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This book is the seventh edition of an elementary text on solid state physics
for senior and beginning graduate students of physical science and engineering.
The book is an update of the sixth edition of 1986 and includes additions,
improvements, and corrections made in that edition in 13 successive printings—
which it was time to pull together—and a number of new topics besides. Signif-
icant advances in the field have been added or discussed more fully: thus high
temperature superconductors are treated, and results of scanning tunneling
microscopy are displayed; the treatment of fiber optics is expanded. There are
discussions, among other topics, of nanostructures, superlattices, Bloch/
Wannier levels, Zener tunneling, light-emitting diodes, and new magnetic
materials. The additions have been made within a boundary condition intended
to keep the text within one volume and at a reasonable price.

The theoretical level of the text itself has not been changed. There is more
discussion of useful materials. The treatment of elastic constants and elastic
waves which was dropped after the fourth edition has now been returned be-
cause, as many have pointed out, the matter is useful and not easily accessible
elsewhere. The treatment of superconductors is much more extensive than is
usual in a text at this level: either you do it or you don't.

Solid state physics is concerned with the properties, often astonishing and
often of great utility, that result from the distribution of electrons in metals,
semiconductors, and insulators. The book also tells how the excitations and
imperfections of real solids can be understood with simple models whose power
and scope are now firmly established. The subject matter supports a profitable
interplay of experiment, application, and theory. The book, in English and in
many translations, has helped give several generations of students a picture of
the process. Students also find the field attractive because of the frequent possi-
bility of working in small groups.

Instructors will use the book as the foundation of a course in their own
way, yet there are two general patterns to the introduction, selection and order
of the basic material. If students have a significant preparation in elementary
quantum mecha b, they will like to begin with the quantum theory of elec-
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trons in one-dimensional solids, starting with the free electron gas in Chapter 6
and energy bands in Chapter 7. One will need to treat the reciprocal lattice in
three dimensions (Chapter 2) before plunging into semiconductors (Chapter 8)
and Fermi surfaces (Chapter 9). Crystal structures, crystal binding, and pho-
nons could be considered as recreational reading. In a more gradual approach,
the first eight chapters through the physics of semiconductors are read consecu-
tively as a one-semester introduction to the field.

What about the necessary statistical mechanics? A vague discomfort at the
thought of the chemical potential is still characteristic of a physics education.
This intellectual gap is due to the obscurity of the writings of J. Willard Gibbs,
who discovered and understood the matter 100 years ago. Herbert Kroemer
and I have clarified the physics of the chemical potential in the early chapters of
our book on thermal physics.

Review series give excellent extended treatments of all the subjects
treated in this book and many more besides; thus with good conscience I give
few references to original papers. In these omissions no lack of honor is in-
tended to those who first set sail on these seas.

The crystallographic notation conforms with current usage in physics.
Important equations are repeated in SI and CGS-Gaussian units, where these
differ. Exceptions are figure captions, chapter summaries, some problems, and
any long section of text where a single indicated substitution will translate from
CGS to SI. Chapter Contents pages discuss conventions adopted to make paral-

lel usage simple. The dual usage in this book has been found useful and accept-
able.

Tables are in conventional units. The symbol e denotes the charge on the
proton and is positive. The notation (18) refers to Equation (18) of the current
chapter, but (3.18) refers to Equation 18 of Chapter 3. A caret " over a vector
refers to a unit vector. Few of the problems are exactly easy; most were devised
to carry forward the subject of the chapter. With a few exceptions, the prob-
lems are those of the original sixth edition.

This edition owes much to the advice of Professor Steven G. Louie. For
collected corrections, data, and illustrations 1 am grateful to P. Allen, M. Beas-
ley, D. Chemla, T.-C. Chiang, M. L. Cohen, M. G. Craford, A. E. Curzon,
D. Eigler, L. M. Falicov, R. B. Frankel, ]J. Friedel, T. H. Geballe, D. M.
Ginsberg, C. Herring, H. F. Hess, N. Holonyak, Jr., M. Jacob, J. Mamin,
P. McEuen, J. G. Mullen, J. C. Phillips, D. E. Prober, Marta Puebla, D. S.
Rokhsar, L. Takacs, Tingye Li, M. A. Van Hove, E. R. Weber, R. M. White,
J. P. Wolfe, and A. Zettl. Of the Wiley staff I have particularly great debts to
Clifford Mills for publication supervision, to Cathy Donovan for her ingenuity
in processing the additions between the thirteen successive printings, and to
Suzanne Ingrao of Ingrao Associates for her skill and understanding during the
editorial process.
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Corrections and suggestions will be gratefully received and may be ad-
dressed to the author at the Department of Physics, University of California,
Berkeley, CA 94720-7300; by email to kittel@uclink4. Berkeley. edu; and by fax
to (510) 643-9473.

C. Kittel

An Instructor’s Manual is available for this revision; several problems have
been added (to Chapter 3 and Chapter 6); one dropped (from Chapter 4), and
several corrections made. Instructors who have adopted the text for classroom
use should direct a request on departmental letterhead to John Wiley & Sons,
Inc., 605 Third Avenue, New York, NY 10158-0012. Limited requests for per-
mission to copy figures or other material should be addressed to the Permis-
sions Editor at this address.
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(a)

()

Figure 1 RBelation of the external form of crystals to the form of the elementary building blocks.
The building blocks are identical in (a) and (b), but different ery«*1faces are developed. (¢) Cleav-

ing a crystal of rocksalt.



CHAPTER 1: CRYSTAL STRUCTURE
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Solid state physics is largely concerned with crystals and electrons in crys-
tals. The study of solid state physics began in the early years of this century
following the discovery of x-ray diffraction by crystals and the publication of a
series of simple calculations and successful predictions of the properties of
crystals.

When a crystal grows in a constant environment, the form develops as if
identical building blocks were added continuotisly (Fig. 1). The building blocks
are atoms or groups of atoms, so that a crystal is a three-dimensional periodic
array of atoms.

This was known in the 18th century when mineralogists discovered that
the index numbers of the directions of all faces of a crystal are exact integers.
Only the arrangement of identical particles in a periodic array can account for
the law of integral indices,! as discussed below.

In 1912 a paper entitled “Interference effects with Rontgen rays” was pre-
sented to the Bavarian Academy of Sciences in Munich. In the first part of the
paper, Laue developed an elementary theory of the diffraction of x-rays by a
periodic array. In the second part, Friedrich and Knipping reported the first
experimental observations of x-ray diffraction by crystals.?

The work proved decisively that crystals are composed of a periodic array
of atoms. With an established atomic model of a crystal, physicists now could
think much further. The studies have been extended to include amorphous or
noncrystalline solids, glasses, and liquids. The wider field is known as con-
densed matter physics, and it is now the largest and probably the most vigorous
area of physics.

PERIODIC ARRAYS OF ATOMS

An ideal crystal is constructed by the infinite repetition of identical struc-
tural units in space. In the simplest crystals the structural unit is a single atom,
as in copper, silver, gold, iron, aluminum, and the alkali metals. But the small-
est structural unit may comprise many atoms or molecules.

The structure of all crystals can be described in terms of a lattice, with a
group of atoms attached to every lattice point. The group of atoms is called the
basis; when repeated in space it forms the crystal structure.

'B. J. Haily, Essai d'une théorie sur la structure des eristaux, Paris, 1784; Traité de cristal-
lographie, Paris, 1801.

“For personal accounts of the early years of x-ray diffraction studies of crystals, see P. P. Ewald,
ed., Fifty years of x-re,  fraction, A. Oosthoek’s Uitgeversmij., Utrecht, 1962.



Lattice Translation Vectors

The lattice is defined by three fundamental translation vectors a,, ag, a3
such that the atomic arrangement looks the same in every respect when viewed
from the point r as when viewed from the point

r =r+ ua; + usay + uzasz , (1)

where u;, ug, 15 are arbitrary integers. The set of points r* defined by (1) for all
), tig, tz defines a lattice.

A lattice is a regular periodic array of points in space. (The analog in two
dimensions is called a net, as in Chapter 18.) A lattice is a mathematical abstrac-
tion; the crystal structure is formed when a basis of atoms is attached identically
to every lattice point. The logical relation is

lattice + basis = crystal structure . (2)

The lattice and the translation vectors a,, as, a3 are said to be primitive if
any two points r, r* from which the atomic arrangement looks the same always
satisfy (1) with a suitable choice of the integers u,, ug, uz. With this definition of
the primitive translation vectors, there is no cell of smaller volume that can
serve as a building block for the crystal structure.

We often use primitive translation vectors to define the crystal axes. How-
ever, nonprimitive crystal axes are often used when they have a simpler rela-
tion to the symmetry of the structure. The crystal axes a;, as, a3 form three
adjacent edges of a parallelepiped. If there are lattice points only at the corners,
then it is a primitive parallelepiped.

A lattice translation operation is defined as the displacement of a crystal by
a crystal translation vector

T = wa; + uza, + uzas . (3)

Any two lattice points are connected by a vector of this form.

To describe a crystal structure, there are three important questions to
answer: What is the lattice? What choice of a,, a5, as do we wish to make? What
is the basis?

More than one lattice is always possible for a given structure, and more
than one set of axes is always possible for a given lattice. The basis is identified
once these choices have been made. Everything (including the x-ray diffraction
pattern) works out correctly in the end provided that (3) has been satisfied.

The symmetry operations of a crystal carry the crystal structure into itself.
These include the lattice translation operations. Further, there are rotation and
reflection operations, called point operations. About lattice points or certain
special points within an elementary parallelpiped it may be possible to apply
rotations ar reflections that carry the crystal into itself.

