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Abstract – Entanglement of spins is analyzed for two electrons extracted from a mixed many-
electron state by projecting onto the two-electron subspace. The concurrence formulae are
expressed in a compact form for states with a well-defined square of the total spin projection.
As an example, the thermal entanglement for a qubit pair with an anisotropic Heisenberg and
the Dzyaloshinskii-Moriya interactions in an inhomogeneous magnetic field is given analytically.
Remarkably, the concurrence of a pair of electrons with antiparallel spins and in a delocalised
orbital state is given by the scalar product of the state with its spin-flipped state and not with
the time-reversed state.
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Quantum entanglement is considered a key resource
for quantum cryptography and quantum computation [1].
Quantifying entanglement [2,3] and identifying maximally
entangled states is thus important in the planning of
devices. On the other hand, the research of the entan-
glement and its decoherence can also lead to a better
understanding of the foundations of physics, for example
of the quantum to classical crossover [4] and of the origins
of the thermodynamic laws [5].
Quantum dot arrays, controlled by electrical gating,

are, due to their scalability, promising candidates for
operational devices [6,7]. The building blocks are coupled
few-electron quantum dots enabling full control over indi-
vidual electrons [8,9]. In a quantum dot the qubit is usually
represented by the spin of an electron. Alternatively,
charge pseudo-spin entanglement in double quantum dots
can also be exploited [10], but is prone to the decoherence
due to the Coulomb interaction with the environment.
The description of electrons by the spin degrees of

freedom only is a simplification valid when the electrons
are localized and the charge fluctuations are negligible.
In general, both orbital and spin degrees of freedom are
present, but if one is interested in the spin entanglement
only, one should trace out the spatial dependence. Typical
examples are a recently proposed route to generation of

(a)E-mail: anton.ramsak@fmf.uni-lj.si

perfectly entangled electron pairs by the use of acoustic
waves in the surface of a GaAs/AlGaAs structure [11] or
elastic scattering of electrons in semiconducting carbon
nanotube structures with orbital degeneracy [12]. For
a special case, where there are precisely two electrons
in a pure state on the lattice, the entanglement can
be given by simple formulae expressed in terms of the
wave function [13]. Such formulae can be applied to the
determination and optimization of entanglement genera-
tion between static and flying qubits in one-dimensional
systems [14,15]. They also enable the analysis of
the entanglement between qubit pairs in various double-
quantum-dot configurations coupled to external leads [16].
Here we are interested in the entanglement of an

electron pair extracted from a many-body state, which can
be, for example, an open system of interacting electrons
in a solid-state structure of several coupled quantum dots.
In particular, we take that the measurement apparatus
extracts precisely one electron from each of two non-
overlapping regions of the structure —domains A and
B. The state of the system is arbitrary and includes
fluctuations of electrons between the domains or between
the domains and the environment, which introduces spin
and charge fluctuations to the subsystem A∪B.
In this letter we express the reduced density matrix of

two spin-qubits in terms of projected spin-spin correlators
which allows the analysis of entanglement of qubit pairs
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extracted from a general many-electron state. The corre-
sponding concurrence is then given explicitly for systems
conserving the square of the total spin projection, which
is illustrated by several examples.
First consider two separated electrons, one from domain

A and the other from domain B, with spin states labeled
by s=± 12 and t=±

1
2 , respectively. Let the electrons be

in a pure state expressed in the standard basis |µ〉 ≡ |st〉 ∈
{| ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉} for µ∈ {1, 2, 3, 4}, as

|ψ〉=
∑

µ

αµ|µ〉. (1)

Because the electrons are in a state completely deter-
mined by the spin degrees of freedom only, the entan-
glement can be quantified with the entanglement
of formation or, equivalently, with the concurrence
C = 2|α1α4−α2α3| [17]. In general, two spins may be
a subsystem of a larger system with many degrees of
freedom and the subsystem is then described by a reduced
4× 4 density matrix ρ. In this case the concurrence is
given by the Wootters formula [18],

