on a logarithmic scale com
pared with asymptotic results.
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Not considered in the present treatment, is the effec
the four broken bonds meeting at the site of the hole. T
leads to an additional relaxation of the spin correlations, a
hence to a reduction of the quasiparticle weight. This eff
is expected to be strongest in the limitt50. The exact result
for the spectral weight in this case isZ50.82, and was de-
rived by Mal’shukov and Mahan38 ~as compared to 1 in the
present treatment!. The energy change due to the brok
bonds must also be included in the Born approximation
one wants to compare the quasiparticle energies with th
from exact diagonalization, as discussed by Martı´nez and
Horsch.10

V. SPIN-POLARON CORRELATION FUNCTIONS

The spatial structure of the spin polaron can be descri
with various correlation functions measuring the perturbat
of the spin system relative to the position of the moving ho
As we shall see, these correlation functions are strikin
different in thet-J and thet-Jz models—a consequence o
the absence of spin dynamics in the latter model. In thet-J
model perturbations created by the hole are carried away
spin waves thereby generating a power-law perturbation

FIG. 6. The normNk for the t-J model as a function ofJ/t
including magnons up to ordern53 in the quasiparticle wave func
tion. ~a! Momentum at the top of the QP band atk50, and~b! at
k5(3p/8,3p/8), i.e., close to the QP-band minimum. The nume
cal calculation was performed for a momentum-space grid co
sponding to a 32332 system. The solid and dashed lines are gui
to the eye only.
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4314 57A. RAMŠAK AND P. HORSCH
tern with an interesting angular dependence, whereas in
absence of spin dynamics the perturbations are characte
by an isotropic Gaussian decay.

Such relative correlation functions can be evaluated us
the quasiparticle wave function. One of the simplest corre
tion functions is the distribution of magnons around the h

NR5^Ckt
~n!u(

i
niaRi1R

† aRi1RuCkt
~n!&[^n0~aR

†aR!&.

~28!

Here ni5hi
†hi is density operator for holes at sitei with

positionRi . NR also corresponds to the distribution of sp
deviations, ^n0(SR

1SR
2)&. Therefore it provides a suitabl

measure of the polaron size. This correlation function is a
proportional to the distributionŝn0(SR

x )2&5^n0(SR
y )2&.

Correlation functions such asNR are evaluated using
similar diagrams as in the calculation of the normNk . One
has to evaluate the expectation values

^Ckt
~n!u(

i
niÔRi1RuCkt

~n!&[^n0ÔR&. ~29!

Here the summation( i corresponds to all lattice sites, an
the density operator for the hole

ni5
1

N(
k1k2

ei ~k22k1!•Rihk1

† hk2
~30!

has to be expressed in terms of operatorshkt @Eq. ~21!#. The
operatorÔR is decomposed into magnon variables as

ÔR5
1

N(
q1q2

@ f q1q2
~R!aq1

† aq2
1gq1q2

~R!aq1
aq2

1H.c.#.

The diagrammatic structure of the contributions for a gene
correlation function of this type is presented in Fig. 7. T
first class of diagrams is symmetric and derives from

FIG. 7. Diagrammatic representation of correlation functio
Each class of (Bn) diagrams containsn noncrossing diagrams
(Cnm) diagrams appear always in pairs with the H.c. counterpa
For a detailed description, see the text.
he
ed

g
-

e

o

al

e

vertex functionf q1q2
(R). These diagrams, denoted by (Bn),

arise as diagonal contributions from then-magnon compo-
nent of the wave function.

The construction rule for these diagrams is the followin
If the vertex f ~circle! as well as the connected two magno
lines ~together with their vertices and associated dou
lines! are removed from the diagram, one must arrive a
diagram contained in the expression for the norm~Fig. 2!.
Otherwise the diagram is not consistent with the se
consistent Born approximation, and should be dropped.

The second class of diagrams (Cnm) is asymmetric and
corresponds to the vertex functiongq1q2

(R) which connects

n-magnon contributions withm5(n62)-magnon terms in
the wave function. Again only such diagrams must be tak
into account which are consistent with the construction r
formulated before.

