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Preface

We were happy to host already the tenth Mini-Workshop on hadronic physics at

Bled and to see that the enthusiasm for this type of encounters has not waned.We
intend to continue with this series of meetings emphasising broad discussions be-

yond the time constraints of usual conferences. The beautiful environent of Lake

Bled also helped to more relaxed discussions and to strengthening the friendly
links during the hours of leisure.

An important issue is the description of hadronic resonances as decaying states
and obtaining correct hadronic decay widths. Another one is the understand-

ing of new resonances in the charmonium spectrum; are they tetraquarks, or just

threshold- or open-channel effects? Even the low-energy scalar mesons seem to
be too numerous and excite the imagination of theorists: are they tetraquarks, ex-

otics, or just analytic continuations of the resonance pole in the second Riemann
sheet? These considerations of quark states and their coupling to the continuum

matched well the central topic of our meeting.

There were also excellent experimental reviews. Measurements at Mainz and Jef-

ferson Lab reveal numerous puzzles in the Roper resonance. A theoretical ex-

planation of some of them was presented, assuming a two-step process via the
∆ resonance or via σ meson. The twelve new resonances in charmonium spec-

trum are further documented at Belle and excite several theoretical speculations.
The interest in double-strange hypernuclei has been revived at MAMI with the

prospect to see Ξ hypernuclei in near future; the Ξ-N interaction would be an

interesting test of quark-model calculations presented at this Workshop.

The idea that the Y-shaped effective potential in the 3q-system dominates was

further developped using new methods for baryon spectra. Oher methods for
baryon spectra include the 1/Nc expansion with spectrum-generating algebra.

Tetraquarks continue to excite. How to distinguish them from hybrids and from
threshold effects? Does one distinguish them in recent Lattice QCD calculations?

Can tetraquarks be described as two-diquark systems? Related questions for sys-
tems with pentaquark configurations abounded as well.

New lessons on relativity served as a reminder to nonrelativistic participants.

Ljubljana, November 2008 M. Rosina
B. Golli
S. Širca
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Hypernuclear physics as seen by an experimenter

P. Achenbach

Institut für Kernphysik, Joh. Gutenberg-Universität, Mainz, Germany

In the newmillennium hypernuclear physics is undergoing a renewed inter-

est, both theoretically and experimentally.

Hadrons and nuclei are understood as many-body systems made of quarks
and gluons, bound by the strong force. Information on baryon-baryon interac-

tions is mainly obtained from nuclear experiments with projectiles and targets

out of nucleons, addressing interactions in flavour SU(2) only. The difficulties to
study hyperon-nucleon (YN) and hyperon-hyperon (YY) interactions by reaction

experiments are related to the practical problems in the preparation of low en-
ergy hyperon beams and the impossibility of hyperon targets due to the short

(∼200ps) life-times of hyperons. The investigation of a hypernucleus, where one

or more nucleons have been replaced by one or more hyperons, allows address-
ing a rich spectrum of physics topics ranging from genuine nuclear physics to

particle physics. Although fifty years have already passed since the discovery of
the first hypernuclear events, studies of hypernuclei are still at the forefront of nu-

clear physics. The presence of the hyperon can induce several effects on the host

nucleus, like changes of both size and shape, modification of cluster structure,
manifestation on new symmetries or changes of nucleon collective motions. One

of the most spectacular effects, observed so far in what is called impurity nuclear
physics, is the shrinking of the nucleus core. Such a behaviour can be considered

a precursor of matter condensation induced by strange particles.

Only recently, it has already been demonstrated that hypernuclei can be used

as a micro-laboratory to study YN and YY interactions. In the case of ΛN interac-
tion, the spin-orbit term has been found to be smaller than that for the nucleon.

In a recent experiment at BNL the spacing of the (5/2+, 3/2+) doublet in 9ΛBe was
measured to be (43 ± 5)keV [1]. Although these small spin splittings can only

be observed using gamma spectroscopy, reaction spectra are equally important

because they provide the complete spectrum of excitations. In addition, experi-
mental data onmedium to heavy singleΛ hypernuclei have shown amuch larger

spin-orbit splitting than observed in light hypernuclei [2].

Hypernuclei physics, born and developed mainly in Europe, has seen a re-
naissance at the turn of the century. Until now, experimental information has

mainly come from meson-induced reactions and most recently from coincident

γ-ray spectroscopy of hypernuclei. Even though a number of new experimen-
tal techniques have been developed for the hypernuclear spectroscopy in the last

decade, our knowledge is still limited to a small number of hypernuclei. The large
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variety of novel experimental approaches to hypernuclei will provide a wide ba-

sis for a comprehensive understanding of strange hadrons in cold nuclear sys-

tems. The spectroscopy of single Λ- and double ΛΛ-hypernuclei will remain one
of the most valuable tools for the experimental investigation of strangeness nu-

clear physics in the near future.

1 The hypernuclear programme at MAMI

At the Institut für Kernphysik in Mainz, Germany, the microtron MAMI has been

upgraded to 1.5GeV electron beam energy and can now be used to study strange
hadronic systems [3].

Electron beams have excellent spatial and energy definitions, and targets can

be physically small and thin (10 − 50mg/cm2) allowing studies of almost any
isotope. The cross-section for the reaction, σ ∼ 140nb/sr on a 12C target as first

measured at Jefferson Laboratory in Experiment E89-009 [4], is small compared

to strangeness exchange n(K−, π−)Λ or associated production n(π+, K+)Λ. This
smallness can be well compensated in electro-production by the available large

electron beam intensities, but often the resulting electromagnetic background is

limiting the reaction rates.
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Fig. 1. Recoil momentum for strangeness electro-production (left) and strangeness ex-

change (right) reactions at three different kaon angles are shown as a function of the en-

ergy of the virtual photon, respectively the beam momentum. Reaction cross-sections and

transition amplitudes to individual states depend strongly on the recoil momentum.

In order to produce a hypernucleus, the hyperon emerging from the reac-
tion has to be bound in the nucleus. Reaction cross-sections and transition am-

plitudes to individual states depend strongly on the transferred momentum to
the hyperon. If the momentum transfer is large compared with typical nuclear

Fermi momenta, the hyperon will preferentially leave the nucleus. The (K−, π−)

reaction is characterised by the existence of a ”magic momentum” where the re-
coil momentum of the hyperon becomes zero as is shown Fig. 1. It populates,

consequently, substitutional states in which a nucleon is converted to a Λ in the

same state. The (e, e ′K+) reaction, on the other hand, produces neutron-richer
Λ hypernuclei converting a proton to a Λ hyperon and transfers a large recoil
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momentum to a hypernucleus. This reaction is preferable when high-spin hy-

pernuclear states are studied. In addition, this reaction has the unique charac-

teristic of providing large amplitudes for the population of spin-flip hypernu-
clear states with unnatural parities [5], such as (νp

−1
3/2
,Λ s1/2)2

−, where the spin

quantum number, JP = 2−, of the nucleon-hole Λ-particle state has maximum
J =ν l+Λl+ 1 = 1+ 0+ 1 = 2.

KAOS is a very compact magnetic spectrometer suitable especially for the

detection of kaons, that was used before at GSI in a single-arm configuration [6].
During the last years it was installed at theMainzmicrotronMAMI in the existing

spectrometer facility operated by the A1 collaboration [7]. In the very near future

the spectrometer will be set-up for the first time with tracking detectors arranged
in two arms, to either side of the main dipole. The special kinematics for electro-

production of hypernuclei requires the detection of both, the associated kaon and
the scattered electron, at forward laboratory angles. The KAOS spectrometer will

cover simultaneously electron scattering angles close to 0◦ and kaon scattering

angles around 5◦ up to 15◦ in order to extract dynamical information from the K+

angular distribution [8].

Fig. 2. Overview of the KAOS spectrometer of the A1 collaboration at the Mainz microtron

MAMI: electrons and hadrons are detected simultaneously under small scattering angles.

Charged particle trajectories through the spectrometer are shown by full lines. The electron

arm tracking detector will be located close to the electron beam. High radiation levels are

expected at that position.

The KAOS spectrometer’s electron arm detectors will operate close to zero
degrees scattering angle and in close proximity to the electron beam. Fig. 2 shows

a schematic drawing of the set-up in the spectrometer hall. The magnet bends
the central trajectory on both sides by ∼45 degrees with a momentum dispersion

of 2.2 cm/%. The first-order focusing is realized as seen in Fig. 2. In addition to

a broad neutron spectrum high electromagnetic background levels are expected
at the detector locations. It is consequently imperative to operate radiation hard

and intrinsically fast detectors.
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While the instrumentation of the hadron arm is operational, a new coordi-

nate detector of the spectrometer’s electron arm is under development [9,10]. It

will consist of two vertical planes of fibre arrays (x and θ), covering an active area
of L×H ∼ 2000× 300mm2, supplemented by one or two horizontal planes (y and

φ). The 18,432 fibres of the vertical tracking detectors will be connected to 4,608
electronics channels with logic signals fed into the level-1 trigger. The track infor-

mation will be used to reconstruct the target coordinates and particle momentum,

and the time information used to determine the time-of-flight of the particle from
target to the detection planes. New front-end electronics has been developed for

the fast signals of more than 4,000 MaPMT channels of the fibre detector in the
KAOS spectrometer’s electron arm.
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Fig. 3. (color online) Simulated correlation between electron and kaon momenta, where Σ

(blue, left) andΛ (green, centre) hyperons have been generated for the elementary produc-

tion off the proton and the 12Λ B hypernuclei (red, right) have been generated for a carbon

target. The rectangular box indicates the simultaneousmomentum acceptance of the KAOS

spectrometer in its two-arm configuration.