Finally, there may exist compound operations made up of combined trans-
lation and point operations. Textbooks on crystallography are largely devoted to



1 Crystal Structure

Figure 2 Portion of a crystal of an imaginary protein molecule, in a two-dimensional world. (We
picked a protein molecule because it is not likely to have a special symmetry of its own.) The atomic
arrangement in the crystal looks exactly the same to an observer at v’ as to an observer at r,
provided that the vector T which connects v and r may be expressed as an integral multiple of the
vectors a; and a. In this illustration, T = —a, + 3a,. The vectors a, and a, are primitive transla-

tion vertors of the two-dimensional lattice.

£ . &
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Figure 3 Similar to Fig. 2, but with protein molecules associated in pairs. The crystal translation
vectors are a,; and a;. A rotation of 7 radians about any point marked x will carry the ervstal into

itself. This occurs also for equivalent points in other cells, but we have marked the points X only
within one cell.

the deseription of symmetry operations. The crystal structure of Fig. 2 is drawn
to have only translational symmetry operations. The crystal structure of Fig. 3
allows both translational and point symmetry operations.

Basis and the Crystal Structure

A basis of atoms is attached to every lattice point, with every basis identical
in composition, arrangement, and orientation. Figure 4 shows how a crystal
structure is formed by adding a basis to every lattice point. The lattice is indi-
cated by dots in Figs. 2 and 3, but in Fig, 4c the dots are omitted.



Figure 4 The crystal structure is formed
by the addition of the basis (b) to every
lattice point of the lattice (a). By looking at
{c), vou can recognize the basis and then
vou can abstract the space lattice. It does
not matter where the basis is put in rela-
tion to a lattice point.

The number of atoms in the basis may be one, or it may be more than one.
The position of the center of an atom j of the basis relative to the associated
lattice point is

4)

We may arrange the origin, which we have called the associated lattice point, so
that 0=ux;, y;, %, = 1.

Primitive Lattice Cell

The parallelepiped defined by primitive axes a,, a,, a3 is called a primitive
cell (Fig. 5b). A primitive cell is a type of cell or unit cell. (The adjective unit is
superfluous and not needed.) A cell will fill all space by the repetition of suita-
ble crystal translation operations. A primitive cell is a minimum-volume cell.

There are many ways of choosing the primitive axes and primitive cell for a
given lattice. The number of atoms in a primitive cell or primitive basis is
always the same for a given crystal structure.

'q '



1 Crystal Structure

(b) fc)

Figure 5a Lattice points of a space lattice in two dimensions. All pairs of vectors a,, ag are
translation vectors of the lattice. But a,""", ay''" are not primitive translation vectors because we
cannot form the lattice translation T from integral combinations of a,""" and a,'"’. All other pairs
shown of a; and ag may be taken as the primitive translation vectors of the lattice. The parallelo-

grams 1, 2, 3 are equal in area and any of them could be taken as the primitive cell. The parallelo-
gram 4 has twice the area of a primitive cell,

Figure 5b Primitive cell of a space lattice in three dimensions.

Figure 5¢ Suppose these points are identical atoms: sketch in on the figure a set of lattice points, a
choice of primitive axes, a primitive cell, and the basis of atoms associated with a lattice point.

There is always one lattice point per primitive cell. If the primitive cell is
a parallelepiped with lattice points at each of the eight corners, each lattice
point is shared among eight cells, so that the total number of lattice points in
the cell is one: 8 X § = 1.

The volume of a parallelepiped with axes a,, a,, ag is

, (5)

by elementary vector analysis. The basis associated with a primitive cell is

called a primitive basis. No basis contains fewer atoms than a primitive basis
contains.

Vc=|3l'a2"‘ a3



Figure 6 A primitive cell may also be chosen follow-
ing this procedure: (1) draw lines to connect a given
lattice point to all nearby lattice points; (2) at the
midpoint and normal to these lines, draw new lines
or planes. The smallest volume enclosed in this way
is the Wigner-Seitz primitive cell. All space may be
filled by these cells, just as by the cells of Fig. 5.

Another way of choosing a primitive cell is shown in Fig. 6. This is known
to physicists as a Wigner-Seitz cell.

FUNDAMENTAL TYPES OF LATTICES

Crystal lattices can be carried or mapped into themselves by the lattice
translations T and by various other symmetry operations. A typical symmetry
operation is that of rotation about an axis that passes through a lattice point.
Lattices can be found such that one-, two-, three-, four-, and sixfold rotation
axes carry the lattice into itself, corresponding to rotations by 2, 27/2, 24/3,
277/4, and 277/6 radians and by integral multiples of these rotations. The rotation
axes are denoted by the symbols 1, 2, 3, 4, and 6.

We cannot find a lattice that goes into itself under other rotations, such as
by 27/7 radians or 277/5 radians. A single molecule properly designed can have
any degree of rotational symmetry, but an infinite periodic lattice cannot. We
can make a crystal from maolecules that individually have a fivefold rotation axis,
but we should not expect the lattice to have a fivefold rotation axis. In Fig. 7 we
show what happens if we try to construct a periodic lattice having fivefold
symmetry: the pentagons do not fit together to fill all space, showing that
we cannot combine fivefold point symmetry with the required translational
periodicity.

By lattice point group we mean the collection of symmetry operations
which, applied about a lattice point, carry the lattice into itself. The possible
rotations have been listed. We can have mirror reflections m about a plane
through a lattice point. The inversion operation is composed of a rotation of 7
followed by reflection in a plane normal to the rotation axis; the total effect is to
replace r by —r. The symmetry axes and symmetry planes of a cube are shown
in Fig. 8.

Two-Dimensional Lattice Types

There is an unlimited number of possible lattices because there is no natu-
ral restriction on the lengths of the lattice translation vectors or on the angle ¢
between them. The lattice in Fig. 5a was drawn for arbitrary a, and as. A
general lattice such as this is known as an oblique lattice and is invariant only
under rotation of 7 and 24 about any lattice point.
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Figure 7 A fivefold axis of symmetry can-
not exist in a periodic lattice because it is
not possible to fill the area of a plane with a
connected array of pentagons, We can, how-
ever, fill all the area of a plane with just two
distinct designs of “tiles” or elementary
polygons. A quasicrystal is a quasiperiodic
nonrandom assembly of two types of figures.
Quasicrystals are discussed at the end of
Chapter 2.

(a) (b)

{c) {d) (e)

Figure 8 (a) A plane of symmetry parallel to the faces of a cube. (b) A diagonal plane of symmetry
in acube. (c) The three tetrad axes of a cube. (d) The four triad axes of a cube. {e) The six diad axes
of a cube.
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But special lattices of the oblique type can be invariant under rotation of
27/3, 2m/4, or 2m/6, or under mirror reflection. We must impose restrictive
conditions on a; and a; if we want to construct a lattice that will be invariant
under one or more of these new operations. There are four distinct types of
restriction, and each leads to what we mav call a special lattice type. Thus there
are five distinct lattice types in two dimensions, the oblique lattice and the four
special lattices shown in Fig. 9. Bravais lattice is the common phrase for a
distinct lattice type; we say that there are five Bravais lattices or nets in two
dimensions.

Three-Dimensional Lattice Types

The point symmetry groups in three dimensions require the 14 different
lattice types listed in Table 1. The general lattice is triclinic, and there are 13
special lattices. These are grouped for convenience into systems classified ac-
cording to seven types of cells, which are triclinic, monoclinic, orthorhombic,
tetragonal, cubic, trigonal, and hexagonal. The division into systems is ex-
pressed in the table in terms of the axial relations that describe the cells.

The cells in Fig. 10 are conventional cells; of these only the sc is a primi-
tive cell. Often a nonprimitive cell has a more obvious relation with the point
symmetry operations than has a primitive cell.

Table 1 The 14 lattice types in three dimensions

Number Restrictions on

of conventional cell
System lattices axes and angles
Triclinic 1 ay 7 as ¥ ay
a# BHAy
Monoclinic 2 iy 7 s 7 Oy
a=y=90"#f8
Orthorhombic 4 ay # as # as
Tetragonal 2 = az 7 a4,
o= ‘6 =y= 9(°
Cubic 3 ay = da = a3
Trigcmal 1 a1 = fls = iy
a=f=9y<I120°, # 9°
Hexagonal 1 ay = a3 # ay
a=p=90°

y = 120°
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The cells shown are the conventional cells.

lattices.

1

Figure 10 The cub



Table 2 Characteristics of cubic lattices®

Simple Bodv-centered Face-centered
Volume, conventional cell a a’ a’
Lattice points per cell 1 2 4
Volume, primitive cell a’ ia® id
Lattice points per unit volume Va® 2la Ala®
Number of nearest neighbors® 6 8 12
Nearest-neighbor distance a 3V24/2 = (.866a a/2V? = 0.707a
Number of second neighbors 12 6 6
Second neighbor distance 2129 a a
Packing fraction” im i7V3 17V2
=(.524 =0.680 =0.740

*Tables of numbers of neighbors and distances in s, bec, fee, hep, and diamond structures are
given on pp- 1037-1039 of J. Hirschfelder, C. F. Curtis and R. B. Bird, Molecular theory of gases
and liquids, Wiley, 1964.

bThe packing fraction is the maximum proportion of the available volume that can be filled
with hard spheres.

There are three lattices in the cubic system: the simple cubic (sc) lattice,
the body-centered cubic (bec) lattice, and the face-centered cubic (fec) lattice.
The characteristics of the three cubic lattices are summarized in Table 2.