The vertex functionsf and g are expressed in terms o
Bogoliubov coefficients and thus strongly momentum dep
dent. For the case of the correlation functionNR we have

f q1q2
~R!5 1

2 ~uq1
uq2

1vq1
vq2

!ei ~q12q2!•R,

gq1q2
~R!5 1

2 ~uq1
vq2

1vq1
uq2

!ei ~q11q2!•R. ~31!

In order to illustrate a typical calculation of matrix elemen
needed in the correlation functions, here we present
second-order contributionsB2 in Fig. 7,

B25N23 (
q1q2q3

f q1q2
~R!~gk,q3

gk2q3 ,q1
gk2q3 ,q2

gk,q3

1gk,q1
gk2q1 ,q3

gk2q2 ,q3
gk,q2

!, ~32!

where the first and second terms correspond to noncros
and crossing terms, respectively.

A. Ising limit „a50…

In general, correlation functions and the correspond
matrix elements have to be evaluated numerically, which
easy for a not-too-largen up to ;5. The t-Jz model is an
exception, since the Bogoliubov factors simplify touq51
and vq50. Thus Ref q1q2

(R)5cos„(q12q2)•R… and

gq1q2
(R)50, respectively. As the Green’s function is dispe

sionless, it is possible to express the matrix elements ana
cally and perform the summation of diagrams (Bn) to any
order. Furthermore, diagrams (Cnm) are zero. It is instructive
to express the wave function in real space. Eachn-magnon
term can then be visualized as a string ofn steps with start-
ing point at the origin. From such a study one can gain
sight into the noncrossing structure of the wave function a
correlation functions.

The SCBA is similar to the retraceable path approxim
tion, yet with the important difference that in SCBA the ho
can also hop backwards on its path. At the level of t
Green’s function the differences were discussed in Ref.
The result for the magnon distribution function@Eq. ~28!#
can therefore be expressed as

NR5 (
m51

n

pm~R!Pm , ~33!

.

s.
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57 4315SPATIAL STRUCTURE OF SPIN POLARONS IN THE . . .
wherePm5( j 5m
n Ak

( j ) can be interpreted as a probability
have at leastm local magnons excited. The coefficien
pm(R) represent the probability that a string ofm excited
local magnons ends at a given lattice positionR. This distri-
bution can be determined by counting all possible paths om
steps, where in each step allz neighbors can be reached,

pm~R!542mS m
m1

D S m
m2

D . ~34!

Herem65(m2uuRxu6uRyuu)/2 must be a non-negative inte
ger, otherwisepm(R)50. This result is free of boundar
conditions.

The correlation functionNR can be used to determine th
spatial size of the polaron in the Ising limit. We define t
size of the polaron quantitatively by the radiusRp ~the ele-
ment of the Bravais lattice!, which encloses a given fractio
p of the total number of spin deviations
p5^n&21(R<Rp

NR . In Fig. 8 the polaron radiusRp vs J/t is

shown for three different values ofp50.75, 0.9, and 0.99. In
the physically interesting regimeJz/t;0.3, the polaron is
contained within the radiusR,2. The scalingRp}^n&1/2

}(t/Jz)1/6 expected for the polaron19,20 is well established.
We have also calculated the average radius,^R&
5^n&21(RuRuNR , and the root-mean-square radiusRrms
5(^n&21(RuRu2NR)1/2. In Fig. 8Rrms and^R& are presented
with solid and dashed lines, respectively. The rms radius
be well fitted withR51.06(t/J)0.157 for Jz/t,1.

