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Formulas for zero-temperature conductance through a region with interaction
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The zero-temperature linear response conductance through an interacting mesoscopic region attached to
noninteracting leads is investigated. We present a set of formulas expressing the conductance in terms of
persistent currents in an auxiliary system, namely a ring threaded by a magnetic flux and containing the
correlated electron region. We first derive the formulas for the noninteracting case and then give arguments
why the formalism is also correct in the interacting case if the ground state of a system exhibits Fermi liquid
properties. We prove that in such systems, the ground-state energy is a universal function of the magnetic flux,
where the conductance is the only parameter. The method is tested by comparing its predictions with exact
results and results of other methods for problems such as the transport through single and double quantum dots
containing interacting electrons. The comparisons show an excellent quantitative agreement.
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I. INTRODUCTION

The measurements of the conductivity and the elect
transport in general are one of the most direct and sens
probes in solid state physics. In such measurements m
interesting new phenomena were signaled, in particular
perconductivity, transport in metals with embedded magn
impurities and the related Kondo physics, heavy ferm
phenomena and the physics of the Mott–Hubbard transi
regime. In the last decade technological advances ena
controlled fabrication of small regions connected to lea
and theconductance, relating the current through such a r
gion to the voltage applied between the leads, also prove
be a relevant property of such systems. There is a numbe
such examples, e.g., metallic islands prepared by e-bea
thography or small metallic grains,1 semiconductor quantum
dots,2 or a single large molecule such as a carbon nanot
or DNA. It is possible to break a metallic contact and me
sure the transport properties of an atomic-size bridge
forms in the break,3 or even measure the conductance o
single hydrogen molecule, as reported recently in Ref. 4
all such systems, strong electron correlations are expecte
play an important role.

The transport in noninteracting mesoscopic systems
theoretically well described in the framework of th
Landauer–Bu¨ttiker formalism. The conductance is dete
mined with the Landauer–Bu¨ttiker formula,5–7 where the key
quantity is the single particle transmission amplitudet(«) for
electrons in the vicinity of the Fermi energy. The formu
proved to be very useful and reliable, as long as electr
electron interaction in a sample is negligible.

Although the Landauer–Bu¨ttiker formalism provides a
general description of the electron transport in noninterac
systems, it normally cannot be used if the interaction
tween electrons plays an important role. Several approa
have been developed to allow one to treat also such syst
First of all, the Kubo formalism provides us with a condu
tance formula which is applicable in the linear response
gime and has, for example, been used to calculate the
ductance in Refs. 8 and 9. A much more general appro
0163-1829/2003/68~3!/035342~18!/$20.00 68 0353
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was developed by Meir and Wingreen in Ref. 10. Within t
Keldysh formalism they manage to express the conducta
in terms of nonequilibrium Green’s functions for the samp
part of the system. The formalism can be used to treat s
tems at a finite source-drain voltage and can also be exten
to describe time-dependent transport phenomena.11 The main
theoretical challenge in these approaches is to calculate
Green’s function of a system. Except in some rare ca
where exact results are available, perturbative approache
numerical renormalization group studies are employed.

In this paper we propose an alternative method for cal
lating the conductance through such correlated systems.
method is applicable only to a certain class of system
namely to those exhibiting Fermi liquid properties, at ze
temperature and in the linear response regime. Howeve
this quite restrictive domain of validity, the method promis
to be easier to use than the methods mentioned above
show that the ground-state energy of an auxiliary syste
formed by connecting the leads of the original system int
ring and threaded by a magnetic flux, provides us w
enough information to determine the conductance. The m
advantage of this method is the fact that it is often mu
easier to calculate the ground-state energy~for example, us-
ing variational methods! than the Green’s function, which i
needed in the Kubo and Keldysh approaches. The cond
tance of a Hubbard chain connected to leads was stu
recently using a special case of our method and DMRG12,13

and a special case of our approach was applied in
Hartree–Fock analysis of anomalies in the conductance
quantum point contacts.14 The method is related to the stud
of the charge stiffness and persistent currents in o
dimensional systems.15–18

The paper is organized as follows. In Sec. II we pres
the model Hamiltonian for which the method is applicab
In Sec. III we derive general formulas for the zer
temperature conductance through a mesoscopic region
noninteracting electrons connected to leads. In Sec. IV
extend the formalism to the case of interacting electrons.
give arguments why the formalism is correct as long as
ground state of the system exhibits Fermi liquid properti
In Sec. V convergence tests for a typical noninteracting s
tem are first presented. Then we support our formalism a
©2003 The American Physical Society42-1
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with numerical results for the conductance of some n
trivial problems, such as the transport through single a
double quantum dots containing interacting electrons
connected to noninteracting leads. These comparisons
cluding the comparison with the exact results for the And
son model, demonstrate a good quantitative agreement. A
the conclusions in Sec. VI we present some more techn
details in Appendix A. In Appendix B we describe the n
merical method used in Sec. V.

II. MODEL HAMILTONIAN

In this section we introduce a general Hamiltonian d
scribing a mesoscopic sample coupled to leads as show
Fig. 1. The Hamiltonian is a generalization of the we
known Anderson impurity model.19 We split the Hamiltonian
into five pieces

H5HL1VL1HC1VR1HR , ~1!

whereHC models the central region,HL andHR describe the
left and the right lead, andVL and VR are the tunneling
couplings between the leads and the central region. We
also split the Hamiltonian into a termH (0) describing inde-
pendent electrons and a termU describing the Coulomb in
teraction between them

H5H (0)1U. ~2!

One can often neglect the interaction in the leads and
tween the sample and the leads. We assume this is the
Then the central region is the only part of the system wh
one must take the interaction into account

HC5HC
(0)1U. ~3!

HereHC
(0) describes a set of noninteracting levels

HC
(0)5 (

i , j PC
s

HC ji
(0)dj s

† dis , ~4!

wheredis
† (dis) creates~destroys! an electron with spins in

the statei. The states introduced here can have various ph
cal meanings. They could represent the true single-elec
states of the sample, for example different energy levels
multi-level quantum dot or a molecule. In this case, the m
trix HC ji

(0) is diagonal and its elements are the single-elect
energies of the system. Another possible interpretation
Hamiltonian~4! is that the statesi are local orbitals at differ-
ent sites of the system. In this case, the diagonal matrix

FIG. 1. Schematic picture of the system described by Ham
tonian ~1!.
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(0) are the on-site energies for these sites, wh

the off-diagonal matrix elements describe the coupling
tween different sites of the system. The sites could hav
direct physical interpretation, such as dots in a double qu
tum dot system or atoms in a molecule, or they could rep
sent fictitious sites obtained by discretization of a continuo
system. There are other possible choices of basis state
the central region. For example, in a system consisting
two multilevel quantum dots one could use single-elect
basis states for each of the dots and describe the coup
between the dots with tunneling matrix elements.

The Coulomb interaction between electrons in the sam
is given by an extended Hubbard-type coupling

U5
1

2 (
i , j PC
s,s8

U ji
ss8nj snis8 , ~5!

where nis5dis
† dis is the operator counting the number

electrons with spins at site i. For convenience, we wrote
down only the expression for the Coulomb interaction in t
case, where basis states represent different sites in real s
The expression becomes more complicated if a more gen
basis set is used.

We describe the leads or contacts as two semi-infin
tight-binding chains

HL(R)52t0 (
i ,i 11PL(R)

s

cis
† ci 11s1h.c., ~6!

wherecis
† (cis) creates~destroys! an electron with spins on

site i and t0 is the hopping matrix element between neig
boring sites. Such a model adequately, at least for ener
low or comparable tot0, describes a noninteracting, singl
mode and homogeneous lead. It would be easy to gener
the lead Hamiltonian to describe a more realistic system,
example by modeling the true geometry or allowing for
self-consistent potential due to interaction between electro
However, the physics we are interested in, is usually
changed dramatically by not including these details into
model Hamiltonian and therefore, we will not discuss th
issue into detail.

Finally, there is a term describing the coupling betwe
the sample and the leads,

VL(R)5 (
j PL(R)

i PC
s

VL(R) j i cj s
† dis1h.c., ~7!

whereVL(R) j i is the hopping matrix element between stati
in the sample and sitej in a lead.

In the following sections we discuss the conductan
through the system introduced above. To derive the cond
tance formulas, we will need a slightly modified system. T
auxiliary system is a ring formed by connecting the ends
the left and right leads of the original system as shown
Fig. 2. The ring is threaded by a magnetic fluxF in such a
way that there is no magnetic field in the region where el
trons move. We can then perform the standard Peierls s

l-
2-2
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stitution20 and transform the hopping matrix elements of t
Hamiltonian~1! according to

t j i →t j i e
i (e/\)*

xi

xjA•dx, ~8!

wherexi is the position of sitei andA is the vector potentia
due to the flux, obeying

F5
\

e
f5 R A•dx. ~9!