A primitive cell of the bee lattice is shown in Fig. 11, and the primitive
translation vectors are shown in Fig. 12. The primitive translation vectors of the
fee lattice are shown in Fig. 13. Primitive cells by definition contain only one
lattice point, but the conventional bee cell contains two lattice points, and the
fce cell contains four lattice points.

The position of a point in a cell is specified by (4) in terms of the atomic
coordinates x, y, z. Here each coordinate is a fraction of the axial length a,, as,
a; in the direction of the coordinate axis, with the origin taken at one corner of
the cell. Thus the coordinates of the body center of a cell are 344, and the face
centers include 330, 034; 104,

In the hexagonal system the primitive cell is a right prism based on a
rhombus with an included angle of 120°. Figure 14 shows the relationship of the
rhombic cell to a hexagonal prism.

INDEX SYSTEM FOR CRYSTAL PLANES

The orientation of a crystal plane is determined by three points in the
plane, provided they are not collinear. If each point lay on a different crystal
avis, the plane could be specified by giving the coordinates of the points in
terms of the lattice constants a,, s, az-
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Figure 11 Body-centered cubic lattice, showing a  Figure 12 Primitive translation vectors of the body-cen-
primitive cell. The primitive cell shown is a rhombo-  tered cubic lattice; these vectors connect the lattice point
hedron of edge 4 V3 a, and the angle between adja-  at the origin to lattice points at the body centers. The
cent edges is 109°28". primitive cell is obtained on completing the rhombohe-

dron. In terms of the cube edge a the primitive translation
vectors are

a=laR+§—%); ap=la(-k+§+32);
azy=dalk —§+ %) .

P | 1

;z_*lz_\_. £

I

| =

i :

1 a

I ki

Y I i

| = a %

I 1200 'L/-I

I /{. &y

A
Figure 13 The rhombohedral primitive cell of the face-cen- Figure 14 Relation of the primitive cel
tered cubic crystal. The primitive translation vectors ay, ap, a, in the bexagonal system (heavy lines) tc
connect the lattice point at the origin with lattice points at the a prism of hexagonal symmetry, Here

face centers. As drawn, the primitive vectors are; a; = ag # aa.

a=dalk+9); a=taf+%; a;=laG+% .

The angles between the axes are 60°. Here %, ¥, & are the Carte-
sian unit vectors.
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Figure 13 This plane intercepts the a;, a;, a; axes at 3a;, 2as, 2a5. The
reciprocals of these numbers are 4, 4, 4. The smallest three integers having
the same ratio are 2, 3, 3, and thus the indices of the plane are (233).

However, it turns out to be more useful for structure analysis to specify the
orientation of a plane by the indices determined by the following rules
(Fig. 13).

« Find the intercepts on the axes in terms of the lattice constants a,, as, as. The
axes may be those of a primitive or nonprimitive cell.

« Take the reciprocals of these numbers and then reduce to three integers
having the same ratio, usually the smallest three integers. The result, en-
closed in parentheses (hkl), is called the index of the plane.

For the plane whose intercepts are 4, 1, 2, the reciprocals are 1, 1, and 4;
the smallest three integers having the same ratio are (142). For an intercept at
infinity, the corresponding index is zero. The indices of some important planes
in a cubic crystal are illustrated by Fig. 16.

The indices (hkI) may denote a single plane or a set of parallel planes. If a
plane cuts an axis on the negative side of the origin, the corresponding index is
negative, indicated by placing a minus sign above the index: (hkl). The cube
faces of a cubic crystal are (100), (010), (001), (100), (010), and (001). Planes
equivalent by symmetry may be denoted by curly brackets (braces) around
indices; the set of cube faces is {100}. When we speak of the (200) plane we
mean a plane paralle]l to (L00) but cutting the a, axis at a.

The indices [uvw] of a direction in a crystal are the set of the smallest
integers that have the ratio of the components of a vector in the desired direc-
tion, referred to the axes. The a, axis is the [100] direction; the —a, axis is the

)
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(100}

Figure 16 Indices of important planes in a cubic erystal. The plane (200) is parallel to (100) and to
(100).

[010] direction. In cubic crystals the direction [hKl] is perpendicular to a plane
(hkl) having the same indices, but this is not generally true in other crystal
systems.

SIMPLE CRYSTAL STRUCTURES

We discuss simple crystal structures of general interest: the sodium chlo-
ride, cesium chloride, hexagonal close-packed, diamond, and cubic zine sulfide
structures.

Sodium Chloride Structure

The sodium chloride, NaCl, structure is shown in Figs. 17 and 18. The
lattice is face-centered cubic; the basis consists of one Na atom and one Cl atom
separatéd by one-half the body diagonal of a unit cube. There are four units of
NaCl in each unit cube, with atoms in the positions

T —— e e T L T
e

i g

T
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Figure 17 We may construct the sodium chloride erys-
tal structure by arranging Na* and C1~ ions alternately
at the lattice points of a simple cubic lattice. In the crys-
tal each ion is surrounded by six nearest neighbors of the
opposite charge. The space lattice is fec, and the basis
has one C1~ ion at 000 and one Na* ion at $§4. The figure

shows one conventional cubic cell. The ionie diameters  Figure 18 Model of sodium chloride. The sodium ions
here are reduced in relation to the cell in order to clarify  are smaller than the chlorine ions. (Courtesy of A. N.
the spatial amangement. Holden and P. Singer.)

Figure 19 Natural crystals of lead sulfide, PbS, which has the
NaCl crystal structure. (Photograph by B. Burleson.)

Figure 20 The cesium chloride crystal struc-
ture. The space lattice is simple cubic, and the
basis has one Cs™ 10on at 000 and one CI™ ion at

233
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Each atom has as nearest neighbors six atoms of the opposite kind, Representa-
tive crystals having the NaCl arrangement include those in the following table.

The cube edge a is given in angstroms; 1 A = 108 cin = 1071° 1 = 0.1 nm.

Figure 19 is a photograph of crystals of lead sulfide (PbS) from Joplin,
Missouri. The Joplin specimens form in beautiful cubes.

Cesium Chloride Structure

The cesium chloride structure is shown in Fig. 20. There is one molecule
per primitive cell, with atoms at the corners 000 and body-centered positions
131 of the simple cubic space lattice. Each atom may be viewed as at the center
of a cube of atoms of the opposite kind, so that the number of nearest neighbors
or coordination number is eight.

Hexagonal Close-packed Structure (hep)

There are an infinite number of ways of arranging identical spheres in a
regular array that maximizes the packing fraction (Fig. 21). One is the face-
centered cubic structure; another is the hexagonal close-packed structure
(Fig. 22). The fraction of the total volume occupied by the spheres is 0.74 for
both structures. No structure, regular or not, has denser packing.

Spheres are arranged in a single closest-packed layer A by placing each
sphere in contact with six others. This layer may serve as either the basal plane
of an hep structure or the (111) plane of the fee structure. A second similar layer
B may be added by placing each sphere of B in contact with three spheres of the
bottom layer, as in Fig. 21. A third layer C may be added in two ways. We
obtain the fce structure if the spheres of the third layer are added over the holes
in the first layer that are not occupied by B. We obtain the hep structure when
the spheres in the third layer are placed directly over the centers of the spheres
in the first layer.
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Figure 21 A close-packed layer of spheres is shown, with centers at points marked A. A second and
identical laver of spheres can be placed on top of this, above and parallel to the plane of the
drawing, with centers over the points marked B. There are two choices for a third layer, It can go

in over A or over C. If it goes in over A the sequence is ABABAB. . . and the structure is hexagonal
close-packed. If the third layer goes in over C the sequence is ABCABCABC. . . and the structure

is face-centered cubic,

Figure 22 The hexagonal close-packed struc-
ture. The atom positions in this structure do
not constitute a space lattice. The space lattice
is simple hexagonal with a basis of two identi-
cal atoms associated with each lattice point.
The lattice parameters a and ¢ are indicated,
where a is in the basal plane and ¢ is the mag-
nitude of the axis a; of Fig. 14.

Figure 23 The primitive cell has a; = a,
with an included angle of 120°, The ¢ axis (or
a;) is normal to the plane of a, and as. The
ideal hep structure has ¢ = 1.633 a. The two
atoms of one basis are shown as solid circles.
One atom of the basis is at the origin; the
other atom is at #1, which means at the posi-
tion r = &a; + ag + a5

The hep structure has the primitive cell of the hexagonal lattice, but with a
basis of two atoms (Fig. 23). The fcc primitive cell has a basis of one atom

(Fig. 13).

The ratio c/a (or as/a,) for hexagonal closest-packing of spheres has the
value (§)% = 1.633, as in Problem 3. It is usual to refer to crystals as hep even if
the actual ¢/a ratio departs somewhat from this theoretical value.

The number of nearest-neighbor atoms is 12 for both hep and fee struc-
tures. If the binding energy (or free energy) depei "~d only on the number of

g

"\\
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Figure 24 Atomic positions in the cubic cell of the diamond  Figure 25 Crystal structure of diamond,
structure projected on a cube face; fractions denote height  showing the tetrahedral bond arrange-
above the base in units of a cube edge. The points at O and §  ment.

are on the fce lattice; those at § and § are on a similar lattice

displaced along the body diagonal by one-fourth of its length.

With a fce space lattice, the basis consists of two identical

atoms at 000; 1.

nearest-neighbor bonds per atom, there would be no difference in energy be-
tween the fee and hep structures.

