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Spatial structure of spin polarons in thet-J model
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The deformation of the quantum Blestate induced by a spin polaron is analyzed in a slave fermion
approach. Our method is based on the self-consistent Born approximation for the Green’s function and wave
function for the quasiparticle. The results of various spin-correlation functions relative to the position of the
moving hole are discussed and shown to agree with those available from small cluster calculations. Antifer-
romagnetic correlations in the direct neighborhood of the hole are reduced, but they remain antiferromagnetic
even forJ as small as Otl. These correlation functions exhibit dipolar distortions in the spin structure, which
sensitively depend on the momentum of the quasiparticle. Their asymptotic decay with the distance from the
hole is governed by power laws, yet the spectral weight of the quasiparticles does not vanish.
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. INTRODUCTION _
Heo=—t X (¢f,¢j+H.c)

i,o

The problem of spin polarons moving in a quantum anti-
ferromagnet has received considerable attention, since it is +J2 SIZSjZ+
important for a description of Mott insulators at low dopihg. (p) 2
While the major part of investigations for thiel model was

concgrned, eg., with .the polaron d_ispersion and spectrad[re propagating QP’s with a bandwidth of ordewas made
function using a variety of techniques such as exacby Kane, Lee, and Reddand was confirmed by a number of

diagonalizatiorf,” self-consistent Born approximation : ot . ; -
g exact diagonalization studiés.The problem is complicated
(SCBA),8 ! string theory!?! and other method$ 1" —our g . P — pT
glue to the constraint on the fermion operatoﬁ§,:ci’0(1

focus here is on the spatial structure of the spin polarizatio )
and its asymptotic behavior. The study of the deformation of ni,—,), and by the fact that quantum fluctuations play a

the spin system due to spin-polaron formation was mainlfrUCial,rqle' Tlhis model was Widel);] Sthdriedl particularly Ee—
performed by exact diagonalization techniqié&However, ~Ccause itis believed to contain mégl of the low-energy phys-
there are important questions which can only be studied b{fS Of the highT. superconductors. _
analytical approaches, such as the asymptotic decay of the Neyertheles;, fundamental issues are st|I_I unclear, such as
polarization of the mediur®2°The latter property is closely 1€ spén dynamics anﬁ the form of the Fer31_| surfacedatdmod;j
related to the question whether a quasipartiQ®) descrip- eira:]et r%p'n?’t"?" int erreg::?e tcorrreslgovr:l |\:1grto li/n nerinort)r?
tion applies. The first successful measurement of single-holgg -lemperature Superconductors. However, eve €

) L . case of a single hole there are different views, e.g., whether
dispersion in the Mott insulator SCuO,Cl, by angular- L . e . .

o . o . the quasiparticle spectral weight is finite or vanishes in the

resolved photoemissidh revived this interest, and stimu-

lated i o f thist” 462 and | thermodynamic limit. In particular, Anderson argued that
Ste .l't”"?s“gz"g‘“ons of thet’-J modet* and more complex  qjes introduce a deformation in the spin background which
amiltonians’

) S ) decays as a power law and as a consequence the spectral
The Green'’s function for a hole moving in fexed spin weight should vanish, leading to non-Fermi-liquid
background was already discussed in the context Ofenhavior” According to this argument, non-Fermi-liquid be-
transition-metal oxides by Bulaevskii, Nagaev, andhavior is connected with the property of a single hole. Re-
Khomski?® in the late 1960s, and by Brinkman and Rfce. Cenﬂy, Wenget a|_28 argued that the quasipartic|e We|@u
In those approaches the Green'’s function turned out to bghould vanish as a consequence of string formation associ-
local and fully incoherent. The first prediction that low- ated with the Marshall’s sign, which is a characteristic prop-
energy single-particle excitations in the two-dimensionalerty of the undoped Heisenberg ground state. These argu-
(2D) t-J modef® and its anisotropic generalization £Qv ments are based on the appearance of an orthogonality
<1), catastrophe in the matrix eleme(W **°c,,|0), between

o

(S's;+S°S0)|, (€]
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the exact, i.e. fully relaxed, single-hole ground state, and thef the quasiparticle, and in good agreement with known re-
statec,,|0), where|0) is the ground state of the Heisenberg sults from exact diagonalization.
model without holes. Furthermore, a detailed investigation of the asymptotic
The asymptotic decay of the polarization cloud cannot belecay of various correlation functions is given. For example,
analyzed by numerical methods, such as exact diagonaliz&€ perturbation of the nearest-neighbor spin-correlation
tion (quantum Monte Carlo results for the 280 model are  functionCg is found to decay as R* with the distance from
still not availablg, since such studies are confined to smallthe hole. Since the asymptotic behavior of these correlation
clusters and thus can only provide insight into the shortfunctions is closely connected with the question of whether
range deformation of the spin background. Z is finite or not, it is important to calculate the deformation
A particularly powerful tool in the study of the spin po- of the spin system within the_ different existing approaqhes.
laron problem is the slave fermion approach combined with %Etrthg przssntﬂ:‘rarr]n?wicr)]rlt(hlt IS f?]l:nri ﬂ:%tf arIrI p;qertu;b;agons
self-consistent Born approximation for the calculation of the oduced by the nole € guanium antiierromagnet decay
polaron Green's functioft? This approach was successful in at large distance as power Ia\_/vs with dipolar or more complex
. . Lo ,_angular dependence depending on the momentum of the qua-
reproducing the diagonalization results for the full Green’s

. . ) R siparticle. Nevertheless this does not lead to a vanishing qua-
function obtained by diagonalizatinTherefore we shall P 94

siparticle spectral weight, consistent with earlier numerical

follow this route here. Furthermore the method properly acqqits based on the study of the polaron Green’s function

counts for the low-energy spin excitations, which are crucialyitnin the SCBAL

for the long-range distortion of the spin-background around The plan of the paper is as follows: In Secs. Il and IIl, we

the moving hole. This method has also been applied to thgriefly summarize the self-consistent Born treatment for the
finite doping casé?~% A further important step was the ex- Green's function and wave function of the quasiparticle, and
plicit construction of the quasiparticle wave function within provide the framework to calculate expectation values with
the SCBA by Reitef” This wave function implicitly con-  respect to Reiter's wave function. Section IV deals with the
tains all information about the deformation of the spin sys-quasiparticle spectral weight and the magnon distribution
tem, and can be used to calculate this perturbation in termginction, and provides a discussion of the convergency of the
of correlation functions. approach. The more complex RCF'’s are studied in Sec. V for