Here we defined a dimensionless magnetic fluxf. The en-
ergy of the system is periodic inf with a period of 2p and
depends only on value off and not on any details of how th
flux is produced. If the original Hamiltonian~1! obeys the
time-reversal symmetry, the energy does not change if
magnetic field is reversed,

E~2f!5E~f!. ~10!

III. CONDUCTANCE OF A NONINTERACTING SYSTEM

In this section we limit the discussion to noninteracti
systems, i.e., we setU50 in Eq. ~2!. In such systems, the
Landauer–Bu¨ttiker formula5–7

G5G0ut~«F!u2, ~11!

which relates the zero-temperature conductanceG to the
transmission probabilityut(«F)u2 for electrons at the Ferm
energy«F , can be applied. The proportionality coefficien
G052e2/h, is the quantum of conductance. Below we fi
derive a set of formulas, which relate the transmission pr
ability, and consequently the conductance, to single-elec
energy levels of the auxiliary ring system introduced in t
preceding section. Then we derive another set of formu
relating the conductance to the ground-state energy of
auxiliary system. One of these formulas was derived bef
in Ref. 14, and a limiting case of another one was discus
in Refs. 12 and 13. Here we present a unified approach to
problem, from which these results emerge as special ca

FIG. 2. The sample embedded in a ring formed by joining
left and right leads of the system in Fig. 1. Magnetic fluxF pen-
etrates the ring.
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A. Formulas relating conductance to single-electron energy
levels

Let us consider eigenstates of an electron moving o
ring system introduced in the previous section. We will
interested only in energies of these states and not in the
cise form of wavefunctions. The energy of an electron o
ring penetrated by a magnetic fluxf depends only on the
magnitude of the flux and therefore, any vector potential f
filling condition ~9! is good for our purpose. We choose
vector potential constant everywhere except between sitei 0
and i 011, both in the lead part of the ring as shown in F
2. The hopping matrix element between the two sites is t
modified tot0eif. With no flux penetrating the ring, the elec
tron’s wave function in the lead part of the system isaeiki

1be2 iki , wherek is the electron’s wave vector anda andb
are amplitudes determined by properties of the central
gion. If there is a flux through the ring, the wave function
modified. The Schro¨dinger equations for sitesi 0 and i 011
show us that the appropriate form isaeiki1be2 iki for i< i 0
and ae2 ifeiki1be2 ife2 iki for i . i 0. The scattering matrix
of the central region provides a relation between coefficie
a andb,

S be2 ifeikN

a D 5S r k tk8

tk r k8
D S ae2 ife2 ikN

b D . ~12!

The elements of the scattering matrix,tk andr k (tk8 andr k8),
are the transmission and reflection amplitudes for electr
coming from the left~right! lead, andN is the number of
sites in the lead part of the ring. We added phase fac
e6 ikN to the ‘‘left lead’’ amplitudes to compensate for th
phase difference an electron accumulates as it travels thro
the lead part of the ring. The scattering matrix defined t
way does not depend onN andf, and equals the scatterin
matrix of the original, two-lead system. Equation~12! is a
homogeneous system of linear equations, solvable only if
determinant is zero. Using the unitarity property of the sc
tering matrix, the eigenenergy condition becomes

tk8e
if1tke

2 if5eikN1
tk

tk8*
e2 ikN. ~13!

We assume that the Hamiltonian of the original, two le
system obeys the time-reversal symmetry and therefore,
scattering matrix is symmetric,21 tk5tk8 . Expressing the
transmission amplitude in terms of its absolute value and
scattering phase shifttk5utkueiwk, we arrive at the final form
of the eigenenergy equation

utkucosf5cos~kN2wk!. ~14!

In Fig. 3 a graphical representation of this equation
presented.

To extract the transmission probabilityutku2, we proceed
by differentiating the eigenvalue equation with respect
cosf

e

2-3
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]utku
] cosf

cosf1utku52sin~kN1wk!S N
]k

] cosf
1

]wk

] cosf D
56A12utku2 cos2f

3S N
]k

] cosf
1

]wk

] cosf D . ~15!

The sign of the last expression depends on weatherk belongs
to a decreasing~1! or an increasing~2! branch of the cosine
function in Eq.~14!, or equivalently, if we are interested i
an eigenstate with odd~1! or even~2! n, wheren indexes
the eigenstates from the one with the lowest energy upw
Let us choose an eigenstate and consider how the co
sponding wave vectork changes as the magnetic fluxf is
varied from 0 top. It is evident that the variation ink is of
the order of 1/N as the cosine function in the right-hand si
of Eq. ~14! oscillates with such a period. Let as assume t
the number of sites in the ring is large enough that transm
sion amplitude does not change appreciably in this interv

U]tk

]kUpN !1. ~16!

Then the derivatives ]k/] cosf, ]utku/] cosf and
]wk /] cosf are of the order of 1/N and Eq.~15! simplifies
to

utku56A12utku2 cos2fN
]k

] cosf
1OS 1

ND . ~17!

Introducing the density of states in the leadsr(«)5(1/p)
3(]k/]«), which, for example, for a tight-binding lea
with only nearest-neighbor hoppingt0 and dispersion«k

522t0cosk equals 1/(pA4t0
22«k

2), we finally obtain

] arccos~7ut~«k!ucosf!

] cosf
5pNr~«k!

]«k

] cosf
, ~18!

wheret(«k)5tk . The condition Eq.~16! of validity can also
be expressed in a form involving energy as a variable

FIG. 3. A graphical representation of the eigenvalue equa
~14!. The shaded region represents the allowed values of the
hand side of the equation for different values of magnetic flux~for
example, the dashed line shows the values forf5p/4!. The full line
represents the right-hand side of the eigenvalue equation. The
tem is presented in Fig. 7,N5100.
03534
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U]t~«!

]« U. ~19!

Equation~18! is the central result of this work. It expresse
the transmission probabilityut(«)u2 of a sample connected t
two leads in terms of the variation of single-electron ene
levels with magnetic flux penetrating the auxiliary ring sy
tem. Employing the Landauer–Bu¨ttiker formula Eq. ~11!,
this result also provides the zero-temperature conductanc
the system. From the derivation it is evident that the meth
becomes exact as we approach the thermodynamic l
N→`.

In general Eq.~18! has to be solved numerically to obta
the transmission probability on a discrete set of ene
points, one for each energy level of a system. By increas
the system sizeN, the density of these points increases a
the errors decrease, as the condition~19! is fulfilled better.
We will return to this point in Sec. V where we consider th
convergence issues in detail. Here we present some sp
cases of Eq.~18! where analytic expressions can be obtain
By averaging the equation over values of fluxf between
f50 andf5p @note that we may treatut(«k)u andr(«k) as
constant while averaging as the resulting error is of the or
of 1/N], we can relate the transmission probability to t
average magnitude of the derivative of a single-electron
ergy with respect to the flux:

ut~«k!u25sin2S p2

2
Nr~«k!U]«k

]f U D . ~20!

Note that it is enough to calculate the energy levels atf50
and f5p to calculate the transmission probability a
u]«k /]fu5(1/p)u«k(p)2«k(0)u. In Fig. 4~a! it is illustrated
how a large variation of single-electron energy as the flux
changed fromf50 to f5p corresponds to a large condu
tance and vice versa. The transmission probability can a
be calculated from the derivative atf5p/2 resulting in the
second formula

ut~«k!u25S pNr~«k!
]«k

]f U
f5p/2

D 2

. ~21!

Again, Fig. 4~a! shows that there is a correspondence
tween a large sensitivity of a single-electron energy to
flux at f5p/2, and a large conductance. Finally, we obse
that the curvature of energy levels atf50 and f5p also
gives information of conductance. The third formula read

ut~«k!u2512
1

11S pNr~«k!
]2«k

]f2 U
f50,p

D 2 . ~22!

B. Formulas relating conductance to the ground-state energy

Above we showed how the flux variation of the energy
the last occupied single-electron state allows one to calcu
the zero-temperature conductance through a noninterac
sample. The goal of this section is to derive an alternative
of formulas, expressing the zero-temperature conductanc

n
ft-

ys-
2-4
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terms of the flux variation of the ground-state energyE,
which for an even number of electrons in a noninteract
system is simply a sum of single-electron energies up to
Fermi energy«F , multiplied by 2 because of the electron
spin

E52 (
«n<«F

«n . ~23!