In the Ising limit the total spin is not conserved. Howev
the z component of the spin is a conserved quantity. A st
with one static hole (t50) at the sitei 0 has by definition the
z component of total spinStot

z 5( iÞ i 0
Si

z52t/2 (t561),
i.e., the spin of one site of the sublattice not correspondin
i 0. If the hole becomes mobile (tÞ0), some spins around th
hole deviate from the Ne´el order. The region where the sp
order is disturbed corresponds to the spin polaron defi
above. The correlation function describing the spatial dis
bution of spin around the hole is thus

FIG. 8. Radius of the polaron in the Ising limit vsJz/t for
various definitions:Rp for p50.75 ~full circles!, p50.90 ~open
squares!, and full squares forp50.99. Herep defines the fraction
of spin deviations within the radiusRp . The full line represents the
root-mean-square radiusRrms, while the dashed line gives the av
erage radiuŝR&.
n

,
e

to

d
i-

SR5^n0SR
z &5teiQ•R(

i
eiQ•Ri@ 1

2 ^ni&2^niaRi1R
† aRi1R&#,

~35!

where we have expressed spin operators in terms of mag
according to Eq.~2!. The conservation of spin corresponds
the sum rule(RÞ0SR52t/2. The local spin operator is
within the LSW approximation, related to the number
bosons,Si

z5 1
2 2ai

†ai . However, SR is due to the factor
exp(iQ•Ri) nontrivially related toNR , and has to be calcu
lated independently. After carrying out steps similar to tho
in the evaluation ofNR , one obtains

SR5teiQ•RF 1
2 P̃02 (

m51

n

pm~R!P̃mG , ~36!

and P̃m5( j 5m
n (21) jAk

( j ) .
The spin-correlation functionSR for severalJz/t values is

given in Fig. 9. We performed the calculation forn up to 40,
which was more than sufficient to obtain converged valu
The results can be qualitatively understood visualizing
correlation functionSR in the moving coordinate frame o

FIG. 9. Distribution of thez component of spinSR5^n0SR
z &

around the moving hole for three different values forJz/t.
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4316 57A. RAMŠAK AND P. HORSCH
the hole. For largeJz/t the hole moves slowly through th
Néel-ordered background, and on the average spends m
time on sublatticet. The alternating contribution toSR cor-
responds to the AFM-ordered background, and is given
the first term on the right-hand side of Eq.~35!, which is
apart from the AFM alternation independent ofR. It repre-
sents the difference in the probability that the hole sits on
↑ and↓ sublattices, respectively. This background contrib
tion tends to zero forJz/t!1, where the hole rapidly hop
from one sublattice to the other. The second term inSR car-
ries all spatial dependence, i.e., defines the region of
disturbance, and becomes dominant atJz/t!1.

We would like to stress here that the disappearance of
staggered Ne´el structure for smallJz/t in this correlation
function is simply a consequence of the fact that the h
visits the two sublattices with equal probability, and it do
not mean that the antiferromagnetic order is no lon
present as one could naively conclude from similar result
a finite cluster diagonalization. We note that our results
semble surprisingly well the results forSR obtained in exact
diagonalization studies for small clusters.3,4

In Fig. 10 we show with open squares the dependenc
SR at R5(1,1) with Jz/t50.4 on the number of magnonsn
taken into account in the calculation. The results for ot
Jz/t values are in agreement with the results forNk , where
we found that above~below! Jz/t;0.3 a relatively small
~large! number of magnons are excited and therefore nee
in the evaluation of the correlation functions.

The conservation of the total spinz component can be
tested by summing up(RÞ0SR . The total spinStot

z is pre-
sented in Fig. 11 as a function ofJz/t with diamonds, and the
full line is a guide to the eye.Stot

z consists of two parts. The

first corresponds to the first term in Eq.~36!, 1
2 P̃0, and is

shown with the dashed curve.P̃0 represents the difference i
the probability of the hole sitting on sublattice↑ or ↓. The
second term in Eq.~36! is not presented separately. The i
terchange of importance of the two contributions is in agr

FIG. 10. The dependence ofSR on the number of magnon term
n in the wave function. In the Ising limitS(1,1) ~dash-dotted line! is
essentially converged forn.3, givenJz/t50.4. In the Heisenberg
case the contributions from different diagrams toSR are shown for
R5(1,1) ~solid! and R5(1,21) ~dashed line!, respectively, for
J/t50.4 andk5(p/2,p/2). For the classification of diagrams (Bn)
and (Cnm) see Fig. 7.
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ment with the discussion above. The small violation of t
Stot

z conservation law is a consequence of the Holste
Primakoff representation of spin operators. We also cal
latedStot

z as a function ofn. ForJz/t.0.3 only three magnon
terms included in the wave function give sufficient accura
in agreement with calculation of the normNk .

