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Formulas for zero-temperature conductance through a region with interaction

T. Rejed and A. Ramak!?
LJozf Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
2Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia
(Received 30 January 2003; published 31 July 2003

The zero-temperature linear response conductance through an interacting mesoscopic region attached to
noninteracting leads is investigated. We present a set of formulas expressing the conductance in terms of
persistent currents in an auxiliary system, namely a ring threaded by a magnetic flux and containing the
correlated electron region. We first derive the formulas for the noninteracting case and then give arguments
why the formalism is also correct in the interacting case if the ground state of a system exhibits Fermi liquid
properties. We prove that in such systems, the ground-state energy is a universal function of the magnetic flux,
where the conductance is the only parameter. The method is tested by comparing its predictions with exact
results and results of other methods for problems such as the transport through single and double quantum dots
containing interacting electrons. The comparisons show an excellent quantitative agreement.
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[. INTRODUCTION was developed by Meir and Wingreen in Ref. 10. Within the
Keldysh formalism they manage to express the conductance
The measurements of the conductivity and the electrofn terms of nonequilibrium Green’s functions for the sample
transport in general are one of the most direct and sensitivBart of the system. The formalism can be used to treat sys-
probes in solid state physics. In such measurements maﬁgms atafinite source-drain voltage and can also be extended
interesting new phenomena were signaled, in particular sy® describe time-dependent transport phenomiefiae main
perconductivity, transport in metals with embedded magneti heoretical challenge in these approaches is to calculate the

! " : -~ Green’s function of a system. Except in some rare cases
impurities and the related Kondo physics, heavy fermlor\/\/here exact results are available, perturbative approaches or

phgnomena and the physics of the Mqtt—Hubbard trans't'orﬁéjmerical renormalization group studies are employed.
regime. In the_las_t decade techno_loglcal advances enable In this paper we propose an alternative method for calcu-
controlled fabrication of small regions connected to lead§,(ing the conductance through such correlated systems. The
aﬂd theconductancerelgtlng the current through such a re- nathod is applicable only to a certain class of systems,
gion to the voltage applied between the leads, also proved tRamely to those exhibiting Fermi liquid properties, at zero
be a relevant property of such systems. There is a number @mperature and in the linear response regime. However, in
such examples, e.g., metallic islands prepared by e-beam lihis quite restrictive domain of validity, the method promises
thography or small metallic graifssemiconductor quantum to be easier to use than the methods mentioned above. We
dots? or a single large molecule such as a carbon nanotubghow that the ground-state energy of an auxiliary system,
or DNA. It is possible to break a metallic contact and mea-formed by connecting the leads of the original system into a
sure the transport properties of an atomic-size bridge thaing and threaded by a magnetic flux, provides us with
forms in the breaR,or even measure the conductance of aenough information to determine the conductance. The main
single hydrogen molecule, as reported recently in Ref. 4. Iradvantage of this method is the fact that it is often much
all such systems, strong electron correlations are expected &isier to calculate the ground-state enefgy example, us-
play an important role. ing variational methodsthan the Green'’s function, which is

The transport in noninteracting mesoscopic systems i§eeded in the Kubo and Keldysh approaches. The conduc-
theoretically well described in the framework of the tance of a Hubbard chain connected to leads was_studied
Landauer—Bttiker formalism. The conductance is deter- 'ecently using a special case of our method and DNMRE

mined with the Landauer—Biiker formula®~ where the key 2nd @ special case of our approach was applied in the

P ; ; i ; Hartree—Fock analysis of anomalies in the conductance of
guantity is the single particle transmission amplitaike) for X .
electrons in the vicinity of the Fermi energy. The formula quantum point contact. The method is related to the study

. of the charge stiffness and persistent currents in one-
proved to be very useful and reliable, as long as electron

electron interaction in a sample is negligible dimensional system:
P glgibie. The paper is organized as follows. In Sec. Il we present

Although the Landauer—Bitiker formalism provides a o model Hamiltonian for which the method is applicable.
general description of the electron transport in noninteracting, sec. 111 we derive general formulas for the zero-
systems, it normally cannot be used if the interaction bewemperature conductance through a mesoscopic region with
tween electrons plays an important role. Several approachegninteracting electrons connected to leads. In Sec. IV we
have been developed to allow one to treat also such systemsxtend the formalism to the case of interacting electrons. We
First of all, the Kubo formalism provides us with a conduc- give arguments why the formalism is correct as long as the
tance formula which is applicable in the linear response reground state of the system exhibits Fermi liquid properties.
gime and has, for example, been used to calculate the coim Sec. V convergence tests for a typical noninteracting sys-
ductance in Refs. 8 and 9. A much more general approactem are first presented. Then we support our formalism also
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sample ments ofH{) are the on-site energies for these sites, while
the off-diagonal matrix elements describe the coupling be-
tween different sites of the system. The sites could have a
direct physical interpretation, such as dots in a double quan-
tum dot system or atoms in a molecule, or they could repre-
sent fictitious sites obtained by discretization of a continuous
system. There are other possible choices of basis states for
. ) _the central region. For example, in a system consisting of
tongr?(ll)ll Schematic picture of the system described by Hamll'two_multilevel quantum dots one could use single-electron

' basis states for each of the dots and describe the coupling
between the dots with tunneling matrix elements.

m\t}: Inu:nﬁlrlcril resuI:]s fortkt‘hetrc%ndu?:atr;ﬁe th sc?nmei norr:— The Coulomb interaction between electrons in the sample
al probiems, such as the transpo ough single a given by an extended Hubbard-type coupling

double quantum dots containing interacting electrons an(i(ijS
connected to noninteracting leads. These comparisons, in- 1
cluding the comparison with the exact results for the Ander- U== >, Uﬁ”'njonig, , (5
son model, demonstrate a good quantitative agreement. After 2] eC

the conclusions in Sec. VI we present some more technical o

details in Appendix A. In Appendix B we describe the nu- wheren;,=d] d;,, is the operator counting the number of

left lead right lead

merical method used in Sec. V. electrons with spins at sitei. For convenience, we wrote
down only the expression for the Coulomb interaction in the
Il. MODEL HAMILTONIAN case, where basis states represent different sites in real space.

. . . — The expression becomes more complicated if a more general
In this section we introduce a general Hamiltonian de'basis set is used

scribing a mesoscopic sample coupled to leads as shown In \ye gescribe the leads or contacts as two semi-infinite
Fig. 1. The Hamiltonian is a generalization of the well- tight-binding chains ’
known Anderson impurity modéf We split the Hamiltonian
into five pieces
Hoyr=—1o > clciiethe, (6)
H:HL+VL+HC+VR+HR1 (1) |'|+10E_L(R)

whereH - models the central regiok}; andHy describe the
left and the right lead, an®/, and Vg are the tunneling
couplings between the leads and the central region. We ¢
also split the Hamiltonian into a terid(®) describing inde-
pendent electrons and a tetthdescribing the Coulomb in-
teraction between them

whereciT(r (ci,) creategdestroy$ an electron with spir on

sitei andtg is the hopping matrix element between neigh-
ar5'bring sites. Such a model adequately, at least for energies
low or comparable td,, describes a noninteracting, single-
mode and homogeneous lead. It would be easy to generalize
the lead Hamiltonian to describe a more realistic system, for
example by modeling the true geometry or allowing for a
self-consistent potential due to interaction between electrons.
One can often neglect the interaction in the leads and bedowever, the physics we are interested in, is usually not
tween the sample and the leads. We assume this is the casdanged dramatically by not including these details into the
Then the central region is the only part of the system whergnodel Hamiltonian and therefore, we will not discuss this

H=H®+uU. 2)

one must take the interaction into account issue into detail.
Finally, there is a term describing the coupling between
He=HQ+U. (3)  the sample and the leads,
HereH!? describes a set of noninteracting levels :
VL(R):]_ EL‘(R) VL(R)jiCj,disth.c., (7)
HE= 2 HEd], b, 4 ¢
i,jeC
(o8

whereV| (gyji is the hopping matrix element between state
whered! (d;,) creategdestroy$ an electron with spimrin  in the sample and sitgin a lead.
the stata. The states introduced here can have various physi- In the following sections we discuss the conductance
cal meanings. They could represent the true single-electrothrough the system introduced above. To derive the conduc-
states of the sample, for example different energy levels of @&ance formulas, we will need a slightly modified system. This
multi-level quantum dot or a molecule. In this case, the maauxiliary system is a ring formed by connecting the ends of
trix Hﬁfj)i is diagonal and its elements are the single-electronhe left and right leads of the original system as shown in
energies of the system. Another possible interpretation oFig. 2. The ring is threaded by a magnetic fidixin such a
Hamiltonian(4) is that the statesare local orbitals at differ- way that there is no magnetic field in the region where elec-

ent sites of the system. In this case, the diagonal matrix ele¢rons move. We can then perform the standard Peierls sub-
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A. Formulas relating conductance to single-electron energy
levels