In Fig. 3 the simulated correlation in electro-production between the elec-

tron momentum and the kaon momentum is plotted, where Λ and Σ hyperons

have been generated for the elementary production off the proton and the 12Λ B
hypernuclei have been generated for a carbon target. The events have been gen-

erated randomly in phase-space and weighted by a factor for the virtual photon
flux and the modelled transition form factor. In the Monte Carlo, the production

probability was assumed to drop exponentially with the relative momentum be-

tween Λ hyperon and core nucleus and typical values of σp = 100MeV/c and
kF = 200MeV/cwere assumed. The rectangular box in Fig. 3 indicates the simul-

taneous momentum acceptance of the KAOS spectrometer. Its large momentum
acceptance covers the quasi-free process as well as the hypernuclear production

reaction. In practice, this fact will simplify the identification of the hypernuclear

events in the data sample.

It is currently planned to perform a first experiment with two complete ver-

tical planes of the fibre detector in the KAOS spectrometer’s electron arm in 2009.
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The hypernuclear programme will follow as soon as the two-arm configuration

of the spectrometer is operational and the magnet optics is determined in such a

way that sub-MeV mass resolution is possible. The latter situation is assumed to
be reached in late 2009 or early 2010.

2 The HypHI experiment

Until recently hypernuclear spectroscopy has been restricted to the investigation
of hypernuclei close to the valley of beta-decay stability as in most experiments

targets made of stable nuclei are used with meson and electron beams. The re-
cently proposed HypHI project (Hypernuclear spectroscopy with stable heavy

ion beams and rare-isotope beams) is dedicated to hypernuclear spectroscopy

with stable heavy ion beams and rare isotope beams at GSI, Germany, and FAIR,
the Facility for Antiproton and Ion Research [11]. This approach has some ad-

vantages: firstly, it is possible to investigate a number of hypernuclei simultane-
ously in a single experiment and secondly the hypernuclei are created at extreme

isospins. The observation of the Λ-hypernucleus decay modes offers the unique

opportunity to look at the four-baryon, strangeness-changing, weak vertex. The
determination of the relative weights of the different decay channels represents

a long-standing puzzle. The HypHi project is divided into four phases. To study

the feasibility of hypernuclear spectroscopy with heavy ion beams the phase 0
experiment was proposed [12], aiming at the identification of the π− decay chan-

nels of 3ΛH, 4ΛH and 5
ΛHe produced by 6Li 2AGeV beams impinging on a 12C

target of 8 g/cm2 mass.

Hypernuclear production via heavy ion collisions is described by the partici-
pant-spectator model and was first studied theoretically by Kerman and Weiss

[13]. In the collisions hyperons are produced in the participant region with a wide

rapidity distribution centered around mid-rapidity. Hypernuclei can be formed
in coalescence of hyperon(s) in the projectile fragments, with the velocity of hy-

pernuclei close to the projectile velocity with β > 0.9. Decays of hypernuclei can
be studied in-flight, andmost of their decay vertices are a few tens of a centimetre

behind the target at which hypernuclei are produced.

The experimental set-up, which will consist of an analysing dipole magnet

as well as time-of-flight (TOF) and tracking detectors, was designed to measure
the invariant mass of particles decaying behind the target. The TOF branch will

consist of a start detector and two position-sensitive TOF walls for positive and

negative charged particles, placed behind the dipole. In addition, the scintilla-
tors will provide energy deposit information for the charge identification of the

registered particles. Three tracking detectors made of scintillating fibres will be

positioned between target and magnet and will be used to trigger readout sys-
tem on events which contain a decay vertex behind the target. The fibre detector

will also become crucial in distinguishing the hypernuclei 4ΛH and 3ΛH from the
background containing α and Λ particles produced at the target.

A further advantage of this approach is that hypernuclei are produced as
projectile fragments at beam rapidity that will open a way to direct measure-

ments of hypernuclear magnetic moments. In meson and electron beam induced
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experiments, recoil momenta of produced hypernuclei are small. Therefore, it has

been impossible so far to conduct direct measurement on hypernuclear magnetic

moments by means of spin precession in strong magnetic fields. This is one of the
goals of the final project phase.

3 The hypernuclear programme at PANDA

The single hypernuclei research programme will be complemented by experi-
ments on multi-strange systems with PANDA at the planned FAIR facility. The

PANDA hypernuclear programme shall reveal the ΛΛ strong interaction stren-
gth, not feasible with direct scattering experiments [14,15]. In the anti-proton stor-

age ring HESR relatively low momentum Ξ− will be produced in pp → Ξ−Ξ
+
or

Ξ−Ξ
0
reactions. The associated Ξ will scatter or annihilate inside the residual nu-

cleus. The annihilation products contain at least two anti-kaons that can be used

as a tag for the reaction. Due to the large yield of hyperon-antihyperon pairs pro-

duced a high production rate of single and double hypernuclei in an active sec-
ondary target under unique experimental conditions will be feasible. High res-

olution γ-ray spectroscopy based on high-purity germanium (HPGe) detectors
represents one of the most powerful means of investigation in nuclear physics:

the introduction of this technique determined a significant progress in the knowl-

edge of the nuclear structure. Consequently, for the high resolution spectroscopy
of excited hypernuclear states an efficient, position sensitive HPGe array is fore-

seen. To maximise the detection efficiency the detectors must be located as close

as possible to the target. Hereby the main limitation is the load of particles from
background reactions. Most of the produced charged particles are emitted into

the forward region. Since the γ-rays from the slowly moving hypernuclei are
emitted rather isotropically the HPGe detectors will be arranged at backward

axial angles θ ≥ 100◦. A full simulation of the hypernuclei detector’s geometry

has been completed.

Fig. 4. Simulated set-up with HPGe cluster detectors (left) situated at backward angles for

hypernuclei experiments at PANDA (right). The beam enters from left.
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Fig. 4 shows the simulated γ-ray spectroscopy set-up with several HPGe

cluster detectors (each comprising 3 crystals). A small fibre barrel read-out by sil-

icon photomultiplier has been discussed as an option for a time-of-flight start de-
tector to identify hypernuclear reactions. For this sub-detector system the achiev-

able time resolution at minimum detector mass is a main issue.

The hypernuclear physics addressed by this experiment is currently discus-
sed in the upcoming ,,PANDA Physics Book”. In the planned set-up there exist

many experimental challenges and several European research groups are work-

ing on the realisation of the detectors. A detailed design will be available in the
mid-term future. When reflecting upon the state of the preparations for this set-

up, one should be aware that the construction of the anti-proton storage ring and
the PANDA experiment has not yet started.
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Abstract. We establish a connection between the quark model and the 1/Nc expansion

mass formulas used in the description of baryon resonances. We show that a remarkable

compatibility exists between the two methods in the light and heavy baryon sectors. In

particular, the band number used to classify baryons in the 1/Nc expansion is explained

by the quark model and the mass formulas for both approaches are consistent.

1 Introduction

Since pioneering work [1] in the field, the standard approach for baryon spec-

troscopy is the constituent quark model. The Hamiltonian typically contains a

spin independent part formed of the kinetic plus the confinement energies and
a spin dependent part given by a hyperfine interaction. The quark model results

are de facto model dependent; it is therefore very important to develop model
independent methods that can help in alternatively understanding baryon spec-

troscopy and support (or not) quark model assumptions. Apart from promising

lattice QCD calculations [2], large Nc QCD, or alternatively the 1/Nc expansion,
offers such a method. In 1974 ’t Hooft generalizedQCD from SU(3) to an arbitrary

number of colors SU(Nc) [3] and suggested a perturbative expansion in 1/Nc, ap-
plicable to all QCD regimes. Witten has then applied the approach to baryons [4]

and this has led to a systematic and predictive 1/Nc expansion method to study

static properties of baryons. The method is based on the discovery that, in the
limit Nc → ∞, QCD possesses an exact contracted SU(2Nf) symmetry [5] where

Nf is the number of flavors. This symmetry is approximate for finite Nc so that
corrections have to be added in powers of 1/Nc. Notice that a baryon is a bound

state ofNc quarks in the largeNc formalism.

The 1/Nc expansion has successfully been applied to ground state baryons,

either light [6,7] or heavy [8,9]. Its applicability to excited states is a subject of cur-
rent investigations. The classification scheme used in the 1/Nc expansion for ex-

cited states is based on the standard SU(6) classification as in a constituent quark

⋆ Based on talks presented by F. Buisseret and F. Stancu



10 F. Buisseret, C. Semay, F. Stancu, N. Matagne

model. Baryons are grouped into excitation bands N = 0, 1, 2,. . . , each band con-

taining at least one SU(6) multiplet, the band number N being the total number

of excitation quanta in a harmonic oscillator picture.