C =max



0, 2λmax−
4∑

j=1

λj



 , (2)

where λj are the square roots of the eigenvalues of
the non-Hermitian matrix ρρ̃ among which λmax is the
largest, and ρ̃ is the time-reversed density matrix ρ.
In this paper we consider the electrons in domains A

and B as a subsystem of a total system described by a
density matrix

ρtot =
∑

n

pn|n〉〈n|. (3)

Then a projective measurement is performed by an appa-
ratus which extracts an electron pair: one electron from
A and another one from B in such a way that after the
projection, the system is in one of the normalized states
P|n〉/

√
〈n|P|n〉, where the projector P projects onto the

subspace where in each of the domains A and B there is
exactly one electron. What we are left with is the density
matrix

ρP =
∑

n

qn
P|n〉〈n|P
〈n|P|n〉

=
PρtotP
TrPρtot

, (4)

where qn = P (n |P) is the conditional probability that
after the measurement the system will be in the projected
state P|n〉, i.e., that the electrons were extracted from the
state |n〉. This probability is given by Bayes’ formula [1],
P (n|P) = P (P|n)pn/〈P〉, where P (P|n) = 〈n|P|n〉 is the
conditional probability for a single occupancy of each
of the domains for a particular state |n〉 and 〈P〉=∑
n pn〈n|P|n〉=TrPρtot is the probability that the appa-

ratus will click, i.e., that the desired two electrons will be
extracted.
The projected states P|n〉 read

P|n〉=
∑

ij,st

ψstn,ijc
†
isc
†
jt|Φ

st
n,ij〉, (5)

where the operators c†is and c
†
jt create electrons with spin

s at sites i∈A and with spin t at sites j ∈B, respectively,
and, being ordinary electron creation operators, obey the
fermionic rule cisc

†
i′s′ + c

†
i′s′cis = δii′δss′ .

The number of sites within the domains is arbitrary.
States |Φstn,ij〉 are normalized and represent empty
domains A and B with the rest of the system in an
arbitrary configuration. In general, these vacuum states
may be different for each of the states |n〉 and also for
each particular occupation of pairs of sites (i, j) within
the domains. The projector P removes from |n〉 all
components except those where each of the domains is
occupied by precisely one electron and may be written
explicitly as

P =
NA∏

k=0,k !=1

k− n̂A
k− 1

NB∏

k=0,k !=1

k− n̂B
k− 1

, (6)

where n̂A(B) =
∑
l∈A(B),s c

†
lscls is the number operator

for domains A(B) and NA(B) is the maximum possible
number of electrons in A(B).
Being interested in the spin entanglement we consider

the reduced density matrix where only the spin degrees
of freedom are retained, ρ=

∑
µν ρµν |µ〉〈ν|, with ρµν ≡

ρ(st)(s′t′) and

ρ(st)(s′t′) =
1

〈P〉
∑

n,ij

pn〈Φs
′t′

n,ij |Φstn,ij〉(ψs
′t′

n,ij)
∗ψstn,ij . (7)

This formula is useful if the wave functions are known.
However, in some cases it is possible to determine various
correlation functions of the system without an explicit
knowledge of the wave functions. Then it is advantageous
to express the density matrix in terms of spin correlators1

ρ=
1

〈P〉





〈P ↑AP
↑
B〉 〈P

↑
AS
−
B 〉 〈S

−
AP

↑
B〉 〈S

−
AS

−
B 〉

〈P ↑AS
+
B 〉 〈P

↑
AP

↓
B〉 〈S

−
AS

+
B 〉 〈S

−
AP

↓
B〉

〈S+AP
↑
B〉 〈S

+
AS
−
B 〉 〈P

↓
AP

↑
B〉 〈P

↓
AS
−
B 〉

〈S+AS
+
B 〉 〈S

+
AP

↓
B〉 〈P

↓
AS
+
B 〉 〈P

↓
AP

↓
B〉




,

where 〈P〉=
∑
st〈P sAP tB〉 is the probability that in the

subsystem A∪B there will be precisely two electrons, one
in each of the domains. The correlators are expressed as
the expectation values of projected operators in the sense
〈O〉 ≡

∑
n pn〈n|POP|n〉, where O consists of A-B pairs of

operators

Sx,y,zA(B) =
1

2

∑

l∈A(B),ss′

σx,y,zss′ c
†
lscls′ ,

P sA(B) =
∑

l∈A(B)

n̂l,s(1− n̂l,−s).