Diamond Structure

The space lattice of diamond is fcc. The primitive basis has two identical
atoms at 000; 4} associated with each point of the fec lattice, as in Fig. 24. Thus
the conventional unit cube contains eight atoms. There is no way to choose the
primitive cell such that the basis of diamond contains only one atom.

The tetrahedral bonding characteristic of the diamond stricture is shown
in Fig. 25. Each atom has 4 nearest neighbors and 12 next nearest neighbors.
The diamond structure is relatively empty: the maximum proportion of the
available volume which may be filled by hard spheres is only 0.34, which is 46
percent of the ﬁllingl " ~tor for a closest-packed structure such as fec or hep. The



diamond structure is an example of the directional covalent bonding found in
column IV of the periodic table of clements.

Carbon, silicon, germanium, and tin can crystallize in the diamond struc-
ture, with lattice constants a = 3.56, 5.43, 5.65, and 6.46 A, respectively. Here
a is the edge of the conventional cubic cell.

Cubic Zinc Sulfide Structure

The diamond structure may be viewed as two foc structures displaced from
each other by one-quarter of a body diagonal. The cubic zinc sulfide (zinc
blende) structure results when Zn atoms are placed on one fcc lattice and S
atoms on the other fec lattice, as in Fig. 26. The conventional cell is a cube. The
coordinates of the Zn atoms are 000; 033 $0%; 130; the coordinates of the S
atoms are 311. 133, 313 331 The lattice is fce. There are four molecules of ZnS
per conventional cell. About each atom there are four equally distant atoms of
the opposite kind arranged at the corners of a regular tetrahedron.

The diamond structure allows a center-of-inversion symmetry operation at
the midpoint of every line between nearest-neighbor atoms. The inversion
operation carries an atom at r into an atom at —r. The cubic ZnS structure does
not have inversion symmetry. Examples of the cubic zinc sulfide structure are

'_ GaP

Crysfal a ﬂwﬁtal a
GuF ~4 26 ﬂ anﬁ 3_' 5 55 A
"SI0y ___'4 85 i GaAbs: 565
cmcl s 41 CUAlAs ?-a_s 66
: ‘7:]5’ C&S i 5132
AlP. e 846

'-““631'“__

The close equality of several pairs, notably (Al, Ga)P and (Al,Ga)As, makes pos-
sible the construction of semiconductor heterojunctions (Chapter 19).

DIRECT IMAGING OF ATOMIC STRUCTURE

Direct images of crystal structure have been produced by transmission
electron microscopy. Perhaps the most beautiful images are produced by scan-
ning tunneling microscopy; in STM (Chapter 19} one exploits the large varia-
tions in quantum tunneling as a function of the height of a fine metal tip above
the surface of a crystal. The image of Figure 27 was produced in this way; see -
also Figures 12.19 and 19.21. An STM method has been developed that will
assemble single atoms into an organized layer nanometer structure on a crystal
substrate: see the electron corral in Figure 19.21.



1 Crystal Structure

Figure 26 Crystal structure of cubic zine sulfide.

Figure 27 A scanning tunneling microscope image of atoms on a (111) surface of platinum at 4 K.
The nearest neighbor spacing is 2.78 A. (Photo courtesy of D. M. Eigler, IBM Research Division.)

NONIDEAL CRYSTAL STRUCTURES

The ideal crystal of classical crystallographers is formed by the periodic
repetition of identical units in space. But no general proof has been given that
the ideal crystal is the state of minimum energy of identical atoms at absolute
zero. At finite temperatures this is not likely to be true—see the discussion of
lattice defects in Chapter 18. Further, it is not always possible for a structure to
attain the equilibrium state in a reasonable time—see the discussion of glasses
in Chapter 17. Many structures that occur in nature are not entirely periodic;
see the quasicrystals treated at the end of Chapter 2. We give some examples
here that supplement those in the chapters just cited.

21



Random Stacking and Polytypism

The foc and hep structures are made up of close-packed planes of atoms.
The structures differ in the stacking sequence of the planes, foe having the
sequence ABCABC . . . and hcp having the sequence ABABAB . . . . Struc-
tures are known in which the stacking sequence of close-packed planes is ran-
dom. This is known as random stacking and may be thought of as crystalline in
two dimensions and noncrystalline or glasslike in the third.

Polytypism is characterized by a stacking sequence with a long repeat unit
along the stacking axis. The best known example is zinc sulfide, ZnS, in which
more than 150 polytypes have been identified, with the longest periodicity
being 360 layers. Another example is silicon carbide, SiC, which occurs with
more than 45 stacking sequences of the close-packed layers. The polytype of
SiC known as 393R has a primitive cell with ¢ = 3.079 A and ¢ = 989.6 A.
The longest primitive cell observed for SiC has a repeat distance of 594 layers.
A given sequence is repeated many times within a single crystal. The mecha-
nism that induces such long-range crystallographic order is not a long-range
force as such, but is associated with the presence of spiral steps due to
dislocations in the growth nucleus (Chapter 20).

CRYSTAL STRUCTURE DATA

In Table 3 we list the more common crystal structures and lattice struc-
tures of the elements. Values of the atomic concentration and the density are
given in Table 4.

Many elements occur in several crystal structures and transform from one
to the other as the temperature or pressure is varied. Sometimes two structures
coexist at the same temperature and pressure, although one may be slightly
more stable.

The reader who wishes to look up the crystal structure of a substance may
consult the excellent compilation by Wyckoff listed in the references at the end
of the chapter. Structure Reports and the journals Acta Crystallographica and
Zeitschrift fir Kristallographie are valuable aids.
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I Crystal Structure

SUMMARY

« A lattice is an array of points related by the lattice translation operator T =
18, + uoay + uga, where u), g, u; are integers and a,, ag, ag are the crystal
axes.

» To form a crystal we attach to every lattice point an identical basis composed
of s atoms at the positions ry=xa, + yay + zjag, withj= 1,2, . . . | s. Here
x, ¥, z may be selected to have values between 0 and 1.

» The axes a,, a, a3 are primitive for the minimum cell volume |a, - a, x aq for
which the crystal can be constructed from a lattice translation operator T and
a basis at every lattice point.

Problems

1. Tetrahedral angles. The angles between the tetrahedral bonds of diamond are the
same as the angles between the body diagenals of a cube, as in Fig. 12. Use elemen-
tary vector analysis to find the value of the angle.

2. Indices of planes. Consider the planes with indices (100) and (001); the lattice is fcc,
and the indices refer to the conventional cubic cell. What are the indices of these
planes when referred to the primitive axes of Fig. 13?

3. Hcp structure. Show that the ¢/a ratio for an ideal hexagonal close-packed structure
is ()2 = 1.633. If dla is significantly larger than this value, the crystal structure may
be thought of as composed of planes of closely packed atoms, the planes being loosely
stacked.
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JAPTER 2: RECIPROCAL LATTICE

DIFFRACTION OF WAVES BY CRYSTALS

Bragg Law

We study crystal structure through the diffraction of photons, neutrons,
and electrons (Fig. 1). The diffraction depends on the crystal structure and on
the wavelength. At optical wavelengths such as 5000 A the superposition of the
waves scattered elastically by the individual atoms of a crystal results in ordi-
nary optical refraction. When the wavelength of the radiation is comparable
with or smaller than the lattice constant, we may find diffracted beams in direc-
tions quite different from the incident direction.

W. L. Bragg presented a simple explanation of the diffracted beams from a
crystal. The Bragg derivation is simple but is convincing only because it repro-
duces the correct result. Suppose that the incident waves are reflected
specularly from parallel planes of atoms in the crystal, with each plane reflect-
ing only a very small fraction of the radiation, like a lightly silvered mirror. In
specular (mirrorlike) reflection the angle of incidence is equal to the angle of
reflection. The diffracted beams are found when the reflections from parallel
planes of atoms interfere constructively, as in Fig. 2. We treat elastic scatter-
ing, in which the energy of the x-ray is not changed on reflection. Inelastic
scattering, with excitation of elastic waves, is discussed in Appendix A.

Consider parallel lattice planes spaced d apart. The radiation is incident in
the plane of the paper. The path difference for rays reflected from adjacent
planes is 2d sin 6, where 6 is measured from the plane. Constructive interfer-
ence of the radiation from successive planes occurs when the path difference is
an integral number n of wavelengths A, so that

o

2dsin0=m . 0

This is the Bragg law. Bragg reflection can occur only for wavelength A < 2d.
This is why we cannot use visible light.

Although the reflection from each plane is specular, for only certain values
of @ will the reflections from all parallel planes add up in phase to give a strong
reflected beam. If each plane were perfectly reflecting, only the first plane of a
parallel set would see the radiation, and any wavelength would be reflected.
But each plane reflects 1072 to 107> of the incident radiation, so that 10° to 10°
planes may contribute to the forination of the Bragg-reflected beam in a perfect
crystal. Reflection by a single plane of atoms is treated in Chapter 19 on surface
physics.

The Bragg law is a consequence of the periodicity of the lattice. Notice that
the law does not refer to the composition of the basis of atoms associated with
every lattice point. We shall see, however, that the composition of the basis



determines the relative intensity of the various orders of diffraction (denoted by
n above) from a given set of parallel planes. Experimental results for Bragg
reflection from single crystals are shown in Figs. 3 and 4, for rotation about a
fixed axis.

SCATTERED WAVE AMPLITUDE

The Bragg derivation of the diffraction condition (1) gives a neat statement
of the condition for the constructive interference of waves scattered from the
lattice points. We need a deeper analysis to determine the scattering intensity
from the basis of atoms, which means from the spatial distribution of electrons
within each cell.