Let us consider eigenstates of an electron moving on a
ring system introduced in the previous section. We will be
interested only in energies of these states and not in the pre-
cise form of wavefunctions. The energy of an electron on a
ring penetrated by a magnetic fluk depends only on the
magnitude of the flux and therefore, any vector potential ful-
filling condition (9) is good for our purpose. We choose a
vector potential constant everywhere except between igites
andiy+ 1, both in the lead part of the ring as shown in Fig.
2. The hopping matrix element between the two sites is thus
modified totye' . With no flux penetrating the ring, the elec-

FIG. 2. The sample embedded in a ring formed by joining thetron’s wave function in the lead part of the systenig"
left and right leads of the system in Fig. 1. Magnetic fiispen-  +be ™', wherek is the electron’s wave vector ardandb
etrates the ring. are amplitudes determined by properties of the central re-

gion. If there is a flux through the ring, the wave function is
stitutior?® and transform the hopping matrix elements of themodified. The Schidinger equations for sitelg) andig+1

Hamiltonian (1) according to show us that the appropriate formag'+be™ ' for i<i,
andae '%eki+be '?e ' for i>i,. The scattering matrix
i(e/h) A dx of the central region provides a relation between coefficients
Li— i@, ®  aandb

wherex; is the position of siteé andA is the vector potential
due to the flux, obeying (be“d’eikN

re ty (ae‘i¢e“kN)
|y A 12

5 a
b= ¢= ng~dx. 9)
The elements of the scattering matrix,andr, (t, andr;),

Here we defined a dimensionless magnetic fiixThe en-  are the transmission and reflection amplitudes for electrons
ergy of the system is periodic i with a period of 2r and ~ coming from the left(right) lead, andN is the number of
depends only on value af and not on any details of how the Sites in the lead part of the ring. We added phase factors
flux is produced. If the original Hamiltoniafl) obeys the € " to the “left lead” amplitudes to compensate for the
time-reversal symmetry, the energy does not change if thBhase difference an electron accumulates as it travels through

magnetic field is reversed, the lead part of the ring. The scattering matrix defined. this
way does not depend dx and ¢, and equals the scattering
E(—¢)=E(). (10) matrix of the original, two-lead system. Equati¢i?) is a

homogeneous system of linear equations, solvable only if the
determinant is zero. Using the unitarity property of the scat-

I1. CONDUCTANCE OF ANONINTERACTING SYSTEM tering matriX, the eigenenergy condition becomes
In this section we limit the discussion to noninteracting
systems, i.e., we s&i =0 in Eq. (2). In such systems, the t/el?+te ¢=ekNy t_ke—ikN_ (13)
Landauer—Bttiker formula~’ k t*
_ 2 — .
G=Golt(ep)|?, (1) we assume that the Hamiltonian of the original, two lead

system obeys the time-reversal symmetry and therefore, the
scattering matrix is symmetrfd, t,=t,. Expressing the
transmission amplitude in terms of its absolute value and the

which relates the zero-temperature conductaGcéo the
transmission probabilityt(s¢)|? for electrons at the Fermi
e”e_rgy‘;F* can be applied. The proportionality coeff|C|e.nt, scattering phase shift=|t,/€' ¢, we arrive at the final form
Go=2e%/h, is the quantum of conductance. Below we first of the eigeneneray equaton

derive a set of formulas, which relate the transmission prob- 9 9y €d
ability, and consequently the conductance, to single-electron

energy levels of the auxiliary ring system introduced in the |ti/cos¢p=cogkN—@,). (14
preceding section. Then we derive another set of formulas,

relating the conductance to the ground-state energy of then Fig. 3 a graphical representation of this equation is
auxiliary system. One of these formulas was derived befor@resented.

in Ref. 14, and a limiting case of another one was discussed To extract the transmission probabilitl|2, we proceed

in Refs. 12 and 13. Here we present a unified approach to thiey differentiating the eigenvalue equation with respect to
problem, from which these results emerge as special casexos¢
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1 . 1
=
il p(e)

5 A Equation(18) is the central result of this work. It expresses
R the transmission probabilit()|? of a sample connected to
two leads in terms of the variation of single-electron energy
levels with magnetic flux penetrating the auxiliary ring sys-
tem. Employing the Landauer—Biker formula Eq.(11),
this result also provides the zero-temperature conductance of
the system. From the derivation it is evident that the method
0 k 3 becomes exact as we approach the thermodynamic limit

at(e)
de

(19

-1

) . . . N—o,
FIG. 3. A graphical representation of the eigenvalue equation In general Eq(18) has to be solved numerically to obtain
(14). The shaded region represents the allowed values of the Ieﬂfh t o babilit di t t of
hand side of the equation for different values of magnetic (fox € transmission probability on a discrete set ol energy

example, the dashed line shows the values#fers/4). The full line points, one for each energy level of a system. By increasing

represents the right-hand side of the eigenvalue equation. The sygje system siz&, the density of th_ese points_increases and
tem is presented in Fig. Ty=100. the errors decrease, as the conditids) is fulfilled better.

We will return to this point in Sec. V where we consider the
convergence issues in detail. Here we present some special

ol cos¢+ |t |=—sin(kN+ gok)( N——-+ 9Pk ) cases of Eq(18) where analytic expressions can be obtained.
9 Ccos¢ dCoS¢p  JCosp By averaging the equation over values of flgxbetween
- + 1-|t % codd ¢=0 and ¢= [note that we may treat(s,)| andp(sy) as
constant while averaging as the resulting error is of the order
ok Iy of 1/N], we can relate the transmission probability to the
X ( Nm‘*‘ acos¢>)' (15 average magnitude of the derivative of a single-electron en-

ergy with respect to the flux:
The sign of the last expression depends on wedhetongs -
to a decreasing+) or an increasing—) branch of the cosine ﬁ
function in Eq.(14), or equivalently, if we are interested in dod

an eigenstate with odg+) or even(—) n, wheren indexes o
the eigenstates from the one with the lowest energy upward\.lc’te that it is enough to calculate the energy levelgaD

Let us choose an eigenstate and consider how the corr ;d /?;W to calculate the transmission probability as
€k

sponding wave vectok changes as the magnetic fluxis =(Um)|e(m)—e(0)]. InFig. 4a) itis illustrated
varied from 0 tor. It is evident that the variation ikis of ~ NOW & large variation of single-electron energy as the flux is

the order of IN as the cosine function in the right-hand side changed fromp=0 to ¢=m corresponds to a large conduc-
of Eq. (14) oscillates with such a period. Let as assume thaf@nce and vice versa. The_transm|ssmn probal_)lhty can also
the number of sites in the ring is large enough that transmis2€ calculated from the derivative di=/2 resulting in the
sion amplitude does not change appreciably in this intervalS&cond formula

(?Ek ) 2 (21)
&(ﬁ d=ml2 '

Again, Fig. 4a) shows that there is a correspondence be-
tween a large sensitivity of a single-electron energy to the
flux at p==/2, and a large conductance. Finally, we observe
that the curvature of energy levels ét=0 and ¢= also
gives information of conductance. The third formula reads

)2.
¢=0,m

B. Formulas relating conductance to the ground-state energy

) . (20)

2
|t(8k)|2=sin2<%Np(8k)

aty
K

%<1 (16) |t(8k)|2:(7TNp(8k)

Then the derivatives dk/dcose, d|ty|/dcos¢ and
deyld cosg are of the order of N and Eq.(15) simplifies
to

ok
d Ccos¢

[ty == V1—]ty|? cog N

Introducing the density of states in the leaels)=(1/7)
X(dklde), which, for example, for a tight-binding lead
with only nearest-neighbor hoppinty and dispersions,
= —2tycok equals 1/67\/4t02—sk2), we finally obtain

(1

+0 N) (17 1

1+ N )@
Wl C

t(e)|?=1— (22

darcco$ = |t(gy)|cose) dey Above we showed how the flux variation of the energy of
9 CoS¢ - WNP(SK)(;COS¢ . (18 the last occupied single-electron state allows one to calculate
the zero-temperature conductance through a noninteracting
wheret(e,) =t,. The condition Eq(16) of validity can also  sample. The goal of this section is to derive an alternative set
be expressed in a form involving energy as a variable of formulas, expressing the zero-temperature conductance in
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1

JE, 1 darccod(s|t(en)|cos)
dC0Sh  m2p(e,) 9 COS¢h

Fs(en)=N

(26)