The purpose of the present paper is to show that there is a compatibility

between the quark model and the 1/Nc expansion methods. It is organized as
follows. We first give a summary of the 1/Nc expansion method in Sec. 2. Then

we present a relativistic quark model in Sec. 3 and derive analytic mass formulas

from its Hamiltonian in Sec. 4. The comparison between the quark model and the
1/Ncmass formulas is discussed in Sec. 5 and conclusions are drawn in Sec. 6. We

point out that the results summarized hereafter have been previously presented
in Refs. [10,11] for the light baryons and [12] for the heavy baryons. This work

aims at being a pedagogical overview of these last three references.

2 Baryons in large Nc QCD

2.1 Light nonstrange quarks

We begin with a summary of the 1/Nc expansion in the caseNf = 2, but the argu-
ments are similar for anyNf. The contracted SU(2Nf) symmetry is here the group

SU(4) which has 15 generators: The spin and isospin subgroup generators Si and

Ta and operators acting on both spin and isospin degrees of freedom denoted by
Gia (i, a = 1, 2, 3).

The SU(4) algebra is

[Si, Ta] = 0, [Si, Gja] = iεijkGka, [Ta, Gib] = iεabcGic,

[Si, Sj] = iεijkSk, [Ta, Tb] = iεabcTc, [Gia, Gjb] =
i

4
δijεabcTc +

i

4
δabεijkSk.

In the limit Nc → ∞ one has [Gia, Gjb] → 0 which implies the existence of a
contracted algebra. These SU(4) generators form the building blocks of the mass

operator, at least in the ground state band (N = 0). For orbitally excited states the
generators ℓi of SO(3), as well as the tensor operator ℓ(2)ij also appear since the

symmetry under consideration is extended to SU(4)⊗ SO(3).

In the 1/Nc expansion the mass operatorM has the general form

M =
∑

i

ciOi, (1)

where the coefficients ci encode the QCD dynamics and have to be determined
from a fit to the existing data, and where the operators Oi are SU(4) ⊗ SO(3)

scalars of the form

Oi =
1

Nn−1
c

O
(k)

ℓ ·O(k)

SF . (2)

Here O
(k)

ℓ is a k-rank tensor in SO(3) and O
(k)

SF a k-rank tensor in SU(2)-spin,

but invariant in SU(2)-flavor. The lower index i in the left hand side represents
a specific combination. Each n-body operator is multiplied by an explicit factor

of 1/Nn−1
c resulting from the power counting rules [4], where n represents the
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minimum of gluon exchanges to generate the operator. For the ground state, one

has k = 0. For excited states the k = 2 tensor is important. In practical applications,

it is customary to include terms up to 1/Nc and drop higher order corrections of
order 1/N2c.

As an example, we show the operators used in the calculation of the masses
of the [70, 1−] multiplet up to order 1/Nc included [13] (the sum over repeated

indices is implicit)

O1 = Nc 1, O2 =
1

Nc
ℓiSi, O3 =

1

Nc
TaTa, O4 =

1

Nc
SiSi,

O5 =
15

N2c
ℓ(2)ijGiaGja, O6 =

3

N2c
ℓiTaGia. (3)

Note that although O5 and O6 carry a factor of 1/N2c their matrix elements are

of order 1/Nc because they contain the coherent operator Gia which brings an
extra factorNc.O1 = Nc 1 is the trivial operator, proportional toNc and the only

one surviving when Nc → ∞ [4]. The operators O2 (spin-orbit), O5 and O6 are

relevant for orbitally excited states only. All the SU(4) quadratic invariants SiSi,
TaTa and GiaGia should enter the mass formula but they are related to each

other by the operator identity [7]

{
Si, Si

}
+ {Ta, Ta} + 4

{
Gia, Gia

}
=
1

2
Nc(3Nc + 4), (4)

so one can express GiaGia in terms of SiSi and TaTa.

Assuming an exact SU(2)-flavor symmetry, the mass formula for the ground

state band up to order 1/Nc takes the following simple form [7]

M = c1Nc + c4
1

Nc
S2 + O

(
1

N3c

)
, (5)

which means that for N = 0 only the operators O1 and O4 (spin-spin) contribute

to the mass.

Among the excited states, those belonging to theN = 1 band, or equivalently

to the [70, 1−] multiplet, have been most extensively studied, either for Nf = 2

(see e.g. Refs. [14–18]) or for Nf = 3 [19]. The N = 2 band contains the [56 ′, 0+],
[56, 2+], [70, ℓ+] (ℓ = 0, 2), and [20, 1+] multiplets. There are no physical resonances

associated to [20, 1+]. The few studies related to the N = 2 band concern the
[56 ′, 0+] for Nf = 2 [20], [56, 2+] for Nf = 3 [21], and [70, ℓ+] for Nf = 2 [22], later

extended toNf = 3 [23]. The method has also been applied [24] to highly excited

non-strange and strange baryons belonging to [56, 4+], the lowest multiplet of the
N = 4 band [25].

The group theoretical similarity of excited symmetric states and the ground
statemakes the analysis of these states simple [21,24]. Formixed symmetric states,

the situation is more complex. There is a standard procedure which reduces the

study of mixed symmetric states to that of symmetric states. This is achieved by
the decoupling of the baryon into an excited quark and a symmetric core ofNc−1

quarks. This procedure has been applied to the [70, 1−] multiplet [14–19] and to
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the [70, ℓ+] (ℓ = 0, 2) multiplets [22,23]. But it has recently been shown that the

decoupling is not necessary [13], provided one knows the matrix elements of the

SU(2Nf) generators betweenmixed symmetric states. The derivation of these ma-
trix elements is not trivial. For SU(4) they have been derived by Hecht and Pang

[26] in the context of nuclear physics and adapted to quark physics in Ref. [13],
where it has been shown that the isospin-isospin term becomes as dominant in ∆

as the spin-spin term in N resonances.

The derivation of SU(6) matrix elements between mixed symmetric states

[Nc − 1, 1] is underway [27].

A detailed description of the problems raised by the standard procedure [17]
of the separation of a system of mixed spin-flavour symmetry [Nc − 1, 1] into a

symmetric core of Nc − 1 quarks and an excited quark has been given in Refs.

[28,29].

2.2 Inclusion of strangeness

For light strange baryons (Nf = 3) the mass operator in the 1/Nc expansion has
the general form

M =
∑

i=1

ciOi +
∑

i=1

diBi, (6)

where the operatorsOi are invariants under SU(6) transformations and the opera-

tors Bi explicitly break SU(3)-flavor symmetry. In the case of nonstrange baryons,

only the operators Oi contribute, see Eq. (1). Therefore Bi are defined such as
their expectation values are zero for nonstrange baryons. The coefficients di are

determined from the experimental data including strange baryons. In Eq. (6) the
sum over i is finite and in practice it containes the most dominant operators. Ex-

amples of Oi and Bi can be found in Refs. [21,23,24].

Assuming that each strange quark brings the same contribution ∆Ms to the

SU(3)-flavor breaking terms in the mass formula, we define the total contribution
of strange quarks as [11]

ns ∆Ms =
∑

i=1

diBi, (7)

where ns = −S is the number of strange quarks in a baryon, S being its strange-

ness.

2.3 Heavy quarks

The approximate spin-flavor symmetry for large Nc baryons containing light

q = {u, d, s} and heavy Q = {c, b} quarks is SU(6)× SU(2)c × SU(2)b, i.e. there
is a separate spin symmetry for each heavy flavor. Over a decade ago the 1/Nc
expansion has been generalized to include an expansion in 1/mQ and light quark
flavor symmetry breaking [8]. The majority of the currently available experi-

mental data concerning heavy baryons is related to ground state baryons made

of one heavy and two light quarks [30]. Such heavy baryons, denoted as qqQ
baryons, have been recently reanalyzedwithin the combined 1/Nc and 1/mQ ex-

pansion [9], and masses in good agreement with experiment have been obtained.
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A first attempt to extend this framework to excited heavy baryons can be found

in Refs. [31] but much work remains to be done in this field. That is why we focus

here on the N = 0 band for qqQ baryons only.

Let us first consider that SU(3)-flavor symmetry is exact. In this case the mass
operatorM(1) is a flavor singlet and in the combined 1/mQ and 1/Nc expansion

to order 1/m2Q it takes the following form

M(1) = mQ1 +Λqq + λQ + λqqQ. (8)

The leading order term ismQ at all orders in the 1/Nc expansion. Next we have

Λqq = c0Nc 1 +
c2

Nc
J2qq, and λQ = NQ

1

2mQ

(
c

′

0 1 +
c

′

2

N2c
J2qq

)
, (9)

where Jqq is identical to the total spin Sqq of the light quark pair when one deals

with the N = 0 band. Note that Λqq contains the dynamical contribution of the
light quarks and is independent ofmQ while λQ gives 1/mQ corrections. The last

term, λqqQ, contains the heavy-quark spin-symmetry violating operator which
reads

λqqQ = 2
c

′′

2

NcmQ
Jqq · JQ, (10)

where JQ is identical to the spin SQ of the heavy quark.