1The application of correlators to the present case of indis-
tinguishable fermions is a straightforward generalization of the
approach applied in the case of spin systems [19].
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Here σx,y,zss′ are the Pauli matrices, S
±
A(B) = S

x
A(B)± iS

y
A(B)

and n̂l,s = c
†
lscls is the electron number operator.

The evaluation of the correlators is simplified if each
of the domains A and B consists of one site only, in
which case POP =O, i.e., the states corresponding to
empty or doubly occupied sites are projected away by the
operatorO . A prototype example is a Hubbard dimer, i.e.,
two electrons on two sites and described by the Hubbard
model, as studied by Zanardi [20]. Note, however, that the
entanglement measures introduced for fermionic systems
where multiple occupancy is retained [20–24] are different
from the entanglement of formation studied here.
The concurrence for the domains A and B is deter-

mined from the projected density matrix by the Wootters
formula, eq. (2). In general, λj can be computed numer-
ically, but in some cases, due to symmetry the density
matrix simplifies and analytic evaluation is possible.
Such symmetries were exploited in various coupled
spin systems on a lattice with translational and parity
invariance [19,25–27].
In the present case of interacting electrons in coupled-

quantum-dot structures, translational and parity invari-
ance is an exception. Still, an analogous simplification
is possible in a special case when the density operator
commutes with the square of the total spin projection for
A∪B, Sz = SzA+SzB . For such biaxial systems [28] with

[ρ, (Sz)2] = 0, (8)

ρ is a block matrix: ρ12 = ρ13 = ρ24 = ρ34 = 0 or, equiva-
lently, 〈Sx,yA(B)〉= 0 and 〈S

z
A(B)S

x,y
B(A)〉= 0.

The eigenvalues λ2j of ρρ̃ (which, again, is a block
matrix) follow trivially from two decoupled blocks
corresponding to subspaces with parallel, (Sz)2 = 1
and {µ= 1, ν = 4}, or antiparallel spins, (Sz)2 = 0
and {µ= 2, ν = 3}. The matrix elements ρµν are
interrelated [29], |ρµν |!

√
ρµµρνν , which leads to

λj =
√
ρµµρνν ± |ρµν |. The concurrence is then deter-

mined by

C = max
(
0, C↑↓, C‖

)
/
∑

st

〈P sAP tB〉, (9)

C↑↓ = 2|〈S+AS
−
B 〉|− 2

√
〈P ↑AP

↑
B〉〈P

↓
AP

↓
B〉,

C‖ = 2|〈S+AS
+
B 〉|− 2

√
〈P ↑AP

↓
B〉〈P

↓
AP

↑
B〉,

which represents a generalisation of the result derived for
the case of precisely two delocalised electrons in a pure
state [13].
For axially symmetric systems, i.e., conserving the total

spin projection, [ρ, Sz] = 0, the formula simplifies because
〈S+AS

+
B 〉= 0 and

C =max(0, C↑↓) /〈P〉. (10)

For SU (2) spin symmetric case, [ρ,SA+SB ] = 0, the
concurrence is completely determined by a single spin
invariant and C = 2max(0,−〈SA ·SB〉/〈P〉− 14 ).

