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We consider electronic transport through break-junctions
bridged by a single molecule in the Kondo regime. We de-
scribe the system by a two-channel Anderson model. We take
the tunneling matrix elements to depend on the position of the
molecule. It is shown, that if the modulation of the tunneling
by displacement is large, the potential confining the molecule
to the central position between the leads is softened and the
position of the molecule is increasingly susceptible to external
perturbations that break the inversion symmetry. In this regime,
the molecule is attracted to one of the leads and as a conse-
quence the conductance is small. We argue on semi-classical
grounds why the softening occurs and corroborate our findings
by numerical examples obtained by Wilson’s numerical renor-
malization group and Schönhammer–Gunnarsson’s variational
method.
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Sketch of the model device. The overlap integrals between the
molecular orbital and the leads (VL, VR for left, right lead, re-
spectively) are modulated by the position of the molecule. The
energy of the molecular level ε is determined by the gate volt-
age.

1 Introduction and model In recent years consider-
able advance has been achieved in manufacturing meso-
scopic systems, which due to their tunability with external
electrodes provide a playground for research in the corre-
lated electron systems. For example, the Kondo effect –
generic name for phenomena related to increased scatter-
ing off impurities with internal degrees of freedom – was
observed in measurements of electron transport through
quantum dots [1], atoms, and molecules [2–8].

Unlike in experiments with quantum dots, the transport
through break junctions is strongly affected by the molecu-
lar vibrational modes, because the frequency of the oscilla-
tions is of comparable magnitude than other energy scales,
such as Coulomb repulsion. For example, the side-peaks in
the non-linear conductance [4–6] were observed indicating
the transfer of energy from the oscillations to the electron
current. By comparing the observed frequencies to the fre-
quencies of the molecular internal modes it was shown [4],

that in some cases also the oscillations of the molecule with
respect to the leads have to be taken into account.

In this work we concentrate on such a case. The tun-
neling is generally dependent on the overlap between the
wave-functions. This motivates us to investigate the ef-
fects of the modulation of the tunneling matrix elements
by molecular oscillations.

More specifically, we describe the break junction by a
model consisting of two metallic leads (half-filled bands
of non-interacting electrons). The leads are bridged by a
single molecule which we assume is confined harmoni-
cally to the center between the leads. The position of the
molecule x determines the tunneling matrix elements. As-
suming the leads are identical and the displacement of the
molecule from the center of inversion x is small [9], the
tunneling matrix elements towards left and right leads read
VL,R(x) = (1 ∓ gx)V .

The Hamiltonian consists of several parts

H = HL + HR + Hmol + Hvib + H ′. (1)
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The first two terms describe the isolated leads

Hα =
∑
kασ

εkc†kασckασ, (2)

α = L, R is the lead index, σ =↑, ↓ is the spin index
and k the wave-vector index; c† (as well as d† to be intro-
duced below) denote the fermion creation operators. The
precise form of the band dispersion εk is not important for
the results presented here, provided the density of states
is smooth and symmetric around the Fermi surface; never-
theless for definiteness we note that in our calculations we
used flat (NRG simulations) and tight-binding bands (sim-
ulations with Schönhammer-Gunnarsson wave functions).

The second term describes the molecular orbital (we
assume a single molecular level participates actively in the
transport),

Hmol = ε(n↑ + n↓) + Un↑n↓, (3)

where nσ = d†σdσ counts the number of electrons occu-
pying the orbital, ε the energy of the orbital relative to the
chemical potential of the leads, U is the Coulomb repul-
sion. We concentrate on the particle-hole symmetric case
ε = −U/2. Hvib = Ωa†a describes the phonon mode (a†

is the phonon creation operator).
The most interesting part of the Hamiltonian describes

the coupling between the leads, the molecular orbital and
also phonons (as the tunneling is modulated

H ′ = V
∑
kσ

[
(1 − ζ − gx)c†kLσdσ+ (4)

+ (1 + ζ + gx)c†kRσdσ

]
+ h.c.

Here we introduced a constant ζ which we will use to test
for the influence of the breaking of the inversion symmetry;
for ζ = 0 the Hamiltonian is symmetric with respect to
operation x → −x, L ↔ R; finite ζ breaks this symmetry.

