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Abstract – Although a precise description of microscopic physical problems requires a full
quantum-mechanical treatment, physical quantities are generally discussed in terms of classical
variables. One exception is quantum entanglement which apparently has no classical counterpart.
We demonstrate here how quantum entanglement may be within the de Broglie-Bohm interpreta-
tion of quantum mechanics visualized in geometrical terms, giving new insight into this mysterious
phenomenon and a language to describe it. On the basis of our analysis of the dynamics of a pair of
qubits, quantum entanglement is linked to concurrent motion of angular momenta in the Bohmian
space of hidden variables and to the average angle between these momenta.

Copyright c© EPLA, 2011

Introduction. – The recent explosion in activity
related to entanglement is a consequence of a growing
realization of its importance as a vital resource in
quantum information through quantum teleportation [1],
quantum cryptographic key distribution [2] and quantum
computation [3,4] as well as its potential for enhanced
quantum sensing through the engineering of highly entan-
gled quantum states, beating the usual quantum limit [5].
Despite this utility, the concept of entanglement remains
mysterious and paradoxical within the usual quantum
treatment and remains a focal point for discussing the
foundations of quantum phenomena and related questions
of non-locality [6], with renewed impetus from the recent
developments in quantum information and quantum
technology.
The connection between the classical and quantum

approaches is usually made through the correspondence
principle although an alternative description based on
the historic work of de Broglie [7], and later developed
by Bohm [8] gives equivalent results provided an effec-
tive non-local potential is introduced along with hidden
variables. This approach has had a resurgence in inter-
est recently re-emphasizing the virtues of the ontological
description it provides [9].
With the development of the Bohm causal formulation

of quantum mechanics [8], first for single spinless parti-
cles and later for many-body fermionic or bosonic systems
including fields [10,11], it was shown that the Bohmian

approach is isomorphic with usual quantum mechanics
regarding observable predictions, but it additionally gives
an interpretation of internal motion of particles in terms
of classical coordinates, velocities and angular momenta.
Although these (hidden) variables are not measurable, the
approach is able to analyse individual processes in a way
which goes beyond the standard Bohr interpretation of, for
example, double-slit experiments [12], tunneling of parti-
cles through barriers [13], Stern-Gerlach experiments [14]
and the Aharonov-Bohm effect [15].
However, in the Bohmian approach quantum entangle-

ment has not yet been analyzed quantitatively, although
since Bell’s construction of a hidden-variable model for a
single spin-1/2 system (qubit) [16,17] the formal Bohm
approach was consistently extended to a causal theory
capable of giving insight into Einstein-Podolsky-Rosen
spin correlations in terms of well-defined individual
particle trajectories with continuously variable spin
vectors [18]. Today spin-1/2 systems can be treated
causally in a nonrelativistic formalism based on the Pauli
equation [19], by rigid rotor theory [20], the hypersurface
Bohm-Dirac model for entangled particles [21] or by
the Clifford algebra approach to Schrödinger and Dirac
particles [22].
Among the simplest quantum systems is a pair of qubits

for which quantum entanglement can be quantified, for
example, by the entanglement of formation EF [23], the
asymptotic conversion rate to maximally entangled states
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from an ensemble of copies of a non-maximally entangled
state [4]. The entanglement of formation can be related to
an associated quantity, concurrence C [24].
Here we consider a qubit pair in a pure state

|Ψ〉= cos
ϑ

2
|↑↓〉+ eiϕ sin

ϑ

2
| ↓↑〉, (1)

and for convenience we use spin-1/2 notation where |↑↓〉
corresponds to the first qubit in the “up” state, i.e., in
the direction of the z-axis, and the second qubit in the
“down” state. The generalization to more general forms of
qubit pairs including mixed states is possible, but is not
considered here. Qubits are not restricted to real electron
spins, but may be realized by any two-state quantum
system such as for example, entangled photon [25], flux
qubit in a superconducting ring [26], charge pseudo-spin of
electron pairs in a double quantum dot [27], flying qubits
in quantum point contacts [28] or qubits in a composite
system [29].