Of particular interest is here the study of relative correla-two generic cases, thel andt-J* models, i.e., one with spin
tion functions (RCF'’s), i.e., relative to the position of the dynamics and the other without. This section also contains a
hole, as for exampl€r=(Nno(Sr, - Sr,)), Which measures discussion of the asymptotic behavior of the different corre-
the nearest-neighbor correlation function for a bond at a diskation functions. The paper concludes with a summary in
tanceR=(R;+R,)/2 from the hole aR=0 (assuming here Sec. VI.
thatR; andR, differ by a lattice unit vectou). Such corre-
lation functions are usually not studied because of their com-
plexity. However, they provide detailed information about
deformation of the spin system around the moving hole, in In a first step of the reformulation of the problem, holes
contrast to the averaged correlation functio8z -Sz,),  are described as spinlegslave fermion operators; i.e., on
which measures only the global change in spin correlationghe A sublattice a spinless fermion creation operator is de-
due to the holes. fined as hi+=ciT while the corresponding operatas;

The results for the RCF's clearly show that nearest-=hS" is expressed as a composite operator, and similarly
neighbor spin correlations in the neighborhood of the holefor the B sublattice!® The kinetic energy then consists of
are reduced, yet they remain antiferromagnégien forJ as  terms of the form—thih*Sj‘ , that is, each hop of the fer-
small as 0.1). Therefore the frequently invoked ferromag- mion is connected with a spin flip. The spin dynamics is
netic polaron picture, where the hole is assumed to move idescribed within linear spin-wav&SW) theory, which pro-

a ferromagnetically aligned neighborhood of spins, does nojides a satisfactory approximation for the 2D spihteisen-
apply to thet-J model. berg antiferromagnet.

The main purpose of this work is to use Reiter's wave Here we follow Refs. 8—10 and 36, and express spin op-
function for the calculation of correlation functions, and to erators via the Holstein-Primakoff transformation, and sim-
present a quantitative picture of the shape and size of thglify the notation by performing a 180° rotation of the spins
quasiparticle. While a short summary of selected results wagn theB sublattice,
given earlier® the present work focuses on the description
of the technique employed for the calculation of the correla- +_ 1 i0-R: to\1/2
tion functions. The technique discussed here may also be S'=3(1+e¥T)(2S-ala)
useful in other cases where the noncrossing approximation is +1(1-€eRyaf(2s-afa)¥2=(s)t, (2
employed, such as more complex models including electron-
phonon coupling®3* Results for various correlation func- ,
tions describing the deformation of the spin background Slzze'Q'R‘(S—aiTai)-
around the hole will be presented for thd model[a=1 in
Eq. (1)], as well as for the simplet-J* («=0) modef®  Here the originRRy=0 belongs toA sublattice(spin up and
which has no spin dynamics and has a simple classical Ne Q= (/a,m/a). The lattice constant is=1. The spin inter-
ground state. For thed model the relative correlation func- action term is further diagonalized after linearizing spin op-
tions are found to be strongly dependent on the momenturarators and performing the Bogoliubov transformation

Il. SLAVE FERMION APPROACH
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a_q Uy —vq) [ b_q correlation functions which define the perturbation of the
t = _ bt (3)  AFMbackground around the hole. Here we follow Reit&’s
%q Vg Uq a’ original approach closely, and prove in addition that the qua-

_ siparticle weight derived from the wave function is consis-
whereb{=N""2%;e"'9Ria, andN is the number of lattice tent with the well-known expression obtained from the
sites. Here we use the usual Bogoliubov coefficieanteand  Green’s function.
vg, and the spin-wave dispersion i8q=2J\/1—(a7q)2 The quasiparticle wave function is defined as the eigen-
with y,= (cosy,+cogy,)/2. After fermion operators are de- state ofH,
coupled into slave fermions and bosons,

- ORIt 1 o R e H[W\) = e Py), 8
Ciy=3(1+e' TR+ 3(1-e¥F)his, o . N :
which gives rise to the quasiparticle peak in the spectral rep-

E”: L(1+€QR)hiS +1(1-eQRh!, 4) resentation for the Green’s function,
the fermion-magnon Hamiltonian emerdes: (¥ | |02
Guo)=2 — ———. ©)
m W~ €km

1
H=—> (Mh!_.heal+H.c)+ Tag. (5 . .
\/N%: (Mighi—qMerq ) 2q: 0q¥q%q: (5) Here|0) represents the vacuum state with respect to fermion
and magnon operators, af ., is an eigenstate of Hamil-

A constant term irrelevant to the present discussion has beggnian Eq.(5) with eigenenergy, . The spectral weight of
dropped here. One recognizes that the kinetic energy noyy,q quasiparticle stafel, ) "

appears as a fermion-magnon coupling with a coupling func-

tion given byMq=4t(Ug¥i—q+vq¥i). This Hamiltonian is Zk:|<‘1'k|hl|0>|2, (10)
similar to the small polaron model, except that a kinetic-

energy term for the spinless fermions is absent. In the case @an be quite small; however, it should not scale to zero in the
the cuprate superconductors, wherel, the model is in the  thermodynamic limit, whereas the matrix elements contrib-
intermediate- or strong-coupling regime, and a self-yting to the incoherent part are 6f(1/N) or smaller.

consistent calculation technique must therefore be chosen.  Gjven the Hamiltonian Eq(5), we expect the quasiparti-
In the following we will use the hole Green'’s function  ¢le wave function¥,) to have the form

Zy
= +
®) o— €

Gulw)= =57 (@),

1
[Wi)=a’(k)h|0)+ Tﬁqu a'(k,aphy_q ag |0)
where the QP band energy and the pole strength, are

related to the fermion self-ener@(w) as e, =2 () and 1 2 + +ot
2, '=1- 3% (w)ldw|.,, respectively. + quzqz a°(k,01,02) N g, - q,2,%,|0) + - -,
We calculate(w) within the self-consistent Born ap- (11)
proximation
1 where the coefficienta"(k,q;,...,q,) are to be deter-
=S M2G, (w—w.). 7 mined. )
2l@) N% @Cr-a( @~ ) @ From the Schrdinger equation we obtain the following

L . system of equations for the expansion coefficients:
Such an approximation amounts to a summation of noncross-

ing diagrams to all orders. The validity of this approach is 1
well established. The QP dispersion and spectral weight cal- wa(k)— =2, a'(k,q;)Myq, =0 (12)
culated within the SCBAREef. 10 agree very well with the N !