We will show that the transmission probability at the Fer
energyut(«F)u2 is related to the ground-state energy of t
ring system

1

p

] arccos2~7ut~«F!ucosf!

] cosf
5pNr~«F!

]E

] cosf
, ~24!

where the sign is2 and1 for an odd and an even number
occupied single-electron states, respectively. The expres
Eq. ~24! is evidently correct if there are no electrons in t
system, as it gives a zero conductance in this case. To p
the formula for other values of the Fermi energy, we use
principle of the mathematical induction. To simplify the n
tation we introduce

f s~«n!5N
]«n

] cosf
5

1

pr~«n!

] arccos~sut~«n!ucosf!

] cosf
,

~25!

FIG. 4. ~a! Single-electron energy levels~full lines! and the
ground-state energies when a given single-electron level is a
Fermi energy~dashed lines!. Ground-state energies are shifted
that both curves coincide forf5p/2. Note that the energy curve
are symmetric aboutf50 as required by Eq.~10!. The shaded area
represents the magnitude of the transmission amplitude. The sy
and the energy interval is the same as in Fig. 3.~b!, ~c! The largeN
universal form of the ground-state energy vs flux curve for an e
~b! and an odd~c! number of electrons in a system. The magnitu
of the transmission amplitude goes from 0 to 1 in steps of 0.1.
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Fs~«n!5N
]En

] cosf
5

1

p2r~«n!

] arccos2~sut~«n!ucosf!

] cosf
,

~26!

where En is the ground-state energy of a system with t
Fermi energy at«n ands is either 1 or21, depending on the
signs in Eqs.~18! and ~24!. Differentiating the relationEn
5En2112«n with respect to cosf, expressing the result in
terms of functionsf s andFs introduced above, and makin
use of the fact that the signs alternates withn, we obtain

Fs~«n!5F2s~«n21!12 f s~«n!. ~27!

If we manage to show that this really is an identity, we ha
a proof of Eq. ~24!. Using the exact relationFs(«)
2F2s(«)52 f s(«), the expression transforms into

Fs~«n!5Fs~«n!2@F2s~«n!2F2s~«n21!#. ~28!

For a large number of sitesN in the ring and correspond
ingly, a small separation of single-electron energy lev
which is of the order of 1/N, the term in parentheses equa
F2s8 («n)(«n2«n21). F2s8 («n) can be factored intosF̃(«n)

whereF̃(«n) does not depend on signs. Therefore, although
the term in parentheses in of the order of 1/N, its sign alter-
nates for successive energy levels while its amplitude s
the same. Thus the error induced by this term does not a
mulate, it just adds an additional error of the order of 1/N to
the final result.

In Fig. 4~a!, the variation of the ground-state energi
with magnetic flux is compared to the variation of the cor
sponding single-electron energies. Note that as a co
quence of Eq.~24!, the ground-state energy in the largeN
limit takes a universal form@see Fig. 4~b!#

E~f!2ES p

2 D5
1

p2Nr~«F!

3S arccos2~7ut~«F!ucosf!2
p2

4 D .

~29!

For systems with an odd number of electrons, the grou
state energy is obtained by adding a single-electron ene
corresponding to Eq.~18! and the universal form reads@see
Fig. 4~c!#

E~f!2ES p

2 D5
1

p2Nr~«F!
arcsin2~ ut~«F!ucosf!. ~30!

In general, Eq.~24! can only be solved numerically to
obtain the transmission probability. However, as was the c
for single-electron energies, analytic solutions can be fou
in certain special cases. The derivative of the ground-s
energy with respect to flux gives the persistent current in
ring j 5(e/\)(]E/]f).22,23 Using the Landauer–Bu¨ttiker
formula Eq. ~11!, one can calculate the conductance fro
the flux averaged magnitude of the persistent current in
system
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n
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ut~«F!u25sin2S p2\

2e
Nr~«F!u j ~f!u D . ~31!

Only two ground-state energy calculations need to be p
formed to obtain the conductance as

\

e
u j ~f!u5

1

p
uE~p!2E~0!u.

This formula was also discussed in Refs. 12 and 13 for
case where the transmission probability is small. The sec
formula relates the conductance to the persistent curren
f5p/2,14,24

ut~«F!u25S p\

e
Nr~«F! j S p

2 D D 2

. ~32!

The third formula, corresponding to Eq.~22! in the single-
electron case, turns out to be more complicated and give
implicit relation for ut(«F)u

pNr~«F!
]2E

]f2U
min,max

56
2ut~«F!u

pA12ut~«F!u2
arccos~6ut~«F!u!.

~33!

Here the upper and the lower signs correspond to the se
derivative at a minimum and at a maximum of the energy
flux curve, respectively. Minima~maxima! occur atf50~p!
if an odd number of single-electron levels is occupied a
at f5p~0! if an even number of levels is occupied. Th
second derivative in a minimum is proportional to the cha
stiffnessD5(N/2)]2E/]f2umin of the system.18,25 We can
also define the corresponding quantity for a maximum asD̃
52(N/2)]2E/]f2umax. In general, Eq.~33! has to be solved
numerically. However, in the limit of a very small condu
tance and in the vicinity of the unitary limit, additional an
lytic formulas are valid

ut~«F!u5H 2pr~«F!D, ut~«F!u→0,

1

2
1

3p

4
2pr~«F!D, ut~«F!u→1.

~34!

Note that there is a quadratic relation between the cond
tance and the charge stiffness in the low conductance li
The corresponding formulas for the maximum of the ene
vs flux curve are

ut~«F!u5H 2pr~«F!D̃, ut~«F!u→0,

12
2

~2pr~«F!D̃ !2
, ut~«F!u→1.

~35!

A detailed analysis of convergence properties of the formu
derived in this section is presented Sec. V.

We stress again that the validity of these formulas is ba
on an assumption that the number of sites in the ring
sufficiently large according to the condition Eq.~19!. This
means that ift(«) exhibits sharp resonances, the calculat
has to be performed on such a large auxiliary ring sys
that in the energy interval of interest~the width of the reso-
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nance! there is a large number of eigenenergies«n . Then
t(«);t(«n8), where«n8 is the eigenenergy closest to«. Such
sharp resonances int(«) are expected e.g. in chaoti
systems.26,27 The present method might be impractical~but
still correct! in this case.

IV. CONDUCTANCE OF AN INTERACTING SYSTEM

The zero-temperature conductance of a noninterac
system can thus be determined with the transmission p
ability obtained from one of the formulas we derived in t
preceding section, and the Landauer–Bu¨ttiker formula. The
main challenge, however, remains the question of the va
ity of this type of approach for interacting systems. In th
section we give arguments why the approach is correct fo
class of interacting systems exhibiting Fermi liquid prop
ties. In order to reach this goal, we present four essen
steps as follows.

Step 1. Conductance of a Fermi liquid system atTÄ0

The basic property that characterizes Fermi liqu
systems28 is that the states of a noninteracting system
electrons are continuously transformed into states of the
teracting system as the interaction strength increases f
zero to its actual value. One can then study the propertie
such a system by means of the perturbation theory, regar
the interaction strength as the perturbation parameter.
concept of the Fermi liquid was first introduced fo
translation-invariant systems by Landau,29,30 and was later
also extended to systems of the type we study here.31

The linear response conductance of a general interac
system of the type shown in Fig. 1 can be calculated from
Kubo formula9,32

G5 lim
v→0

ie2

v1 id
P II~v1 id!, ~36!

whereP II(v1 id) is the retarded current-current correlatio
function

P II~ t2t8!52 iu~ t2t8!^@ I ~ t !,I ~ t8!#&. ~37!

For Fermi liquid systems atT50, the current–current cor
relation function can be expressed in terms of the Gree
functionGn8n(z) of the system and the conductance is giv
with9

G5
2e2

h U 1

2 ipr~«F!
e2 ikF(n82n8)Gn8n~«F1 id!U2

, ~38!

wheren andn8 are sites in the left and the right lead, respe
tively. One candefinethe transmission amplitude as

t~«![
1

2 ipr~«!
e2 ik(n82n)Gn8n~«1 id!, ~39!

and the conductance formula Eq.~38! then reads

G5
2e2

h
ut~«F!u2. ~40!
2-6
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For noninteracting systems,t(«) defined this way reduces t
the standard transmission amplitude~Fisher-Lee relation33!
and Eq.~40! represents the Landauer–Bu¨ttiker formula. In
the next step, we will show that the transmission amplitu
Eq. ~39! has a direct physical interpretation also for intera
ing systems, being the transmission amplitude of Fermi
uid quasiparticles.