de Broglie-Bohm formalism for spin 1/2. – In
order to demonstrate how quantum entanglement can
be described ontologically we closely follow the approach
introduced by Holland [10,20] where the starting point is
the mapping between a quantum rigid rotor and a classical
spinning top in the presence of a quantum potential. The
orientation of a rigid rotor is expressed by Euler angles
ζ = {α,β, γ} and, in the quantum approach, by the wave
function ψ(ζ).
Defining a differential operator M̂, whose components

are the infinitesimal generators of the rotation group
SO(3), the quantum Hamiltonian is given by Ĥ = M̂2/2I,
where I is an auxiliary parameter (“moment of inertia”),
with I→ 0 in the final results. The wave function is
expressed as ψ=ReiS , where R(ζ) and S(ζ) are real
functions. Bohmian space angular momentum is then
given by a real three-dimensional vector M= iM̂S. This
relation is an analogue of a more familiar de Broglie’s
guidance equation for the velocity of a point-like particle
with mass m treated in the Bohmian approach, mv=
∇S [8].
The dynamics is determined from a Hamilton-

Jacobi–type equation corresponding to the classical
Hamiltonian

H =
M2

2I
+Q, Q=

M̂2R

2IR
, (2)

where the quantum potential Q generates a quantum
torque T=−iM̂Q, which rotates the angular momentum
vector via the equation of motion dM/dt=T along the
trajectory ζ(t). This is a counterpart of the Newton equa-
tion for the case of a free particle in the Bohm formula-
tion given by mdv/dt=∇(∇2R/2mR). The equation of
the angular-momentum motion simplifies to a set of first-
order non-linear differential equations where the solutions
ζ(t) represent orbits in the configuration space, uniquely
determined by the initial positions ζ(0), and the angular
momentum emerges as M[ζ(t)].
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Fig. 1: (Colour on-line) (a) An unentangled qubit pair
—momenta are independent and precess in opposite direc-
tions around the z-axis. (b) Typical motion of momenta in a
partially entangled state, ϑ= π/5 and ϕ= 0, with initial values
for the rotors ζ(0) = {α1,β1, γ1,α2,β2, γ2}= {2, 5, 0, 12 , 0, 0}.
(c) Spirographic motion of M(t) =M1+M2 projected onto
the xy-plane (parameters as in (b)). (d) Trajectories of M1,2

shown in the xy-coordinate system rotating withM(t). In this
coordinate frame the trajectories are closed and periodic with
the period τ(ζ).

Solutions for a single spin-1/2 rotor are known. Quan-
tum basis eigenstates of M̂ belong to the spin-1/2 sector
whereas the Bohmian description embodies the coexis-
tence of the motion of a rigid top, whose configuration
space is SO(3) and a guiding wave, whose spin configura-
tion space is SU(2) [20]. The pilot wave is given in terms
of the Wigner D-matrices. For the “spin up” state, for
example, R↑(ζ)∝ cos

α
2
and S↑(ζ) =−(β+ γ)/2.

From the equations of the motion follows a time depen-
dent angular momentum M: “spin up” and “spin down”
means that M, starting from some initial direction which
is a function of the initial value ζ(0), precesses around the
z-axis counterclockwise and clockwise, respectively, with
constant z-axis projectionMz =±

1
2
. The angular momen-

tum magnitude is constant and can reach any value |M|!
1
2
, depending on the initial choice of ζ(t). Averaging over
the initial values yields a quantum equilibrium ensemble
averaged angular momentum 〈M〉B , which is time inde-
pendent and identical to the quantum-mechanical expec-
tation value of the spin operator 〈Ŝ〉 and also to the
time average of Bohm angular momentum 〈M〉T for each
particular ensemble representative ζ. In fig. 1(a) an exam-
ple of two unentangled qubits in the state |↑↓〉 is shown.
The solution is an independent motion of “spin up” and
“spin down” vectors M1 and M2.
For a two-qubit state the guiding function ψ(ζ) is

expressed by six variables ζ = {ζ1, ζ2}. It should be
noted that even for non-interacting, but entangled qubits
the corresponding equations of motion are coupled by
the quantum potential Q(ζ) which incorporates their
interaction in the corresponding Bohmian two-particle
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Hamiltonian. The solutions for each of the time-dependent
angular momentum vectors M1,2 are determined by six
common initial values ζ(0).