The unknown coefficients c0, c2, c
′

0, c
′

2, and c
′′

2 are functions of 1/Nc and

of a QCD scale parameter Λ. Each coefficient has an expansion in 1/Nc where

the leading term (in dimensionless units) is of order unity and does not depend
on 1/mQ. Thus, without loss of generality, by including dimensions, one can set

c0 ≡ Λ. The quantity Λ, as well as the other coefficients, have to be fitted to the
available experimental data. In agreement with Ref. [8], we take

c0 = Λ, c2 ∼ Λ, c
′

0 ∼ c
′

2 ∼ c
′′

2 ∼ Λ2. (11)

The inclusion of SU(3)-flavor breaking leads to an expansion of the mass
operator in the SU(3)-violating parameter ǫ which contains the singletM(1), an

octetM(8), and a 27-pletM(27). The last term brings contributions proportional

to ǫ2 and we neglect it. ForM(8) we retain its dominant contribution T8 to order
N0c. Then the mass formula becomes

M = M(1) + ǫT8. (12)

The flavor breaking parameter ǫ is governed by the mass difference ms − m

(where m is the average of the mu and md masses) and therefore is ǫ ∼ 0.2-0.3.

It is measured in units of the chiral symmetry breaking scale parameter Λχ ∼ 1

GeV.

3 Quark model for baryons

3.1 Main Hamiltonian

The quark model used here to describe baryons aims at capturing the main phys-

ical features of a three-quark system while keeping the formalism as simple as
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possible in order to get analytical mass formulas. It contains: Relativistic kinetic

energy for the quarks, Y-junction confining potential, one-gluon exchange poten-

tial and quark self-energy contribution added as perturbative terms. Let us now
shortly describe all these ingredients.

A baryon, seen as a bound state of three valence quarks, can be described, at

the dominant order, by the spinless SalpeterHamiltonianH =
∑3
i=1

√
p 2i +m2i+

VY , wheremi is the bare mass of the quark i and where VY is the confining inter-
action potential. We use the bare mass of the quarks in the relativistic kinetic en-

ergy term as suggested by the field correlator method [32], but other approaches,

like Coulomb gauge QCD, rather favor a running constituent quark mass [33].
Although very interesting conceptually, the influence of this choice on the mass

spectra should not be so dramatic than it could have been expected at the first
glance: First, the bare and constituent heavy quark masses are nearly identical.

Second, the constituent light quark masses quickly decrease at large momentum

and become similar to the bare masses; a common limit is reached for the excited
states. The situation is thus mainly different for low-lying nnn baryons (u and d

quarks are commonly denoted as n), where the bare massmn can be set equal to
0, but where the constituent mass is about 300 MeV [33]. However, the strength

of additional interactions like one-gluon exchange (see next section) can be tuned

in both cases and lead to final mass spectra which are quite similar.

Both the flux tubemodel [34] and lattice QCD [35] support the Y-junction pic-

ture for the confining potential: A flux tube starts from each quark and the three
tubes meet at the Torricelli (or Steiner or Fermat) point of the triangle formed by

the three quarks, let us say the ABC triangle. This point T , located at xT , mini-
mizes the sum of the flux tube lengths and leads to the following confining po-

tential VY = a
∑3
i=1 |xi − xT |, where the position of quark i is denoted by xi and

where a is the energy density of the flux tubes. If all the angles of ABC are less

than 120o, then the Toricelli point is such that the angles ÂTB, B̂TC, and ÂTC are

all equal to 120o. If the angle corresponding to an apex is greater than 120o, the

Toricelli point is precisely at this apex.

As xT is a complicated three-body function, it is interesting to approximate

the confining potential by a more tractable form. In the following, we shall use

HR =

3∑

i=1

√
p 2i +m2i + VR, (13)

VR = ka

3∑

i=1

|xi − R| , (14)

where R is the position of the center of mass and k is a corrective factor [36].

The accuracy of the replacement (14) has been checked to be very satisfactory
(better than 5%) in this last reference provided that the appropriate scaling factor

is used: k0 = 0.952 for qqq baryons and k1 = 0.930 for qqQ baryons. For highly

excited states, the contribution of the configurations in which the Toricelli point
is located on one of the quarks becomes more and more important, and one could

think that the center of mass approximation (14) is then wrong. But in such cases
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the angle made by the Toricelli point and the other two quarks is larger than

120o and the center of mass is consequently still close to the true Toricelli point.

The approximation (14), although being less accurate for highly excited states,
remains however relevant.

3.2 Perturbative terms

Besides the Hamiltonian (13), other contributions are necessary to reproduce the
baryon masses. We shall add them as perturbations to the dominant Hamilto-

nian (13). The most widespread correction is a Coulomb interaction term of the

form

∆Hoge = −
2

3

∑

i<j

αS,ij

|xi − xj|
, (15)

arising from one-gluon exchange processes, where αS,ij is the strong coupling

constant between the quarks i and j. Actually, one should deal with a running

form αS(r), but it would considerably increase the difficulty of the computations.
Typically, we need two values: α0 = αS,qq for a qq pair and α1 = αS,qQ for a qQ

pair, in the spirit of what has been done in a previous study describing mesons in
the relativistic flux tubemodel [37]. There it was found thatα1/α0 ≈ 0.7 describes
rather well the experimental data of qq̄ andQq̄mesons.

Another perturbative contribution to the mass is the quark self-energy. This

is due to the color magnetic moment of a quark propagating through the QCD
vacuum. It adds a negative contribution to the hadron masses [38]. The quark

self-energy contribution for a baryon is given by

∆Hqse = −
fa

2π

∑

i

η(mi/δ)

µi
, (16)

where µi is the kinetic energy of the quark i, that is µi =

〈√
p 2i +m2i

〉
, the aver-

age being computed with the wave function of the unperturbed spinless Salpeter

Hamiltonian (13). The factors f and δ have been computed in quenched and un-
quenched lattice QCD studies; it seems well established that 3 ≤ f ≤ 4 and

(1.0 ≤ δ ≤ 1.3) GeV [39]. The function η(ǫ) is analytically known; we refer the

reader to Ref. [38] for an explicit formula. It can accurately be fitted by

η(ǫ) ≈ 1− βǫ2 with β = 2.85 for 0 ≤ ǫ ≤ 0.3,
≈ γ

ǫ2
with γ = 0.79 for 1.0 ≤ ǫ ≤ 6.0. (17)

Let us note that the corrections depending on the parameter γ appear at order

1/m3Q in the mass formula, so they are not considered in this work.

We finally point out that the quark model we developed in this section is

spin independent. This neglect of the fermionic nature of the quarks is the reason

why such amodel is often called “semirelativistic”: The implicit covariance is pre-
served, but spin effects are absent. Spin dependent contributions (spin-spin, spin-

orbit, etc.) typically come from relativistic corrections to the one-gluon exchange
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potential. It is useful to mention that in our formalism such potential terms be-

tween the quarks i and j should be of the form [32]

Vij ∝ (µiµj)
−1. (18)

4 Mass formulas

4.1 The auxiliary field method

The comparison between the quark model and largeNc mass formulas would be

more straightforward if we could obtain analytical expressions. To this aim, the
auxiliary field method is used in order to transform the Hamiltonian (13) into an

analytically solvable one [40]. With λ = ka, we obtain

H(µi, νj) =

3∑

j=1

[
p 2j +m2j

2µj
+
µj

2

]
+

3∑

j=1

[
λ2(xj − R)2

2νj
+
νj

2

]
. (19)

The auxiliary fields, denoted as µi and νj, are operators, and H(µi, νj) is equiva-
lent to H up to their elimination thanks to the constraints

δµi
H(µi, νj)|µi=µ̂i

= 0 ⇒ µ̂i =

√
p 2i +m2i ,

δνj
H(µi, νj)

∣∣
νj=ν̂j

= 0 ⇒ ν̂j = λ|xj − R|. (20)

〈µ̂i〉 is the quark kinetic energy, and 〈ν̂i〉 is the energy of one flux tube, the aver-
age being computed with the wave function of the unperturbed spinless Salpeter

Hamiltonian (13). The equivalence relation between Hamiltonians (13) and (19)

is H(µ̂i, ν̂j) = H.

Although the auxiliary fields are operators, the calculations are considerably
simplified if one considers them as variational parameters. They have then to be

eliminated by a minimization of the masses, and their extremal values µi,0 and
νj,0 are logically close to 〈µ̂i〉 and 〈ν̂j〉 respectively [40]. This technique can give

approximate results very close to the exact ones [41]. If the auxiliary fields are

assumed to be real numbers, the Hamiltonian (19) reduces formally to a non-
relativistic three-body harmonic oscillator, for which analytical solutions can be

found. A first step is to replace the quark coordinates xi = {x1, x2, x3} by the
Jacobi coordinates x

′

k = {R,ξ,η } defined as [42]

R = (µ1x1 + µ2x2 + µ3x3)/µt, with µt = µ1 + µ2 + µ3, (21)

and ξ ∝ x1 − x2, η ∝ (µ1x1 + µ2x2)/(µ1 + µ2) − x3.