Step 2. Quasiparticle Hamiltonian

In this step, we generalize the quasiparticle approxima
to the Green’s function, presented for the single-impur
Anderson model in Ref. 34, to the case where the interac
is present in more than a single site.

In Fermi liquid systems obeying the time-reversal sy
metry, the imaginary part of the retarded self-energy aT
50 vanishes at the Fermi energy and is quadratic for
quencies close to the Fermi energy.35,36 Using the Fermi en-
ergy as the origin of the energy scale, i.e.,v2«F→v, we
can express this as

Im S~v1 id!}v2. ~41!

Close to the Fermi energy, the self-energy can be expan
in powers ofv resulting in an approximation to the Green
function,

G21~v1 id!5v12H(0)2S~01 id! ~42!

2v
]S~v1 id!

]v U
v50

1O~v2!.

~43!

HereH(0) contains matrix elements of the noninteracting p
of the Hamiltonian~2!. Note that expansion coefficients a
real because of Eq.~41!. Let us introduce the renormalizatio
factor matrixZ as

Z21512
]S~v1 id!

]v U
v50

. ~44!

The Green’s function forv close to the Fermi energy ca
then be expressed as

G21~v1 id!5Z21/2G̃21~v1 id!Z21/21O~v2!, ~45!

where we defined the quasiparticle Green’s function

G̃21~v1 id!5v12H̃ ~46!

as the Green’s function of anoninteracting quasiparticle
Hamiltonian

H̃5Z1/2@H(0)1S~01 id!#Z1/2. ~47!

Note that factoring the renormalization factor matrix as
did above ensures the hermiticity of the resulting quasipa
cle Hamiltonian.

Matrix elements ofZ differ from those of an identity ma
trix only if they correspond to sites of the central region.
other cases, as the interaction is limited to the central reg
the corresponding self-energy matrix element is zero. Th
03534
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fore, comparing the quasiparticle Hamiltonian to the non
teracting part of the real Hamiltonian, we observe that
effect of the interaction is to renormalize the matrix eleme
of the central region Hamiltonian~4! and those correspond
ing to the hopping between the central region and the le
~7!. The values of the renormalized matrix elements dep
on the value of the Fermi energy of the system.

Let us illustrate the ideas introduced above for the cas
the standard Anderson impurity model.34 We calculated the
self-energy in the second-order perturbation the
approximation37–39 and constructed the quasiparticle Ham
tonian according to Eq.~47!. In Fig. 5 the local spectra
functions corresponding to both the original interacti
Hamiltonian and the noninteracting quasiparticle Ham
tonian are presented. The agreement of both results is pe
in the vicinity of the Fermi energy where the expansion~43!
is valid.

The reason for introducing the quasiparticle Hamiltoni
is to obtain an alternative expression for the conductanc
terms of the quasiparticle Green’s function. Equation~45!
relates the values of the true and the quasiparticle Gre
function at the Fermi energy,

G~01 id!5Z1/2G̃~01 id!Z1/2. ~48!

Specifically, if bothn and n8 are sites in the leads,Gn8n(0
1 id)5G̃n8n(01 id) as a consequence of the properties
the renormalization factor matrixZ discussed above. Equa
tion ~39! then tells us that the zero-temperature conducta
of a Fermi liquid system is identical to the zero-temperat
conductance of a noninteracting system defined with the q
siparticle Hamiltonian for a given value of the Fermi energ

Step 3. Quasiparticles in a finite system

The conclusions reached in the first two steps are ba
on an assumption of the thermodynamic limit, i.e., they
valid if the central region is coupled to semiinfinite lead
Here we generalize the concept of quasiparticles to a fi

FIG. 5. TheT50 local spectral function and the correspondi
quasiparticle approximation for the Anderson impurity model
shown in Fig. 9. The values of parameters aret150.4t0 , U
51.92t0 and «d52U/2. The calculations were performed withi
the second-order perturbation theory as described in Appendix
2-7
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ring system withN sites andM electrons, threaded by
magnetic fluxf. Let us define the quasiparticle Hamiltonia
for such a system,

H̃~N,f;M !5Z1/2@H(0)~N,f!1S~01 id!#Z1/2. ~49!

Here the self-energy and the renormalization factor ma
are determined in the thermodynamic limit where, as
prove in Appendix A, they are independent off and corre-
spond to those of an infinite two-lead system.

Suppose now that we knew the exact values of the re
malized matrix elements in the quasiparticle Hamilton
~49!. As this is a noninteracting Hamiltonian, we could th
apply the conductance formulas of the preceding sectio
calculate the zero-temperature conductance of an infi
two-lead system with the same central region and cen
region-lead hopping matrix elements, i.e., of a system
scribed with the quasiparticle Hamiltonian~47!. As shown in
step 2, this procedure would provide us with the exact c
ductance of the original interacting system. However, to
tain the values of the renormalized matrix elements, o
needs to calculate the self-energy of the system, which
difficult many-body problem. In the next step, we will sho
that there is an alternative and easier way to achieve
same goal.

In Fig. 6 we compare the spectral density of an Anders
impurity embedded in a finite ring system to that of the c
responding quasiparticle Hamiltonian~49!. Note that the

FIG. 6. ~a! TheT50 local spectral function as in Fig. 5, but fo
a ring system withN5400 sites and fluxf53p/4. ~b! The spectral
function in the vicinity of the Fermi energy~dashed lines! compared
to that corresponding to the quasiparticle Hamiltonian~49!. Both
the spectral density of the interacting system and the matrix
ments of the quasiparticle Hamiltonian were calculated within
second order perturbation theory.
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spectral density of the quasiparticle Hamiltonian correc
describes the true spectral density in the vicinity of the Fe
energy.

Step 4. Validity of the conductance formulas

In this last step we finally show how to calculate the co
ductance of an interacting system. In Appendix A we stu
the excitation spectrum of a finite ring system threaded w
a magnetic flux and containing a region with interaction. W
show that

E@N,f;M11#2E@N,f;M #5 «̃~N,f;M ;1!1O~N23/2!,
~50!

whereE(N,f;M ) and E(N,f;M11) are the ground-state
energies of the interacting Hamiltonian for a ring syste
with N sites and fluxf, containingM and M11 electrons,
respectively, and«̃(N,f;M ;1) is the energy of the firs
single-electron level above the Fermi energy of the finite r
quasiparticle Hamiltonian~49!. This estimation allows one to
use single-electron formulas of Sec. III A to calculate t
zero-temperature conductance for a Fermi liquid system.
showed in step 3 that inserting«̃(N,f;M ;1) into these for-
mulas would give us the correct conductance. Equation~50!
proves, that the same result is obtained if the difference
the ground state energies of an interacting syst
E@N,f;M11#2E@N,f;M # is inserted into a formula in-
stead. The estimated error, which is of the order ofN23/2, is
for a largeN negligible, because it is much smaller than t
quasiparticle level spacing, which is of the order of 1/N.

As demonstrated in Sec. III B, the conductance of a n
interacting system can also be calculated from the varia
of the ground-state energy with flux through the ring. T
proof of the formulas involved only the properties of a set
neighboring single-electron energy levels. We assumed
validity of single-electron conductance formulas for each
these levels and made use of the fact that the ground-s
energy of the system increases by a sum of the relev
single-electron energies as the levels become occupied
additional electrons. For Fermi liquid systems, the first
sumption was proved above. The second assumption, w
for noninteracting systems is obvious, is proved in Appen
A. There we show that as a finite number of additional el
trons is added to an interacting system, the succes
ground-state energies are determined by the single-elec
energy levels of the same quasiparticle Hamiltonian with
very good accuracy~A1!. Therefore, the proof of Sec. III B
is also valid for interacting Fermi liquid systems, provided
system is the Fermi liquid for all values of the Fermi ener
below its actual value.