B. Heisenberg limit „a51…

The important features of thet-J model are the following:
~i! The spin dynamics described by antiferromagnetic s
waves, which have a linear dispersion aroundq5(0,0) and
(p,p), respectively.~ii ! The ground state of the model i
two-dimensions is a quantum Ne´el state, i.e., more comple
than the simple classical Ne´el ground state of thet-Jz model.
An immediate consequence of~i! is that a spin deviation
which is created by a single move of the hole will propag
away from the hole in form of a spin wave, until it is rea
sorbed at a later instance. The long-wavelength spin exc
tions determine the distortion of the quantum antiferrom
net at large distances from the hole.

A further aim of our study of RCF’s is to show that th
spin correlations remain antiferromagnetic in the vicinity
the hole. The antiferromagnetic correlations are weake
yet not ferromagnetic. The ferromagnetic polaron pictu
i.e., a carrier accompanied by a ferromagnetically align
spin cluster, does not apply here. Ferromagnetic polarons
a quite popular scenario usually inferred by a generaliza
of Nagaoka’s theorem,42 which applies to theJ50 model, to
finite exchange interactionJ.

To gain more insight into the complex angular depe
dence of the relative correlation functions, in addition to t
numerical results~which include up ton53 magnons! we
present an analytical study of RCF’s based on the wave fu
tion in the one-magnon approximation. This wave function
sufficient for a quantitative discussion in the large-J case; yet
it also predicts the large distance behavior for smallerJ val-
ues.

The maink dependence in the wave function stems fro
the hole-magnon coupling matrix elementM kq . In theq→0

FIG. 11. The totalz component of spinStot
z vs Jz/t ~diamonds!.

The dashed line represents1
2 P̃0 in Eq. ~36!, whereP̃0 is the differ-

ence of the probabilities for the hole to occupy sublattice↑ or ↓,
respectively.
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57 4317SPATIAL STRUCTURE OF SPIN POLARONS IN THE . . .
limit the k and q dependences ofgk,q}q21/2(gk
221/2vk•q/q) determines the asymptotic symmetry of t
correlation functions. From this structure ofgk,q it is clear
that atk50 the spatial symmetry iss wave, whereas at the
minimum of the QP band atk5(p/2,p/2) the symmetry is
determined by the dipolar term, wherevk5¹kgk .20,32

If one is only concerned about the behavior of the wa
function at large distanceR from the position of the holeRi
the one-magnon contribution simplifies and one can perfo
the corresponding Fourier transform ofgk,q . The Bloch rep-
resentation of the wave function in the limitst/J→0 and
R→` is then approximated in leading order,

uCk↑
~1!&.Zk

1/2A2

NF (
RiP↑

e2 ik•RihRi

†

1 (
RiP↓

e2 ik•RihRi

† (
R

~f01 if1!SRi1R
1 G u0&.

~37!

Here the Fourier transformsf0522A2gkt/(JR) and f1
522(vk•R)t/(JR2) have different spatial symmetries. Th
f1 term is dipolar and vanishes atk5(0,0) and (p,p). At
(p/2,p/2) f1 has its maximum, while the monopole contr
butionf0 vanishes instead. We note thatuCk↑

(1)& has similar-
ity to the wave function describing the motion of a3He atom
in superfluid 4He.43,44 In the following this wave function
will serve us as a starting point for the derivation of t
asymptotic properties of various correlation functions.