In the case of two quarks with massm and another with massm3, the mass
spectrum of the Hamiltonian (19) is given by (µ1 = µ2 = µ, ν1 = ν2 = ν by

symmetry)

M(µ, µ3, ν, ν3) = ωξ(Nξ+3/2)+ωη(Nη+3/2)+µ+ν+
µ3 + ν3

2
+
m2

µ
+
m23
2µ3

, (22)
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where ωξ =
λ√
µν
, ωη =

λ√
2µ + µ3

√
µ3

µν
+

2µ

µ3ν3
. (23)

The integers Nξ/η are given by 2nξ/η + ℓξ/η, where nξ/η and ℓξ/η are the radial
and orbital quantum numbers relative to the variable ξ/η respectively. More-

over,
〈
ξ 2
〉
and

〈
η2
〉
are analytically known. This eventually allows to compute〈

(x1 − x3)
2
〉
and

〈
(x2 − x3)

2
〉
, which are needed to know the one-gluon exchange

contribution.

The four auxiliary fields appearing in the mass formula (22) have to be elim-

inated by solving simultaneously the four constraints

∂µM(µ, µ3, ν, ν3) = 0, ∂µ3
M(µ, µ3, ν, ν3) = 0,

∂νM(µ, µ3, ν, ν3) = 0, ∂ν3
M(µ, µ3, ν, ν3) = 0. (24)

This task cannot be analytically performed in general, but solutions can fortu-

nately be found in the case of light and heavy baryons.

4.2 Light baryons

Since we do not distinguish between the u and d quarks in our quark model and

commonly denote them as n, there are only four possible configurations: nnn,
sss, nss and snn, that can all be described by the mass formula (22). Important

simplifications occur by setting mn = 0, which is a good approximation of the
u and d quark bare masses. However, the non vanishing value for ms causes

Eqs. (24) to have no analytical solution unless a power expansion in ms is per-

formed. This is justified a priori since the strange quark is still a light one. After
such a power expansion, the final mass formula reads [10]

Mqqq = M0 + ns ∆M0s (ns = 0, 1, 2, 3),

M0 = 6µ0 −
2k0aα0√
3µ0

−
3fa

2πµ0
, ∆M0s =

m2s
µ0

[
1

2
−
k0aα0

6
√
3µ20

+
fa

2π

(
3

4µ20
+
β

δ2

)]
,

µ0 =

√
k0a(N+ 3)

3
. (25)

The mass formula Mqqq depends only on N = Nξ + Nη. The contribution of
terms proportional toNξ −Nη, vanishing for ns = 0 and 3, was found to be very

weak in the other cases by a numerical resolution of Eqs. (24).

An important feature of the above mass formula has to be stressed: It only
depends on N the total number of excitation quanta of the system. But, this in-

teger is precisely the band number introduced in large Nc QCD to classify the

baryon states in a harmonic oscillator picture. Indeed the spinless SalpeterHamil-
tonian (13) has been transformed into a harmonic oscillator by the auxiliary field

method and it is thus natural that a such band number appears. The great ad-
vantage of the auxiliary field method is that it allows to obtain analytical mass

formulas for a relativistic Hamiltonian while making explicitly the band number

used in the large Nc classification scheme to appear. The origin of N is thus ex-
plained by the dynamics of the three-quark system and the comparison with the

1/Nc mass formulas is therefore possible.



18 F. Buisseret, C. Semay, F. Stancu, N. Matagne

4.3 Heavy baryons

A mass formula for qqQ baryons can also be found from Eq. (22). An expansion

inms is still needed to get analytical expressions, but an expansion in 1/mQ can
also be done since we deal with one heavy quark. One obtains [12]

MqqQ = mQ +M1 + ns ∆M1s + ∆MQ (ns = 0, 1, 2),

M1 = 4µ1 −
2

3

(
α0

√
k1a

2Nξ + 3
+ 2α1

√
2k1a

N + 3

)
−
fa

πµ1
,

∆M1s =
m2s
µ1

[
1

2
−

1

12µ1

(
α0

√
k1a

2Nξ + 3
+ 2α1

√
2k1a

N + 3

)
+
fa

2π

(
3

4µ21
+
β

δ2

)]
,

∆MQ =
k1a

2mQ

[(
1−

fa

2πµ21

)
G(N,Nη) −

α0

6

√
2Nη + 3

2Nξ + 3

(√
2(2Nη + 3)

N+ 3
− 1

)

+
4α1

3

2Nη + 3

N+ 3

]
,

µ1 =

√
k1a(N+ 3)

2
, G(N,Nη) =

√
2Nη + 3

(√
2(N + 3) −

√
2Nη + 3

)
.

(26)

At the lowest order in ms and 1/mQ, this mass formula depends only on N.

However, when corrections are added, the mass formula is no longer symmetric
in Nη andNξ. Is it still possible to find a single quantum number? The answer is

yes, provided we make the reasonable assumption that an excited heavy baryon
will mainly “choose” the configuration that minimizes its mass.

The dominant correction of order 1/mQ is the term that depends on the func-

tion G(N,Nη). The baryon mass is lowered when G(N,Nη) is minimal, that is to
say for Nη = N. The analysis of the dominant part of the Coulomb term shows

that the baryon mass is also lowered in this case. So it is natural to assume that
the favored configuration, minimizing the baryon energy, isNη = N andNξ = 0.

It is also possible to reach the same conclusion by checking that an excitation of

type Nη will keep the baryon smaller in average than the corresponding excita-
tion inNξ. This is favored because of the particular shape of the potential, having

for consequence that the more the system is small, the more it is light.

As for light baryons, the quark model shows that heavy baryons can be la-

beled by a single band numberN in a harmonic oscillator picture. A light diquark-

heavy quark structure is then favored since the light quark pair will tend to re-
main in its ground state. Note that the diquark picture combined with a detailed

relativistic quark model of heavy baryons leads to mass spectra in very good

agreement with the experimental data [43].

4.4 Regge trajectories

The band numberN emerges from the quark model as a good classification num-

ber for baryons. It is now interesting to focus on the behavior of the baryon
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masses at large values of N, i.e. for highly excited states. In this limit, the for-

mula (25) gives

M2
qqq ≈ 12ak0(N+ 3) −

24√
3
ak0α0 −

16fak0

π
+ 6

[
1+

fak0β

πδ2

]
nsm

2
s . (27)

Our quark model thus states that light baryons should follow Regge trajecto-
ries, that is a linear relationM2 ∝ N, with a common slope, irrespective of the

strangeness of the baryons. The Regge slope of strange and nonstrange baryons

is also predicted to be independent of the strangeness in the 1/Nc expansion
method [44]. Too few experimental data are unfortunately available to check this

result. In the heavy baryon sector, the mass formula (26)withNξ = 0 andNη = N

becomes at the dominant order

(M −mQ)2 = 8a
k1

k0
(N + 3). (28)

This model predicts Regge trajectories for heavy baryons, with a slope of 8ak1/k0
≈ 7.8a instead of 12ak0 ≈ 11.4 a for light baryons.

The Regge slope for light baryons is here given by 12ak0. However, from

experiment we know that the Regge slopes for light baryons and light mesons
are approximately equal. For light mesons, the exact value obtained in the frame-

work of the flux tube model is 2πa, a lower value than the one obtained from

formula (27). This is due to the auxiliary field method that has been shown to
overestimate the masses [45]. What can be it done to remove this problem is to

rescale a. Let us define σ such that 12ak0 = 2πσ; then the formula (27) is able
to reproduce the light baryon Regge slope for a physical value σ of the flux tube

energy density. The scaling a = πσ/(6k0) will consequently be assumed in the

rest of this paper.

5 Large Nc QCD versus Quark Model results

5.1 Light nonstrange baryons

The coefficients ci appearing in the 1/Nc mass operator can be obtained from

a fit to experimental data. For example, the case N = 0 is particularly simple.
Equation (5) can be applied to N and ∆ baryons. Taking Nc = 3 together with

MN = 940MeV for S = 1/2, andM∆ = 1232MeV for S = 3/2, we get

c
(N=0)

1 = 289MeV, c
(N=0)

4 = 292MeV. (29)

Since the spin-orbit contribution vanishes for N = 0, no information can be ob-

tained for c2. We refer the reader to Refs. [19,21,22,24] for the determination of ci
at N > 0.

In the 1/Nc expansion method, the dominant term c1Nc in the mass for-

mula (1) contains the spin-independent contribution to the baryon mass, which
in a quark model language represents the confinement and the kinetic energy. So,
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Fig. 1. Plot of c21 (left) and ∆Ms (right) versus the band number N. The values computed

in the 1/Nc expansion (full circles) from a fit to experimental data are compared with the

quark model results with σ = 0.163 GeV2 , α0 = 0.4, f = 3.6, andms = 0.240 GeV (empty

circles and dotted line to guide the eyes). No data is available forN = 3 in largeNc studies.