Il where E,, is the ground-state energy of a system with the
Fermi energy at, andsis either 1 or—1, depending on the
signs in Eqgs.(18) and (24). Differentiating the relatiorE,,
=E, _1+2¢, with respect to co&, expressing the result in
terms of functionsfg and F¢ introduced above, and making
use of the fact that the signalternates withn, we obtain

0.75 T T T Fs(sn):Ffs(8n71)+2fs(3n)- 27

i | If we manage to show that this really is an identity, we have
a proof of Eg. (24). Using the exact relationF(¢)
=1 —F_4(g)=2f4(&), the expression transforms into

Fs(en)=Fs(en) —[F_s(en)—F_s(en_1)]. (28

For a large number of siteN in the ring and correspond-
ingly, a small separation of single-electron energy levels
which is of the order of M, the term in parentheses equals

FIG. 4. (@ Single-electron energy levelgull lines) and the  F’ (e.)(e,—e,-1). F_4(e,) can be factored int(ST:(sn)

ground-state energies when a given single-electron level is at th\?/h reE not nd on sianTherefor Ith h
Fermi energy(dashed linegs Ground-state energies are shifted so ere (‘(.:“) does no depe d on sign Therefo e’. aithoug
the term in parentheses in of the order dfl lits sign alter-

that both curves coincide fap=7/2. Note that the energy curves . I .
nates for successive energy levels while its amplitude stays

are symmetric aboup=0 as required by Eq10). The shaded area . .
represents the magnitude of the transmission amplitude. The syste € sam_e._Thus the error "?quced by this term does not accu-
and the energy interval is the same as in Figh, (c) The largeN mulate, it just adds an additional error of the order & 16

universal form of the ground-state energy vs flux curve for an eveﬁhe flngl result. L .

(b) and an oddc) number of electrons in a system. The magnitude N FIg. 4(a), the variation of the ground-state energies

of the transmission amplitude goes from 0 to 1 in steps of 0.1.  With magnetic flux is compared to the variation of the corre-
sponding single-electron energies. Note that as a conse-

terms of the flux variation of the ground-state eneigy —duence of Eq(24), the ground-state energy in the lartle

which for an even number of electrons in a noninteractingimit takes a universal fornjsee Fig. 4b)]

system is simply a sum of single-electron energies up to the

/2

-T/2

o

0.75

0.50

0.25

Np(eE@)»-Em/2)]
s B

Np(e, )IE@)-E(m/2)]

|
I
I
G

|
o
I
S

/2 0 /2 T 3n/2 w2 0 /2 T 3n/2

Fe_rmi energyeg, multiplied by 2 because of the electron’s E(¢)—E(z) _ 1
spin 2 mNp(eg)
7]_2
E=2 > &,. (23 X arcco§(1|t(sF)|cos¢)—Z .
eps<ep

We will show that the transmission probability at the Fermi (29
energy|t(eg)|? is related to the ground-state energy of theFor systems with an odd number of electrons, the ground-

ring system state energy is obtained by adding a single-electron energy
corresponding to Eq18) and the universal form readsee
1 garccod(+|t(er)|cose) JE Fig. 4(0)]
T 9coS¢ =7Np(er)7 cos¢’ (24)

1
where the sign is- and+ for an odd and an even number of ~ E(#)~ E(E) :m arcsirf(|t(e)|cos¢). (30)
occupied single-electron states, respectively. The expression pLee

Eq. (24) is evid_ently correct if there are no e_Iectrons inthe | general, Eq.(24) can only be solved numerically to
system, as it gives a zero conductance in this case. To proghtain the transmission probability. However, as was the case
the formula for other values of the Fermi energy, we use thgo; single-electron energies, analytic solutions can be found
principle of the mathematical induction. To simplify the no- jn certain special cases. The derivative of the ground-state
tation we introduce energy with respect to flux gives the persistent current in the

ring j=(elh)(JEId$).?>?® Using the Landauer—Btiker
den 1 garccoss|t(e,)|cose) formula Eq.(11), one can calculate the conductance from
dcos¢ mp(ey) d COS¢ ! the flux averaged magnitude of the persistent current in the
(25 system

fs(en)=N
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w2h _ nance there is a large number of eigenenergigs Then
|t(ep)|?=sir? Z—ENP(EF)|1(¢)| : (3D t(e)~t(en ), wheree, is the eigenenergy closest4oSuch
sharp resonances im(e) are expected e.g. in chaotic
Only two ground-state energy calculations need to be persystem£®?” The present method might be impracti¢hlt
formed to obtain the conductance as still correch in this case.

E|j(¢)| =E|E(7-r)— E(0)|. IV. CONDUCTANCE OF AN INTERACTING SYSTEM
e 1

) ) ) The zero-temperature conductance of a noninteracting
This formula was also discussed in Refs. 12 and 13 for th&ystem can thus be determined with the transmission prob-
case where the transmission probability is small. The secon bility obtained from one of the formulas we derived in the
formula relates the conductance to the persistent current dreceding section, and the LandaueriBer formula. The
p=ml214%* main challenge, however, remains the question of the valid-

5 2 ity of this type of approach for interacting systems. In this
W—Np(s,:)j (f) ) ) (32) section we give arguments why the approach is correct for a
€ 2 class of interacting systems exhibiting Fermi liquid proper-

The third formula, corresponding to E(2) in the single- ties. In order to reach this goal, we present four essential
electron case, turns out to be more complicated and gives afePS as follows.
implicit relation for [t(sg)|

|t(8F)|2:

Step 1. Conductance of a Fermi liquid system afT =0

= 2|t(ee)| The basic property that characterizes Fermi liquid
Ter(gF)ﬁ e 1—|t(ep)]? arccog*[t(ep)]). system& is that the states of a noninteracting system of

min, max 33) electrons are continuously transformed into states of the in-

teracting system as the interaction strength increases from
Here the upper and the lower signs correspond to the seconro to its actual value. One can then study the properties of
derivative at a minimum and at a maximum of the energy vssuch a system by means of the perturbation theory, regarding
flux curve, respectively. Minimémaxima occur at¢=0(m)  the interaction strength as the perturbation parameter. The
if an odd number of single-electron levels is occupied anctoncept of the Fermi liquid was first introduced for
at ¢=m(0) if an even number of levels is occupied. The translation-invariant systems by Land&t’ and was later
second derivative in a minimum is proportional to the chargealso extended to systems of the type we study Rere.
stiffness D = (N/2)°E/ 9¢°| in of the systent®?® We can The linear response conductance of a general interacting
also define the corresponding quantity for a maximuniDas System of the type shown in Fig. 1 can be calculated from the
= — (N/2)92El 3¢ max. IN general, Eq(33) has to be solved Kubo formula*

numerically. However, in the limit of a very small conduc- .,

tance and in the vicinity of the unitary limit, additional ana- G=lim T, (w+i6), (36)
lytic formulas are valid woo@Ti0
2mp(eg)D, [t(eg)|—0, wherell;(w+i6) is the retarded current-current correlation

function
el =) L T ro(epD, It 1. &Y

2 4 I (t=t")=—io(t—t"){[1(1),I(t)]). (37

Note that there is a quadratic relation between the condudor Fermi liquid systems a&f=0, the current—current cor-

tance and the charge stiffness in the low conductance limitelation function can be expressed in terms of the Green's
The corresponding formulas for the maximum of the energytunction G,,/,(z) of the system and the conductance is given

vs flux curve are with?®
2mp(ee)D, tter)| =0, 6=t kg, (eetis) ) (39
t(er)| = 2 (35) h |=imp(er) mmme
1-—=— Jt(ep)|—L. S .
(2mp(eg)D)? wheren andn’ are sites in the left and the right lead, respec-
tively. One candefinethe transmission amplitude as
A detailed analysis of convergence properties of the formulas
derived in this section is presented Sec. V. 1 ik’ —n) i
We stress again that the validity of these formulas is based t(e)= Tp(g)e Gnrn(e+i4), (39)

on an assumption that the number of sites in the ring is

sufficiently large according to the condition EQ9). This  and the conductance formula E@8) then reads

means that it(¢) exhibits sharp resonances, the calculation )

has to be performed on such a large auxiliary ring system G= Zi“(s )2 (40)
that in the energy interval of intere@he width of the reso- h P
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For noninteracting systemte) defined this way reduces to 1 . . . .
the standard transmission amplitu¢igisher-Lee relatiot?)
and Eq.(40) represents the Landauer—Bker formula. In — G (®)
the next step, we will show that the transmission amplitude - ZG ()
Eq. (39) has a direct physical interpretation also for interact- d
ing systems, being the transmission amplitude of Fermi lig-
uid quasiparticles.