exact diagonalization results for small clustéfEhe spectral
weight in the limitN— is finite 1% In the extremel/t>1
limit,3” however, this method leads #—1, i.e., an over-
estimation in comparison to 0.82 obtained fer0 in Ref.
38. The success of the SCBA has roots in the vanishing of 1

low-order vertex corrections as pointed out by several au- -=> az(k,ql,qz)Mk,q a,=0- (13
thors for systems where the hole is coupled to an antiferro- N'g 1
magnetic(AFM) spin background®1%:3°

and

(0= wq)at(k,qy) —a%(kK)My g,

To obtain these equations which correspond to the noncross-

ing approximation for the Green'’s function, one has to adopt
IIl. QUASIPARTICLE WAVE FUNCTION the following contraction rule: When one magnon is annihi-

Given the Green’s function in the self-consistent Bornlated in then-magnon component of the wave functigifg.

approximation, it would be interesting to have a wave func-(1D1], only the contribution is Tcor!5|dere.d,. where the last

tion of the quasiparticle which corresponds to the pole in Eqmagnon in the sequence, i.e, , is annihilated. This is

(6) at energye,= 2. (€,). The knowledge of this wave func- reminiscent of the retraceable path approximation in momen-

tion will allow us to calculate in principle all equal-time tum space. The general equation for0 reads
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(0= wq,  — g )a"(K, ... dn) ") 1 :
n-1 NH >= —f—k + -fé;\ + PN
—a" ik, . 9)Mg g k  k=qy  k k-qy k-q-q,
1 (a)
- qu an+1(k7 e !qn+l)Mkn,qn+1:01
n+1

T @@ﬁ«
wherek,=k—qg;—---—q,.

As first shown by Reitef? this sequence of equations

(12—(14) has the general solution (b)

FIG. 1. Diagrammatic representation of the wave function

n+1 — AN
a" ik, ... Oned)=a(k, .00k, g, (19 | W) for 7=1. (a) The first three terms contain no-magnon, one-
. L magnon, and two-magnon excitations, respectividy The double
where we introduced the abbreviation line represents the single-particle Green's function in the noncross-

ing approximation.
Gy (w_wa_ e —qu+1).
(16) should be emphasized that the above derivation does not rely
on the assumption that the coupling term in the Hamiltonian
Substituting Eq.(15) into the last term on the left-hand s small.
side of Eq.(14), we recognize that this term is identical to  Because of the presence of AFM long-range order, the
the expression Eq7) for the self-energy®,(w) timesa”.  quasiparticles move on one sublattice, while visiting the
For Eq.(14), this yields other sublattice only virtually. In view of the “degenera-

cies” e, o= € and Gy, =Gy, we define Bloch operators

gkn*qn+l_Mkn'qn+l n+1

[w0= " —wq =2y (0= —wg)]a"(K, ... .0y

-a" Yk, ... 0, )M =0. 1
( Gn-2M;_y @ which create holes on the (|) sublattice forr=1(—1),

Since the prefactor cd” is the inverse of the Green’s func- "espectively. The moment are now restricted to the re-
tion Gy (w—wq,— - - —wg ), this equation is identical to duced(AFM) Brillouin zone. The corresponding wave func-
n 1 n’’

tions including magnon operators up to oraerare

hi,=2"Y4hl+7hl, o), (21)

Eqg. (15), with n replaced byn—1. It only remains to be
shown that Eq(12) also is solved. Equatiofl2) becomes 1
|\I;(f;) :_(lxp(n) +T|‘I’(n) ), (22)
a%(k)[w—S(@)]=0, (18) )= DY)
which has a nontrivial solutioa®(k)#0 at the QP energy With |¥{") following from Eg. (11):
w=¢€,. The knowledge of the Green’s function E®) is

sufficient to calculate from Eq(l5) iteratively the coeffi- Py = 712 4 12 hi ot
cientsa"(k,qy, . .. .0n)- W) =2 qu Yk.a, My ¥a
The coefficienta®(k) which determines the QP weight
Z=[a%k)]? follows from the normalization of the wave Fed NS g g
function (W | W y==7_ la"(k, ... qn)|?=1, a g AT A
1 X Ok hl . _gal---all0).
<Wklwk>=[a°(k>][1+ﬁq2 O, B S T T
1 (29
+i2 92, 92 +... b (19) Here gy q=M,Gk—q(ek— wq), as defined in Eq(16). We
N2dg, o 2 note that the Green’s functid@ in gy q is always evaluated

o below the lowest pole and are therefore real. For example, in
When one calculates the dgrlvatlﬁﬁk(q))/&w from Eq.(7), Gi—q(ex— wg) the energye,_> ex— wq, hencegy 4 is real.
and compares the result with E@9), it is easy to see thd&  This'is actually a subtle consequence of the self-consistent
evaluation of the Green’s function which leads to a smaller
&2 k(w))

(P W) =[a’Kk)]?

1— energy variation of the QP energy compared to the spin-
Jw

wave dispersion? We stress that this also holds true in the
strong-coupling case, where tlag variation is also of order
As |W,) is normalized to 1[a°(k)]? is indeed identical to J, i.e., comparable with spin-wave energies. The choice of
the QP spectral weight as calculated directly fr@nThis ~ Sublattice wave functions E¢22) is convenient, since they
latter step is important, since it accomplishes the proof of th@re eigenstates &, with eigenvalues 3.

internal consistency o and ¥, i.e., where both are calcu-  The diagrammatic structure of the wave functj@r{j})) is
lated within the self-consistent Born approximation. It shown in Fig. 18). The translation rules are straightforward:

(20

W= €



4312 A. RAMSAK AND P. HORSCH 57

e £
Mq sz.quq 08

FIG. 2. Diagrammatic representation of the nakf. The first

term—containing no magnon line—is identical to the QP pole 08
strengthZ,, . v
(1) Open ends on the right correspond to operators
hi g -..._q anda] ---al , (2) thin lines are associated

1 n 1 n
with \/Z—k (3) a vertex(dot) connected with a double line 02

corresponds t@y 4, and(4) there is a momentum sum for
each magnon line. It is obvious that the wave function does .
not correspond to a strict orderexpansion with respect to o5 2 4 6 8 10 12 1% 16
the fermion-magnon coupling, since the Green’s function n

[Fig. 1(b)], is already evaluated self-consistently with respect g, 3. The normj in the Ising limit as a function of the
to th|S interaction. In SeC. IV we W|” inVestigate the I’elative numbern of magnons included in the wave function for various
importance of the different terms in the wave function Eq.Jj%t,

(23), and address the question under which conditions this

series can be truncated. A D = AM[ 2t G, (€ — 2mF) ]2, (26)