The largeNc data are nearly indistinguishable from the quark model prediction in the left

plot.

it is natural to identify this term with the mass given by the formula (25). Then,
for Nc = 3we have

c21 =
M2
qqq

9
=
2π

9
σ(N + 3) −

4π

9
√
3
σα0 −

fσ

3
. (30)

Figure 1 shows a comparison between the values of c21 obtained in the 1/Nc ex-

pansion method and those derived from Eq. (30) for various values of N. From

this comparison one can see that the results of large Nc QCD are entirely com-
patible with the formula (30) provided σ = 0.163 GeV2, a rather low but still

acceptable value according to usual potential models, α0 = 0.4, and f = 3.6:
These are very standard values.

Equation (18) implies that c2 and c4 ∝ µ−2
0 . Therefore we expect the depen-

dence of N of these coefficients to be of the form

c2 =
c02

N+ 3
, c4 =

c04
N+ 3

. (31)

We see that such a behavior is consistent with the large Nc results in Fig. 2. We
chose c02 = 208 ± 60MeV so that the point with N = 1, for which the uncertainty

is minimal, is exactly reproduced. Let us recall that the spin-orbit term is van-

ishing for N = 0, so no large Nc result is available in this case. To compute the
parameter c04 a fit was performed on all the largeNc results. In this way we have

obtained c04 = 1062 ± 198MeV. Note that c04 ≫ c02. This shows that the spin-spin
contribution is much larger than the spin-orbit contribution, which justifies the

neglect of the spin-orbit one in quark model studies.



Light and heavy baryon masses: the 1/Nc expansion 21

Fig. 2. Values of c2 (left) and c4 (right) versus the band numberN. The values computed in

the 1/Nc expansion (full circles) from a fit to experimental data are compared with results

from formula (31) (empty circles and dotted line to guide the eyes). No data is available

forN = 3 in largeNc studies.

5.2 Light strange baryons

We have first to find out the values of ∆Ms coming from the 1/Nc expansion. For

N = 0, 1, and 3, they can be found in Ref. [44], and the case N = 4 is available in
Ref. [24]. The situation is slightly more complicated in the N = 2 band due to a

larger number of available results. We refer the reader to Ref. [11] for a detailed
discussion about the computation of ∆Ms in this case.

The mass shift due to strange quarks is given in the quark model formalism

by ∆M0s in Eq. (25). A comparison of this term with its large Nc counterpart

is given in Fig. 1, where we used the same parameters as for light nonstrange
baryons. The only new parameter is the strange quark mass, that we set equal to

240 MeV, a higher mass than the PDG value but rather common in quark model
studies. One can see that the quark model predictions are always located within

the error bars of the large Nc results. Except for N = 3, whose large Nc value

would actually require further investigations, the central values of ∆Ms in the
large Nc approach are close to the quark model results and they decrease slowly

and monotonously with increasing N. Thus, in both approaches, one predicts
a mass correction term due to SU(3)-flavor breaking which decreases with the

excitation energy (or N).

5.3 Heavy baryons

As mentioned previously, our present study is restricted to ground state heavy
baryons made of one heavy and two light quarks. In the 1/Nc, 1/mQ expansion

the parameters to be fitted are Λ,mQ and ǫΛχ. At the dominant order, the value
of Λ can be extracted from the mass combinations [8]

ΛQ = mQ+NcΛ,
1

3
(ΣQ+2Σ∗

Q)−ΛQ = 2
Λ

Nc
, Σ∗

Q−ΣQ =
3

2

(
2Λ2

NcmQ

)
, (32)
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resulting from the mass formula (8). Here and below the particle label represents

its mass. A slightly more complicated mass combination, involving light baryons

as well as heavy ones, directly leads tomQ, that is [9]

1

3
(ΛQ + 2ΞQ) −

1

4

[
5

8
(2N + 3Σ +Λ + 2Ξ) −

1

10
(4∆+ 3Σ∗ + 2Ξ∗ +Ω)

]
= mQ.

(33)

This mass combination gives

mc = 1315.1 ± 0.2MeV, mb = 4641.9 ± 2.1MeV, (34a)

while the value

Λ ≈ 324MeV (34b)

ensures that the mass combinations (32) are optimally compatible with the exper-

imental values for Q = c and b. A measure of the SU(3)-flavor breaking factor is

given by [8]

ΞQ −ΛQ =

√
3

2
(ǫΛχ). (35)

The value (ǫΛχ) = 206MeV leads to ΞQ − ΛQ = 178MeV, which is the average

value of the corresponding experimental data.

The new parameters appearing in the quark model aremc, mb, k1 = 0.930,

and α1. For the other parameters we keep the values fitted in the light baryon

sector. We take α1 = 0.7α0 from the quark model study of Ref. [37]. The heavy
quark masses can be fitted to the experimental data as follows. The quark model

mass formula (26) is spin independent; it should thus be suitable to reproduce

the masses of heavy baryons for which J2qq = 0. Namely, one expects that

Mnnc|N=0 = Λc = 2286.46 ± 0.14MeV, Mnnb|N=0 = Λb = 5620.2 ± 1.6MeV.
(36)

These values are reproduced by formula (26) with mc = 1.252 GeV and mb =

4.612 GeV. It is worth mentioning that we predict Mnsc|N=0 = 2433 MeV and

Mnsb|N=0 = 5767MeVwith these parameters. These values are very close to the
experimental Ξc and Ξb masses respectively.

We can now compare the quark model and the 1/Nc, 1/mQ mass formulas.

On the one hand the mass combination (33) leads to mc = 1315 MeV and mb =

4642 MeV. On the other hand, the quark model mass formula (26) is compatible

with the experimental data provided that mc = 1252 MeV and mb = 4612 MeV.

Both approaches lead to quarkmasses that differ by less than 5%. Thus they agree
at the dominant order, where onlymQ is present.

The other parameter involved in the largeNc mass formula is Λ. A compar-

ison of the spin independent part of the mass formulas (8) and (26) leads to the
following identification forNc = 3

c0 =
1

3
M1|N=0 =

4

3
µ1 −

2

27

√
k1πσ

2k0
(α0 + 2

√
2α1) −

fσ

18k0µ1
, (37)
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with µ1 =
√
k1πσ/4k0. According to Eqs. (11) and (34b) one has c0 = Λ ≃

0.324 GeV. The quark model gives 0.333 GeV for the expression after the second

equality sign in Eq. (37), which means a very good agreement for the QCD scale
Λ. The terms of order 1/mQ lead to the identity

c
′

0 = 2mQ ∆MQ|
N=0

=
k1πσ

6k0

[
3
(√
2− 1

)(
1−

fσ

12k0µ
2
1

)
−
α0

6

(√
2− 1

)
+
4α1

3

]
. (38)

Note that to test this relation the value of mQ is not needed, like for the iden-
tity (37). The large Nc parameter, Λ = 0.324 GeV, gives for the left hand side of

(38) c
′

0 ∼ Λ2 = 0.096GeV2 and the quarkmodel gives for the right hand side 0.091
GeV2, which is again a good agreement. Finally, the SU(3)-flavor breaking term

is proportional to ǫΛχ ∼ ms −m ∼ ms in the mass formula (12). Equations (12),

(26), and (35) lead to

√
3

2
ǫΛχ = ∆M1s|N=0

=
m2s
µ1

[
1

2
−

1

36µ1

√
k1πσ

2k0

(
α0 + 2

√
2α1

)
+

fσ

12k0

(
3

4µ21
+
β

δ2

)]
.(39)

The large Nc value ǫΛχ = 0.206 GeV and the quark model estimate 0.170 GeV
also compare satisfactorily. We point out that, except for mc and mb, all the

model parameters are determined from theoretical arguments combined with

phenomenology, or are fitted on light baryon masses. The comparison of our re-
sults with the 1/Nc expansion coefficients c0, c

′

0 and ǫΛχ are independent of the

mQ values. So we can say that this analysis is parameter free.

An evaluation of the coefficients c2, c
′
2, and c

′′
2 through a computation of

the spin dependent effects is out of the scope of the present approach. But at the
dominant order, one expects from Eq. (18) that c2 ∝ µ−2

1 and c ′′2 ∝ µ−1
1 . The ratio

c ′′2 /c2 should thus be of order µ1 = 356MeV, which is roughly in agreement with
Eq. (11) stating that c ′′2 /c2 ∼ Λ. This gives an indication that the quark model

and the 1/Nc expansion method would remain compatible if the spin-dependent

effects were included.

6 Conclusions

We have established a connection between the quark model and the 1/Nc expan-
sion both for light baryons and for heavy baryons containing a heavy quark. In

the latter case the 1/Nc expansion is supplemented by an 1/mQ expansion due to
the heavy quark. A clear correspondence between the various terms appearing in

the 1/Nc and quark model mass formulas is observed, and the fitted coefficients

of the 1/Nc mass formulas can be quantitatively reproduced by the quark model.