Step 2. Quasiparticle Hamiltonian

In this step, we generalize the quasiparticle approximation
to the Green’s function, presented for the single-impurity /
Anderson model in Ref. 34, to the case where the interaction 0 ' el L Tt !
. : : . -3 2 -1 0 1 2 3
is present in more than a single site. ®/t

In Fermi liquid systems obeying the time-reversal sym- 0
metry, the Imaginary part'of the retardgd self-engrgyTat FIG. 5. TheT=0 local spectral function and the corresponding
=0 vanishes at the Fermi energy g\nd_ls quadratic for freyasiparticle approximation for the Anderson impurity model as
quencies close to the Fermi energy° Using the Fermi en-  shown in Fig. 9. The values of parameters dge=0.4t,, U

-

ergy as the origin of the energy scale, i@5er—w, We =192, andsy=—U/2. The calculations were performed within
can express this as the second-order perturbation theory as described in Appendix A.
: 2
Im %(w+i6)xw”. (4D fore, comparing the quasiparticle Hamiltonian to the nonin-

Close to the Fermi energy, the self-energy can be expandéd@racting part of the real Hamiltonian, we observe that the
in powers ofw resumng in an approximation to the Green’s effect of the interaction is to renormalize the matrix elements

function, of the central region Hamiltonia@) and those correspond-
ing to the hopping between the central region and the leads
G Yw+id)=wl-HO-3(0+i6) (42) (7). The values of the renormalized matrix elements depend
on the value of the Fermi energy of the system.
) Let us illustrate the ideas introduced above for the case of
+0(). the standard Anderson impurity modéiWe calculated the
(43) self-energy in the second-order perturbation theory
approximation’*°and constructed the quasiparticle Hamil-
HereH(© contains matrix elements of the noninteracting parttonian according to Eq(47). In Fig. 5 the local spectral
of the Hamiltonian(2). Note that expansion coefficients are functions corresponding to both the original interacting
real because of E¢41). Let us introduce the renormalization Hamiltonian and the noninteracting quasiparticle Hamil-

IZ(w+id)
o
Jw

=0

factor matrixZ as tonian are presented. The agreement of both results is perfect
) in the vicinity of the Fermi energy where the expans{dBf)
L1, 9E(e+id) is valid.
Z t=1-— (44) . . L I
dw w0 The reason for introducing the quasiparticle Hamiltonian

, ) ) is to obtain an alternative expression for the conductance in
The Green’s function fow close to the Fermi energy can ierms of the quasiparticle Green’s function. Equatiés)
then be expressed as relates the values of the true and the quasiparticle Green’s
~ function at the Fermi energy,
G Hw+id)=Z"YGC Yw+id)Z Y2+0O(w?), (45 9
where we defined the quasiparticle Green’s function G(0+i8)=ZYG(0+i8)Z"2 (48)

Specifically, if bothn andn’ are sites in the lead€,,/,(0

+i8)=G,,(0+i4) as a consequence of the properties of
as the Green’'s function of aoninteractingquasiparticle the renormalization factor matri¥ discussed above. Equa-
Hamiltonian tion (39) then tells us that the zero-temperature conductance
of a Fermi liquid system is identical to the zero-temperature
H=ZY{HO+30+i68)]zY2 (47)  conductance of a noninteracting system defined with the qua-

. N , siparticle Hamiltonian for a given value of the Fermi energy.
Note that factoring the renormalization factor matrix as we

did above ensures the hermiticity of the resulting quasiparti-
cle Hamiltonian.

Matrix elements o differ from those of an identity ma- The conclusions reached in the first two steps are based
trix only if they correspond to sites of the central region. Inon an assumption of the thermodynamic limit, i.e., they are
other cases, as the interaction is limited to the central regioralid if the central region is coupled to semiinfinite leads.
the corresponding self-energy matrix element is zero. There-lere we generalize the concept of quasiparticles to a finite

G Yw+id)=wl—H (46)

Step 3. Quasiparticles in a finite system
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(a) ' ' ' spectral density of the quasiparticle Hamiltonian correctly
describes the true spectral density in the vicinity of the Fermi
energy.

A ()

Step 4. Validity of the conductance formulas

In this last step we finally show how to calculate the con-
ductance of an interacting system. In Appendix A we study
the excitation spectrum of a finite ring system threaded with
a magnetic flux and containing a region with interaction. We
show that

— Gy w) E[N,¢,M +1]_E[N,QS;M]:E(N,(ZS;M;1)+O(N*3/2),
(50)

where E(N, ;M) and E(N,¢;M+ 1) are the ground-state

energies of the interacting Hamiltonian for a ring system
with N sites and flux¢, containingM and M + 1 electrons,
L J JM respectively, ande(N,¢;M;1) is the energy of the first

015 01 _ —005 0 0.05 0.1 0.15 single-electron level above the Fermi energy of the finite ring
o/ to quasiparticle Hamiltoniafd9). This estimation allows one to
use single-electron formulas of Sec. Ill A to calculate the
FIG. 6. (@) The T=0 local spectral function as in Fig. 5, but for Zero-temperature conductance for a Fermi liquid system. We
a ring system wittN =400 sites and fluxp=3m/4. (b) The spectral  Showed in step 3 that insertiggf N, ¢;M;1) into these for-
function in the vicinity of the Fermi energylashed linescompared ~ mulas would give us the correct conductance. Equaton
to that corresponding to the quasiparticle Hamiltonid8). Both ~ proves, that the same result is obtained if the difference of
the spectral density of the interacting system and the matrix elethe ground state energies of an interacting system
ments of the quasiparticle Hamiltonian were calculated within theE[N, ;M +1]—E[N,¢;M] is inserted into a formula in-
second order perturbation theory. stead. The estimated error, which is of the ordeNof’?, is
for a largeN negligible, because it is much smaller than the

fing system withN sites andM electrons, threaded by a duasiparticle level spacing, which is of the order di1/

magnetic fluxg. Let us define the quasiparticle Hamiltonian . AS demonstrated in Sec. IIl B, the conductance of a non-
for such a system interacting system can also be calculated from the variation

of the ground-state energy with flux through the ring. The
proof of the formulas involved only the properties of a set of
neighboring single-electron energy levels. We assumed the
validity of single-electron conductance formulas for each of
these levels and made use of the fact that the ground-state

Here the self-energy and the renormalization factor matrixnergy of the system increases by a sum of the relevant
are determined in the thermodynamic limit where, as weSingle-electron energies as the levels become occupied with
prove in Appendix A, they are independent (bfand corre- addlthnal electrons. For Fermi |IQUId SyStemS, the first a..S'
spond to those of an infinite two-lead system. sumption was proved above. The second assumption, which

Suppose now that we knew the exact values of the renofOr noninteracting systems is obvious, is proved in Appendix
malized matrix elements in the quasiparticle HamiltonianA- There we show that as a finite number of additional elec-
(49). As this is a noninteracting Hamiltonian, we could thentrons is added to an interacting system, the successive
apply the conductance formulas of the preceding section tground-state energies are determined by the single-electron
calculate the zero-temperature conductance of an infinitenergy levels of the same quasiparticle Hamiltonian with a
two-lead system with the same central region and centraf€ry good accuracyAl). Therefore, the proof of Sec. IlI B
region-lead hopping matrix elements, i.e., of a system delS also valid for interacting Fermi liquid systems, provided a
scribed with the quasiparticle Hamiltoni&7). As shown in ~ System is the Fermi liquid for all values of the Fermi energy
step 2, this procedure would provide us with the exact conbelow its actual value.
ductance of the original interacting system. However, to ob-
tain the values of the renormalized matrix elements, one V. NUMERICAL TESTS OF THE METHOD
needs to calculate the self-energy of the system, which is a
difficult many-body problem. In the next step, we will show,
that there is an alternative and easier way to achieve the In this section we discuss the convergence properties of
same goal. the conductance formulas derived in Sec. lll. As a test sys-

In Fig. 6 we compare the spectral density of an Andersoriem we use a double-barrier potential scattering problem pre-
impurity embedded in a finite ring system to that of the cor-sented in Fig. 7. Results of various formulas for different
responding quasiparticle Hamiltoniai@9). Note that the number of sites in the ring are presented in Fig. 8. The exact

A ()

H(N, p;:M)=ZYTHO(N, ¢)+3(0+i8)]ZY2  (49)

A. Noninteracting system
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2Oz =2 202020 & 20 &

. . . . FIG. 9. The Anderson impurity model realized as a quantum dot
FIG. 7. A double barrier noninteracting system. The height ofcqhjeq to two leads. The dot is described with the energy leyel
the barriers is 0f3, wheret, is the hopping matrix element be- 504 the Coulomb energy of a doubly occupied levkelt; is the
tween neighboring sites. hopping between the dot and leads.