The probability distributions and the quantum
entanglement. – Let us now discuss results for a qubit
pair in the state parametrized by eq. (1). The total
angular-momentum projection M1z +M2z is zero while
the angular momenta due to the action of the non-
local quantum potential (i.e., interaction) and the corre-
sponding quantum torques exhibit a complex precessional
motion, as illustrated for a particular choice of ζ(0) in
fig. 1(b). In general, only a few special cases have been
explored so far. For example, for a fully entangled singlet
state, ϑ= π/2 and ϕ= π, the total momentumM=M1+
M2 vanishes for each ζ in accordance with the usual
imagery [10].
In this letter we concentrate on dynamical properties of

the angular momenta relevant to the analysis of quantum
entanglement while various other spin-spin correlation
functions and the corresponding probability distributions
will be presented elsewhere [30]. We computed trajectories
M1,2[ζ(t)] covering the full configuration space with ∼ 106

initial values ζ(0) per |Ψ〉, i.e., for a particular choice of
ϑ and ϕ. Although these trajectories exhibit extremely
rich variety, some common properties can be outlined.
i) The quasi-periodic motion appears chaotic and, except
in special cases, the projections of the total momentum
M onto the xy-plane winds around the origin an infinite
number of times in a spirographic manner [31], forming
a dense annulus limited by fixed outer and inner radii
(fig. 1(c)). ii) The curve corresponding to relative momen-
tumM2−M1 is closed and periodic if plotted in the refer-
ence frame rotating synchronously with M around the
z-axis (fig. 1(d)).
These results clearly show that the entanglement

properties of such a qubit pair are reflected in the
dynamics of the azimuthal angles φ1[ζ(t)] and φ2[ζ(t)]
of angular momenta as follows. First, the ensemble
average difference of azimuthal angles φ[ζ(t)] = φ2−φ1
is time independent and given by 〈φ〉B =ϕ, where
the average is defined by 〈f〉B =

∫
f(ζ)R2(ζ)dζ, with

dζ =
∏2
i=1 sinαidαidβidγi. The corresponding probability

distribution dP (φ)/dφ=
∫
δ[φ−φ(ζ)]R2(ζ)dζ (see foot-

note 1) is constant for unentangled qubits and becomes
progressively peaked at ϕ for increasing entanglement, as
presented in fig. 2, culminating in precession of angular
momenta at equal relative angle φ[ζ(t)] =ϕ for all ζ
consistent with perfect entanglement. The shape of the
distribution is independent of ϕ.
The next quantity of interest is the probability distri-

bution dP (cos(φ−ϕ))/d cos(φ−ϕ), also presented in

1For the results presented throughout this paper we used
a uniform grid of 1283 points in the configuration space of
{cosα1, cosα2,β2−β1}. Hidden variables γ1,2 corresponding to the
internal rotation around the body principal axis are irrelevant for the
quantities considered here and the Dirac delta-function was imple-
mented as a normalized rectangular function of width 1/100.
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Fig. 2: (Colour on-line) Probability distribution for relative
angle φ of the in-plane projections of momenta (see fig. 1(a)),
dP (φ)/dφ (blue, upper scale) shown relative to the average
angle 〈φ〉B =ϕ for various degrees of entanglement. In the low
entanglement regime the distribution is flat, becoming peaked
at ϕ in the fully entangled state. The corresponding probability
distributions dP (cos(φ−ϕ))/d cos(φ−ϕ) (red, lower scale).
The average of 〈cos(φ−ϕ)〉B =CB(ϑ) is marked with thick
vertical lines and shown also in the inset with bullets together
with concurrence sinϑ (dashed line). Small oscillations are due
to finite-size effects.