These results bring reliable QCD-based support in favor of the constituent
quark model assumptions and lead to a better insight into the coefficients ci en-

coding the QCD dynamics in the 1/Ncmass operator. In particular, the dynamical
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origin of the band number labeling the baryons in largeNc QCD is explained by

the quark model.

As an outlook, we mention two important studies that we hope to make

in the future. First, the N = 1 baryons of qqQ type are poorly known in the
1/Nc, 1/mQ expansion. They should be reconsidered and compared to the quark

model. Second, the ground state baryons made of two heavy quarks and a light

quark could be studied in a combined 1/Nc, 1/mQ expansion-quark model ap-
proach, leading to predictions for the mass spectrum of these baryons.

Acknowledgement F.B. and C.S. thank the F.R.S.-FNRS (Belgium) for financial

support.
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Abstract. We argue that the resonance-like structures Y(4260) [1,2], Y(4360), Y(4660) [3]

and Y(4635) [4], which were recently reported to have been observed in experiment, are

non-resonant manifestations of the Regge zeros that appear in the production amplitude

of the Resonance-Spectrum Expansion. Charmonium cc̄ states are visible on the slopes of

these enhancements.

In the Resonance-Spectrum Expansion (RSE) [5], which is based on the model of

Ref. [6], the meson-meson scattering amplitude is given by an expression of the

form (here restricted to the one-channel case)

T (E) =





−2λ2µpj2ℓ (pr0)

∞∑

n=0

∣∣gnL(ℓ)

∣∣2

E− EnL(ℓ)





Π(E) , (1)

where p is the center-of-mass (CM) linear momentum, E = E(p) is the total in-

variant two-meson mass, jℓ and h
(1)

ℓ are the spherical Bessel function and Hankel
function of the first kind, respectively, µ is the reduced two-meson mass, and r0
is a parameter with dimension mass−1, which can be interpreted as the average

string-breaking distance. The coupling constants gNL, as well as the relation be-
tween ℓ and L = L(ℓ), were determined in Ref. [7]. The overall coupling constant

λ, which can be formulated in a flavor-independentmanner, represents the proba-
bility of quark-pair creation. The dressed partial-wave RSE propagator for strong

interactions is given by

Πℓ(E) =





1− 2iλ2µpjℓ (pr0)h

(1)

ℓ (pr0)

∞∑

n=0

|gNL|
2

E− ENL






−1

. (2)
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This propagator has the very intriguing property that it vanishes for E →
ENL. We will show in the following that this phenomenon can be, and has in-

deed been, observed in experiment, but not in scattering processes, as one easily
verifies that the RSE amplitude for strong scattering (1) does not vanish in the

limit E → ENL. However, for strong production processes, we derived in Ref. [8],
following a procedure similar to the one by Roca, Palomar, Oset, and Chiang [9],

a relation between the production amplitude P and the scattering amplitude T ,

reading

Pℓ = jℓ (pr0) + i T ℓh
(1)

ℓ (pr0) , (3)

which, using Eqs. (2) and (1), can also be written as

Pℓ = jℓ (pr0)Πℓ(E) . (4)

From this expression we find, by the use of Eq. (2), that the production amplitude
tends to zero when E → ENL. This effect must be visible in experimental strong

production cross sections.

Actually, in Ref. [8] we found, for the complete production amplitude in the

case of multi-channel processes, that Eq. (4) represents the leading term, and that
the remainder is expressed in terms of the inelastic components of the scattering

amplitude. The latter terms do not vanish in the limit E → ENL, as we have seen

above. Hence, the production amplitude only vanishes approximately in this limit,
in case inelasticity is suppressed.

The reaction of electron-positron annihilation into multi-hadron final states
takes basically place via one photon, hence with JPC = 1−− quantum numbers.

Consequently, when the photon materializes into a pair of current quarks, which
couple via the qq̄ propagator to the final multi-hadron state, we may assume

that the intermediate propagator carries the quantum numbers of the photon.

Moreover, alternative processes are suppressed.

We may thus conclude that, if we want to discover whether the propagator

really vanishes at E → ENL, then the ideal touchstone is e+e− annihilation into
multi-hadron states. Furthermore, there also exist predictions for the values of

ENL, with L = 0 or L = 2, given by the parameter set of Ref. [10]. For cc̄ one
finds in the latter paper E0,0 = 3.409 GeV and ω = 0.19 GeV, which results

for the higher cc̄ confinement states in the spectrum E1,0 = E0,2 = 3.789 GeV,

E2,0 = E1,2 = 4.169 GeV, E3,0 = E2,2 = 4.549 GeV, . . . .

The latter two levels of the cc̄ confinement spectrum can indeed be clearly

observed in experiment. For example, the non-resonant signal in e+e− → π+π−

ψ(2S) (see Fig. 5 of Ref. [3]) is divided into two substructures [11–13], since the

full cc̄ propagator (2), dressed with meson loops, vanishes at E3 = 4.55 GeV [10].
In the same set of data, one may observe a lower-lying zero at E2 = 4.17 GeV [10],

more distinctly visible in the data on e+e− → π+π−J/ψ (see Fig. 3 of Ref. [2]).

The true cc̄ resonances can be found on the slopes of the above-mentioned non-
resonant structures, unfortunately with little statistical significance, if any.

In fact, in Ref. [1], where the BaBar Collaboration announced the observa-
tion of the Y(4260) structure in e+e− → π+π−J/ψ, one reads: “no other structures

are evident at the masses of the quantum number JPC = 1−− charmonium states, i.e.,
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the ψ(4040), ψ(4160), and ψ(4415)”. However, in Ref. [14], we demonstrated that

the BaBar data at about 4.15 GeV are consistent with the mass and width of the

ψ(4160). Here, we will show that also the ψ(4415) is clearly visible in the BaBar
data, possibly even with enough statistical significance.

So we indeed observe minima in production processes, which confirm van-

ishing qq̄ propagators.Moreover, the qq̄ confinement spectrum predicted 25 years
ago in Ref. [10] seems to agree well with experimental observations for vec-

tor mesons. Accordingly, we expect vector-meson qq̄ resonances associated with
each of the Regge states: one ground state, dominantly in a qq̄ S-wave, and two

resonances for each of the higher excited Regge states, viz. one dominantly in an

S-wave, and the othermostly in aD-wave. In Ref. [15],we reported on indications
for four, possibly five, new cc̄ vector states, in the e+e− → Λ+

c Λ
−
c amplitudes of

the Belle Collaboration [4]. Here, we will just concentrate on the ψ(4S).

A full description of the π+π−J/ψ involves a three-body calculation. In the
present work, however, we will limit us to an effective two-body calculation for

(π+π−) J/ψ, assuming for the π+π− effective mass just a fraction of the available
phase space. Furthermore, we assume an S-wave for the relative orbital angular

momentum of the π+π−-J/ψ system. Under these assumptions, we obtain for the

amplitude the result depicted in Fig. 1a, for the case that the propagator of Eq. (2)
is substituted by a structureless vertex.

As expected, we observe no resonances in the amplitude of Fig. 1a. Next, we

suppress the effect of the resonance poles in the propagator of Eq. (2), such that
the zeros at E = ENL dominate production (see Eq. (4)). The resulting amplitudes

are shown in Figs. 1b and 1c. We observe that now our theoretical amplitude
is in rather good agreement with the data. There is an excess of data for energies

below 4.0 GeV, stemming from the tail of theψ(3685) resonance, which dominates

the amplitude at lower masses and which is not accounted for in our amplitude.
Furthermore, in Ref. [14] we discussed the ψ(4160) resonance, which, since not

accounted for here, leads to an overestimate of the BaBar data by our theoretical
amplitude.

However, there is a rather large overestimate visible in Fig. 1c at the mass of

the ψ(4415). In Fig. 1d, we show that the difference between data and our non-
resonant amplitude can be perfectly explained by accounting for a cc̄ resonance

with mass and width consistent with the ψ(4415). Moreover, the experimental

error bars indicate that sufficient statistics is available to include this resonance
in a data analysis for the non-resonant Y structures.

Summarizing, we have shown that the cc̄ confinement spectrum, which un-
derlies scattering and production of multi-meson systems containing charmo-

nium qq̄ pairs, can be observed in production amplitudes. Moremore, we have

shown that the cc̄ resonance poles are present in the e−e+ → J/ψπ+π− ampli-
tude.
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Fig.1. The J/ψ(π+π−) invariant-mass distributions for the reaction e−e+ → J/ψπ+π− .

Data are taken from Ref. [1] (•) and Ref. [2] (⋄). The theoretical results (solid lines) are

also discussed in the text: (a) shows the distribution for a non-resonant structureless cc̄

propagator; (b) and (c) show the effect of Regge zeros in the cc̄ vector propagator, thereby

suppressing the contributions of its cc̄ poles; (b) for just the Regge zero at 3.79 GeV; (c) for

the zeros at 4.17 and 4.55 GeV as well; (d) shows the additional effect of the cc̄ resonance

pole in the propagator at 4.415 − i0.036 GeV [16].
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Abstract. We give a brief summary of our study of low-lying states in the Y-string three-

quark potential [1], currently under review. We study the masses of various three-quark

SU(6) multiplets in the N=0,1,2 shells, confined by the Y-string three-quark potential, at

four levels of approximation with increasing accuracy. We show the general trend of con-

vergence of these four approximations.