zero-temperature conductance for this system exhibits ground-state energy vs flux curve, do not show convergence
sharp resonance peak superimposed on a smoother bagkoperties comparable to those of the formulas discussed
ground conductance. We notice immediately that as the nunbove.

ber of sites in the ring increases, the convergence is generally

faster in the region where the conductance is smooth than in B. Anderson impurity model

the resonance region, which is consistent with .the cpndition In 1980s several theori#"* were put forward proposing
(19). Comparing the results obtained employing different, (oajization of the Anderson impurity modin systems
conductance formulas we observe that the convergence is tr&%nsistmg of a quantum dot coupled to two ledgse Fig.
fastest in both the single-electron and the ground-state ery). These theories show that the topmost occupied energy
ergy case if the formulas of Eq&22) and(33) are applied to  |eve| in a quantum dot with an odd number of electrons can
the maximum of the energy vs flux curver to the minimum  pe associated with the Anderson modgllevel and such a

in the single-electron cageFormulas of Eqs(20) and(31)  system should mimic the old Kondo problem of a magnetic
expressing the conductance in terms of the difference of thepin 1 impurity in a metal host. In recent years signatures of
energies atp=0 and =7 converge somewhat slower. Note the Kondo physics in electron transport through quantum
however that in the former case the second derivative of theots have also been found experiment&l§? The Anderson
energy with respect to the flux has to be evaluated while irmodel is well defined and is an attractive testing ground for
the later, the energy difference is large and because of thatew numerical and analytical methods that are developed to
the calculation is much more well behaved. From the comiackle other challenging many-body problems. Therefore, we
putational point of view there is another advantage of thewill also take it as a nontrivial example to test results of the
energy difference formulas. In this case, all the matrix eleconductance formulas we derived in this paper.

ments can be made real if one chooses such a vector poten- There are three distinct parameter regimes of the Ander-
tial that only one hopping matrix element if modified by the son model. Ifeq<ep<eq+U with [eq+U—gg[>A and

flux as then the additional phase factoeis”™=—1. Finally, |eq—eg|>A, whereA is the coupling of the quantum dot to
the remaining formulas, employing the slope of the energy véeads, we are in the Kondo regime. In this regime, a narrow
flux curve at¢p=7/2 and the curvature in the minimum of the Kondo resonance is formed in the spectral function at the

FIG. 8. Exact and approximate zero-
temperature conductance vs Fermi energy curves
for the system in Fig. 7. The shaded area shows
the exact result. The left set of figures shows the
approximations obtained using the single-electron
formulas of Sec. Il A while the right set of fig-
ures corresponds to the ground-state energy for-
mulas of Sec. Ill B. Different curves correspond
to different number of sitehl in the ring. In ()
and (3) the conductance was calculated using
Egs. (20) and (31), in (b;) and () using Egs.
(21) and(32), while in the other figures Eq$22)
and (33) were used, in (9 and (¢) applied to
the maximum and in (g and (¢) to the mini-
mum of energy vs flux curves.
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FIG. 10. The zero-temperature conductance calculated from
ground-state energy vs magnetic flux in a finite ring system using
the variational method of Appendix B with 3 and 7 basis functions. b
For comparison, the exact Bethe ansatz result is presented with a
dashed line. The system shown in Fig. 9 was used, Wlth
:0640 andtl=0.20.

® Bethe Ansatz
o Variational

S

Fermi energy for temperatures below and close to the Kondo 7=

G/IG

temperature, which corresponds to the width of the reso- X 0.

nance. The zero-temperature conductance in the Kondo re- =EmT

gime reaches the unitary limit ofed/h. Letting eithere 4 or q

eq+U approach the Fermi energy so tHat+U—eg| or (PSP ) o

|eq—er| becomes comparable with, we enter the mixed po-o—0——°>735

valence regime where the charge fluctuations on the dot be- O ——— "4
come important. In this regime, the resonance becomes 1IN

wider and merges W,'th the resonance qorrespondn‘sgj or FIG. 11. (a) Results of conductance calculations using &4)
eq+U levels. More important for our discussion is the fact ¢y the system presented in Fig. 10 as the number of sites in the ring
that the resonance moves away from the Fermi energy anflcreases. Note that the convergence is the fastest in the empty
therefore, the conductance drops as we enter this regimeypital regime and the slowest in the Kondo regiri®. Finite-size
Finally, there are two nonmagnetic regimes, one in which thecaling analysis of the same resullts for various values;ofwith
“impurity” level is predominately empty, eq—&r>A,  black dots, the Bethe ansatz values are shown. Energies were cal-
known as the empty orbital regime, and the correspondingulated using the variational method of Appendix B with 7 varia-
regime where the dot is doubly occupied. In these regimesjonal basis functions.

the conductance drops toward zero.

In Fig. 10 the zero-temperature conductance through and the leads?). For each position of the, level relative to
quantum dot acting as an Anderson impurity is presented anidie Fermi energy, we increased the number of sites in the
compared to exact results of the Bethe ansatz appfidch. ring until the conductance converged. The number of sites
To calculate the conductance, E@1) was used, with the needed to achieve convergerisee Fig. 1a)] was the low-
ground-state energies &t=0 and ¢= obtained using the est in the empty orbital regime and the highestout 1000
variational method presented in Appendix B. There are twdor the system shown in Fig. 1@n the Kondo regime. This
variational parameters defining the auxiliary Hamiltonianis a consequence of E(L9) as a narrow resonance related to
(B1), one describing the effective energy level on the dot andhe Kondo resonance appears in the transmission probability
the other renormalizing hoppings into the leads. Two differ-of the quasiparticle Hamiltonia7) in the Kondo regime.
ent variational basis sets were used in calculations. In théh the mixed valence regime, the width of the resonance
first set, the basis consisted of wave functidBg). As a  becomes comparable @, which is much larger than the
result of the rotational symmetry in the spin degree of freeKondo temperature and the convergence is thus faster. In the
dom, two of the basis functions may be merged into oneempty orbital regime the resonance moves away from the
Therefore, the basis set consisted of projections of the auxsermi energy and an even smaller number of sites is needed

iliary Hamiltonian ground statd0) to states with empty (O achieve convergence.

= . . ~ = ~ Let us return to results shown in Fig. 10. Note that ex-
Pol0), singly occupiedP,[0)=P;|0)+P,[0) and doubly tending the variational space from 3 to 7 basis functions

occup|edP2|02 dot level. In the second basis set, wave func-sjgnjficantly improves the agreement with the exact result.
tions P;VPy|0), PoVP40), P,VP40), and P;VP,/0)  The remaining discrepancy at the larger basis set can be at-
(B7) were added to those of the first set, wi=V, +Vg tributed to the approximate nature of the variational method.
being the operator describing the hopping between the dotnother source of error could be the fact that the Bethe an-
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t 4 t, 4 1
\%
g g
FIG. 12. A double quantum dot system. Each of the dots with
energy leveley and on-site Coulomb repulsidd is coupled to a
lead with a hopping matrix element. The inter-dot hopping, is
also present as is the inter-dot Coulomb repuldion

G/G,

satz solution assumes there is a constant coupling to an infi-
nitely wide conduction band. In our case, the conduction
band is formed by the states in a tight-binding ring, the cou-
pling to which is not constant. However, it is almost constant
in the energy interval we are interested in, i.e., near the cen-
ter of the band. In order to estimate the effect of the noncon-

stant coupling on the conductance, we calculated the dot oc- .
cupation number within the second order perturbation theory FIG. 13. The zero-temperature conductance of the system in

for both the case of a constant coupling and for the case of &9- 12 as a function of the position of the dot energy lexyghnd
tight-binding ring. We then calculated the conductance inmter-dot hopping matrix elemenj. The remaining parameters are
each case making use of the Friedel sum féiiehe agree- U~ V='toandt; =05,

ment is significantly better than the difference between the ) ) o
Bethe ansatz and variational conductance curves in Fig. 16/€S Of the inter-dot coupling, indicating strong electron-

Therefore, we believe that the use of Bethe ansatz results f€ctron correlations in the system. The results of our method
justified for this particular problem. for lower values ofV are also shown in Fig. 14.