IV. MAGNON DISTRIBUTION FUNCTION The normN is shown in_Fig. 3 as a function of the number
of magnon terms for variousJ?/t. A crossover between the
The first question one may ask is the following: “How weak- and strong-coupling regimes occursl4t~0.3. For

many magnons are involved in the formation of the polar-smaller J%/t the number of magnon terms needed to fuffill
on?” As the coupling between hole and spin excitations isthe sum ruleV, =1 increases rapidly. In Fig. 4 the distribu-
the kinetic energy of thé-J model, small values ad/t cor-  tjon of magnonsA(km) is displayed for the strong-coupling
respond to strong couplingsmall spin stiffness where caseJ/t<1 . In this regimeA(km) has a maximum at a finite
many magnons are excited by the hole motion. In order Qaluen, which increases with the coupling constaht.

estimate the number of magnon terms needed in the wave ¢ average number of magnons forming the spin polaron
function, we calculated the nori, , may be defined as

n
Ne=(WZwid)= 2 A", (24 (M=(VFN2 agad TiP)=2 mAT. (27

The distribution functiorA(™ defines the probability for the In the Ising limit, (n) is identical to the average number of

n-magnon contribution in the wave function. A similar study SPin deviationslocal magnons(2;S’S ) =(Sala;). It is

on a small cluster was presented in Ref. 40. evident that the latter expression is proportional to the aver-
In Fig. 2 the norm is presented diagrammatically consis-age string lengtty, (Ref. 19 of overturned spins in the ¢

tent with Eq.(19). Each termA{™ corresponds to a single State created by the hole motion. As the string potential is an

noncrossing diagram with magnons. Vertices denoted with aPProximately linear function of the string length, this im-

dots correspond to the fermion-magnon coupling matrix ele-

mentsM,, and the double line to thequareof Green's Jz/'t=QL ' ' ' ' ' '

function Eq.(6) calculated within SCBA. The analytical ex- 04 -

pression forA{"™ is independent of, and given by

7 03 -
(m_ Tk 2 42 g2
Ak - zq gk,qlgk—ql,q2 gk—q1—~--,qm (25) A(kn) 01
m

02 .

for m>0, while A®=7,. From Eq.(19) we know that ooz

N —1 in the limit n—c. This normalization condition will

serve as a check of our numerical procedure. o 0.005 i
It is instructive to study the distribution functidkf(m) first 0002

in the case of the the-J* model (@=0). In this limit of

model Eq.(1) the analysis becomes simple because there is | X - 8

no intrinsic spin dynamics. The SCBA equations for the self- 0 2 4 6 8 10 12 1% 6

energy are independent &f and reduce to one equation

S(w)=4 w—2)"-3(0—2J%)]" 1.2 Equation (25) can FIG. 4. The distribution of the number of magnoA§” as a
then be expressed in a recurrence form function of n for variousJ¥t.
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ny 2

Jit

FIG. 5. Average number of magnofs) in the Ising limit as a
function of J%/t. The inset showgn) on a logarithmic scale com-
pared with asymptotic results.

plies (n)«=l o (t/3%) Y3 This estimate is reasonable for long
strings, i.e., small?/t. In Fig. 5 we presen{n) as a function
of J%/t calculated with up to 40 magnon terms in the wave i
function. For largeJ?/t>1 only the leading ternrm=1 in /
Eqg. (27) is relevant, therefore the asymptotic result(is 0.2 7/
=(t/J%)2. For J¥/t<1 we find excellent agreement with the /
result(n)=1.4(t/J%)' obtained by Mattis and Che¥. y

From these results for theJ” model it is clear forJ?/t 0 a2 04 06 08 10 12 14
=0.4 the wave function can be truncatechat 3 or even at Jt
n=2. We note that the same holds true for th& model?° .

In Figs. §a) and @b) the numerical results for the norm  FIG. 6. The norm\j for the t-J model as a function o8/t
N of thet-J model are shown fok=0 andk= (7/2,7/2) including magnons up to order=3 in the quasiparticle wave func-
respectively, both calculated with up to=3 magnons kept o7 (@ Momentum at the top of the QP bandlat0, and(b) at
. . — N k=(37/8,3m/8), i.e., close to the QP-band minimum. The numeri-
in the wave function. Fad= 0.4, three-magnon contributions . :

to fulfill the norm. The quasiparticle spectraial ca_lculatlon was performed for a momentum-space grid corre-

arg necessary ) . . ponding to a 3% 32 system. The solid and dashed lines are guides
weightZ,, which corresponds to the=0 term displayed in "o eye only.
Figs. §a) and @b), is always finite except in the limit of

vanishing spin stiffnesg=0. Thus our wave function does  Not considered in the present treatment, is the effect of
not lead to an orthogonality catastrophe. This result will beyhe four broken bonds meeting at the site of the hole. This
further complemented in Sec. V by a detailed study of thgeags to an additional relaxation of the spin correlations, and
asymptotic decay of the spin-polaron correlation functions. hence to a reduction of the quasiparticle weight. This effect
The question whether the QP spectral weighfor thet- 5 expected to be strongest in the lirtit 0. The exact result
J model is finite or not is still not completely settled. Nu- {5 the spectral weight in this case Z#s=0.82, and was de-
merical results obtained on small clusters are in a goodeq by Mal'shukov and Maha#i (as compared to 1 in the
agreement with the results obtained from 'Fheg 386C1205A EdSpresent treatment The energy change due to the broken
(7).” In the SCBA formalism Eq(5), Zy is finite,”™"be-  jonds must also be included in the Born approximation if
cause the hole-magnon coupling matrix elementfer0 is  one wants to compare the quasiparticle energies with those

not singular, and therefore the hole is weakly coupled tGrom exact diagonalization, as discussed by Kt and
low-energy spin waves. In Ref. 28 it was argued tAQt  Hgorschl®

should vanish nevertheless, because of stringlike phases as-

sociated with the hole motiofue to hidden Marshall sighs V. SPIN-POLARON CORRELATION FUNCTIONS

We stress that the Marshall sign convention is implicitly in-

cluded in our present formulation. In fact, the vacuum state The spatial structure of the spin polaron can be described
|0) (originating via unitary transformatigris equivalent to  with various correlation functions measuring the perturbation
the quantum Nel ground state of thef=0 Heisenberg of the spin system relative to the position of the moving hole.
model, and thus by construction obeys the Marshall sign rulé&s we shall see, these correlation functions are strikingly
in the original basis, i.e., before the 180° rotation of the different in thet-J and thet-J* models—a consequence of
sublattice. After the transformation ER), there are no ad- the absence of spin dynamics in the latter model. Intte
ditional phases in the transformed Hamiltonian due to themodel perturbations created by the hole are carried away by
Marshall sign. spin waves thereby generating a power-law perturbation pat-