In the model with no coupling to phonons (g = 0)
for ζ = 0 only the even combination of the operators,
i.e. ce = (cL + cR)/

√
2 (other indices are suppressed)

in the leads is coupled to the molecular orbital. The life
time of electrons on the orbital is finite due to the tun-
neling to the leads; the hybridization Γ (inverse life-time)
for the flat band reads Γ = 2πρV 2, where ρ is the den-
sity of states in each of the two leads (for flat band of
half-width D, ρ = 1/(2D). The odd linear combinations
co = (cL − cR)/

√
2 are decoupled. For g = 0 and ζ > 0

still a particular linear combination of the states in the leads
is decoupled and the system can be described by the single-
channel model.

For finite g �= 0 this no longer holds and the molecule
is coupled to both conduction channels. Rewriting the cou-
pling term in the even-odd basis,

H ′ =
√

2V
∑
kσ

[
c†keσdσ + (ζ + gx)c†koσdσ

]
+ h.c., (5)

makes it manifest that we are dealing with a two-channel
Anderson model. No linear combination of the conduction
electrons can be integrated out because the coupling to the
odd channel is mediated by phonons. This occurs because
the modulation of tunneling is antisymmetric with respect
to inversion; if the modulation of tunneling is symmetric
[10,11] the orbital is still coupled only to the even channel.

It is difficult to access the low temperature (Kondo)
regime because of the presence of exponentially small en-
ergy scale TK ∝ exp [−1/(ρJ)] (J ∼ V 2/U is the mag-
nitude of the exchange coupling). Only few methods [12]
reproduce the increase of conductance towards the unitary
limit G0 = 2e2/h for temperatures smaller than TK accu-
rately. On the other hand, in the high-temperature regime
(relevant for nanoelectromechanical systems [13–15]) it is
adequate to ignore the Kondo correlations and take only
lowest orders in tunneling into account.

For the work on this model in the Kondo regime, which
was originally stimulated by Ref. [16], we refer the reader
to Refs. [17–19,9]. Another very recent paper discusses a
similar model as an example of two-level system [20].

In the following section we first demonstrate that the
confining potential is weakened by the electron-phonon
coupling and can even be driven to a form of the double-
well. Then we give numerical examples on how the emer-
gence of the double-well potential affects static and dy-
namic properties of the molecule. Finally, we show that
when the inversion symmetry is not perfect (ζ �= 0), the
electron-phonon coupling will drive the molecule away
from the central position. As a consequence, in this regime
the conductance can be significantly suppressed.

2 The emergence of a double well potential It is
easy to demonstrate that a double well effective oscilla-
tor potential may form under the influence of a sufficient
electron-phonon coupling g > gd, where we define the

-2 -1 0 1 2
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ΔE

g=0.8

g=0.9

Figure 1 Numerical results for effective potential: ζ = 0 (full
lines), ζ = 0.01 (dashed lines). Semi-classical estimate is also
shown (dotted). Here and in subsequent figures we use U = 0.3,
Γ = 0.02, Ω = 0.2. We use the band half-width D as the energy
unit. The curves are shifted vertically so that the values at x = 0

match.
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delimiting value of the coupling constant. For U = 0
we can make a simple estimate on the form of the effec-
tive oscillator potential by a substitution a,∼ a† → x/2,
where x is a real-valued constant. In the wide-band limit
(Γ/D small) the energy gain due to the hybridization is
[21] ΔEhyb = −2/πΓ̃ log D/Γ̃ , where we use the effec-
tive displacement-dependent hybridization Γ̃ (x) = Γ (1 +
g2x2). The elastic energy cost is ΔEel = Ωx2/4, hence
in this semi-classical approximation the dependence of en-
ergy ΔESC = ΔEel + ΔEhyb on x can be written in a
closed form

ΔESC(x) = Ωx2/4 − (2/π)Γ̃ (x) log{D/[Γ̃ (x)]}. (6)

The prefactor of the x2-term in the small-x expansion is
equal to Ω/4 − {

(2/π)g2Γ [log(D/Γ ) − 1]
}

, hence for
increasing g the elastic potential is softened and a double
well effective potential emerges for

g > gd =

√
πΩ

8Γ [log(D/Γ ) − 1]
. (7)

We plot ΔESC(x) for g = 0.8 < gd and g = 0.9 > gd in
Fig. 1 (thin, dotted lines).