From (1.3), a crystal is invariant under any translation of the form T =
uya; + usas + uszas, where u,, tlg, s are integers and a;, ag, as are the crystal
axes. Any local physical property of the crystal is invariant under T, such as the
charge concentration, electron number density, or magnetic moment density.

Fourier Analysis

What is most important to us here is that the electron number density n(r)
is a periodic function of r, with periods a,, as, a3 in the directions of the three
crystal axes. Thus

n(r + T) = n(x) . (2)

Such periodicity creates an ideal situation for Fourier analysis. The most inter-
esting properties of crystals are directly related to the Fourier components of
the electron density.

We consider first a function n(x) with period @ in the direction x, in one
dimension. We expand n(x) in a Fourier series of sines and cosines:

n(x) = ng + 2, [C,, cos(@mpxala) + S, sin@apxla)] , 3)
p=0

where the p’s are positive integers and C,,, S,, are real constants, called the
Fourier coefficients of the expansion. The factor 277/a in the arguments ensures
that n(x) has the period a:

n(x + a) = ny + Z[C,, cos(2mpxla + 27p) + S, sin(27px/a + 27p)]

= ng + Z[C,, cos(2mpxla) + S, sin(2mpx/a)] = nfx) - )

We say that 2mp/a is a point in the reciprocal lattice or Fourier space of the
crystal. In one dimension these points lie on a line. The reciprocal lattice points
tell us the allowed terms in the Fourier series (4) or (5). A term is allowed if it
is consistent with the periodicity of the crystal, as in Fig. 5; other points in the
reciprocal space are not allowed in the Fourier expansion of a periodic function.

\
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It is a great convenience to write the series (4) in the compact form

n(x) = z n, expli2mpx/a) | (5)
n

where the sum is over all integers p: positive, negative, and zero. The coeli-
cients 1, now are complex numbers. To ensure that n(x) is a real function, we
require

n*,=mn,, (6)
for then the sum of the terms in p and —p is real. The asterisk on n* ,, denotes
the complex conjugate of n_,.

With ¢ = 2apa/a, the sum of the terms in p and —p in (5) can be shown to
be real if (6) is satisfied. The sum is
n,(cos ¢ + i sin ¢) + n_,(cos ¢ — isin @) )
= (n,, + n_,)cos ¢ + i(n, — n-plsin ¢ ,
which in turn is equal to the real function
2Re{n,} cos ¢ — 2Imin,} sin¢g, (8)

if (6) is satisfied. Here Re{n,} and Im{n,} denote the real and imaginary parts of
n,. Thus the number density n(x) is a real function, as desired.

The extension of the Fourier analysis to periodic functions n(r) in three
dimensions is straightforward. We must find a set of vectors G such that

n(r) = %_‘, ng exp(iG - 1) (9)

is invariant under all crystal translations T that leave the crystal invariant. It
will be shown below that the set of Fourier coefficients ng determines the x-ray
scattering amplitude.

Inversion of Fourier Series. We now show that the Fourier coefficient n,,
in the series (5) is given by

n,=a ' J dx n(x) exp(—i2mpa/a) . (10)
(V] i
Substitute (5) in (10) to obtain
n,=a"! b n,,~L dx expli2a(p'— p )x/a] . (11)
o

If p’ # p the value of the integral is

f
i2a(p’ — p)

{eiﬂwt.u'—p} -1)=0,




2 Reciprocal Lattice

because p’ — p is an integer and exp[i2an(integer)] = 1. For the term p’ = p the
integrand is exp(i0) = 1, and the value of the integral is @, so that n, =
a” 'n,a = ny,, which is an identity, so that (10) is an identity.

Similarly, the inversion of (9) gives

neg = V1 dV n(r) exp(—iG 1) . (12)
cell

Here V., is the volume of a cell of the crystal.

Reciprocal Lattice Vectors

To proceed further with the Fourier analysis of the electron concentration
we must find the vectors G of the Fourier sum 2ng exp(iG - r) as in (9). There is
a powerful, somewhat abstract procedure for doing this. The procedure forms
the theoretical basis for much of solid state physics, where Fourier analysis is

the order of the day.

We construct the axis vectors b;, by, bs of the reciprocal lattice:

The factors 277 are not used by crystallographers but are convenient in solid
state physics.

If a;, as, as are primitive vectors of the crystal lattice, then by, by, bs are
primitive vectors of the reciprocal lattice. Each vector defined by (13) is orthog-
onal to two axis vectors of the crystal lattice. Thus by, bz, bs have the property

b,‘ ra; = 21’?5;} . (14)

where §; = 1if i = jand 8; = 0 if i #j.
Points in the reciprocal lattice are mapped by the set of vectors

C= ﬂlbl + Ugbz + Usb:; ._. (15}

where vy, vg, U5 are integers. A vector G of this form is a reciprocal lattice
vector.

Every crystal structure has two lattices associated with it, the crystal lattice
and the reciprocal lattice. A diffraction pattern of a crystal is, as we shall show, a
map of the reciprocal lattice of the crystal. A microscope image, if it could be
resolved on a fine enough scale, is a map of the crystal structure in real space.
The two lattices are related by the definitions (13). Thus when we rotate a
crystal in a holder, we rotate both the direct lattice and the reciprocal lattice.

Vectors in the direct lattice have the dimensions of [length]; vectors in the
reciprocal lattice have the dimensions of [1/length]. The reciprocal lattice is a
lattice in the Fourier space associated with the crystal. The term is motivated



below. Wavevectors are always drawn in Fourier space, so that every position
in Fourier space may have a meaning as a description of a wave, but there is a
special significance to the points defined by the set of G’s associated with a
crystal structure.

The vectors G in the Fourier series (9) are just the reciprocal lattice vectors
(15), for then the Fourier series representation of the electron density has the
desired invariance under any crystal translation T = u;a, + uga; + uza; as de-
fined by (1.3). From (9),

n(r + T) = % ne expliG - r) exp(iG-T) . (16)

But exp(iG * T) = 1, because

exp(iG - T) = expli(vib, + vebe + vsba) - (w121 + usas + uaay)]

(17)
= exp|i27r(viu; + voug + vaug)] .

The argument of the exponential has the form 2#i times an integer, because
Uity + Uollp + U3us is an integer, being the sum of products of integers. Thus by
(9) we have the desired invariance, n(r + T) = n(r).

This result proves that the Fourier representation of a function periodic in

the crystal lattice can contain components n¢ exp(iG - r) only at the reciprocal
lattice vectors G as defined by (15).

Diffraction Conditions

Theorem. The set of reciprocal lattice vectors G determines the possible
x-ray reflections.

We see in Fig. 6 that the difference in phase factors is expli(k — k') - r]
between beams scattered from volume elements r apart. The wavevectors of
the incoming and outgoing beams are k and k'. The amplitude of the wave
scattered from a volume element is proportional to the local electron concentra-
tion n(r). The total amplitude of the scattered wave in the direction of k' is
proportional to the integral over the crystal of n(r) dV times the phase factor
explitk — k') r].

In other words, the amplitude of the electric or magnetic field vectors in
the scattered electromagnetic wave is proportional to the following integral
which defines the quantity F that we call the scattering amplitude:

F = [ dV n(r) explitk — k") - r] = [ dV n(r) exp(—idk-r) , (18)
where
k+Ak=k". (19)

Here Ak measures the change in wavevector and is called the scattering vector
(Fig. 7). We add Ak to k to obtain k’, the wavevector of the scattered beam.
{
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Crystal specimen

Outgping beam
lncide:;rheam tgo;&%

Figure 6 The diflerence in path length of the incident wave k at the points O, ris r sin ¢, and the
difference in phase angle is (27 sin ¢)/A, which is equal to k- r. For the diffracted wave the
difference in phase angle is —k’ « r. The total difference in phase angle is (k — k') - r, and the wave
scattered from ¢V at r has the phase factor expli(k — k') - r] relative to the wave scattered from a
volume element at the origin O.

Figure 7 Definition of the scattering vector Ak such that
k + Ak = k’. In elastic scattering the magnitudes satisfy
k' = k. Further, in Bragg scattering from a periodic lattice
any allowed Ak must equal some reciprocal lattice vector G.

We introduce into (18) the Fourier components (9) of n(r) to obtain for the
scattering amplitude

F= % [ dV ng expli(G — Ak) - r] . (20)

When the scattering vector Ak is equal to a particular reciprocal lattice vector,

EEhory

k=g e
the argument of the exponential vanishes and F = Vng,. It is a simple exercise
(Problem 4) to show that F is negligibly small when Ak differs significantly from
any reciprocal lattice vector.

In elastic scattering of a photon its energy fiw is conserved, so that the
frequency @' = ck' of the emergent beam is equal to the frequency of the
incident beam. Thus the magnitudes k and k' are equal, and k? = k’%, a result
that holds also for electron and neutron beams. From (21) we found Ak = G or

35



k + G =K, so that the diffraction condition is written as (k + G2 =1 or
CHG=0.,

Eﬁf-‘. gk

This is the central result of the theory of elastic scattering of waves in a

periodic lattice. If G is a reciprocal lattice vector, so is —G, and with this
substitution we can write (22) as

(22)

=&F w205 =
HeG-ct e3)
This particular expression is often used as the condition for diffraction.
Equation (23) is another statement of the Bragg condition (1). The result of
Problem 1 is that the spacing d(hkl) between parallel lattice planes that are
hormal to the direction G = kb, + kbg + Iby is d(hkl) = 27/|G|. Thus the result
9k » G = G? may be written as

2(2w/A) sin 8 = 2w/d(hkl) ,

or 2d(kkl) sin 6 = A. Here 6 is the angle between the incident beam and the
crystal plane.