M
04 (b)

k= (n/2,w2) 4
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<ned>= . (By) vertex functionf o (R). These diagrams, denoted b)),
),r"ivv‘\“ arise as diagonal contributions from themagnon compo-
Y nent of the wave function.
+ =2 wa +(Bg) The construction rule for these diagrams is the following:
If the vertexf (circle) as well as the connected two magnon
@ lines (together with their vertices and associated double
. + + (By) lines) are removed from the diagram, one must arrive at a
diagram contained in the expression for the ndfg. 2.
é; Otherwise the diagram is not consistent with the self-
+ + (Coo consistent Born approximation, and should be dropped.
g The second class of diagram€ ) is asymmetric and
corresponds to the vertex functigalqz(R) which connects
. + +  (Ci) n-magnon contributions wittm=(n+2)-magnon terms in

the wave function. Again only such diagrams must be taken
into account which are consistent with the construction rule
+ e formulated before.
. . . . . The vertex functiond and g are expressed in terms of
FIG. 7. Diagrammatic representation of correlation functions. . i
Bogoliubov coefficients and thus strongly momentum depen-

Each class of B,) diagrams containsy noncrossing diagrams. d For th fth lation f - h
(C,m) diagrams appear always in pairs with the H.c. counterparts: ent. For the case of the correlation functip we have

For a detailed description, see the text. _1 i(q1—)-R

fg,0,(R)=2(Ug Ug, Tvqvg,)€ Q1782 R
tern with an interesting angular dependence, whereas in the
absence of spin dynamics the perturbations are characterized

by an isotropic Gaussian decay. In order to illustrate a typical calculation of matrix elements

Such relative correlation functions can be evaluated usingeeded in the correlation functions. here we present the
the quasiparticle wave function. One of the simplest correlagecond-order contributiorB, in Fig. 7

tion functions is the distribution of magnons around the hole

gthz(R):%(UQ1UQ2+UQl“QZ)ei(qlJqu)'R' (31)

B>=N E 1:q q (R)(gkq Ok—-q,.9,9-a4.9,9k,q
I I n T I n T 0,9,4 142 M3 341 342 M3

(28) +gk,qlgk—ql,q3gk—q2,q3gk,q2)v (32)

Here n;=h'h; is density operator for holes at sitewith where the first and second terms correspond to noncrossing

positionR; . N also corresponds to the distribution of spin @nd €rossing terms, respectively.

deviations, (ny(Sg Sr)). Therefore it provides a suitable

measure of the polaron size. This correlation function is also A. Ising limit (a=0)

proportional to the distribution&ng(Sk) %) = (ne(SK)?). In general, correlation functions and the corresponding
Correlation functions such ably are evaluated using matrix elements have to be evaluated numerically, which is

similar diagrams as in the calculation of the naf. One  easy for a not-too-large up to ~5. Thet-J* model is an

has to evaluate the expectation values exception, since the Bogoliubov factors simplify tg=1
and vy=0. Thus Ré,q(R)=cog(q;—0q,)-R) and
<‘I'<k“JIZ ni@Ri+R|‘1’f<rl)>E<no@R>- (29) gqlqz(R) =0, respectively. As the Green’s function is disper-

sionless, it is possible to express the matrix elements analyti-
cally and perform the summation of diagrani3,f to any
order. Furthermore, diagram€(,,,) are zero. It is instructive

to express the wave function in real space. Eaahagnon
term can then be visualized as a stringno$teps with start-

Here the summatiox; corresponds to all lattice sites, and
the density operator for the hole

niziz ei(kz—kl)-Rihl hy (30) ing pc_Jint at the origin._From such a study one can gain in-
N, 12 sight into the noncrossing structure of the wave function and
_ correlation functions.
has to be expressed in terms of operatrs[Eq. (21)]. The The SCBA is similar to the retraceable path approxima-
operator®y is decomposed into magnon variables as tion, yet with the important difference that in SCBA the hole
can also hop backwards on its path. At the level of the
1 ; Green’s function the differences were discussed in Ref. 10.
OR:N(% [fa,0,(R) g, @q,t dg,q,(R) aq aq,+ H.C]. The result for the magnon distribution functi¢gq. (28)]
12 can therefore be expressed as
The diagrammatic structure of the contributions for a general n
eorrelatlon funetlon of th_|s type is presented in Fig. 7. The Ny = 2 P(R)P1, (33
first class of diagrams is symmetric and derives from the m=1
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FIG. 8. Radius of the polaron in the Ising limit \&/t for
various definitions:R,, for p=0.75 (full circles), p=0.90 (open
squarep and full squares fop=0.99. Herep defines the fraction
of spin deviations within the raditR,, . The full line represents the
root-mean-square radil®,,s, while the dashed line gives the av-
erage radiugR).

whereP,=="_ A{") can be interpreted as a probability to
have at leastm local magnons excited. The coefficients
pm(R) represent the probability that a string of excited
local magnons ends at a given lattice positRnThis distri-
bution can be determined by counting all possible paths of
steps, where in each step alheighbors can be reached,

m

o

Herem. =(m—||R| *|Ry||)/2 must be a non-negative inte-
ger, otherwisep,,(R)=0. This result is free of boundary
conditions.

The correlation functioMg can be used to determine the

m

pr(RI=47" [ |-

(34
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0.02

FIG. 9. Distribution of thez component of spirSg=(NnySk)

spatial size of the polaron in the Ising limit. We define thearound the moving hole for three different values Jéft.

size of the polaron quantitatively by the radiRg (the ele-
ment of the Bravais lattigewhich encloses a given fraction
p of the total number of spin deviations,
p=<n>*1ERngNR. In Fig. 8 the polaron radiuR, vs J/t is
shown for three different values pf=0.75, 0.9, and 0.99. In
the physically interesting regimé?/t~0.3, the polaron is
contained within the radiuR<2. The scalingR,e(n)*?
«(t/J%) Y6 expected for the polardt®® is well established.
We have also calculated the average radiy®})
=(n) 1=g|R|Ng, and the root-mean-square radi&ys
=((n)"1=x|R|?NR)Y2 In Fig. 8 R;ms and(R) are presented

Se=(noSR) = 7€' e R3(n) —(miak vk, +R)].
(39

where we have expressed spin operators in terms of magnons
according to Eq(2). The conservation of spin corresponds to
the sum ruleXg.,Sg=—7/2. The local spin operator is,
within the LSW approximation, related to the number of
bosons,S’=1—a'a;. However, S; is due to the factor
exp(Q-R;) nontrivially related toNg, and has to be calcu-

with solid and dashed lines, respectively. The rms radius calfted independently. After carrying out steps similar to those

be well fitted withR=1.06(/J) %" for J%/t<1.