The wave function@Eq. ~23!# is also properly normalized
for the Heisenberg limit, and the norm is given by Eqs.~24!
and~25!. The evaluation ofAk

(n) can be done numerically. In
Fig. 12Ak

(n) is plotted fork5(k,k) andn50, 1, 2, and 3 at
J/t50.4. For n50, Ak

(0)5Zk , and the momentum depen
dence is well known.10 The next term,n51, corresponds to
the emission of one magnon. The momentum dependen

FIG. 12. Magnon distribution functionAk
(n) for the t-J model

(J/t50.4) as a function ofk5(k,k) for various magnon number
n: n50 ~diamonds! n51, ~full circles!, n52 ~open squares!, and
n53 ~open circles!. The numerical calculation of all matrix ele
ments was performed on a grid corresponding to a 16316 system.
Lines connecting the symbols are guides to the eye only.
e

m

is

very weak, which can be qualitatively understood from t
t/J→0 limit. For q,qc!1 the one-magnon contributio
Ak

(1) follows as

Ak
~1!uqc

.
Zk

2p2E0

2p

dwE
0

qc
gk,q

2 qdq}~gk
21uvku2!qc .

~38!

Here we have setZk;1 for the weak-coupling limit. The
obtained result isconstantfor k along the (1,1) line. This
behavior is found in the full numerical calculations even
the strong-coupling regimeJ/t50.4 in Fig. 12. Other distri-
bution functionsAk

(n) in Fig. 12 have a more subtle momen
tum dependence which cannot be reproduced with
simple asymptotic expansion. The sum(n50

n53Ak
(n) is close to

1, as it is clear also from Figs. 6~a! and 6~b!. The results in
Fig. 12 show that the higher-order magnon terms are
important for quasiparticle momenta close to the band m
mum at k5(p/2,p/2). For the full J/t dependence of the
norm atk5(p/2,p/2), see Ref. 20. In order to obtain con
verged results in the Heisenberg limit, we performed num
cal calculations using unit cells withN516316 up to N
532332. In summations over the Brillouin zone the poin
q50 and q5Q were excluded. The numerical method
solving the SCBA equations forGk(v) was identical to Ref.
36.

The average number of magnons^n& in Fig. 13 is pre-
sented forJ/t50.4 and momentumk5(3p/8,3p/8), i.e.,
close to the QP band minimum. It is interesting that^n&
calculated for thet-J model almost coincides with the resu
obtained for the Ising case~Fig. 5!.

The additional spin deviations created by the hole mot
are given by the expressionNR5^n0(aR

†aR)&2NAFM . Here
we subtracted the large contributionNAFM50.197 due to the
quantum fluctuations in the ground state of the 2D Heis
berg antiferromagnet in the absence of the hole. The shap
the polaron is elongated in the direction of the QP mom
tum which reflects a quasi-one-dimensional motion of
polaron, as was pointed out in Ref. 20. This is consist
with the asymmetry of the QP energy band in the ‘‘ho
pocket’’ region centered aroundk5(p/2,p2), where the ef-
fective next-nearest-neighbor hopping for the (1,1) direct

FIG. 13. The average number of magnons^n& involved in the
spin-polaron formation in thet-J model as a function ofJ/t. The
polaron momentum isk5(3p/8,3p/8).
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4318 57A. RAMŠAK AND P. HORSCH
is ;53 that in the (1,21) direction. This asymmetry is
most pronounced at the bottom of the QP band, and gra
ally vanishes away from the QP energy minimum and dis
pears atk50 andk5(p,0). In the limitR→` the perturba-
tive result is to lowest order int/J given by

NR5
8t2

J2R2Fgk
21S vk•R

R D 2G . ~39!

This result strictly holds only asymptotically, but neverth
less it reflects all symmetries found at short distances in
numerical treatment. The momentum dependence is qua
tively correct as well, while theJ/t dependence is correc
only in the range of validity of perturbation,t/J→0. The
correlation functionNR decays as a power law,NR}R22.
Although the number of excited magnons^n& is small, it
turns out that the change in the total number of spin de
tions (RNR diverges logarithmically. The definition of th
polaron size used for the Ising limit of the model thus can
be used here. Since the magnetic excitationsvq vanish lin-
early with q, also other correlation functions show powe
law decay, yet with different exponents.20