The integers hkI that define G are not necessarily identical with the indices
of an actual crystal plane, because the hkl may contain a common factor n,
whereas in the definition of the indices in Chapter 1 the common factor has
been eliminated. We thus obtain the Bragg result:

od sin 6 = nA , (24)

where d is the spacing between adjacent parallel planes with indices h/n, kin,
Iin.

Laue Equations

The original result (21) of diffraction theory, namely that Ak = G, may be
expressed in another way to give what are called the Laue equations. These are
valuable because of their geometrical representation (see Chapter 19).

Take the scalar product of both Ak and G successively with a;, ag, az.
From (14) and (15) we get

a, * Ak = 270 ; a * Ak = 2705 ; ay* Ak = 2703 . (25)

These equations have a simple geometrical interpretation. The first equation
a, - Ak = 27rv, tells us that Ak lies on a certain cone about the direction of a;.
The second equation tells us that Ak lies on a cone about a, as well, and the
third equation requires that Ak lies on a cone about ag.

Thus, at a reflection Ak must satisfy all three equations; it must lie at the
common line of intersection of three cones, which is a severe condition that can
be satisfied only by systematic sweeping or searching in wavelength or crystal
orientation—or else by sheer accident.
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Figure 8 The points on the right-hand side are reciprocal lattice points of the crystal. The vector k
is drawn in the direction of the incident x-ray heam, and the origin is chosen such that k terminates
at any reciprocal lattice point. We draw a sphere of radius k = 2#/A about the origin of k. A
diffracted beam will be formed if this sphere intersects any other point in the reciproeal lattice. The
sphere as drawn inlercepts a point connected with the end of k by a reciprocal lattice vector G. The
diffracted x-ray bear is in the direction k' = k + G. The angle 8 is the Bragg angle of Fig. 2. This
construction is due to P. P. Ewald.

A beautiful construction, the Ewald construction, is exhibited in Fig. 8.
This helps us visualize the nature of the accident that must occur in order to
satisfy the diffraction condition in three dimensions. The condition in two di-
mensions (diffraction from a surface layer) is treated in Chapter 19.

Reflection from a single plane of atoms takes place in the directions of the
lines of intersection of two cones, for example the cones defined by the first two
of the Laue equations (25). Now two cones will in general intercept each other
provided the wavevector of the particles in the incident beam exceeds some
threshold value determined by the first two Laue equations. No accidental
coincidence is required, unlike the problem of diffraction in 3D. This matter is
of prime importance in the diffraction of low energy electrons from the surface
of a crystal.

BRILLOUIN ZONES

Brillouin gave the statement of the diffraction condition that is most widely
used in solid state physics, which means in the description of electron energy
band theory and of the elementary excitations of other kinds.

3.



Figure 9a Reciprocal lattice points near the point O at
the origin of the reciprocal lattice. The reciprocal lat-
tice vector G¢ connects points OC, and Gy, connects
OD. Two planes 1 and 2 are drawn which are the per-
pendicular bisectors of G and Gp, respectively. Any
vector from the origin to the plane 1, such as k,, will
satisfv the diffraction condition ki - ((G¢) = (AGP.
Any vector from the origin to the plane 2, such as ks,
will satisfy the diffraction condition k; - (AGp) =
(Gp).

Figure 9b Square reciprocal lattice with reciprocal
lattice vectors shown as fine black lines. The lines
shown in white are perpendicular bisectors of the re-
ciprocal lattice vectors. The central square is the small-
est volume about the origin which is bounded entirely
bv white lines. The square is the Wigner-Seitz primi-
tive cell of the reciprocal lattice. It is called the first
Brillouin zone.

A Brillouin zone is defined as a Wigner-Seitz primitive cell in the recipro-
cal lattice. (The construction in the direct lattice was shown in Fig. 1.6.) The
value of the Brillouin zone is that it gives a vivid geometrical interpretation of
the diffraction condition 2k -G = G2 of Eq. (23). We divide both sides by 4 to

obtain

k- (1G) = GGY . (26)

We work in reciprocal space, the space of the k's and G's. Select a vector G
from the origin to a reciprocal lattice point. Construct a plane normal to this
vector G at its midpoint. This plane forms a part of the zone boundary (Fig. 9a).
An x-ray beam in the crystal will be diffracted if its wavevector k has the magni-
tude and direction required by (26). The diffracted beam will then be in the
direction k — G, as we see from (19) with Ak = —G. Thus the Brillouin con-
struction exhibits all the wavevectors k which can be Bragg-reflected by the

crystal.

The set of planes that are the perpendicular bisectors of the reciprocal
lattice vectors is of general importance in the theory of wave propagation in
crystals. A wave whose wavevector drawn from the origin terminates on any of
these planes will satisfy the condition for diffraction.

These planes divide the Fourier space of the crystal into fragments, as
shown in Fig. 9b for a square lattice. The central square is a primitive cell of the
reciprocal lattice. It is a Wigner-Seitz cell of the {  procal lattice.
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Figure 10 Construction of the first Brillouin

zone for an oblique lattice in two dimensions. We o
first draw a numher of vectors from O to nearby
points in the reciprocal lattice. Next we construct
lines perpendicular to these vectors at their mid-
points. The smallest enclosed area is the first
Brillouin zone, @

k=-Z k=T
a

Figure 11 Crystal and reciprocal lattices in one dimension. The basis vector in the reciprocal
lattice is b, of length equal to 277/a. The shortest reciprocal lattice vectors from the origin are b and
~b. The perpendicular bisectors of these vectors form the boundaries of the first Brillouin zone.
The houndaries are at k = tala.

The central cell in the reciprocal lattice is of special importance in the
theory of solids, and we call it the first Brillouin zone. The first Brillouin zone is
the smallest volume entirely enclosed by planes that are the perpendicular
bisectors of the reciprocal lattice vectors drawn from the origin.

The first Brillouin zone of an oblique lattice in two dimensions is con-
structed in Fig. 10 and of a linear lattice in one dimension in Fig. 11. The zone
boundaries of the linear lattice are at k = *7r/a, where a is the primitive axis of
the crystal lattice. (
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Historically, Brillouin zones are not part of the language of x-ray diffraction
analysis of crystal structures, but the zones are an essential part of the analysis
of the electronic energy-band structure of crystals. The special utility of the first
Brillouin zone is developed in Chapter 9.

Reciprocal Lattice to sc Lattice

The primitive translation vectors of a simple cubic lattice may be taken as

the set
. ay=ak; @a=ay; az=a. (27a)

Here %, §, £ are orthogonal vectors of unit length. The volume of the cell is
a, -2, X a3 = a°. The primitive translation vectors of the reciprocal lattice are
found from the standard prescription (13):

bl = {2’3‘1’1’1‘1}5& , b-z == (2'37!{1);’ : h;g. — (211’!&}'2 . (27]})
Here the reciprocal lattice is itself a simple cubic lattice, now of lattice constant
2rla.

The boundaries of the first Brillouin zones are the planes normal to the six
reciprocal lattice vectors +b,, *bg, *bs at their midpoints:

+ib, = *(mla)k ;  *iby = x(wa)y ; +1h, = *(7la)z .
The six planes bound a cube of edge 2#r/a and of volume (27/a)*; this cube is the
first Brillouin zone of the sc crystal lattice.
Reciprocal Lattice to bee Lattice
The primitive translation vectors of the bee lattice (Fig. 12) are
a;=ta(—R+y+19; ag=tak—y+%; az=3ak+9—12) , (28)

where a is the side of the conventional cube and %, ¥, Z are orthogonal unit
vectors parallel to the cube edges. The volume of the primitive cell is

V=|31‘32*33|=§ﬂn- (29)

The primitive translations of the reciprocal lattice are defined by (13). We
have, using (28),

b, = @wla)§ +2) ; be= 2wla)x +2) ; bs = @ala)(& + §) . (30)
Note by comparison with Fig. 14 (p. 42) that these are just the primitive vectors
of an fec lattice, so that an fec lattice is the reciprocal lattice of the bec lattice.

The general reciprocal lattice vector is, for integral vy, ve, U3,

G = v;b; + vsby + v3ba = @m/a)(ve + va)k + (ty + ooy + (0y + 02)2] . (31)

The shortest G’s are the following 12 vectors, where all choices of sign are
independent:

@mla)xy £2) ; @ua(xk*2); @mla)(Ex*3) . (32)




2 Reciprocal Lattice

Figure 13 First Brillouin zone of the body-centered
Figure 12 Primitive basis vectors of the body-centered  cubic lattice. The figure is a regular rhombic
cubic lattice. dodecahedron.
The primitive cell of the reciprocal lattice is the parallelepiped described
by the by, bg, bs defined by (30). The volume of this cell in reciprocal space is
b, -bs x by = 2(2w/a)®. The cell contains one reciprocal lattice point, because
each of the eight corner points is shared among eight parallelepipeds. Each
parallelepiped contains one-eighth of each of eight corner points.
In solid state physics we take the central (Wigner-Seitz) cell of the recipro-
cal lattice as the first Brillouin zone. Each such cell contains one lattice point at
the central point of the cell. This zone (for the bec lattice) is bounded by the
planes normal to the 12 vectors of Eq. (32) at their midpoints. The zone is a
regular 12-faced solid, a rhombic dodecahedron, as shown in Fig. 13. The
vectors from the origin to the center of each face are

(wa=§ £ 2) s (wla)=222); (mla)(==*79) . (3)
All choices of sign are independent, giving 12 vectors.
Reciprocal Lattice to fcc Lattice

The primitive translation vectors of the fec lattice of Fig. 14 are

m=ga@+5); m=Fak+2); a=Llak+9). (34)
The volume of the primitive cell is
V=|a,-a2)<33|=i—a3 (35)

The primitive translation vectors of the lattice reciprocal to the fee lattice
are
b, = @mla)(—%x+ § + %) ; by = @wla)x — ¢ + %) ;

bs = 2ala)(x + v — 2) . o9
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Figure 14 Primitive basis vectors of the face-
centered cubic lattice.
These are primitive translation vectors of a bee lattice, so that the bece lattice is
reciprocal to the fec lattice. The volume of the primitive cell of the reciprocal
lattice is 4(2w/a)>.