In the Ising limit the total spin is not conserved. However,
the z component of the spin is a conserved quantity. A state

with one static holet(=0) at the sitay has by definition the
z component of total spirSiy==4; S/=—17/2 (r==*1),

in the evaluation oNg, one obtains

n
Sr=7e/ QR %Eo_nzl Pm(R)Pml, (36)

i.e., the spin of one site of the sublattice not corresponding t@nd P ,= (- 1)AD.

ig. If the hole becomes mobilé £ 0), some spins around the

The spin-correlation functioBg for severald¥/t values is

hole deviate from the Na order. The region where the spin given in Fig. 9. We performed the calculation foup to 40,
order is disturbed corresponds to the spin polaron definedhich was more than sufficient to obtain converged values.
above. The correlation function describing the spatial distri-The results can be qualitatively understood visualizing the
bution of spin around the hole is thus correlation functionSg in the moving coordinate frame of
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FIG. 10. The dependence 8§ on the number of magnon terms FIG. 11. The totak component of spirg;, vs J4/t (diamonds.

n in the wave function. In the Ising lim® ;) (dash-dotted lingis  The dashed line represerk®, in Eq. (36), whereP, is the differ-
i i Z[t — i e .
essentially converged far>3, givenJ*/t=0.4. In the Heisenberg ence of the probabilities for the hole to occupy sublatticer |,

case the contributions from different diagramsSpare shown for  regpectively.

R=(1,1) (solid and R=(1,—1) (dashed ling respectively, for

J/It=0.4 andk=(=/2,7/2). For the classification of diagramB) . . . . .
and (C,,) see Fig. 7. ment with the discussion above. The small violation of the

S;; conservation law is a consequence of the Holstein-
Primakoff representation of spin operators. We also calcu-
tedS;,, as a function of. ForJ%/t>0.3 only three magnon
erms included in the wave function give sufficient accuracy
agreement with calculation of the nouiv, .

the hole. For largel?/t the hole moves slowly through the
Neel-ordered background, and on the average spends mo
time on sublatticer. The alternating contribution t8z cor- .
responds to the AFM-ordered background, and is given b)'p
the first term on the right-hand side of E@®5), which is
apart from the AFM alternation independentRf It repre- B. Heisenberg limit (a=1)
sents the difference in the probability that the hole sits on the
1 and| sublattices, respectively. This background contribu-
tion tends to zero fod%/t<1, where the hole rapidly hops
from one sublattice to the other. The second terrggrcar-
ries all spatial dependence, i.e., defines the region of spi
disturbance, and becomes dominanfdt<1.

The important features of thteJ model are the following:
(i) The spin dynamics described by antiferromagnetic spin
waves, which have a linear dispersion arou(0,0) and
7,), respectively.(ii) The ground state of the model in
wo-dimensions is a quantum’Blestate, i.e., more complex
We would like to stress here that the disappearance of th an the S'T“p'e classical rdbgro.un.d state of tthZ qugl.
n immediate consequence ¢f is that a spin deviation

staggered Nl structure for smalli%t in this correlation which is created by a single move of the hole will propagate
function is simply a consequence of the fact that the hole y 9 propag

visits the two sublattices with equal probability, and it doesacv)vr%i;r(;?atTaet:roilﬁs'tgrf]z;m_ﬁgealgﬁ'rlv\\’lvﬁgéﬁntt;: g Iisnrgjct:)i;a-
not mean that the antiferromagnetic order is no Iongens : 9 gth sp

present as one could naively conclude from similar results ofons determlne the distortion of the quantum antiferromag-
net at large distances from the hole.

a finite cluster diagonalization. We note that our results re- . .
semble surprisingly well the results f8 obtained in exact .A further am of our StUdY of RCF's IS to show _th_a'; the
spin correlations remain antiferromagnetic in the vicinity of

diagonalization studies for small clustrS. e hole. The antiferromagnetic correlations are weakened
In Fig. 10 we show with open squares the dependence otP ; X 9 . ;
yet not ferromagnetic. The ferromagnetic polaron picture,

Sg at R=(1,1) with J/t=0.4 on the number of magnoms i.e., a carrier accompanied by a ferromagnetically aligned
taken into account in the calculation. The results for other ' P y 9 y alg

%It values are in agreement with the results Adr, where spin cluster, does not apply here. Ferromagnetic polarons are

we found that abovebelow J%t~0.3 a relatively small a quite popular scenario usually inferred by a generalization

(large number of magnons are excited and therefore needeicg)df Nagaoka's theorerff, which applies to thd=0 model, to

. . . . inite exchange interactiod.
in the evaluation of the correlation functions. . o .
. : To gain more insight into the complex angular depen-
The conservation of the total spin component can be : . . i g
. S dence of the relative correlation functions, in addition to the
tested by summing uRg.oSg. The total spinSy; is pre-

7 : o numerical resultgwhich include up ton=3 magnons we
sentgd in Fig. 1_1 asa funct|0nzdﬁlt W'_th diamonds, and the present an analytical study of RCF’s based on the wave func-
full line is a guide to the eyeS;,; consists of two parts. The

g tion in the one-magnon approximation. This wave function is
first corresponds to the first term in E(6), 3Py, and is  sufficient for a quantitative discussion in the lajease; yet
shown with the dashed curvB, represents the difference in it also predicts the large distance behavior for smalleal-

the probability of the hole sitting on sublattideor |. The  ues.

second term in Eq(36) is not presented separately. The in- The maink dependence in the wave function stems from
terchange of importance of the two contributions is in agreethe hole-magnon coupling matrix elemevif, . In theq—0



57 SPATIAL STRUCTURE OF SPIN POLARONS IN TH. .. 4317

05 T T T T T T T 16 T T T T T T

12+ X =(3n/8, 3n/8) 7

n)y F
(n)
AY

06

0.4

1 1 1
0z 0 02 04 06 08 1 12 14

o ! I 1 L ! 1 1 JIt

0 n/8 ~/4 3n/8 w2 . .
K FIG. 13. The average number of magndn$ involved in the

spin-polaron formation in thé-J model as a function od/t. The
FIG. 12. Magnon distribution functioA(k”) for the t-J model polaron momentum ik = (37/8,3w/8).
(J/It=0.4) as a function ok=(k,k) for various magnon numbers

n: n=0 (diamond$ n=1, (full circles), n=2 (open squargsand  ery weak, which can be qualitatively understood from the

n=3 (open circles The numerical calculation of all matrix ele- t/3-0 limit. For q<q.<1 the one-magnon contribution
ments was performed on a grid corresponding to & 16 system. AD follows 'as ¢
k

Lines connecting the symbols are guides to the eye only.