fig. 2 and, in particularly the average cosine which appears
to be an excellent measure of entanglement, ranging from
zero for an unentangled state to unity for a maximally
entangled state. One can readily prove the exact expres-
sions 〈cosφ〉B =CB cosϕ and 〈sinφ〉B =CB sinϕ or,
equivalently,

ϕ= 〈φ〉B , (3)

CB = 〈cos(φ−ϕ)〉B (4)

=
√
〈cosφ〉2B + 〈sinφ〉

2
B , (5)

1−C2B = (∆ cosφ)
2+(∆ sinφ)2, (6)

where CB is dependent only of ϑ and ∆ cosφ, ∆ sinφ are
standard deviations from average cosine and sine, respec-
tively. Note that 〈sin(φ−ϕ)〉B = 0. A higher degree of
entanglement can thus be visualized as a highly corre-
lated distribution of angular momenta making azimuthal
angles difference close to ϕ, with suppressed fluctuations
for progressively increasing entanglement.
In the Bohmian picture of entangled qubit pairs the

quantity CB(ϑ) (inset to fig. 2) plays the role of Woot-
ters concurrence given by C(ϑ) = 2|〈Ψ|Ŝ+1 Ŝ

−
2 |Ψ〉|= |sinϑ|

[24], where Ŝ±1,2 are spin-ladder operators for qubits 1
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Fig. 3: (Colour on-line) Time averaged cos(φ − ϕ) probability  
distributions for various degrees of qubit pair entanglement. 
The concurrent (Cζ = 1)  and  anti-concurrent  (Cζ = −1) frac-
tions are indicated by red and blue shading, respectively. Thick 
vertical lines represent distribution averages (values are iden-
tical to those in fig. 2, i.e., CB).

and 2, respectively [32,33]. High CB(ϑ) → 1 signals weak  
angle fluctuations whereas for CB(ϑ) → 0, entanglement 
is suppressed and progresively destroyed when the stan-
dard deviation of the cosine (or sine) is comparable to its 
average.
Concurrence is related to quantum-mechanical expecta-

tion values and CB to ensemble averages. A natural ques-
tion arises: is there some imprint of entanglement, not only 
in the full ensemble, but also in each particular represen-
tative ζ? Standard quantum mechanics does not discuss 
such questions, while in the Bohmian approach one can 
classify the ensemble further.
Each representative ζ will in general lead to a different 

time average of cos (φ[ζ(t)] − ϕ), defined by

〈cosφ〉T =
1

τ

∫ τ

0

cos(φ[ζ(t)]−ϕ)dt, (7)

where τ(ζ) is the period corresponding to the trajectory
ζ(t). Time averaged cos(φ[ζ(t)]−ϕ) is distributed accord-
ing to the probability distribution dP (〈cosφ〉T )/d〈cosφ〉T .
In fig. 3 the distribution for several representative values of
ϑ is presented. The distributions in the strong entangle-
ment regime, ϑ∼ π/2, are peaked at 〈cosφ〉T ∼ 1, simi-
lar to results in fig. 2 but strikingly different in the
weak entanglement regime. This is understandable since
for weakly entangled qubit pairs the angular momenta
precess almost independently with a vanishing time aver-
age cos(φ−ϕ) for every ζ, leading to the zero peak in the
distribution. This is contrary to the fixed time distribution
which is flat because of the randomly distributed angles.