V. NUMERICAL TESTS OF THE METHOD

A. Noninteracting system

In this section we discuss the convergence propertie
the conductance formulas derived in Sec. III. As a test s
tem we use a double-barrier potential scattering problem
sented in Fig. 7. Results of various formulas for differe
number of sites in the ring are presented in Fig. 8. The ex

e-
e

2-8
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zero-temperature conductance for this system exhibit
sharp resonance peak superimposed on a smoother b
ground conductance. We notice immediately that as the n
ber of sites in the ring increases, the convergence is gene
faster in the region where the conductance is smooth tha
the resonance region, which is consistent with the condi
~19!. Comparing the results obtained employing differe
conductance formulas we observe that the convergence i
fastest in both the single-electron and the ground-state
ergy case if the formulas of Eqs.~22! and~33! are applied to
the maximum of the energy vs flux curve~or to the minimum
in the single-electron case!. Formulas of Eqs.~20! and ~31!
expressing the conductance in terms of the difference of
energies atf50 andf5p converge somewhat slower. No
however that in the former case the second derivative of
energy with respect to the flux has to be evaluated while
the later, the energy difference is large and because of
the calculation is much more well behaved. From the co
putational point of view there is another advantage of
energy difference formulas. In this case, all the matrix e
ments can be made real if one chooses such a vector p
tial that only one hopping matrix element if modified by th
flux as then the additional phase factor ise6 ip521. Finally,
the remaining formulas, employing the slope of the energy
flux curve atf5p/2 and the curvature in the minimum of th

FIG. 7. A double barrier noninteracting system. The height
the barriers is 0.5t0, where t0 is the hopping matrix element be
tween neighboring sites.
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ground-state energy vs flux curve, do not show converge
properties comparable to those of the formulas discus
above.

B. Anderson impurity model

In 1980s several theories40,41 were put forward proposing
a realization of the Anderson impurity model19 in systems
consisting of a quantum dot coupled to two leads~see Fig.
9!. These theories show that the topmost occupied ene
level in a quantum dot with an odd number of electrons c
be associated with the Anderson model«d level and such a
system should mimic the old Kondo problem of a magne
spin 1

2 impurity in a metal host. In recent years signatures
the Kondo physics in electron transport through quant
dots have also been found experimentally.42,43The Anderson
model is well defined and is an attractive testing ground
new numerical and analytical methods that are develope
tackle other challenging many-body problems. Therefore,
will also take it as a nontrivial example to test results of t
conductance formulas we derived in this paper.

There are three distinct parameter regimes of the And
son model. If «d,«F,«d1U with u«d1U2«Fu@D and
u«d2«Fu@D, whereD is the coupling of the quantum dot t
leads, we are in the Kondo regime. In this regime, a narr
Kondo resonance is formed in the spectral function at

f
FIG. 9. The Anderson impurity model realized as a quantum

coupled to two leads. The dot is described with the energy leve«d

and the Coulomb energy of a doubly occupied levelU. t1 is the
hopping between the dot and leads.
-
ves
ws
he
on

for-
d

ng
FIG. 8. Exact and approximate zero
temperature conductance vs Fermi energy cur
for the system in Fig. 7. The shaded area sho
the exact result. The left set of figures shows t
approximations obtained using the single-electr
formulas of Sec. III A while the right set of fig-
ures corresponds to the ground-state energy
mulas of Sec. III B. Different curves correspon
to different number of sitesN in the ring. In (a1)
and (a2) the conductance was calculated usi
Eqs. ~20! and ~31!, in (b1) and (b2) using Eqs.
~21! and~32!, while in the other figures Eqs.~22!
and ~33! were used, in (c1) and (c2) applied to
the maximum and in (d1) and (d2) to the mini-
mum of energy vs flux curves.
2-9



nd
so

b
m

c
a
im
th

in
e

h
a
.

w
an
n

er
th

ee
ne
u

c

d

the
ites

to
ility

ce

the
the
ded

x-
ns
ult.
e at-
od.
an-

ro
in

ns
ith

ring
mpty

cal-
ia-
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Fermi energy for temperatures below and close to the Ko
temperature, which corresponds to the width of the re
nance. The zero-temperature conductance in the Kondo
gime reaches the unitary limit of 2e2/h. Letting either«d or
«d1U approach the Fermi energy so thatu«d1U2«Fu or
u«d2«Fu becomes comparable withD, we enter the mixed
valence regime where the charge fluctuations on the dot
come important. In this regime, the resonance beco
wider and merges with the resonance corresponding to«d or
«d1U levels. More important for our discussion is the fa
that the resonance moves away from the Fermi energy
therefore, the conductance drops as we enter this reg
Finally, there are two nonmagnetic regimes, one in which
‘‘impurity’’ level is predominately empty, «d2«F@D,
known as the empty orbital regime, and the correspond
regime where the dot is doubly occupied. In these regim
the conductance drops toward zero.

In Fig. 10 the zero-temperature conductance throug
quantum dot acting as an Anderson impurity is presented
compared to exact results of the Bethe ansatz approach44,45

To calculate the conductance, Eq.~31! was used, with the
ground-state energies atf50 andf5p obtained using the
variational method presented in Appendix B. There are t
variational parameters defining the auxiliary Hamiltoni
~B1!, one describing the effective energy level on the dot a
the other renormalizing hoppings into the leads. Two diff
ent variational basis sets were used in calculations. In
first set, the basis consisted of wave functions~B2!. As a
result of the rotational symmetry in the spin degree of fr
dom, two of the basis functions may be merged into o
Therefore, the basis set consisted of projections of the a
iliary Hamiltonian ground stateu0̃& to states with empty
P0u0̃&, singly occupiedP1u0̃&5P↑u0̃&1P↓u0̃& and doubly
occupiedP2u0̃& dot level. In the second basis set, wave fun
tions P1VP0u0̃&, P0VP1u0̃&, P2VP1u0̃&, and P1VP2u0̃&
~B7! were added to those of the first set, withV5VL1VR
being the operator describing the hopping between the

FIG. 10. The zero-temperature conductance calculated f
ground-state energy vs magnetic flux in a finite ring system us
the variational method of Appendix B with 3 and 7 basis functio
For comparison, the exact Bethe ansatz result is presented w
dashed line. The system shown in Fig. 9 was used, withU
50.64t0 and t150.2t0.
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and the leads~7!. For each position of the«d level relative to
the Fermi energy, we increased the number of sites in
ring until the conductance converged. The number of s
needed to achieve convergence@see Fig. 11~a!# was the low-
est in the empty orbital regime and the highest~about 1000
for the system shown in Fig. 10! in the Kondo regime. This
is a consequence of Eq.~19! as a narrow resonance related
the Kondo resonance appears in the transmission probab
of the quasiparticle Hamiltonian~47! in the Kondo regime.
In the mixed valence regime, the width of the resonan
becomes comparable toD, which is much larger than the
Kondo temperature and the convergence is thus faster. In
empty orbital regime the resonance moves away from
Fermi energy and an even smaller number of sites is nee
to achieve convergence.

Let us return to results shown in Fig. 10. Note that e
tending the variational space from 3 to 7 basis functio
significantly improves the agreement with the exact res
The remaining discrepancy at the larger basis set can b
tributed to the approximate nature of the variational meth
Another source of error could be the fact that the Bethe

m
g
.
a

FIG. 11. ~a! Results of conductance calculations using Eq.~31!
for the system presented in Fig. 10 as the number of sites in the
increases. Note that the convergence is the fastest in the e
orbital regime and the slowest in the Kondo regime.~b! Finite-size
scaling analysis of the same results for various values of«d . With
black dots, the Bethe ansatz values are shown. Energies were
culated using the variational method of Appendix B with 7 var
tional basis functions.
2-10
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satz solution assumes there is a constant coupling to an
nitely wide conduction band. In our case, the conduct
band is formed by the states in a tight-binding ring, the c
pling to which is not constant. However, it is almost const
in the energy interval we are interested in, i.e., near the c
ter of the band. In order to estimate the effect of the nonc
stant coupling on the conductance, we calculated the dot
cupation number within the second order perturbation the
for both the case of a constant coupling and for the case
tight-binding ring. We then calculated the conductance
each case making use of the Friedel sum rule.46 The agree-
ment is significantly better than the difference between
Bethe ansatz and variational conductance curves in Fig.
Therefore, we believe that the use of Bethe ansatz resul
justified for this particular problem.

In Fig. 11~b! a finite-size scaling analysis of the conve
gence is presented. Note that for rings with a large numbe
sitesN, the error scales approximately as 1/N.

C. Double quantum dot

The next logical step after studying individual quantu
dots is to consider systems of more than one dot. Sin
quantum dots are often regarded as artificial atoms bec
of a similar electronic structure and comparable numbe
electrons in them. By coupling several quantum dots on
thus creating artificial molecules. Here we will not go in
detail in describing the physics of such systems. Our goa
to compare results of our conductance formulas to result
other methods for a double quantum dot system presente
Fig. 12.