L. 2w
— 22y, .g/q) determines the asymptotic symmetry of the ¢ 2w Jo 0

correlation functions. From this structure gf 4 it is clear (38

that atk=0 the spatial symmetry is wave, whereas at the ) o

minimum of the QP band dt= (#/2,m/2) the symmetry is Here we have sez,~1 for the weak-coupling limit. The
determined by the dipolar term, whevg=V,y, .2%32 obtaln_ed result |3:9nstantfor k along the (1,1)' line. Th|s'

If one is only concerned about the behavior of the wavdlehavior is foun_d in thg full nume_ncal_ calculations even in
function at large distanck from the position of the hol®, ~ the strong-coupling regim@/t=0.4 in Fig. 12. Other distri-
the one-magnon contribution simplifies and one can perforution functionsA{” in Fig. 12 have a more subtle momen-
the corresponding Fourier transformgg ,. The Bloch rep-  tum dependence which cannot be reproduced with this
resentation of the wave function in the limit&) -0 and  simple asymptotic expansion. The sEfiZ3A{" is close to
R— = is then approximated in leading order, 1, as it is clear also from Figs(® and &b). The results in

Fig. 12 show that the higher-order magnon terms are less

important for quasiparticle momenta close to the band mini-
|q,<1)>221/2\/§ 2 e iKRipt mum atk=(#/2,7/2). For the full J/t dependence of the
kI Tk NN RS Ri norm atk= (/2,m/2), see Ref. 20. In order to obtain con-
verged results in the Heisenberg limit, we performed numeri-
—ik-RipT ; + cal calculations using unit cells withl=16x16 up toN
+Ri2(zi © hRi; (6o +i$1)Sx,4r|10)- =32x32. In summations over the Brillouin zone the points
g=0 andg=Q were excluded. The numerical method of
solving the SCBA equations f@,(w) was identical to Ref.
36.
Here the Fourier transformgo=—22yt/(JR) and ¢, The average number of magno(is) in Fig. 13 is pre-
= —2(vk~.R)t'/(J R?) have di_fferent spatial symmetries. The sented forJ/t=0.4 and momentunk=(37/8,37/8), i.e.,
¢, term is dipolar and vanishes kt=(0,0) and @r,m). At ¢jose to the QP band minimum. It is interesting tiap
(m/2,m/2) ¢, has its maximum, while the monopole contri- 4|y jated for the-J model almost coincides with the result
bution ¢ vanishes instead. We note thd{(k#)) has similar-  gptained for the Ising cas€ig. 5.
ity to the wave function describing the motion ofele atom The additional spin deviations created by the hole motion
in superfluid *He**** In the following this wave function e given by the expressidte={no(akag))—Naey . Here
will serve us as a starting _pomt for thg derlvat!on of the\we subtracted the large contributidey =0.197 due to the
asymptotic properties of various correlation functions. quantum fluctuations in the ground state of the 2D Heisen-
The wave functiorfEq. (23] is also properly normalized = perq antiferromagnet in the absence of the hole. The shape of
for the Heisenberg limit, and the norm is given by E@})  the polaron is elongated in the direction of the QP momen-
and(25). The evaluation oA{" can be done numerically. In tym which reflects a quasi-one-dimensional motion of the
Fig. 12A{" is plotted fork=(k,k) andn=0, 1, 2, and 3at polaron, as was pointed out in Ref. 20. This is consistent
J/It=0.4. Forn=0, A®=2,, and the momentum depen- with the asymmetry of the QP energy band in the “hole
dence is well known® The next termn=1, corresponds to pocket” region centered arourid= (7/2,72), where the ef-
the emission of one magnon. The momentum dependence figctive next-nearest-neighbor hopping for the (1,1) direction

(37
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02 . T ' T ' ' tion for smallJ/t is as in the Ising limit a consequence of fast
hole motion which leads to an average over the two sublat-
tices. It does not imply that the antiferromagnetic order of
the spin background is destroyed. The correlation function is
small in this limit because the polaron is large and many sites
i contribute to the sum rulg.,= 3.
To test our analytical and numerical procedure, we calcu-
lated Sy, for different numbers of magnons termgFig. 10.
The convergence rate is similar as in the case of Ising limit,
g i.e., three magnon terms give a sufficient accuracy. To dis-
play the anisotropysy is shown in Fig. 10 foR=(1,=1)
andk= (7/2,7/2) with J/t=0.4 as a function of number of
o5 | , | | | | magnon lines in the wave functiom=1, 2, and 3. The
o 02 04 08 08 1 12 14 corresponding contributiongdiagram$ are labeled with
symbols 8,) and (C,,») as defined in Fig. 7. The asymme-
FIG. 14. Thez component of the spin-correlation functisg vs ~ try of the polaron, which is fully consistent with the numeri-
J/t for k=(3m/8,3m/8). Note the asymmetry between the direc- cal results of Ref. 18, can be attributed to the diagGgp,
tions R||(1,1) andR|(1,—1) in thet-J model. The numerical cal- corresponding to a two magnon process.
culation was performed on a grid corresponding to & 16 sys- The effect of the hole on the AFM correlations and the
tem. energy of the spin system is measured by the nearest-
neighbor spin-correlation functioﬁ:Rz(no(SRl~SR2)> de-
is ~5x that in the (1-1) direction. This asymmetry is fined on bonds between two neighboring sites—@l),
most pronounced at the bottom of the QP band, and gradr— (R, + R,)/23 In Fig. 15a), Cg is shown as a function of
ally vanishes away from the QP energy minimum and disapy;; and for k= (3/8,37/8). The correlation function re-

pears ak=0 andk=(,0). In the limitR— the perturba-  mains negative and in agreement with the numerical result