In practice, several specific cases are of interest. Let
us first consider a special case of the total system being
in a pure state |m〉 containing only two electrons, i.e.,
pn = δnm and |Φstm,ij〉= |0〉. We assume the electrons are in
a state with the amplitudes ψ↑↓m,ij = α2ϕij , ψ

↓↑
m,ij = α3ϕij

and ψ↑↑m,ij = α1χij , ψ
↓↓
m,ij = α4χij , where ϕij and χij are

normalized. Then, if ϕij = χij , the concurrence is given
by C = 2|α1α4−α2α3|/〈P〉 with 〈P〉=

∑
µ |αµ|2, which

is the pure spin-subsystem result, renormalized due to
the projection. If

∑
ij ϕ

∗
ijχij = 0 the concurrence is C =

2||α1α4|− |α2α3||/〈P〉. Additionally, if the state |m〉 is
an eigenstate of Sz, the concurrence simplifies further to
C = 2|α2α3|/〈P〉.
An interesting case in point is a pure state with a zero-

spin projection, Sz|m〉= 0, and 〈P〉= 1. Such states are
important, for example, in the realization of entangled
flying qubit pairs, when two initially unentangled electrons
approach each other and the interaction conserves Sz. The
concurrence is given by 2|〈m|S+AS

−
B |m〉|, but can also be

expressed as

C =
√
〈F〉2+4〈m|SA×SB |m〉2. (11)

Here 〈F〉= 〈m|mflip〉 is the scalar product of the state
|m〉 with its spin-flipped state |mflip〉=F|m〉 where the
spin-flip operator F = S−AS

+
B +S

+
AS
−
B reverses the spins

in A∪B.
For a special case 〈SA×SB〉= 0, the expression (11)

resembles the result for a general pure spin state, eq. (1),
with the concurrence given by C = |〈m|m̃〉|, where |m̃〉=
T |m〉 is the time-reverse of |m〉 [18]. The time reversal
operator is given by exp[−iπ(SyA+S

y
B)]K, where K is

the complex conjugation operator [30], which for the
present case of two electrons with antiparallel spins gives
T = iFK. For a special case of a pure spin state, where
ψ↑↓m,ij ∝ψ

↓↑
m,ij and ρ

2 = ρ, the conjugation has no effect and
the concurrence takes the customary form C = 2|α2α3|=
2|α∗2α3|. In general, however, if each of the domains
consists of at least two sites, the overlap of the state
|m〉 with the spin-flipped state |mflip〉 is different from
its overlap with the time-reversed state |m̃〉 because the
amplitudes in |m̃〉 are complex conjugated while in |mflip〉
they are not. To be specific, let two electrons be in the
state

|Ψ〉=
1

2
(c†1↑c

†
3↓+ c

†
1↓c
†
3↑+ ic

†
2↑c
†
4↓+ ic

†
2↓c
†
4↑)|0〉, (12)

where the sites 1, 2 and 3, 4 represent the domains A and
B, respectively. The correct expression for the concurrence
is C = |〈Ψ|Ψflip〉|= 1 while the scalar product with the
time-reversed state is 〈Ψ|Ψ̃〉= 0. Thus, in general the
entanglement of electron pairs is not related to the scalar
product of a state with its time reverse but to the spin-
flipped state only. This apparent disagreement with the
pure spin result is no paradox; it should simply be a
warning and a demonstration that the electron pair with
a general orbital extend can not be described by a pure
spin state.
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Finally, we present an example where the biaxial
symmetry [ρ, (Sz)2] = 0 arises naturally in a system in
thermal equilibrium. Consider a pair of electrons in
domains A and B representing a weakly coupled-double-
quantum-dot structure where charge fluctuations between
A and B and with the rest of the system are negligible
(i.e., 〈P〉= 1). Besides the Coulomb interaction, the
spin-orbit interaction may also be present and a general
effective Hamiltonian can contain the anisotropic Heisen-
berg exchange interaction, the Dzyaloshinskii-Moriya
term [31] and the coupling to an inhomogeneous external
magnetic field,

H = JxS
x
AS
x
B +JyS

y
AS
y
B +JzS

z
AS
z
B

+ BA ·SA+BB ·SB
+ D · (SA×SB)+SA ·TSB . (13)

We assume the magnetic field and D are parallel to the
z-axis and a symmetric tensor T is of the form

T=




0 t 0
t 0 0
0 0 0



 .