In Fig. 14 we display the distribution ofz component of
spin SR as a function ofJ/t and for k5(3p/8,3p/8). This
correlation function depends strongly on the direction a
size of the momentum of the quasiparticle~see Ref. 20!. The
asymmetry of the polaron is reflected in different values
SR at positionsR labeled with 2 and 28 or 4 and 48, respec-
tively. This result is quite different from the isotropic pertu
bation in the Ising limit~e.g., Fig. 9!. We stress that the sam
asymmetry was found in numerical studies of an 18-sitet-J

cluster with one hole.18 The ground state is atk5( 2
3 p, 2

3 p)
for J/t50.4 @The pointk5(p/2,p/2) is absent in that sys
tem.# Due to the high symmetry of the 434 cluster, such
subtle asymmetries of the polaron cannot be studied th
TheJ/t dependence ofSR is in excellent agreement with th
results of Refs. 3 and 4. As finite-size effects in such sm
clusters are expected to be quite large, the good agreeme
SR with the exact results is surprising. The reason for
disappearance of the AFM structure in this correlation fu

FIG. 14. Thez component of the spin-correlation functionSR vs
J/t for k5(3p/8,3p/8). Note the asymmetry between the dire
tions Ri(1,1) andRi(1,21) in the t-J model. The numerical cal-
culation was performed on a grid corresponding to a 16316 sys-
tem.
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tion for smallJ/t is as in the Ising limit a consequence of fa
hole motion which leads to an average over the two sub
tices. It does not imply that the antiferromagnetic order
the spin background is destroyed. The correlation functio
small in this limit because the polaron is large and many s
contribute to the sum ruleStot

z 5 1
2.

To test our analytical and numerical procedure, we cal
latedSR for different numbers of magnons termsn ~Fig. 10!.
The convergence rate is similar as in the case of Ising lim
i.e., three magnon terms give a sufficient accuracy. To
play the anisotropySR is shown in Fig. 10 forR5(1,61)
andk5(p/2,p/2) with J/t50.4 as a function of number o
magnon lines in the wave function,n51, 2, and 3. The
corresponding contributions~diagrams! are labeled with
symbols (Bn) and (Cnm) as defined in Fig. 7. The asymme
try of the polaron, which is fully consistent with the numer
cal results of Ref. 18, can be attributed to the diagramC02,
corresponding to a two magnon process.

The effect of the hole on the AFM correlations and t
energy of the spin system is measured by the near
neighbor spin-correlation functionCR5^n0(SR1

•SR2
)& de-

fined on bonds between two neighboring sites (122),
R5(R11R2)/2.3 In Fig. 15~a!, CR is shown as a function o
J/t and for k5(3p/8,3p/8). The correlation function re-
mains negative and in agreement with the numerical re
obtained on a 16-site cluster.3 Hence AFM correlations per
sist in the vicinity of the hole contrary to what one wou
expect from the ferromagnetic polaron picture.CR is asym-
metric as can be seen, e.g., from the bondsR5(1,6 1

2 ), la-
beled with 1 and 18. The momentum dependence ofCR can
be explained with the perturbative result which follows fro
asymptotic wave function Eq.~37!,20

CR520.3291
4t2

J2R4~gk
212uvku2!. ~40!

This correlation function decays asR24 at large distances
and could be used as a definition of the size of the polar
Our results suggest that the size of the polaron meas
with this correlation function is, at moderateJ/t50.4, of the
order of a few lattice sites.

Another interesting aspect of the deformation of the s
background is contained in the bond-spin currentsj R
5^n0(SR1