It should be noted that the ensemble representing two
qubits is non-ergodic, i.e., ensemble averages 〈f〉B do not
generally equal time averages 〈f〉T . For the present case of
noninteracting (but entangled) qubits 〈f〉B is independent
of time (as it should be) and 〈〈f〉T 〉B = 〈f〉B , where the
Bohmian ensemble average of 〈f〉T is evaluated using the
corresponding initial values ζ(0).
The probability distribution for the cosine time average

exhibits a distinctive tripartite structure. We found that
the discriminating property of ensemble representatives
is the relative direction of angular momenta precession.
In the low entanglement regime the xy-plane projection
of momenta M1 and M2 precess mainly in opposite
directions. An extreme case is an unentangled state,
fig. 1(a). In general, momentum pairs move part time in
the same and part time in the opposite direction. We
classify representatives that always precess in the same
direction as “concurrent” movers whereas those which
always precess in the opposite direction are classified as
“anti-concurrent”.
To be specific, we introduce a measure Cζ to dis-

tinguish different trajectories ζ(t) according to their
“concurrency”,

Cζ =
1

τ

∫ τ

0

sign
dφ1[ζ(t)]

dt

dφ2[ζ(t)]

dt
dt. (8)

At each moment the angular momenta for a given trajec-
tory ζ(t) precess either in the same or in the opposite direc-
tion. One can thus visualize the concurrency as a measure
of the share of the time that both angular momenta
move in the same direction. For example, Cζ =±1 for
perfectly concurrent and anti-concurrent movers, respec-
tively, and Cζ > 0 for trajectories where angular momenta
move concurrently more than half of the time for some
members of the ensemble.
This is shown in fig. 3, where distributions for concur-

rent and anti-concurrent movers are shaded red and
blue, respectively. In the low-entanglement regime anti-
concurrent movers dominate whereas the distribution of
concurrent movers progressively dominates as entangle-
ment increases. Remarkably, only a minority of representa-
tives move both concurrently and anti-concurrently, part
of the time (|Cζ |< 1).
Concurrency should not be confused with concurrence

which is given by the ensemble average of cosφ while, on
the other hand, concurrency relates to spin-precession of
a particular pair in the Bohmian ensemble and has no
direct quantum analogue. The probability distribution of
concurrency consists of a discrete and a continuum part,

dP (Cζ)

dCζ
= P+δ(Cζ − 1)+P−δ(Cζ +1)+ ρ(Cζ), (9)

where P± is the probability that the concurrency is exactly
±1, respectively, and ρ(Cζ) is a continuous function2,

2The support of the concurrency is restricted to the interval |Cζ |!
1, therefore the relation δ(Cζ ± 1) is to be read as limε→0+ δ(Cζ ±
(1− ε)).
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Fig. 4: (Colour on-line) (a) The histogram d2P/d〈cosφ〉TdCζ
extracted from ∼ 106 trajectories for ϑ= π/5 (see footnote 1).
The samples are identical to those in fig. 2, while a larger
bin size 1

16
is applied here in order to enable the presentation

of a discrete/continuous type of the distribution in a single
plot. Thick vertical line represents the average point {CB ,
〈Cζ〉B}. (b) Continuous part ρ(Cζ) vs. concurrency for various
ϑ. The distribution eq. (9) is normalized, thus

∫ 1
−1
ρ(Cζ)dCζ =

1− (P++P−).

shown for various ϑ in fig. 4(b), for which motion is
sometimes concurrent and sometimes anti-concurrent as
t changes. Hence the probability density ρ(Cζ) tends to
zero as |Cζ |→ 1, which strictly separates (anti-)concurrent
motions from the partially concurrent regime. For a typical
case of a partially entangled qubit pair with ϑ= π/5
the histogram probability distribution d2P/d〈cosφ〉TdCζ
is shown in fig. 4(a). Coarse binning is applied in order
to emphasize the middle regime |Cζ |< 1 together with
(anti-)concurrent parts.
Let us emphasize, that concurrent motion is inherent