The shortest G’s are the eight vectors:

2wla)(xx ¥+ 32) . (37)

The boundaries of the central cell in the reciprocal lattice are determined for
the most part by the eight planes normal to these vectors at their midpoints.
But the corners of the octahedron thus formed are cut by the planes that are the
perpendicular bisectors of six other reciprocal lattice vectors:

@amla)£2%) ;  (@ma)(*2) ;  (ula)(222) . (38)

Note that (277/a)(2R) is a reciprocal lattice vector because it is equal to by + ba.
The first Brillouin zone is the smallest bounded volume about the origin, the
truncated octahedron shown in Fig. 15. The six planes bound a cube of edge
47/a and (before truncation) of volume (47/a)>.

FOURIER ANALYSIS OF THE BASIS

When the diffraction condition Ak = G of Eq. (21) is satisfied, the scatter-
ing amplitude is determined by (18), which for a crystal of N cells may be
written as

Fc=N| dV n(r) exp(—iG - r) = NS¢ (39)
cell
The quantity S is called the structure factor and is defined as an integral over
a single cell, with r = 0 at one corner.

(



2 Reciprocal Lattice

Figure 15 Brillovin zones of the face-centered
cubic lattice. The cells are in reciprocal space,
and the reciprocal lattice is body centered,

Often it is useful to write the electron concentration n(r) as the superposi-
tion of electron concentration functions n; associated with each atom j of the
cell. If r; is the vector to the center of atom j, then the function n;(r — r;) defines
the contribution of that atom to the electron concentration at r. The total elec-
tron concentration at r due to all atoms in the cell is the sum

5
n(r) = 21 ny(r — ry) (40)
e
over the s atoms of the basis. The decomposition of n(r) is not unique, for we
cannot always say how much charge is associated with each atom. This is not an
important difficulty.
The structure factor defined by (39) may now be written as integrals over
the s atoms of a cell:

S¢g= ? Jdv ni(r — r;) exp(—iG - r) =

(41)
2 exp(—iG - 1;) [ dV nylp) exp(~iG - p) ,
g
wherep=r-uy; .
We now define the atomic form factor as
i" ___lf-,: A5 o4 -~ " - "*-:‘-"'3"5; o '\:_?b
1 (LY r.?{l-;'
BTV e opliGe | (2

integrated over all space. If n;(p) is an atomic property, f; is an atomic property.

\

| e el



We combine (41) and (42) to obtain the structure factor of the basis in the
form

Se =2, f; exp(—iG ;) . (43)
J

The usual form of this result follows on writing for atom j:
r; = xa; + ;8 %83, (44)
as in (1.4). Then, for the reflection labelled by vy, v, v3 we have
G r; = (v, + vebs + vsbs) « (x;a; + yyap + ziag)
= 27{vyx; + votjy + vaz) ,
so that (43) becomes

(45)

S0 vavs) = 2 f; expl—i2m{vrx; + vayy + vazy)] - (46)
i

The structure factor S need not be real because the scattered intensity will
involve §*S, where S* is the complex conjugate of S so that §*S is real.

At a zero of S¢ the scattered intensity will be zero, even though G is a
perfectly good reciprocal lattice vector. What happens if we choose the cell in
another way, as a conventional cell instead of a primitive cell, for example? The

basis is changed, but in such a way that the physical scattering is unchanged.

Thus for two choices, 1 and 2, it is not hard to satisfy yourself from (39) that
N, (cell) X §,(basis) = Ng(cell) X Sg(basis) -

Structure Factor of the bee Lattice

The bee basis referred to the cubic cell has identical atoms at x; = y; =
z; = 0 and at x5 = y = 29 = 3. Thus (46) becomes

S(v,vevs) = f{l + exp[—im(vy + ve + v3)l} , (47)

where f is the form factor of an atom. The value of § is zero whenever the
exponential has the value —1, which is whenever the argument is —iw X (odd
integer). Thus we have

§ =0 when v + vy + va = odd integer ;
§ = 2f when v, + vy + vy = even integer .

Metallic sodium has a bee structure. The diffraction pattern does not con-
tain lines such as (100), (300), (111), or (221), but lines such as (200), (110), and
(222) will be present; here the indices (v)vgv3) are referred to a cubic cell. What
is the physical interpretation of the result that the (100) reflection vanishes?

The (100) reflection normally occurs when reflections from the planes that
bound the cubic cell differ in phase by 277. In the bee lattice there is an inter-
vening plane (Fig. 16) of atoms, labeled the second plane in the figure, which is

il —
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Figure 16 Explanation of the absence of a (100) reflection from a body-centered cubic lattice, The
phase difference between successive planes is a7, so that the reflected amplitude from two adjacent
planesis 1+ ¢~ "= 1—1=0.

equal in scattering power to the other planes. Situated midway between them,
it gives a reflection retarded in phase by 7 with respect to the first plane,
thereby canceling the contribution from that plane. The cancellation of the
(100) reflection occurs in the bee lattice because the planes are identical in
composition. A similar cancellation can easily be found in the hep structure.

Structure Factor of the fcc Lattice

The basis of the fce structure referred to the cubic cell has identical atoms
at 000; 0%3; 304; $40. Thus (46) becomes

S(vrvevs) = f{l + exp[—im(vs + v3)] + expl—im(v; + v3)]
+ expl[—im(v; + vg)l} .
Ifall indices are even integers, S = 4f; similarly if all indices are odd integers.
But if only one of the integers is even, two of the exponents will be odd multi-
ples of —im and S will vanish. If only one of the integers is odd, the same
argument applies and S will also vanish.
Thus in the fcc lattice no reflections can occur for which the indices are
partly even and partly odd. The point is beautifully illustrated by Fig. 17: both

KCl and KBr have an fec lattice, but KCl simulates an sc lattice because the K*
and Cl” ions have equal numbers of electrons.

(48)

Atomic Form Factor

In the expression (46) for the structure factor, there occurs the quantity f;,
which is a measure of the scattering power of the jth atom in the unit cell. The
value of f involves the number and distribution of atomic electrons, and the

wavelength and angle of scattering of the radiation. We now give a classical
calculation of the scattering factor.
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Figure 17 Comparison of x-ray reflections from KCI
and KBr powders. In KCI the numbers of electrons
of K* and Cl~ ions are equal. The scattering ampli-
tudes f(K*) and f(Cl") are almost exactly equal, so
that the crystal looks to x-rays as if it were a mona-
tomic simple cubic lattice of lattice constant a/2.
Only even integers occur in the reflection indices
when these are based on a cubic lattice of lattice con-
stant a. In KBr the form factor of Br™ is quite differ-
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tice are present. (Courtesy of R. van Nordstrand.)

The scattered radiation from a single atom takes account of interference
effects within the atom. We defined the form factor in (42):

fi =TI dV nr) exp(—iG-r) , (49)

with the integral extended over the electron concentration associated with a
single atom. Let r make an angle « with G; then G - r = Gr cos a. If the elec-
tron distribution is spherically symmetric about the origin, then

f; = 2 [ dr * d(cos @) njr) exp(—iGr cos a)

CGr e-—fGr

=2 [ dr r’njr) - T
i

after integration over d(cos o) between —1 and 1. Thus the form factor is
given by

CSin Gt‘"?

f 4#’ .f dg. ﬂJ(r}rﬂ (50)

$

If the same total electl on denﬂty were concentrated atr=0,only Gr=20
would contribute to the integrand. In this limit (sin Gr)/Gr = 1, and

f=4nfdrnmrt=2" 51)
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Figure 18 Absolute experimental atomic scattering factors for metallic aluminum, after Bat-
terman, Chipman, and DeMarco. Each observed reflection is labeled. No reflections occur for
indices partly even and partly odd, as predicted for an fee crystal.

the number of atomic electrons. Therefore f is the ratio of the radiation ampli-
tude scattered by the actual electron distribution in an atom to that scattered by
one electron localized at a point.

In the forward direction G = 0, and f reduces again to the value Z. Values
of the atomic form factor f for atoms may be found in the International tables
for x-ray crystallography, Vol. 3.

The overall electron distribution in a solid as seen in x-ray diffraction is
fairly close to that of the appropriate free atoms. This statement does not mean
that the outermost or valence electrons are not redistributed in forming the
solid; it means only that the x-ray reflection intensities are represented well by
the free atom values of the form factors and are not very sensitive to small
redistributions of the electrons.

As an example, Batterman and co-workers find agreement within 1 per-
cent in a comparison of the x-ray intensities of Bragg reflections of metallic iron,
copper, and aluminum with the theoretical free atom values from wavefunction
calculations. The results for aluminum are shown in Fig. 18.