In the calculation we again employed the conducta
formula ~31! and calculated the ground-state energies w
the variational approach of Appendix B with the variation
basis set~B2!. In Fig. 13 the zero-temperature conductan
for the case where the inter-dot and the on-site Coulo
repulsionsV and U are of the same size, are plotted as
function of the position of dot energy levels relative to t
Fermi energy for various values of the inter-dot hopping m
trix elementt2. The same problem in the particle-hole sym
metric case«d1(U/2)1V50 was studied recently in Ref. 8
The Matsubara Green’s function was calculated with
quantum Monte Carlo method and the values on disc
frequencies were extrapolated to obtain the retarded Gre
function at the Fermi energy. Then Eqs.~40! and ~39! were
used to calculate the zero-temperature conductance. Th
sults are presented in Fig. 14, together with the conducta
calculated within the Hartree–Fock approximation and
sults of our method. The agreement with the QMC result
excellent, while the Hartree–Fock approximation gives
qualitatively wrong conductance curve, especially at low v

FIG. 12. A double quantum dot system. Each of the dots w
energy level«d and on-site Coulomb repulsionU is coupled to a
lead with a hopping matrix elementt1. The inter-dot hoppingt2 is
also present as is the inter-dot Coulomb repulsionV.
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ues of the inter-dot coupling, indicating strong electro
electron correlations in the system. The results of our met
for lower values ofV are also shown in Fig. 14.

VI. SUMMARY AND CONCLUSIONS

We have demonstrated how the zero-temperature con
tance of a sample with electron-electron correlations a
connected between noninteracting leads can be determ
The method is extremely simple and is based on several
mulas connecting the conductance to persistent currents i
auxiliary ring system. The conductance is determined o
from the ground-state energy of an interacting system, w
in more traditional approaches, one needs to know
Green’s function of the system. The Green’s function a
proaches are often much more general, allowing the tr
ment of transport at finite temperatures and for a fin

h

FIG. 13. The zero-temperature conductance of the system
Fig. 12 as a function of the position of the dot energy level«d and
inter-dot hopping matrix elementt2. The remaining parameters ar
U5V5t0 and t150.5t0.

FIG. 14. The zero-temperature conductance of the double q
tum dot system of Fig. 12 at«d1(U/2)1V50 as a function of the
inter-dot hopping matrix elementt2 for various values of the inter-
dot Coulomb interactionV. As a comparison, the Hartree–Fock an
quantum Monte Carlo results~Ref. 8! are presented forV/t051.
Other parameters are the same as in Fig. 13.
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source-drain voltage applied across the sample, which in
method is not possible. However, the advantage of
present method comes from the fact that the grou
state energy is often relatively simple to obtain by vario
numerical approaches, including variational methods,
could therefore, for zero-temperature problems, be m
appropriate.

Let us summarize the key points of the method:
~1! The ‘‘open’’ problem of the conductance through

sample coupled to semiinfinite leads is mapped on t
‘‘closed’’ problem, namely a ring threaded by a magne
flux and containing the same correlated electron region.

~2! For a noninteracting sample, it is shown that the ze
temperature conductance can be deduced from the varia
of the energy of the single-electron level at the Fermi ene
with the flux in a large, but finite ring system. The condu
tance is given with Eq.~18!, or with three simple formulas
Eq. ~20!, Eq. ~21! and Eq.~22!.

~3! Alternatively, the conductance of a noninteracting s
tem is expressed in terms of the variation of the ground-s
energy with flux, Eq.~24!. Three additional conductance fo
mulas, Eq.~31!, Eq. ~32! and Eq.~33!, are derived.

~4! The method is primarily applicable to correlated sy
tems exhibiting Fermi liquid properties at zero temperatu
In order to prove the validity of the method for such system
the concept of Fermi liquid quasiparticles is extended to
nite, but large systems. The conductance formulas give
conductance of a system of noninteracting quasipartic
which is equal to the conductance of the original interact
system. The ground-state energy is a universal function
the magnetic flux and the conductance is the only param
@Eqs.~29! and ~30!#.

~5! The results of our method are compared to results
other approaches for problems such as the transport thro
single and double quantum dots containing interacting e
trons. The comparison shows an excellent quantitative ag
ment with exact Bethe ansatz results in the single quan
dot case. The results for a double quantum dot system
perfectly match QMC results of Ref. 8.

~6! One should additionally point out that in the deriv
tion presented in this paper we assumed the interaction in
leads to be absent. It is clear that this assumption is
justified for all systems. The method cannot be direc
applied to systems where the interaction in the leads
essential, as are, e.g., systems exhibiting Luttinger liq
properties.

~7! The validity of the method is not limited to system
that do not break the time-reversal symmetry. A general
tion to systems with a broken time-reversal symmetry, s
as Aharonov–Bohm rings coupled to leads, is possible
will be presented elsewhere.47

~8! Another important limitation of the present method
the single channel approximation for the leads. It might
possible to extend the applicability of the method to syste
with multichannel leads by studying the influence of seve
magnetic fluxes that couple differently to separate chann
This way, one might be able to probe individual matrix e
ments of the scattering matrix and derive conductance
mulas relevant for such more complex systems.
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Note added.After the present work was completed th
authors met R. A. Molina and R. A. Jalabert who report
about their recent unpublished work where an approach s
lar to our work is presented.13,48
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APPENDIX A: FERMI LIQUID IN A FINITE SYSTEM

In Sec. IV we based the proof of the validity of the co
ductance formulas for Fermi liquid systems on the assum
tion that

E~N,f;M1m!5E~N,f;M !

1(
i 51

m

«̃~N,f;M ; i !1O~N23/2!. ~A1!

Here E(N,f;M1m) and E(N,f;M ) are the ground-state
energies of an interactingN-site ring with fluxf, containing
M1m and M electrons, respectively.«̃(N,f;M ; i ) is a
single-electron energy of the ring quasiparticle Hamilton
H̃(N,f;M ) as defined in Eq.~49!, with the Fermi energy
corresponding toM electrons in the system. The indexi la-
bels successive single-electron energy levels above the F
energy. We assumem to be finite andN approaching the
thermodynamic limit. In this Appendix we will give argu
ments showing that the assumption of Eq.~A1! is indeed
valid. In Appendix A 1 we first express the problem in term
of the Green’s function of the system. In Appendix A 2 w
study the properties of the self-energy due to interaction
finite ring systems and then use this results to complete
proof in Appendix A 3.

1. Relation to the Green’s function

Assume we manage to prove Eq.~A1! for m51, i.e.,

E~N,f;M11!5E~N,f;M !1 «̃~N,f;M ;1!1O~N23/2!.
~A2!

Then we can use the same result to relate the energy
system withM12 electrons to that withM11 electrons,

E~N,f;M12!5E~N,f;M !1 «̃~N,f;M ;1!

1 «̃~N,f;M11;1!1O~N23/2!. ~A3!

Now the matrix elements of quasiparticle Hamiltonia
H̃(N,f;M11) andH̃(N,f;M ) differ by an amount of the
order of 1/N. To see this, note that the shift of the Ferm
energy as an electron is added to the system is of the ord
1/N, producing a shift of the same order in the self-ene
and it’s derivative at the Fermi energy, which define the q
2-12
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FIG. 15. Second-order self-energy diagram
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siparticle Hamiltonian through Eq.~49!. As the difference of
the HamiltoniansDH̃ is small, we can use the first orde
perturbation theory,

«̃~N,f;M11;1!5 «̃~N,f;M ;2!

1^N,f;M ;2uDH̃uN,f;M ;2&

5 «̃~N,f;M ;2!1O~N22!. ~A4!

In the last step we made use of the fact that the quasipar
Hamiltonians differ only in a finite number of sites in and
the vicinity of the central region, and of the fact that t
amplitude of the quasiparticle single-electron wave funct
uN,f;M ;2& is of the order of 1/AN. Thus we have proved
Eq. ~A1! for m52 and using the same procedure, we c
extend the proof to any finitem.

To complete the proof, we still need to show the valid
of Eq. ~A2!. As a first step, consider the Lehmann rep
sentation of the zero-temperature central region Gre
function

Gji ~ t,t8!52 iu~ t2t8!^0u@dj~ t !,di
†~ t8!#u0& ~A5!

of a ring system characterized withN and f, containingM
electrons,

Gji ~N,f;M ;z!5(
n

^0udj un&^nudi
†u0&

z2~En
M112E0

M !

1(
n

^0udi
†un&^nudj u0&

z2~E0
M2En

M21!
. ~A6!

The first sum runs over all basis states withM11 electrons,
while the second sum runs over the states withM21 elec-
trons. The difference in the ground-state energies of syst
with M11 andM electrons is evidently equal to the positio
of the first d-peak above the Fermi energy in the spect
density corresponding to the Green’s function. In what f
lows, we will try to determine the energy of thisd-peak.