In Fig. 11(b) a finite-size scaling analysis of the conver-
gence is presented. Note that for rings with a large number of
sitesN, the error scales approximately atN1/

) Z

1 0
(e d+U/2+V)/t0

VI. SUMMARY AND CONCLUSIONS

We have demonstrated how the zero-temperature conduc-
C. Double quantum dot tance of a sample with electron-electron correlations and
) S connected between noninteracting leads can be determined.
The next logical step after studying individual quantumThe method is extremely simple and is based on several for-
dots is to consider systems of more than one dot. Single,yjas connecting the conductance to persistent currents in an
quantum dots are often regarded as artificial atoms becauggxiliary ring system. The conductance is determined only
of a S|mlla}r electronic struc;ure and comparable number ‘?from the ground-state energy of an interacting system, while
electrons in them._ By coupling several quantL_Jm dots one iy more traditional approaches, one needs to know the
thus creating artificial molecules. Here we will not go into Green’s function of the system. The Green’s function ap-
detail in describing the physics of such systems. Our goal i?)roaches are often much more general, allowing the treat-
to compare results of our conductance formulas to results %ent of transport at finite temperatures and for a finite
other methods for a double quantum dot system presented in

Flg' 12. 1 7 T T T T

In the calculation we again employed the conductance Y

formula (31) and calculated the ground-state energies with
the variational approach of Appendix B with the variational
basis se{B2). In Fig. 13 the zero-temperature conductance
for the case where the inter-dot and the on-site Coulomb
repulsionsV and U are of the same size, are plotted as a
function of the position of dot energy levels relative to the
Fermi energy for various values of the inter-dot hopping ma-
trix elementt,. The same problem in the particle-hole sym-
metric cases 4+ (U/2)+ V=0 was studied recently in Ref. 8.
The Matsubara Green’s function was calculated with the
guantum Monte Carlo method and the values on discrete
frequencies were extrapolated to obtain the retarded Green'’s
function at the Fermi energy. Then Eq40) and (39) were

(=3

1G]

—~

0

- V/[0=0

o Vit,=1,QMC ]

-- Vit,=05
— V/t0=1
— Vjt,=1,HF

-~ tees,
- .

-~
-~

1
0.5
tz/to

used to calculate the zero-temperature conductance. The re- g 14, The zero-temperature conductance of the double quan-
sults are presented in Fig. 14, together with the conductanGgm dot system of Fig. 12 aty+(U/2)+V=0 as a function of the
calculated within the Hartree—Fock approximation and reinter-dot hopping matrix elemets for various values of the inter-
sults of our method. The agreement with the QMC results iglot Coulomb interactiov. As a comparison, the Hartree—Fock and
excellent, while the Hartree—Fock approximation gives aquantum Monte Carlo resuli®Ref. 8 are presented fov/ty=1.
qualitatively wrong conductance curve, especially at low val-Other parameters are the same as in Fig. 13.
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source-drain voltage applied across the sample, which in our Note addedAfter the present work was completed the

method is not possible. However, the advantage of th@uthors met R. A. Molina and R. A. Jalabert who reported
present method comes from the fact that the groundabout their recent unpublished work where an approach simi-
state energy is often relatively simple to obtain by variouslar to our work is presentet:*®

numerical approaches, including variational methods, and

could therefore, for zero-temperature problems, be more ACKNOWLEDGMENTS
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(2) For a noninteracting sample, it is shown that the zero-
temperature conductance can be deduced from the variation
of the energy of the single-electron level at the Fermi energy APPENDIX A: FERMI LIQUID IN A FINITE SYSTEM
with the flux in a large, but finite ring system. The conduc- |5 sec. IV we based the proof of the validity of the con-
tance is given with Eq(18), or with three simple formulas  qyctance formulas for Fermi liquid systems on the assump-
Eq. (20), Eg. (21) and Eq.(22). tion that
(3) Alternatively, the conductance of a noninteracting sys-
tem is expressed in terms of the variation of the ground-state (N, ;M +m)=E(N, ;M)
energy with flux, Eq(24). Three additional conductance for-
mulas, Eq.31), Eq. (32) and Eq.(33), are derived. _ ) B
(4) The method is primarily applicable to correlated sys- +;1 E(N, M)+ O(N™%3). (A1)
tems exhibiting Fermi liquid properties at zero temperature.
In order to prove the validity of the method for such systemsHere E(N,¢;M+m) and E(N,¢;M) are the ground-state
the concept of Fermi liquid quasiparticles is extended to fi-energies of an interacting-site ring with flux ¢, containing
nite, but large systems. The conductance formulas give thM+m and M electrons, respectivelyg(N,¢;M;i) is a
conductance of a system of noninteracting quasiparticlesingle-electron energy of the ring quasiparticle Hamiltonian

which is equal to the conductance of the original interactingq(N’¢;M) as defined in Eq(49), with the Fermi energy
system. The ground-state energy is a universal function oforresponding tvl electrons in the system. The indesa-
the magnetic flux and the conductance is the only parametgje|s successive single-electron energy levels above the Fermi
[Egs.(29) and (30)]. energy. We assumm to be finite andN approaching the

(5) The results of our method are compared to results thermodynamic limit. In this Appendix we will give argu-
other approaches for problems such as the transport throughents showing that the assumption of EA1) is indeed
single and double quantum dots containing interacting elecya)ig. In Appendix A 1 we first express the problem in terms
trons. The comparison shows an excellent quantitative agregs the Green’s function of the system. In Appendix A2 we
ment with exact Bethe ansatz results in the single quanturgy,dy the properties of the self-energy due to interaction in

dot case. The results for a double quantum dot system alsghite ring systems and then use this results to complete the
perfectly match QMC results of Ref. 8. proof in Appendix A 3.

(6) One should additionally point out that in the deriva-
tion presented in this paper we assumed the interaction in the
leads to be absent. It is clear that this assumption is not
justified for all systems. The method cannot be directly Assume we manage to prove E#&l) for m=1, i.e.,
applied to systems where the interaction in the leads is
essential, as are, e.g., systems exhibiting Luttinger liquid E(N,$;M+1)=E(N,$;M)+Z(N,$;M;1)+O(N~3?).
properties. (A2)

(7) The validity of th_e method is not limited to SYSteMS Then we can use the same result to relate the energy of a
that do not break the time-reversal symmetry. A generaliza;

. . : system withM + 2 electrons to that wittM + 1 electrons,
tion to systems with a broken time-reversal symmetry, such
as Aharonov—Bohm rings coupled to leads, is possible and E(N,$:M+2)=E(N,:M)+3(N,$:M:1)
will be presented elsewhefé. e e e

(8) Another important limitation of the present method is +3(N,¢;:M+1;1)+O(N"3?2),  (A3)
the single channel approximation for the leads. It might be ) o o
possible to extend the applicability of the method to systemdlow the matrix elements of quasiparticle Hamiltonians
with multichannel leads by studying the influence of severaH(N,¢;M +1) andH(N, ¢;M) differ by an amount of the
magnetic fluxes that couple differently to separate channelsarder of 1N. To see this, note that the shift of the Fermi
This way, one might be able to probe individual matrix ele-energy as an electron is added to the system is of the order of
ments of the scattering matrix and derive conductance ford/N, producing a shift of the same order in the self-energy
mulas relevant for such more complex systems. and it’s derivative at the Fermi energy, which define the qua-

m

1. Relation to the Green'’s function
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FIG. 15. Second-order self-energy diagrams.

siparticle Hamiltonian through E@49). As the difference of (Pj.n(pin*

the HamiltoniansAH is small, we can use the first order Gji(N,Qf’;M;Z):;
perturbation theory,

(A7)

Z—g,

This expression can also be interpreted as a local Green’s

2(N,¢;M+1;1)=Z(N,p;M;2) function of a largemoninteractingsystem, consisting of the
_ central region and a bath of noninteracting energy levels, the
+(N,#;M;2|AH|N, $;M;2) number of which is equal to the number of multielectron

states withM +1 andM — 1 electrons of the original inter-
acting system. The self-energy due to “hopping out of the
I%entral region,” which includes both the effects of the inter-
action as well as those due to the hopping into the ring, can
then be expressed as

=Z(N,¢;M;2)+ O(N?). (A4)

In the last step we made use of the fact that the quasipartic
Hamiltonians differ only in a finite number of sites in and in
the vicinity of the central region, and of the fact that the

amplitude of the quasiparticle single-electron wave function Vi V.

IN,;M;2) is of the order of 1{N. Thus we have proved 3N, ¢ M;z) =2 2, (A8)
Eqg. (A1) for m=2 and using the same procedure, we can N Z7é&n

extend the proof to any finiten. whereV, are the "hopping matrix elements” between the

To complete the proof, we still need to show the validity ceniral region and the “bath.” Thus we have shown that, as
of Eq. (A2). As a first step, consider the Lehmann repre-g5; a5 the single-electron Green’s function is concerned, the
sentation of the zero-temperature central region GreeN'yeracting system can be mapped on a larger, but noninter-
function acting system.