to an individual representative and their share P+ in
the ensemble can be considered as a suitable measure of
entanglement for Bohmian ensembles. Such a clear visual-
ization of entanglement cannot be deduced from quantum
mechanics where only averages of operators are accessible.
Quantifying entanglement is important in applications
which require maximally entangled (Bell) pairs to be
shared by two remote parties. In reality qubit pairs in
general are not perfect Bell states and entanglement
distillation is required in order to extract such pairs [23].
The entanglement of formation EF is an upper bound to
the average number of Bell pairs that can be extracted
or distilled from a set of copies of an entangled state,
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Fig. 5: (Colour on-line) (a) P+ line represents the probability
that momenta move concurrently (shaded red), and above
1−P− is the probability that motion is anti-concurrent (blue
shaded region). The P0 line denotes a share of trajectories
which move concurrently more than half of the time (P0 = P++∫ 1
0
ρ(Cζ)dCζ). Entanglement of formation EF is shown with a

dashed line. (b) Entanglement of formation vs. the probability
for |↑↓〉 configuration in |Ψ〉 (dashed). Bullets represent the
probability for concurrent motion —the Bohmian counterpart
of EF . The full line represents the distillation yield using
Procrustean method. The dotted line is the yield using the
Schmidt projection method with 22 input pairs.

using only local operations and classical communication.
In the Bohmian approach the probability for concurrent
motion P+ may be considered a counterpart of EF . This
probability is shown in fig. 5(a) together with EF (dashed
line). The probability for anti-concurrent motion P−
corresponds to the region above the 1−P− line.
In fig. 5(b) the distillation yield of Bell pairs obtained

by the Procrustean method [23] is plotted as a function
of cos2 ϑ/2 for one qubit pair (straight full line) together
with the upper limit, the entanglement of formation
(dashed line). The probability for concurrent movers in the
Bohmian picture (red line) is above both the Procrustean
method and the yield of Schmidt projection methods when
applied with n= 22 input pairs [23]. This result suggests
that in the Bohmian picture “preformed entangled” pairs
exist and their extraction would represent a quantum
distillation protocol with high yields obtained from a
single qubit pair.
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Conclusion. – For the sake of completeness let us
discuss also the class of states

|Ψ̃〉= cos
ϑ

2
|↑↑〉+ eiϕ sin

ϑ

2
| ↓↓〉. (10)

The formalism can be applied in a similar manner as
for the case of |Ψ〉 while the main distinction is that
for states eq. (10) the sum of azimuthal angles, φ̃=
φ1+φ2, is important, not the difference φ. Although
the trajectories with equal initial values, but different
quantum states |Ψ̃〉 (|Ψ〉), are altogether different, the
probability distributions take the same form after the
appropriate substitution φ↔ φ̃. For example, 〈φ̃〉B =ϕ
and, furthermore, the sign of concurrency is reversed, i.e.,
C̃ζ =−Cζ .
In brief summary the main findings are as follows. In the

usual quantum-mechanical approach, two main measures
are used to quantify entanglement, namely concurrence
and the entanglement of formation. These rather abstract
concepts are related but rather difficult, if not impossi-
ble, to visualise. Conversely, in the Bohmian approach it
is possible to define analogous measures that are quanti-
tatively similar (though not identical) to concurrence and
entanglement of formation but are quite distinct from each
other and may be directly related to intuitively appeal-
ing geometric interpretations. In the Bohmian interpre-
tation, the angular momentum vectors of the two parti-
cles (qubits) precess in a well-defined way with some
initial probability distribution. The Bohmian concurrence
is simply the average mutual cosine of the xy-plane projec-
tion of the two angular momentum vectors and is a prop-
erty of the whole ensemble. In standard quantum mechan-
ics this corresponds to an expectation value. On the other
hand, the Bohmian entanglement of formation depends
on a property —concurrency— of each representative of
the ensemble which either has “concurrent motion” (the
angular momentum vectors precess in unison) or they do
not. The share of representatives with this motion is the
entanglement of formation. Apart from this simple and
appealing underlying picture, it may also have practical
relevance since it suggests that distillation protocols could
have a very high yield already for one single-qubit pair.
This ontological result is entirely missed (has no meaning)
in the usual quantum-mechanical approach. Our results
also give rise to a challenging question: Can some quan-
tity identical, or analogous, to concurrency also manifest
itself in other spin-1/2 formalisms?
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