2. Self-energy due to interaction

To achieve the goal we have set in the preceding sect
we first need to study the structure of the self-energy du
interaction in a finite ring with flux. Let us again consider t
Lehmann representation~A6! and to be specific, limit our-
selves to states above the Fermi energy. Introducingw j

n

5^0udj un& and«n5En
M112En

M , we can express the Green
function as
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Gji ~N,f;M ;z!5(
n

w j
nw i

n*

z2«n
. ~A7!

This expression can also be interpreted as a local Gre
function of a largernoninteractingsystem, consisting of the
central region and a bath of noninteracting energy levels,
number of which is equal to the number of multielectr
states withM11 andM21 electrons of the original inter
acting system. The self-energy due to ‘‘hopping out of t
central region,’’ which includes both the effects of the inte
action as well as those due to the hopping into the ring,
then be expressed as

S j i ~N,f;M ;z!5(
n

VjnVni

z2«n
, ~A8!

whereVjn are the ’’hopping matrix elements’’ between th
central region and the ‘‘bath.’’ Thus we have shown that,
far as the single-electron Green’s function is concerned,
interacting system can be mapped on a larger, but nonin
acting system.

To further clarify the concepts introduced above, we c
culated the self-energy due to interaction within the seco
order perturbation theory. Following the calculations by H
vatić, Šokčević and Zlatić37–39 for the Anderson model, we
sum the second order self-energy diagrams shown in Fig.
including Hartree and Fock terms into the unperturb
Hamiltonian. A lengthy but straightforward calculatio
which we do not repeat here, shows that one can identify
statesn of Eq. ~A8! with three Hartree–Fock single-electro
state indicesq5(q1 ,q2 ,q3) such thatq1 and q2 are above
the Fermi energy andq3 is below it ~or vice versa!, and a
spin indexs. The ‘‘bath’’ energy levels

«qs5«q1
1«q2

2«q3
~A9!

and the ‘‘hopping matrix elements’’ related to the self-ener
for electrons with spins

Vj qs55 (
k8

U jk8
ss̄w j

q1w
k8

q2w
k8

q3* , s5s̄,

1

A2
(
k8

U jk8
ss

@w j
q1w

k8

q22w j
q2w

k8

q1#w
k8

q3* , s5s

~A10!

are then expressed in terms of the Coulomb interaction
trix elements~5!, and the Hartree–Fock single-electron en
gies «q(N,f;M ) and the corresponding wave function
uwq(N,f;M )&. In Fig. 16 the positions ofd-peaks in the
imaginary part of the self-energy as a function of magne
2-13
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FIG. 16. Dashed lines show the positions
d-peaks~A9! in the second-order self-energy co
responding to single-electron energy levels of
unperturbed system presented with gray lines.
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flux through the ring are plotted. Note that as the flux
varied, the positions of the peaks fluctuate by an amoun
the order of the single-electron level spacing which is of
order of 1/N. The weights of the peaks also depend on
flux. A similar behavior is expected if higher order process
are also taken into account.

Finally, let us study the self-energy in the thermodynam
limit. We will show that in this case, the self-energy is ind
pendent of flux and is equal to the self-energy of the origin
two-lead system, shown in Fig. 1. To prove this stateme
we consider a self-energy Feynman diagram for the cen
region decoupled from the ring, which then is obviously
dependent of flux. To calculate the self-energy for the f
system, one should insert the self-energy due to hopping
the ring into each propagator of the diagram. The self-ene
due to hopping into the ring is

S j i
(0)~N,f;z!5(

k

VjkVki

z2«k
, ~A11!

where «k are the single-electron energy levels of the ri
decoupled from the central region andVki52cL

ktLi2cR
k tRi

is the hopping matrix element between sitei in the central
region and the single-electron statek in the ring.Vki is ex-
pressed in terms of the hopping matrix elementtLi between
the sitei and the ring siteL adjacent to the central region an
the single-electron wave functioncL

k5A(2/N11)sink at site
L, whereN is the number of sites in the ring. There is also
similar contribution toVki corresponding to the hopping int
the right lead. In the ring system, the right lead wave fu
tion can be expressed in terms of the left lead one ascR

k

5(21)ne2 ifcL
k with k5@np/(N11), if one takes into ac-

count the parity of the wave functions and the effect of
flux. Thus, Eq.~A11! transforms into

S j i
(0)~N,f;z!5S j i

(L)~N;z!1S j i
(R)~N;z!

1
2~ t jL tRie

2 if1t jRtLie
if!

N11 (
k

~21!n sin2 k

z2«k
,

~A12!

whereS j i
(L)(N;z) andS j i

(R)(N;z) are the self-energies due t
hopping into the left and the right leads~each withN sites! of
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the two-lead system. In the third term, one can perform
sum over oddn’s and over evenn’s separately. The sum
differ only in sign in theN→` limit and therefore, this term
vanishes. Therefore, in the thermodynamic limit the se
energy due to interaction is the same in both two-lead
ring systems.

3. Proof of Eq. „A2…

Positions ofd-peaks in the spectral density of the inte
acting system correspond to the single-electron energy le
of the noninteracting part of the ring Hamiltonian coupled
the ‘‘bath’’ according to Eq.~A8!. These energies can b
obtained by solving for zeroes of the determinant of the
verse of the ‘‘local’’ Green’s function

det@v12H(0)~N,f!2S~N,f;M ;v1 id!#50.
~A13!

What we are going to prove in this section is that the low
positive solution of this equation corresponds
«̃(N,f;M ;1) as required by Eq.~A2!.

We begin by separating the self-energy at frequenc
close to the Fermi energy into two contributions, one~S9!
due to the ‘‘bath’’ states close to the Fermi energy and
other ~S8! of all the other states with energies which a
separated from the expected solution of Eq.~A13! by at least
an amount of the order of the single-electron level spacingD,
which is of the order of 1/N. We first estimate the secon
term. Let us divide the frequency axis into intervals of wid
D, each contributing to the self-energy atuvu,D an amount
given by

E
«

«1D r~«!

v2«
d«, ~A14!

where r j i («)5(nVjnVnid(«2«n) if the notation of Eq.
~A8! is used. On average, this contribution corresponds
that of a system in the thermodynamic limit wherer~«! is a
continuous function and the magnitude of each contribut
is at most of the order of 1/N. To see this, let us assumer~«!
is proportional to«2 ~41! for all values of« up to a cutoff of
the order of 1. Such an approximation can be considere
the upper limit of possible values ofr~«! in Fermi liquid
systems, if one does not take into account the rapidly
2-14
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FIG. 17. The~a! real and~b! imaginary parts
of the self-energy of an interacting system in th
thermodynamic limit and for N5400 with
f53p/4. The system is described in Fig. 5.
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creasing tails at higher energies, which contribute a ne
gible amount to the self-energy at the Fermi energy. Eva
ating the above integral, we find that contributions of t
intervals close to the Fermi energy are of the order of 1N2

and contributions of the intervals near the cutoff are of
order of 1/N. Using an analogous procedure, we can a
evaluate the derivative of the self-energy close to the Fe
energy, with contributions

2E
«

«1D r~«!

~v2«!2
d«. ~A15!

In this case, also contributions corresponding to interv
close to the Fermi energy are of the order of 1/N. If r~«! for
a finite N is used instead, there are large fluctuations ab
the average value~see the discussion in the preceding s
tion! with the amplitude of fluctuations of the same order
magnitude as the average value itself. To estimate the di
ence between the finite-system’s real part of the self-ene
~or its derivative! close to the Fermi energy and the corr
sponding quantity for a system in the thermodynamic lim
we note that a sum ofN quantities, each of them of the orde
of 1/N with a standard deviation of the same order of ma
nitude, has a standard deviation of the order ofN21/2, and
therefore, we can estimate that foruvu,D

S8~N,f;M ;v1 id!5S~01 id!1O~N21/2!, ~A16!

]S8~N,f;M ;v1 id!

]v U
v

5
]S~v1 id!

]v U
v50

1O~N21/2!.

~A17!

Note that we do not need to exclude the contribution of
interval at the Fermi energy~the one corresponding toS9!
from self-energies in the right-hand sides of these equati
because the corresponding contributions are smaller
N21/2 as discussed above. Also the errors arising from
fact that the right-hand sides are evaluated atv50 instead of
at v are only of the order of 1/N, as discussed in the prece
ing section. In Fig. 17 a comparison of the self-energies
finite N and in the thermodynamic limit is presented. No
that in the vicinity of the Fermi energy, the real parts of bo
self-energies coincide.