To further clarify the concepts introduced above, we cal-
Gji(t,t")=—ia(t—t")(0[[d;(1),d[(t")]|0)  (A5)  culated the self-energy due to interaction within the second-
order perturbation theory. Following the calculations by Hor-
of a ring system characterized witth and ¢, containingM  vatic, Sokcevic and Zlati¢’~3° for the Anderson model, we

electrons, sum the second order self-energy diagrams shown in Fig. 15,
including Hartree and Fock terms into the unperturbed
(0[d;|n)(n|d]|0) Hamiltonian. A lengthy but straightforward calculation,
Gji(N,¢;M;z)= > S (EMTI_gM) which we do not repeat here, shows that one can identify the
"z (B, 0) statesn of Eq. (A8) with three Hartree—Fock single-electron
<O|diT|n><n|dj|0> state indipes;}:(ql,qz,q?) such thatql and g, are above
VR (A6)  the Fermi energy ands is below it (or vice versy and a
n z—(Eg—Ey ) spin indexs. The “bath” energy levels
The first sum runs over all basis states witht+- 1 electrons, Eqs=€q, +€q,~ €q (A9)
1 2 3

while the second sum runs over the states With-1 elec-
trons. The difference in the ground-state energies of systenand the “hopping matrix elements” related to the self-energy
with M + 1 andM electrons is evidently equal to the position for electrons with spiro

of the first &-peak above the Fermi energy in the spectral

density corresponding to the Green'’s function. In what fol- 2 U7 01,92 a3 -
lows, we will try to determine the energy of thispeak. o ik @ P P s=o,
Vias= 1 .
2. Self-energy due to interaction . E Uﬁ(o[@qlqu_ qszz()pql] (an s=o
-+ Sk P ) P dPe o
To achieve the goal we have set in the preceding section, V2%

we first need to study the structure of the self-energy due to (A10)
interaction in a finite ring with flux. Let us again consider the gre then expressed in terms of the Coulomb interaction ma-
Lehmann representatioi6) and to be specific, limit our-  trix elements(5), and the Hartree—Fock single-electron ener-
selves to states above the Fermi energy. Introduqﬂﬂg gies g4(N,#;M) and the corresponding wave functions
=(0|d;|n) ande,=EY "' —E)', we can express the Green’s |¢9(N,#;M)). In Fig. 16 the positions of-peaks in the
function as imaginary part of the self-energy as a function of magnetic
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FIG. 16. Dashed lines show the positions of
S5-peaks(A9) in the second-order self-energy cor-
responding to single-electron energy levels of an
unperturbed system presented with gray lines.

flux through the ring are plotted. Note that as the flux isthe two-lead system. In the third term, one can perform the
varied, the positions of the peaks fluctuate by an amount oum over oddn’s and over evem’s separately. The sums
the order of the single-electron level spacing which is of thediffer only in sign in theN— <o limit and therefore, this term
order of 1N. The weights of the peaks also depend on thevanishes. Therefore, in the thermodynamic limit the self-
flux. A similar behavior is expected if higher order processesnergy due to interaction is the same in both two-lead and
are also taken into account. ring systems.

Finally, let us study the self-energy in the thermodynamic
limit. We will show that in this case, the self-energy is inde- 3. Proof of Eq. (A2)
pendent of flux and is equal to the self-energy of the original,

two-lead system, shown in Fig. 1. To prove this statement Positions ofd-peaks in the spectral density of the inter-

we consider a self-energy Feynman diagram for the centraﬁCting system correspond o the ;ingle-elgctrqn energy levels
region decoupled from the ring, which then is obviously in—Of the honinteracting part of the ring Hamlltonlan coupled to
dependent of flux. To calculate the self-energy for the fullthbef[ _ba(tjhb accclnr_dmgf 1o Eq.(AB);‘ ;Lhe(sjetene_rgw? cfatr;] b_e
system, one should insert the self-energy due to hopping intgPrained vy solving for zeroes ol the determinant of the in-

the ring into each propagator of the diagram. The self-energyerse of the “local” Green’s function

due to hopping into the ring is defwl—HO(N,¢)—3(N,¢;M;w+i8)]=0.

ViVia (A13)

2oy (A11) What we are going to prove in this section is that the lowest
positive solution of this equation corresponds to

where g, are the single-electron energy levels of the ring(N,¢;M;1) as required by E¢(A2).

decoupled from the central region aNgi= — /t,;— <t We begin by separating the self-energy at frequencies

is the hopping matrix element between siti the central  Cl0se to the Fermi energy into two contributions, di2é)

region and the single-electron stdtén the ring.V,; is ex-  due to the “bath” states close to the Fermi energy and the

pressed in terms of the hopping matrix elemgntbetween other (X') of all the other states _With energies which are
the sitei and the ring sitd adjacent to the central region and SeParated from the expected solution of EL3) by at least

the single-electron wave functicwtz (2IN+1)sink at site an _am(_)unt of the order of the singl_e—elect_ron level spading
L, whereN is the number of sites in the ring. There is also aWh'Ch is of the order of M. We first estimate the second

similar contribution tov,; corresponding to the hopping into 'Zarm. Lﬁt us d_i;)/id_e the frﬁquenl;:y axis into irgervals of width
the right lead. In the ring system, the right lead wave func-"" eacb contributing to the self-energy|a{<A an amount
tion can be expressed in terms of the left lead onej&s given by

=(—1)"e "¢yX with k=[n/(N+1), if one takes into ac- fﬁAp(s)

SN g9 = 2

count the parity of the wave functions and the effect of the de, (A14)

flux. Thus, Eq.(A11) transforms into e @78
where pji(e) =2,V Vyid(e —¢,) if the notation of Eq.

S(O(N,¢;2) =3P (N;2)+ 3P (N; 2) (A8) is used. On average, this contribution corresponds to
R S 1 1N that of a system in the thermodynamic limit whese) is a

+ 2(tjLtri€ "+ tgtyi€'?) > ) szk, continuous function and the magnitude of each contribution
N+1 k Z— &y is at most of the order of V. To see this, let us assurpés)
(A12) is proportional toe? (41) for all values ofs up to a cutoff of

the order of 1. Such an approximation can be considered as
whereX {M(N;z) and={P(N;z) are the self-energies due to the upper limit of possible values gf(¢) in Fermi liquid

hopping into the left and the right lea@isach withN siteg of ~ systems, if one does not take into account the rapidly de-
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1 — N=e o ‘ \ ‘ ‘
| i
ROl l\ i, = | ‘ . .
=2 I 3 m |H FIG. 17. The(a) real and(b) imaginary parts
M WL “‘]\ g ! of the self-energy of an interacting system in the
&’ iy “u I H'l‘ ,E thermodynamic limit and forN=400 with
_1 ¢»=3n/4. The system is described in Fig. 5.
(a) (b)
1 1
205 0 05 o5 0 0.5
(n/to (o/to

creasing tails at higher energies, which contribute a negli-- O(N~%?) corresponding to the self-ener@/. As shown
gible amount to the self-energy at the Fermi energy. Evaluin the preceding section, the self-energies of an infinite two-
ating the above integral, we find that contributions of thelead system and the corresponding ring system are the same
intervals close to the Fermi energy are of the order 8?1/ and therefore, the renormalized matrix elements of
and contributions of the intervals near the cutoff are of thefy N, ;M) correspond to those of a two-lead system. For
order of 1N. Using an analogous procedure, we can alsqw|<A’ Eq. (A13) transforms into

evaluate the derivative of the self-energy close to the Fermi

energy, with contributions defwl—H'(N,¢;M)—3"(N,d;M;w+i8)]=0,
(A18)
e+ A p(g) . .. « »
—f Sde. (A15)  where the coupling to the remaining “bath” levels has been
¢ (o=e) renormalized a&”=7""8"7"12 et us for a moment ne-