In the basis {|µ〉} the Hamiltonian takes the form

H =





h11 0 0 h14
0 h22 h23 0
0 h∗23 h33 0
h∗14 0 0 h44



 , (14)

which is the most general form of a Hamiltonian
commuting with (Sz)2. The corresponding density matrix
describing thermal equilibrium is given by ρ= exp(−βH)/
Tr[exp(−βH)], where β is the inverse temperature. The
matrix elements of the Hamiltonian equation (14) are
related to eq. (13) as h11(44) = Jz/4± (BA+BB)/2,
h14 = (Jx−Jy)/4+ it/2, h22(33) =−Jz/4± (BA−BB)/2,
h23 = (Jx+Jy)/4+ iD/2 with BA(B) =BA(B)ẑ and
D=Dẑ.
The problem decouples into two 2× 2 subsystems and

the resulting two pairs of eigenenergies are given analyti-
cally,

ε{µν} = (hµµ+hνν)/2±x{µν},

x{µν} = [(hµµ−hνν)2/4+ |hµν |2]1/2,

where the subscript {µν} denotes {14} and {23} for
subspaces with (Sz)2 = 1 and (Sz)2 = 0, respectively. With
the corresponding sets of eigenvectors, the density matrix
elements are easily expressed,

|ρµν |=
|hµν | sinhβx{µν}

Zx{µν}
e−β(hµµ+hνν)/2,

ρµµρνν = |ρµν |2+Z−2e−β(hµµ+hνν),

with

Z = 2e−β(h11+h44)/2 coshβx{14}

+ 2e−β(h22+h33)/2 coshβx{23}.

The concurrence is given by eq. (9), C = 2max(0, |ρ23|−√
ρ11ρ44, |ρ14|−

√
ρ22ρ33).

Some particular cases of this problem, i.e., an isotropic
Heisenberg model in a magnetic field and spin Hamilto-
nians with the Dzyaloshinskii-Moriya interaction [32–34],
were analyzed before. For Jx = Jy and t= 0 the qubit
pair is axially symmetric and the concurrence simplifies
to eq. (10) with

C↑↓ =

(
|h23|

sinhβx{23}
x{23}

e−βJz/4− eβJz/4
)/
Z. (15)

In conclusion, we analyzed the spin entanglement of
electron pairs extracted from a system of electrons in
a mixed state by projecting it onto the two-electron
subspace. The entanglement is quantified by the concur-
rence obtained from the reduced density matrix which is
expressed in terms of projected spin-spin correlators for
the measurement domains and normalized by the proba-
bility that in each of the two measurement domains there
is precisely one electron. The formalism is appropriate
for the analysis of the entanglement of formation for the
domains of open fermionic systems allowing charge fluctu-
ations of the subsystems, as is, e.g., a system of coupled
quantum dots attached to external leads.
Simplified expressions are derived for systems with a

good square of spin projection. The result for the most
general case of the corresponding two-qubit system is given
analytically, which generalizes particular known cases. As
an example, the thermal state of a double quantum dot
with anisotropic Heisenberg and Dzyaloshinskii-Moriya
interactions and in an inhomogeneous magnetic field is
considered. The concurrence is presented in a simple closed
form.
Also considered is an electron pair in a pure, but

orbitally delocalized state. An example, relevant to the
analysis of solid-state realizations of flying and static
qubits, demonstrates that the concurrence is given as the
overlap of the state with its spin-flipped state —but not
complex conjugated— therefore not by its time reverse as
is the case for pure spin states.
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[19] Syljůasen O. F., Phys. Rev. A, 68 (2003) 060301(R).
[20] Zanardi P., Phys. Rev. A, 65 (2002) 042101.
[21] Schliemann J., Loss D. and MacDonald A. H., Phys.

Rev. B, 63 (2001) 085311; Schliemann J., Cirac J. I.,
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