We estimate the effective potential also numerically
using a variational method based on the Schönhammer–
Gunnarsson [22,23] wave fuction (the details of our im-
plementation are given in our previous work [24,25,11]).
Briefly, the idea is to find an auxiliary non-interacting
Hamiltonian H̃ (of the same form as H in Eq. (1), but for
g = 0, U = 0 and renormalized parameters ṼL, ṼR, ε̃ ),
which minimizes the variational ground state energy E =
〈Ψ |H |Ψ〉. The variational function Ψ is expressed in the
basis of projection operators Pi acting on the Hartree–Fock
ground state |Ψ0〉 (which includes the phonon vacuum) of
the auxiliary Hamiltonian H̃,

|Ψ〉 =
∑
ni

ψni(a
†)nPi|Ψ0〉. (8)

To obtain the ground state, we minimize energy with re-
spect to all the parameters of H̃ . On the other hand, by re-
stricting the minimization to a particular subspace (for ex-
ample, by fixing the ratio VL/VR = r) we obtain the vari-
ational wave-function Ψr for which the expectation value
〈x〉r is a function of r. The pairs (〈x〉r , E) constitute our
estimate of the effective potential and are plotted in Fig. 1
for ζ = 0 (full lines) and ζ = 0.01 (dashed lines). The
agreement between the semi-classical estimate and numer-
ical results is reasonable.

The perturbation ζ = 0.01 breaks the inversion sym-
metry, therefore the right minima in g > gd regime in this
case is lower in energy. In this regime, the molecule will
predominantly reside near the right lead. Conversely, for
g < gd the potential is only slightly perturbed.
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Figure 2 Average displacement and displacement fluctuations
obtained by NRG compared to the semi-classical estimate xm

(dotted).

3 NRG results Having established well the emer-
gence of the double well effective potential we now check
how it is reflected first in the static properties and then the
dynamical response of the system. To obtain these quan-
tities, we have performed the numerical simulations using
the well known Wilson’s numerical renormalization group
[26,27] (NRG) method. We restrict ourselves to the limit of
zero temperature (T → 0). The details of the calculations
are given in Ref. [9].

3.1 Static quantities We begin by looking at the
static quantities. The average displacement 〈x〉 for ζ = 0
vanishes (as expected for an operator of odd parity under
inversion in a state of well-defined parity). The fluctuations
of displacement (Δx2)1/2 = 〈(x − 〈x〉)2〉1/2, shown in
Fig. 2 (full line) increase monotonically with g. The slope
of (Δx2)1/2 is increased considerably at g ∼ gd (or ∼ gc,
see Ref. [9]), where the double well like effective potential
is formed. This change of slope is driven by the increased
hybridization in the odd-channel.

For ζ = 0.01 the absence of inversion symmetry is re-
flected in the nonvanishing average displacement (dashed-
dotted), which monotonically increases with increasing g.
Therefore the fluctuations of displacement (dashed) in this
case reach a maximum and then decrease with increasing
g.

For comparison, we plot also the position of the min-
imum of the potential xm (dotted line) obtained from the
semi-classical estimate Eq. (6),

xm =

√
πΩ(g − gd)

4Γg5
d

. (9)

3.2 Phonon propagator Now we turn to the renor-
malization of the phonon propagator by the electron-
phonon coupling. The dynamical information about oscil-
lator is contained in the displacement Green’s function.
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Figure 3 Displacement spectral functions for ζ = 0.

The displacement spectral function

A(ω) = − 1

π
Im  x, x �ω=

= − 1

π
Im

∫ ∞

0

(−i)〈[x(t), x(0)]〉eiωtdt (10)

is an odd function of ω due to the hermiticity of x. Since
A(ω) is in NRG evaluated for a finite system it consists
of several δ-peaks of different weights. To obtain a smooth
spectral function we have used the Gaussian broadening
on the logarithmic scale [28], where the Dirac δ function is
broadened according to

δ(ω − ωn) → 1

bωnπ
exp

{
−

[
log(ω/ωn)

b

]2

− b2

4

}
,

(11)
and we used b = 0.3 in our calculations.