In this case, also contributions corresponding to intervalglect this term in Eq(A18). As the differenceAH between
close to the Fermi energy are of the order M 1If p(e) for ~ HamiltoniansH(N, $;M) and H'(N,#;M) is small for a
a finite N is used instead, there are large fluctuations abourgeN, one is justified to relate their single-electron energy
the average valugsee the discussion in the preceding secHevels using the first order perturbation formula
tion) with the amplitude of fluctuations of the same order of
magnitude as the average value itself. To estimate the differz’ (N, ;M;1)=%(N,$;M;1)+(N,$;M;1|AH|N,¢p;M;1)
ence between the finite-system’s real part of the self-energy
(or its derivative close to the Fermi energy and the corre- =%(N,¢;M;1)+O(N~%2). (A19)
sponding quantity for a system in the thermodynamic limit,|, the |ast step we made use of arguments similar to those in
we note that a sum dfl quantities, each of them of the order deriving Eq.(A4).
of 1/N with a standard deviation of the same Ordl‘?zr of Mag-  The energy(A19) can acquire an additional shift because
nitude, has a standard deviation of the ordeNof™, and  of the coupling”. To estimate this shift we first note that in
therefore, we can estimate that fef<A the worst case scenario, i.e., when there is a single bath en-
, o . . _ ergy level which coincides with the quasiparticle energy
3 (N,;M;0+i8)=2(0+i5)+O(N"*?), (A16) | = (A19), the coupling matrix eleggenfdjn in Eq. (A8)
, AL : must be at most of the order &< for Eq. (41) to be
X' (N.¢:M;w+id)| dX(wti 2 +O(N" ) satisfied in the thermodynamic limit. Then one can make use
Jw ” Jw \w:O ' of the degenerate first order perturbation theory, which
(A17) shows that the quasiparticle energy level is shifted by an

Note that we do not need to exclude the contribution of theg?ggtfl%r;aé;rFilu)nt of the order ofi4f. This completes the

interval at the Fermi ene(gsthe one c;orresponding &) . As a conclusion, in Fig. 18 we present a comparison of
fbrom self-?r?ergms in the dr_lght-har][qb&?_es of these eﬂfat'?hn?he total densities of states for a finite ring interacting system
Ne,cf,izuse di € corrESpgn IngAlcontLI utions -are _smaf\ er tha\ﬁithin the second order perturbation theory and in the qua-
f tthatsthlsc'uisteh adoyde. SO elerrto:is) ag'.s"n? ré)mf %iparticle Hamiltonian approximation. Note that the states
actthat the night-nana sides are evaluateaall Instead ol = o5 the Fermi energy are well described with the quasipar-

atw aret_onlyl oth_he (1);der of N, as d'SCfLﬁf’ed ”I} the prgced; ticle approximation, while the states further away from the
Ing section. In FIg. 1 7a comparson of IN€ Sel-energies at ey energy are split in the interacting case. Similar results
finite N and in the thermodynamic limit is presented. Note, o re reported in Ref. 49

that in the vicinity of the Fermi energy, the real parts of both
self-energies coincide.

One can now proceed as in Eqd4) and (47), defining
the renormalization matrig’ (N, $;M)=2Z+O(N~*?) and In order to calculate the conductance for interacting sys-
the quasiparticle HamiltonianH’ (N, ¢;M)=H(N,#;M) tems, we first need to devise a robust method that would

APPENDIX B: VARIATIONAL GROUND-STATE ENERGY
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PL=n;;n;, (BS)

are projection operators on unoccupied, singly occupied and
doubly occupied sité The original Hamiltonian is diagonal-
ized in the reduced basis set introduced above,

Hﬂa: ESﬂa, (BB)

with Hg,=(4gH|¢,) being the matrix elements of the
Hamiltonian andSg,= (4| #,) take into account the fact
that the basis functions do not form an orthonormal basis set.
The eigenstate with the lowest energy of this eigenvalue
problem is an approximation to the ground-state energy of
the original Hamiltonian. Varying the parameters of the aux-
iliary Hamiltonian, one can find their optimal values which
minimize Ef . The solution of this minimization problem is
the final approximation to the ground-state energy.

Let us consider some simple limits of the problem. In the
noninteracting case whet¢=0, one can choose the auxil-
iary Hamiltonian to be equal to the true Hamiltoni&h
w/to =H. Then the wave functiofiy)=3 ,P,/0)=[0)=]0) is
the exact ground-state wave function of the system. Note that

FIG. 1_8. _(a) The total density of states of an interacting ring applying the same wave function ansatz to the interacting
system within the second-order perturbation thefy.Total den- case and allowing the matrix elements of the auxiliary

sity of states corresponding to the quasiparticle Hamiltonian. TheHamiItonian to be renormalized, provides us with the
system is described in Fig. 5. Hartree—Fock solution of the problem. Therefore, the varia-

allow us to efficiently calculate the ground-state ener oft lonal method introduced above always gives the ground-
y 9 9Y Otate energy which is lower or equal to the corresponding

S.UCh systems. Note that we need a _method that would P Y artree—Fock ground-state energy. In the limit of the central
vide us with the energy of a system with a very large number

of sites in the ring. However, the number should still be'€9'oN being decoupled f'rom the ring, 1.8, =Vg=0, the
finite. i.e.. we must not perform the calculations in the ther_varlatlonal method also yields the exact ground-state energy.
mod{/n.ar.r,lic limit. We mgde use of the projection method o To prove this statement, let us select the matrix elements of
Gunnarson and Schnhamni@r®? introduced originally H in such a way that in its ground state there mrelectrons

to calculate the ground-state energy of the Andersor the central region. Then the basis $B2) spans the full
impurity model, and extended it to treat the more genera|—||Ibertspace fom electron§ in the'central r.eglon.As. there is
Hamiltonian (1). no coupling to the states in the ring, solving the eigenvalue

Let us introduce an auxiliary noninteracting Hamiltonian, Problem(B6) provides us with the exact ground state of the
problem with a constraint of a fixed number of electrons in
H=H_ +V +H®+Vg+Hg, (81) the central region. By varyingl, all the possible values of
. . . " ) can be tested and the one yielding the lowest ground-state
with arbitrary matrix elements describing the hopping be-gnergy corresponds to the correct ground state of the system.
tween the leads and the central region, and the central region The variational wave function ansatz can be improved by

itself. Note that these are the same matrix elements as thgending the Hilbert space with additional basis functions,
ones being renormalized in the Fermi liquid quasiparticley,e most promising candidates being of e
Hamiltonian(47). Let us also define a Hilbert space spanned

by a set of 4 basis functions

|¥rji vad =P gVrji oPal 0}, (B7)
— b [F\— i %

[a)=Pal0) ile_lc P[0}, (B2) where Vi, = Vyjic/,di,+h.c. and\ is a lead index, i.e.,
_ eitherL or R. On the other hand, as the size of the Hilbert
whereM is the number of sites in the central regi¢@) is  space increases exponentially with the number of sites in the
the ground state of the auxiliary HamiltoniéB1) containing  central region, it might be convenient to limit the basis set to
the same number of electrons as there are in the ground statge states obtained by projecting to the central region’s many
of the original Hamiltonian, and body states between which fluctuations are possible.
Finally, we state some technical details concerning the

i
Po=(1—nj)(1—n;)), (B3) evaluation ofH g, andSg, . It is convenient to express these
: matrix elements only in terms of quantities related to the
P,=Ni(1-ni3), (B4)  central region and the neighboring sites in the leads. As
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Sﬁa:@ P,;Pa|f)>=(6| Pa|6>5ﬁa! (BY) performed automatically by symbolic manlpglatlon of_opera-
tors. The ground-state energy of the auxiliary Hamiltonian

the scalar products between the basis functions are evidenthqd the two-operator averages can be expressed in terms of

expressed with the central region quantities. The matrix eleg,o single-electron energigg and wave functiongpk) of A
ments of the Hamiltonian can be expressed as as

H go= (0[P gHP ,|0) = (O|HP 4P |0} + (0| P gH P ,/0)

e o ~ B E=2> 3%, (B10)
—(O|(V +RAO+Vg)P,[0)5,,. (B9) ~ ~ e
I RET VP00 @ldaf0=3 33, @

whereE is the ground-state energy of the auxiliary Hamil-
tonianH. In the second and the third term we made use offhe sums run only over the single-electron states occupied in
the fact that lead Hamiltoniart$; andHr commute with the  the ground staté). The eigenvalue, were calculated in a
central region projectors and therefore, they cancel outyasis in which the Hamiltonian matrix is banded, i.e., linear
Again, we succeeded in expressing the matrix elements iBombinations of local basis functions corresponding to the
terms of central region quantities together with quantitieSeft lead and right lead sites were introduced to “move” the
related to the neighboring sites in the leads. Similar resultﬁopping matrix elements in corners of the matrix close to the
are obtained if the extended basis set of @) is used. The  diagonal. For each eigenvalue, only the components of the
matrix elements in Eq¢B8) and(B9) need to be calculated ejgenvector related to the central region and neighboring
in a noninteracting state. Therefore, we can make use of théites were calculated, again taking the special structure of the
Wick's theorem to decompose the expressions into twomatrix into account. The procedure used scales with the
operator averages of tym5|dfadi,,|"0>. As a huge number of number of sites in the ring a®(N?), which allows one to

terms is generated in this procedure, the decomposition waseat systems with up to 10000 sites in the ring.
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