One can now proceed as in Eqs.~44! and ~47!, defining
the renormalization matrixZ8(N,f;M )5Z1O(N21/2) and
the quasiparticle HamiltonianH̃8(N,f;M )5H̃(N,f;M )
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1O(N21/2) corresponding to the self-energyS8. As shown
in the preceding section, the self-energies of an infinite tw
lead system and the corresponding ring system are the s
and therefore, the renormalized matrix elements
H̃(N,f;M ) correspond to those of a two-lead system. F
uvu,D, Eq. ~A13! transforms into

det@v12H̃8~N,f;M !2S̃9~N,f;M ;v1 id!#50,
~A18!

where the coupling to the remaining ‘‘bath’’ levels has be
renormalized asS̃95Z81/2S9Z81/2. Let us for a moment ne-
glect this term in Eq.~A18!. As the differenceDH̃ between
HamiltoniansH̃(N,f;M ) and H̃8(N,f;M ) is small for a
largeN, one is justified to relate their single-electron ener
levels using the first order perturbation formula

«̃8~N,f;M ;1!5 «̃~N,f;M ;1!1^N,f;M ;1uDH̃uN,f;M ;1&

5 «̃~N,f;M ;1!1O~N23/2!. ~A19!

In the last step we made use of arguments similar to thos
deriving Eq.~A4!.

The energy~A19! can acquire an additional shift becau
of the couplingS9. To estimate this shift we first note that i
the worst case scenario, i.e., when there is a single bath
ergy level which coincides with the quasiparticle ener
level ~A19!, the coupling matrix elementsVjn in Eq. ~A8!
must be at most of the order ofN23/2 for Eq. ~41! to be
satisfied in the thermodynamic limit. Then one can make
of the degenerate first order perturbation theory, wh
shows that the quasiparticle energy level is shifted by
additional amount of the order of 1/N2. This completes the
proof of Eq.~A1!.

As a conclusion, in Fig. 18 we present a comparison
the total densities of states for a finite ring interacting syst
within the second order perturbation theory and in the q
siparticle Hamiltonian approximation. Note that the sta
near the Fermi energy are well described with the quasip
ticle approximation, while the states further away from t
Fermi energy are split in the interacting case. Similar res
were reported in Ref. 49.

APPENDIX B: VARIATIONAL GROUND-STATE ENERGY

In order to calculate the conductance for interacting s
tems, we first need to devise a robust method that wo
2-15
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allow us to efficiently calculate the ground-state energy
such systems. Note that we need a method that would
vide us with the energy of a system with a very large num
of sites in the ring. However, the number should still
finite, i.e., we must not perform the calculations in the th
modynamic limit. We made use of the projection method
Gunnarson and Schnhammer,50–52 introduced originally
to calculate the ground-state energy of the Ander
impurity model, and extended it to treat the more gene
Hamiltonian~1!.

Let us introduce an auxiliary noninteracting Hamiltonia

H̃5HL1ṼL1H̃C
(0)1ṼR1HR , ~B1!

with arbitrary matrix elements describing the hopping b
tween the leads and the central region, and the central re
itself. Note that these are the same matrix elements as
ones being renormalized in the Fermi liquid quasiparti
Hamiltonian~47!. Let us also define a Hilbert space spann
by a set of 4M basis functions

uca&[Pau0̃&[)
i PC

Pa i

i u0̃&, ~B2!

whereM is the number of sites in the central region,u0̃& is
the ground state of the auxiliary Hamiltonian~B1! containing
the same number of electrons as there are in the ground
of the original Hamiltonian, and

P0
i 5~12ni↑!~12ni↓!, ~B3!

Ps
i 5nis~12ni s̄!, ~B4!

FIG. 18. ~a! The total density of states of an interacting rin
system within the second-order perturbation theory.~b! Total den-
sity of states corresponding to the quasiparticle Hamiltonian.
system is described in Fig. 5.
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i 5ni↑ni↓ ~B5!

are projection operators on unoccupied, singly occupied
doubly occupied sitei. The original Hamiltonian is diagonal
ized in the reduced basis set introduced above,

Hba5ESba , ~B6!

with Hba5^cbuHuca& being the matrix elements of th
Hamiltonian andSba5^cbuca& take into account the fac
that the basis functions do not form an orthonormal basis
The eigenstate with the lowest energyEH̃ of this eigenvalue
problem is an approximation to the ground-state energy
the original Hamiltonian. Varying the parameters of the au
iliary Hamiltonian, one can find their optimal values whic
minimize EH̃ . The solution of this minimization problem i
the final approximation to the ground-state energy.

Let us consider some simple limits of the problem. In t
noninteracting case whereU50, one can choose the auxi
iary Hamiltonian to be equal to the true HamiltonianH̃

5H. Then the wave functionuc&5(aPau0̃&5u0̃&5u0& is
the exact ground-state wave function of the system. Note
applying the same wave function ansatz to the interac
case and allowing the matrix elements of the auxilia
Hamiltonian to be renormalized, provides us with t
Hartree–Fock solution of the problem. Therefore, the va
tional method introduced above always gives the grou
state energy which is lower or equal to the correspond
Hartree–Fock ground-state energy. In the limit of the cen
region being decoupled from the ring, i.e.,VL5VR50, the
variational method also yields the exact ground-state ene
To prove this statement, let us select the matrix element
H̃ in such a way that in its ground state there arem electrons
in the central region. Then the basis set~B2! spans the full
Hilbert space form electrons in the central region. As there
no coupling to the states in the ring, solving the eigenva
problem~B6! provides us with the exact ground state of t
problem with a constraint of a fixed number of electrons
the central region. By varyingH̃, all the possible values ofm
can be tested and the one yielding the lowest ground-s
energy corresponds to the correct ground state of the sys

The variational wave function ansatz can be improved
extending the Hilbert space with additional basis functio
the most promising candidates being of type52

ucbl j i sa&5PbV̂l j i sPau0̃&, ~B7!

where V̂l j i s5Vl j i cj s
† dis1h.c. andl is a lead index, i.e.,

either L or R. On the other hand, as the size of the Hilbe
space increases exponentially with the number of sites in
central region, it might be convenient to limit the basis set
the states obtained by projecting to the central region’s m
body states between which fluctuations are possible.

Finally, we state some technical details concerning
evaluation ofHba andSba . It is convenient to express thes
matrix elements only in terms of quantities related to t
central region and the neighboring sites in the leads. As

e

2-16
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Sba5^0̃uPbPau0̃&5^0̃uPau0̃&dba , ~B8!

the scalar products between the basis functions are evide
expressed with the central region quantities. The matrix
ments of the Hamiltonian can be expressed as

Hba5^0̃uPbHPau0̃&5^0̃uH̃PbPau0̃&1^0̃uPbHPau0̃&

2^0̃uH̃PbPau0̃&5ẼSba1^0̃uPb~VL1HC1VR!Pau0̃&

2^0̃u~ṼL1H̃C
(0)1ṼR!Pau0̃&dba , ~B9!

where Ẽ is the ground-state energy of the auxiliary Ham
tonian H̃. In the second and the third term we made use
the fact that lead HamiltoniansHL andHR commute with the
central region projectors and therefore, they cancel
Again, we succeeded in expressing the matrix element
terms of central region quantities together with quantit
related to the neighboring sites in the leads. Similar res
are obtained if the extended basis set of Eq.~B7! is used. The
matrix elements in Eqs.~B8! and~B9! need to be calculated
in a noninteracting state. Therefore, we can make use of
Wick’s theorem to decompose the expressions into tw
operator averages of type^0̃udj s

† disu0̃&. As a huge number o
terms is generated in this procedure, the decomposition
,

ev

y
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performed automatically by symbolic manipulation of ope
tors. The ground-state energy of the auxiliary Hamiltoni
and the two-operator averages can be expressed in term
the single-electron energies«̃k and wave functionsuw̃k& of H̃
as

Ẽ52 (
k occ.

«̃k , ~B10!

^0̃udj s
† disu0̃&5 (

k occ.
w̃ j

k* w̃ i
k . ~B11!

The sums run only over the single-electron states occupie
the ground stateu0̃&. The eigenvalues«̃k were calculated in a
basis in which the Hamiltonian matrix is banded, i.e., line
combinations of local basis functions corresponding to
left lead and right lead sites were introduced to ‘‘move’’ th
hopping matrix elements in corners of the matrix close to
diagonal. For each eigenvalue, only the components of
eigenvector related to the central region and neighbor
sites were calculated, again taking the special structure o
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