015

01

005
Sr

-005 -

01| k=038, 3n/8)

tive result is to lowest order itYJ given by obtained on a 16-site clusttHence AFM correlations per-
2 9 sist in the vicinity of the hole contrary to what one would
8| o (VR t from the f tic pol ictuey, i
NR= g Y2+ |~ (39  expect from the feromagnetic polaron pictu@ is asym-
J°R R metric as can be seen, e.g., from the boRds(1,*3), la-

beled with 1 and 1. The momentum dependence®f can

This result strictly holds only asymptotically, but neverthe- lained with th bati It which foll f
less it reflects all symmetries found at short distances in thQ€ explained with the pertur atlvgoresu twhich follows from
symptotic wave function Eq37),

numerical treatment. The momentum dependence is qualité‘-
tively correct as well, while thel/t dependence is correct 412
only in the range of validity of perturbatiori/J—0. The Cr=—0.329+ ——(ve+2|v/?). (40
correlation functionNg decays as a power laiygxR™ 2. IR
Although the number of excited magnofs) is small, it This correlation function decays & * at large distances,
turns out that the change in the total number of spin deviaand could be used as a definition of the size of the polaron.
tions 2gNg diverges logarithmically. The definition of the Our results suggest that the size of the polaron measured
polaron size used for the Ising limit of the model thus cannolwith this correlation function is, at moderalét=0.4, of the
be used here. Since the magnetic excitatiegsvanish lin-  order of a few lattice sites.
early with g, also other correlation functions show power-  Another interesting aspect of the deformation of the spin
law decay, yet with different exponerft$. background is contained in the bond-spin currefs

In Fig. 14 we display the distribution af component of :(no(sRlx SRZ)ZU), where u is a unit vector u=R,
spin Sg as a function ofJ/t and fork=(37/8,37/8). This ~ _ g 1845This quantity follows from the equation of motion
correlation function depends strongly on the direction andg, the spin density
size of the momentum of the quasiparti¢éee Ref. 20 The
asymmetry of the polaron is reflected in different values for . .
Sk at positionsR labeled with 2 and 2or 4 and 4, respec- Sk=it X (0sgCh Creus —H.C)— 210 SgXSpyy,
tively. This result is quite different from the isotropic pertur- uss !
bation in the Ising limit(e.g., Fig. 9. We stress that the same \yhere o are Pauli spin matrices. Here the first term is the
asymmetry was found in numerical studies of an 18-sile spin current induced by the hopping of the hole and the
cluster with one holé® The ground state is &= (2,2 ) second term {jg) describes the backflow in the spin sys-
for J/t=0.4[The pointk=(7/2,7/2) is absent in that sys- tem. Due to the broken symmetry, the total spin is not a good
tem] Due to the high symmetry of the>d4 cluster, such quantum number; therefore we consider only theompo-
subtle asymmetries of the polaron cannot be studied thergent of the current. In Fig. 1B), jr is presented as a func-
The J/t dependence B is in excellent agreement with the tion of J/t and fork=(3/8,37/8). jr is an odd function
results of Refs. 3 and 4. As finite-size effects in such smalwith respect to the wave vectgat k=0). Because of sym-
clusters are expected to be quite large, the good agreementmietry it also vanishes &= (7,0). Since the ground state
Sg with the exact results is surprising. The reason for théhas AFM long-range order, the poinksandk+ (7, ) are
disappearance of the AFM structure in this correlation func-equivalent, and therefor@gz vanishes also &= (/2,7/2).
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-0.15 T T T T T T VI. CONCLUSIONS

We have outlined a method that allows one to calculate
the real-space structure of a spin polaron in a quantum anti-
ferromagnet. The approach is based on the spin-polaron for-
mulation for thet-J model, where holes are described as
spinless fermions, while the spin excitations are treated
7 within linear spin-wave theory. The single-particle Green’s
function in the(self-consistentBorn approximation, which
k=(31/8,3n/8) was shown earlier to provide an excellent description of the
03 . - numerical data for the-d model, is sufficient to calculate the

3 many-body wave function describing the polar@Reiter’s
ol wave function. We have shown here how this wave function
035 . ! | L . | can be used to calculate quite complex correlation functions

0 02 04 06 08 1 12 14 in the framework of the self-consistent Born approximation.

I Our calculation of a number of correlation functions,
006 , , : ; : , which measure the deformation of the spin system due to a
moving hole(spin polaron, provides a very detailed check
" of this approach against exact diagonalization. In particular,
we have shown that the spectral weight of the spin-polaron
quasiparticle calculated from the wave function is consistent
with the result derived from the Green'’s function. It is dem-
onstrated how the number of spin excitations involved in the
polaron formation increases with decreasing spin stiffness
whenJ— 0. We have determined the probability distribution
] of the number of magnons excited in the ground state and
found that forJ/t= 0.4 (a typical value for copper-oxide su-
. perconductonsthe average number of magnons is about one.
In the Ising limit the average number of magnons scales as
(n)o(t/3%)Y2 as J¥t—0, in agreement with the string pic-
ture for the moving hole and with Ref. 41.

We have put particular emphasis on the asymptotic decay

FIG. 15. (a) Nearest-neighbor spin-correlation functi and  of the perturbations introduced by spin-polaron formation.
(b) the z component of the bond spin currenjsas function ofd/t Since the spin-wave energieg, in a quantum antiferromag-
for the quasiparticle momentuk= (37/8,37/8). The inset in(a) net vanish linearly withg, perturbations in the spin system
provides a definition of the n.n. correlations considered. In k@th  decay with a power law, for example, the change of the local
and (b) note the asymmetry between the directidRif(1,1) and  spin deviationsNgxR ™2, while the perturbation of the
R(1,~1). The asymptotic behavior is given by E¢60) and(41),  nearest-neighbor spin correlations decaysRag with the
respectively. distance from the hole. In thieJ model all correlation func-

tions have a quite complex structure in real space which
Comparison ofg with exact diagonalization results is deli- d¢Pends on the momentum of the polaron, whereas it-the
cate. As reported in Ref. 20, we find good agreement with)- model all perturbations are isotropic.
results from Ref. 18. For the complete momentum depen- W& note that despite the power-law decay of the polaron

dence ofjg in comparison with exact diagonalization, Seecorrela’;ion functions in th‘.}‘] model, the qqa;iparticle spec-
Ref. 46. Agreement is excellent in the anisotropic limit tral weight does not vanish. Whether this is correct or an

<1. In the Heisenberg limit a reliable comparison is Veryartlfact of the self-consistent Born approximation remains to

e . ; be shown by a more rigorous treatment. Finally we want to
difficult because of the strong dependence of, which stress that the approach discussed here may also be applied

makes it very sensitive to the boundary conditions of small, qiher interesting problems such as strongly correlated
clusters. In Fig. 1) we presenfjg for various bondsR  gjectrons coupled to Holstein or other phonons.
defined in Fig. 188). The asymptotic pattern of bond-spin

currents is dipolaf®
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