In Fig. 3 we plot A(ω) for various g and ζ = 0. The
width of the high frequency peaks is overestimated due to
the broadening procedure described above (for example,
the width of the peak at ω = Ω for g = 0 should vanish).
We could use the Dyson equation [29,30] to obtain sharper
peaks but we avoid this complication because on one hand
there is no a priori guarantee that such a procedure gives
more accurate results for large g and on the other hand in
this work we are interested only in the position and not the
width of the peaks.

For intermediate g (starting at g ∼ 0.5 for the param-
eters used here) the vibrational mode begins to soften; the
characteristic frequency of the oscillations is decreased. At
still larger g > gd two peaks emerge. The high frequency
peak corresponds to the oscillations within each of the min-
ima of the double-well potential, and the low-frequency
peak (we denote its position by ω0) corresponds to the slow
tunneling between the degenerate (or near-degenerate for
ζ > 0) minima.

The propagators for finite ζ and ζ = 0 look alike, pro-
vided g is small enough that ω0 does not decrease below

0.9 1 1.1 1.2
g

0.0001

0.001

0.01

0.1

ω
0

ζ=0
ζ=0.01

weight

Figure 4 The frequency of the soft mode peak as a function of g.
The weight of the soft mode peak for ζ = 0.01 and normalized
to some arbitrary value (dotted).

0 0.5 1
g

0

0.5

1
G

/G
0

g
c

Figure 5 Conductance, ζ = 0.01. Shaded area (g > gc) indicates
the unphysical regime.

the frequency given by the energy difference ∝ ζ between
the minima of the two wells.

For larger g the high frequency behaviour remains sim-
ilar but as shown in Fig. 4 ω0 which decreases for ζ = 0
exponentially (full line), for finite ζ (dashed) saturates to
the value ∝ ζ of the energy difference between the min-
ima. In this regime, the tunneling of the oscillator between
the minima as characterized by the weight of the soft-
mode peak in the phonon propagator (shown dotted) is sup-
pressed.

3.3 Conductance We show the conductance calcu-
lated by NRG in Fig. 5. In the particle-hole symmetric
point and at zero temperature the system is in the unitary
limit, hence the conductance (in units of G0) is for g = 0
near unity (reduced only due to small breaking of inver-
sion symmetry for a value of order ζ2). For increasing g it
decreases and at g ∼ gd if drops to zero. This occurs be-
cause the molecular orbital is increasingly hybridized only
to the right lead and the coupling to left lead V (1−gx) be-
comes small. The point where the conductance is zero cor-
responds to the decoupling of the left lead, V (1−gx) ∼ 0,
on the average.
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Surprisingly, for g larger still, the conductance in-
creases again. This is due to the overlap with the negative
amplitude V (1−gx) < 0 when states for which 1±gx < 0
contribute considerably to the transport. As discussed in
more detail in Ref. [9] this regime is an artifact of lineariza-
tion and cannot be observed in the break-junction exper-
iments. Here we remark only, that in the large-g regime
the spin is screened by the odd channel. At the delimiting
value of g (which we denote by gc) the spin is simulta-
neously screened by the both channels and the resulting
state is characterized by the non-Fermi liquid two-channel
Kondo fixed point in the NRG flow.

4 Conclusions In this report we considered a metal-
lic break-junction bridged by a molecule. We were inter-
ested in the electron transport through the break-junction,
which is influenced by the modulation of tunneling be-
tween the molecular orbital and the leads due to the os-
cillations of the molecule with respect to the leads.

We have shown that due to the electron-phonon cou-
pling the harmonic potential confining the molecule to the
center-of-inversion evolves to the double well effective po-
tential. The change in the form of confining potential is re-
flected in dynamical properties – e.g. a low-frequency peak
emerges in the phonon propagator – as well as in the static
properties – e.g. the fluctuations of displacement are in-
creased.

The emergence of the double well effective poten-
tial makes the system strongly susceptible to perturbations
breaking the inversion symmetry. When the frequency of
the soft-mode decreases below the energy scale of such a
perturbation, the molecule is attracted to one of the leads.
As a consequence, the conductance is suppressed.

There are many points which we have not discussed in
detail, including the breakdown of the linearization and the
physics of the two-channel Kondo fixed point. The more
comprehensive analysis of this interesting system will ap-
pear elsewhere [9].
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