3SR2
)zu&, where u is a unit vector u5R2

2R1.18,45 This quantity follows from the equation of motio
for the spin density

ṠR5 i t (
u,ss8

~ ŝss8cR,s
† cR1u,s82H.c.!22iJ(

u
SR3SR1u ,

where ŝ are Pauli spin matrices. Here the first term is t
spin current induced by the hopping of the hole and
second term (; jR) describes the backflow in the spin sy
tem. Due to the broken symmetry, the total spin is not a go
quantum number; therefore we consider only thez compo-
nent of the current. In Fig. 15~b!, j R is presented as a func
tion of J/t and for k5(3p/8,3p/8). j R is an odd function
with respect to the wave vector~at k50). Because of sym-
metry it also vanishes atk5(p,0). Since the ground stat
has AFM long-range order, the pointsk and k1(p,p) are
equivalent, and therefore,j R vanishes also atk5(p/2,p/2).
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Comparison ofj R with exact diagonalization results is del
cate. As reported in Ref. 20, we find good agreement w
results from Ref. 18. For the complete momentum dep
dence ofj R in comparison with exact diagonalization, s
Ref. 46. Agreement is excellent in the anisotropic limita
,1. In the Heisenberg limit a reliable comparison is ve
difficult because of the strongk dependence ofj R , which
makes it very sensitive to the boundary conditions of sm
clusters. In Fig. 15~b! we presentj R for various bondsR
defined in Fig. 15~a!. The asymptotic pattern of bond-sp
currents is dipolar,20

j R5
4A2t2

J2R3 gk F vk2
~vk•R!R

R2 G •u. ~41!

The spin backflow currentj R decays asR23, and vanishes in
the ground state fork5(p/2,p/2). Again, the general mo
mentum dependence is correct as in the case of the o
correlation functions considered.

FIG. 15. ~a! Nearest-neighbor spin-correlation functionCR and
~b! the z component of the bond spin currentsj R as function ofJ/t
for the quasiparticle momentumk5(3p/8,3p/8). The inset in~a!
provides a definition of the n.n. correlations considered. In both~a!
and ~b! note the asymmetry between the directionsRi(1,1) and
Ri(1,21). The asymptotic behavior is given by Eqs.~40! and~41!,
respectively.
h
-

ll

er

VI. CONCLUSIONS

We have outlined a method that allows one to calcul
the real-space structure of a spin polaron in a quantum a
ferromagnet. The approach is based on the spin-polaron
mulation for thet-J model, where holes are described
spinless fermions, while the spin excitations are trea
within linear spin-wave theory. The single-particle Green
function in the~self-consistent! Born approximation, which
was shown earlier to provide an excellent description of
numerical data for thet-J model, is sufficient to calculate th
many-body wave function describing the polaron~Reiter’s
wave function!. We have shown here how this wave functio
can be used to calculate quite complex correlation functi
in the framework of the self-consistent Born approximatio

Our calculation of a number of correlation function
which measure the deformation of the spin system due
moving hole~spin polaron!, provides a very detailed chec
of this approach against exact diagonalization. In particu
we have shown that the spectral weight of the spin-pola
quasiparticle calculated from the wave function is consist
with the result derived from the Green’s function. It is dem
onstrated how the number of spin excitations involved in
polaron formation increases with decreasing spin stiffn
whenJ→0. We have determined the probability distributio
of the number of magnons excited in the ground state
found that forJ/t50.4 ~a typical value for copper-oxide su
perconductors! the average number of magnons is about o
In the Ising limit the average number of magnons scales
^n&}(t/Jz)1/3 as Jz/t→0, in agreement with the string pic
ture for the moving hole and with Ref. 41.

We have put particular emphasis on the asymptotic de
of the perturbations introduced by spin-polaron formatio
Since the spin-wave energiesvq in a quantum antiferromag
net vanish linearly withq, perturbations in the spin system
decay with a power law, for example, the change of the lo
spin deviationsNR}R22, while the perturbation of the
nearest-neighbor spin correlations decays asR24 with the
distance from the hole. In thet-J model all correlation func-
tions have a quite complex structure in real space wh
depends on the momentum of the polaron, whereas in tht-
Jz model all perturbations are isotropic.

We note that despite the power-law decay of the pola
correlation functions in thet-J model, the quasiparticle spec
tral weight does not vanish. Whether this is correct or
artifact of the self-consistent Born approximation remains
be shown by a more rigorous treatment. Finally we want
stress that the approach discussed here may also be ap
to other interesting problems such as strongly correla
electrons coupled to Holstein or other phonons.
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33A. Ramšak, P. Horsch, and P. Fulde, Phys. Rev. B46, 14 305

~1992!.
34B. Kyung, S. I. Mukhin, V. N. Kostur, and R. A. Ferrell, Phys

Rev. B54, 13 167~1996!.
35P. Horsch and A. Ramsˇak, J. Low Temp. Phys.95, 343 ~1994!.
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