There have been many attempts to obtain direct x-ray evidence about the
actual electron distribution in a covalent chemical bond, particularly in crystals
having the diamond structure. The question now lies within the limits of what
can be explored by{ 1y diffraction methods. In silicon at a point midway

47
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between two nearest-neighbor atoms, there is an appreciable increase in elec-
tron concentration over what is expected from the overlap of the electron densi-
ties calculated for two free atoms.

Scattering from crystal surfaces is treated in Chapter 19. It is shown in
Appendix A that thermal motion does not broaden a diffraction line, but only
reduces the intensity. The lost intensity reappears as long, low wings about the
position of the diffraction line.

QUASICRYSTALS

In 1984 quasicrystals were first observed;' these are structures which can-
not be indexed to any Bravais lattice and “which have symmetries intermediate
between a crystal and a liquid.” They were first observed in grains of size 2 um
in an alloy of Al with 14 at pct Mn. The smaller Mn atoms are each surrounded
by 12 Al atoms arranged at the corners of an icosahedron. The structure is made
up of parallel icosahedra attached at their edges. Crystals cannot exhibit the
fivefold symmetry of an icosahedron, but a crystal can be constructed by nucle-
ation at a center cell, followed by outward growth from there. All of the space of
a nodule cannot be filled by repeating the basic unit (see Figures 19 and 1.7 for
the picture in two dimensions), although the “parallel” part of the specification
does give a long-range orientational order to the structure. It is perhaps sur-
prising that the x-ray diffraction pattern of such a structure can have fivefold
symmetry; that is how they were first observed.

The known quasicrystals are intermetallic alloys and are very poor electri-
cal conductors; they are nearly insulators with a somewhat well-defined band
gap (Chapter 7) at the Fermi level. They are of great interest intellectually in
expanding the definition of crystal lattice.

A distinctly different crystal diffraction pattern results from an almost peri-
odic structure, one that is neither rigorously periodic nor simply amorphous (as
for a glass, Chapter 17). An almost periodic structure ¢an be expressed in one
dimension if we are given the electron charge density wave:

plx) = Z[C,, cos[27n(l + 7)1v/a] , (52)

where 7 is an irrational fraction. The terms in 27n/a by themselves give the
usual lattice with translational periodicity a. When the terms in 7 are added,
the charge density is almost periodic; that is, the period (1 + 7)a is not an
integral multiple of the period a, because 7 is irrational. The period gives a
long-range nonrandom order to the structure, and the long-range order gives a
diffraction pattern, which appears split off from the pattern defined by the
short-range order. This is dominated by the reciprocal lattice points in n,, but

'D. Levine and P. J. Steinhardt, Phys. Rev. Lett. 53, 2477 (1954), Phys. Rev. B34, 596 (1956),
D. S. Schechtman and others, Phys. Rev. Lett. 53, 1951 (1984).
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Figure 19 A quasicrystal tiling in two dimensions, after the work of Penrose. The long-range
orentational order and the long-range nonperiodic order are shown,

will appear to be clustered and spread out (broadened). The diffraction pattern
of a three-dimensional quasicrystal is quite different, however; the pattern is
well defined and can have the fivefold symmetry by which quasicrystals were

first discovered. A computer-generated diffraction pattern with fivefold sym-
metry is shown in Figure 20.

SUMMARY

* Various statements of the Bragg condition:
2d sin 6 = nA ; Ak =G, ; 2k-G =62 .
* Laue conditions:
a,* Ak =24, ; ag* Ak = 27, ; ag* Ak = 270, .

* The primitive translation vectors of the reciprocal lattice are

Ay x Az 3 x 85 a) x ag
b, = 27 i by=9p———1_ . by =o27—-"2
a['ﬂgxaa al'agxaa 31'82)(33

Here a,, ay, a, are the primitive translation vectors of the crystal lattice.
* A reciprocal lattice vector has the form
G = vb; + vb, + b, |
where v, vs, ©3 are integers or zero.

* The scattered amplitude in the direction k' =k + Ak =k + G is propor-
tional to the geometrical structure factor:

4¢



Se == f exp(—ir;* G) = X f; exp[— 2w, + 4,02 + 203)] »

where j runs over the s atoms of the basis, and f; is the atomic form factor (49)
of the jth atom of the basis. The expression on the right-hand side is written
for a reflection (v;vets), for which G = vjb; + vgbs + Usbs.

« Any function invariant under a lattice translation T may be expanded in a
Fourier series of the form

n(r) = 2 nc exp(iG-r) .
G

« The first Brillouin zone is the Wigner-Seitz primitive cell of the reciprocal
lattice. Only waves whose wavevector k drawn from the origin terminates on
a surface of the Brillouin zone can be diffracted by the crystal.

 Crystal lattice First Brillouin zone
Simple cubic Cube
Body-centered cubic Rhombic dodecahedron (Fig. 13)
Face-centered cubic Truncated octahedron (Fig. 15)

Figure 20 Photograph of the calculated Fourier transform (diffraction pattern) of an icosahedral
quasicrystal along one of the fivefold axes, illustrating the fiv~fold symmetry. The transform is
calculated from a theoretical computer-generated model, b}-‘(_ hael Jacob.
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Problems

Interplanar separation. Consider a plane hkl in a crystal lattice. (a) Prove that the
reciprocal lattice vector G = kb, + kb, + Ibs is perpendicular to this plane. (b) Prove
that the distance between two adjacent paralle]l planes of the lattice is d(hkl) =
27/|G| . (c) Show for a simple cubic lattice that d* = ¢®/(k®* + k* + I?) .

Hexagonal space lattice. The primitive translation vectors of the hexagonal space
lattice may be taken as

a, = (3%a2%+ (@2 ;  ar=—(3"0RR+ @29 ;: az=c2.

(a) Show that the volume of the primitive cell is (3Y%2)a’.
(b) Show that the primitive translations of the reciprocal lattice are

b, = Q@3 a)k + @wla)y ; by = —@w3YaRk + 2wla)y ; by = Qwle)t ,

so that the lattice is its own reciprocal, but with a rotation of axes.
(c) Describe and sketch the first Brillouin zone of the hexagonal space lattice.

Volume of Brillouin zone. Show that the volume of the first Brillouin zone is
(2m)°/V,, where V. is the volumne of a crystal primitive cell. Hint: The volume of a
Brillouin zone is equal to the volume of the primitive parallelepiped in Fourier
space. Recall the vector identity (c x a) x (axb)=(c-a x b)a .

Width of diffraction maximum. We suppose that in a linear crystal there are identical
point scattering centers at every lattice point p,, = ma, where m is an integer. By
analogy with (20) the total scattered radiation amplitude will be proportional to F =
% exp| —ima - Ak]. The sum over M lattice points is

_ 1 — exp[—iM(a - Ak)]
1 — exp[—i(a- Ak)] °

F

by the use of the series

M-1 l_M
s x
x —

m=0 L—

(a) The scattered intensity is proportional to |[FJ°. Show that

sin® $M(a - Ak)
sin” ¥a - Ak)

(b) We know that a diffraction maximum appears when a » Ak = 27h, where h is an
integer. We change Ak slightly and define € in a - Ak = 27h + € such that e gives the
position of the first zero in sin #M(a - Ak). Show that € = 2/M. so that the width of
the diffraction maximum is proportional to /M and can be extremely narrow for
macroscopic values of M. The same result holds true for a three-dimensional crystal.

|F[* = F*F =

- Structure factor of diamond. The crystal structure of diamond is described in Chap-

ter 1. The basis,  sists of eight atoms if the cell is taken as the conventional cube.
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Figure 21 Neutron diffraction pattern for powdered diamond. (After G. Bacon.)

(a) Find the structure factor S of this basis. (b) Find the zeros of § and show that the
allowed reflections of the diamond structure satisfy vy + vg + v3 = 4n, where all in-
dices are even and n is any integer, or else all indices are odd (Fig. 21). (Notice that
h, k, I may be written for vy, U, U3 and this is often done.)

6. Form factor of atomic hydrogen. For the hydrogen atom in its ground state, the
number density is n(r) = (mal) " exp(—2riag), where ap is the Bohr radius. Show that
the form factor is fg = 16/(4 + G o).

7. Diatomic line. Consider a line of atoms ABAB . . . AB, with an A—B bond length of
3a. The form factors are fy, fp for atoms A, B, respectively. The incident beam of
x-rays is perpendicular to the line of atoms. (a) Show that the interference condition is
nA = a cos 6§, where 6 is the angle between the diffracted beam and the line of
atoms. (b) Show that the intensity of the diffracted beam is proportional to [fa — ol
for n odd, and to [fx + ful® for n even. (c) Explain what happens if fa = fs-

References

X-RAY DIFFRACTION

C. §. Barrett and T. B. Massalski, Structure of metals: crystallographic methods, principles, data.
ard. ed. rev., Oxford 1980. Excellent guide to the practical solution of relatively simple struc-
tures.

M. ]. Buerger, Contemporary crystallography, McGraw-Hill, 1970. A fine introduction.

B. E. Warren, X-ray diffraction, Addison-Wesley, 1969.

C. Janot, Quasicrystals: a primer, Oxford, 1993.

D. P. DiVincenzo and P. J. Steinhardt, eds., Quasicrystals, Waorld Scientific, 1991.

R. Currat and T. Jansen, “Excitations in incommensurate crystal phases,” Solid state physics 41,
201 (1958).

NEUTRON DIFFRACTION

G. E. Bacon, Neutron diffraction, 3rd ed., Oxford, 1975.
§. W. Lovesey, Theory of neutron scattering from condensed matter, 2 vols., Oxford, 1985.
W. Marshall and S. W. Lovesey, Theory of thermal neutron scattering, Oxford, 1971.