1 Introduction

The so-called Y-junction string three-quark potential, defined by

VY = σmin
x0

3∑

i=1

|xi − x0|. (1)

has long been advertised [2–7] as a natural description of the flux tube confine-
ment mechanism, that is allegedly active in QCD. Lattice investigations, Refs.

[8–10] contradict each other, however, in their attempts to distinguish between

the Y-string, Fig. 1, and the ∆-string potential, see Fig. 2, which is indistinguish-
able from the sum of three linear two-body potentials. One may therefore view

the present lattice results as inconclusive and await the next generation of calcu-
lations. Yet, one would wish to resolve this dilemma on a purely theoretical basis:

do these two kinds of string potentials predict sufficiently different baryon spec-

tra that can be differentiated by experiment? At this time one must use the quark
model in order to try and resolve this dilemma.

V∆ = σ

3∑

i<j=1

|xi − xj|, (2)

Over the past 25 years, the Y-string potential has been used in several studies

of baryons in the (constituent) quark model with various hyperfine interactions
[4–6,11], and yet some of themost basic predictions of this potential, such as its in-

fluence on the splitting of the low-lying three-quark states have remained widely

⋆ Talk presented by V. Dmitrašinović
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Fig.2. Three-quark ∆-shape string potential.

unknown. That has to do with the technical complications in the implementa-

tion of the potential Eq. (1), that can best be seen when expressed in terms of the

three-body Jacobi coordinates ρ,λ

ρ =
1√
2
(x1 − x2), (3)

λ =
1√
6
(x1 + x2 − 2x3), (4)

as follows. The exact string potential Eq. (1) consists of the so-called Y-string, or

three-string term,

Vstring = VY = σ

√
3

2
(ρ2 + λ2 + 2|ρ × λ|), (5)

when






2ρ2 −
√
3ρ · λ ≥ −ρ

√
ρ2 + 3λ2 − 2

√
3ρ · λ

2ρ2 +
√
3ρ · λ ≥ −ρ

√
ρ2 + 3λ2 + 2

√
3ρ · λ

3λ2 − ρ2 ≥ −1
2

√
(ρ2 + 3λ2)2 − 12(ρ · λ)2 .
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and three angle-dependent two-part string, or the so-called V-string, terms,

Vstring = σ

(√
1

2
(ρ2 + 3λ2 + 2

√
3ρ · λ) +

√
1

2
(ρ2 + 3λ2 − 2

√
3ρ · λ)

)
(6)

when






2ρ2 −
√
3ρ · λ ≥ −ρ

√
ρ2 + 3λ2 − 2

√
3ρ · λ

2ρ2 +
√
3ρ · λ ≥ −ρ

√
ρ2 + 3λ2 + 2

√
3ρ · λ

3λ2 − ρ2 ≤ −1
2

√
(ρ2 + 3λ2)2 − 12(ρ · λ)2

Vstring = σ

(
√
2ρ+

√
1

2
(ρ2 + 3λ2 + 2

√
3ρ · λ)

)
(7)

when






2ρ2 −
√
3ρ · λ ≥ −ρ

√
ρ2 + 3λ2 − 2

√
3ρ · λ

2ρ2 +
√
3ρ · λ ≤ −ρ

√
ρ2 + 3λ2 + 2

√
3ρ · λ

3λ2 − ρ2 ≥ −1
2

√
(ρ2 + 3λ2)2 − 12(ρ · λ)2

Vstring = σ

(
√
2ρ+

√
1

2
(ρ2 + 3λ2 − 2

√
3ρ · λ)

)
(8)

when






2ρ2 −
√
3ρ · λ ≤ −ρ

√
ρ2 + 3λ2 − 2

√
3ρ · λ

2ρ2 +
√
3ρ · λ ≥ −ρ

√
ρ2 + 3λ2 + 2

√
3ρ · λ

3λ2 − ρ2 ≥ −1
2

√
(ρ2 + 3λ2)2 − 12(ρ · λ)2

.

Here, the reasons for the lack of use of the exact potential Eq. (1) become appar-
ent: i) it is a genuine three-body operator with a complicated and unusual (“area

term”) angular dependence under the square-root of the most important term
(the Y-junction string potential) that leads to the non-conservation of the indi-

vidual Jacobi relative coordinates’ angular momenta and hugely complicates the

equations of motion; ii) the square-roots appearing in all four functional forms of
the potential make this task even more difficult; iii) the presence of four different

functional forms of the potential depending on the configuration space angles
makes the integration of the equations of motion difficult as one cannot easily

separate the angular and radial integrals.

In Sect. 2 we give a summary of how we address the above three problems.

A summary of our results is shown in Sect. 3. The final Section 4 contains a dis-
cussion of our results.

2 Approximations

First we address the above three problems: first, we deal with the angular mo-

mentum recoupling algebra necessary to deal with the non-conserved “partial”
angular momenta; second we deal with the square root(s) in the Y-string poten-

tial, and third we address all four forms of the string potential together.

Perhaps the most common, and the simplest approximation to the exact str-

ing potential Eq. (1) is the Y-string, or the three-string potential, Eq. (5), that is
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used in all geometries, i.e., even when one of the angles exceeds 120◦. In that way

one avoids the cumbersome transition to the V-string potentials, see problem iii)

above. Still, even this simplified approximation suffers from two difficulties men-
tioned above: i) an unusual (“area term”) angular dependence under the square-

root that leads to the non-conservation of the individual Jacobi coordinates’ an-
gular momenta; ii) the square-root.We shall address these problems in successive

steps: i) the area term turns out to be exactly (analytically) integrable in the har-

monic oscillator basis, that boils down to some (complicated) angular momenta
recoupling algebra and the value of a particular one-dimensional integral. Prob-

lem ii), the overall square root, can be treated, at first, by a series expansion, i.e.
in perturbation theory, using the angular algebra solution to problem i) and the

numerical evaluation of the remaining one-dimensional integral. It turns out that

the crucial ingredient for the solution of this problem is the application of the
so-called hyper-spherical coordinates/angles [12], more specifically the cosines

of the relative angle θ between the Jacobi coordinates ρ,λ and of the hyper-angle
2χ defined by the ratio of the moduli ρ, λ of the two Jacobi coordinates. Finally,

the third issue iii) (the presence of four different functional forms of the potential)

can be tackled as well, by numerically evaluating a two-dimensional integral in a
restricted region of the χ − θ sub-hyper-space.

3 Summary of Results

In the following we summarize the results of our study of the low-lying parts
of the energy spectra of three quarks confined by a pure Y-string potential, with-

out two-quark potentials, in four different approximations: 1) the area-dependent

part of the three-string potential as the first order perturbation of the harmonic os-
cillator; 2) the area-dependent part of the three-string potential as the first order

perturbation of the non-harmonic linear potential, i.e. the (approximate) three-
string potential expanded up to the first power in hyper-spherical angles; 3) the

(approximate) three-string potential to all orders in power expansion in hyper-

spherical harmonics, without taking into account the transition(s) to two-string
potentials; 4) the exact minimal-length string potential to all orders in power ex-

pansion in hyper-spherical harmonics, while taking into account the transition(s)
to two-string potentials. Our results are shown in Table 1 and Fig. 3.

An attractive Y-string potential always splits the N=K=2 band states into

degenerate SUFS(6) multiplets: [20, 1+], [70, 2+], [56, 2+], [70, 0+], (in order of de-
scending mass) following approximately the Bowler and Tynemouth (BT) [13]

separation rule of 2:2:1. This rule is obeyed by approximations 1) and 2) exactly

and by approximation 3) at the level of one per cent corrections. The exact result
4) leads to the 2.25:2.18:1 splitting, i.e. the largest violation of the BT rule is less

than 13%.

The mass difference between the first (hyper-) radial excitation of the ground

state, that is the “Roper multiplet” [56
′

, 0+], and the odd-parity K=N=1 [70, 1−]

multiplet is entirely determined by the difference between and the first (hyper-)
angular and the first (hyper-) radial excitation eigen-energies in a linearly rising

hyper-radial potential, which is always negative.
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Fig.3. Depiction of the energy splitting of the K = 2 states of the hyper-spherical linear

potential spectrum due to attractive three-body potentials: (a) the first-order perturba-

tion approximation to the “harmonic Y-string” potential; (b) the first-order perturbation

approximation to the first-power expansion in hyper-spherical coordinates of the “three-

string” potential (see text for definition); (c) non-perturbative results of the “three-string”

potential solved in hyper-spherical coordinates. The left-hand side of the diagram involv-

ing the [20, 1+ ], [70, 2+ ], [56, 2+ ], [70, 0+ ] multiplets is common to both kinds of potentials,

follows the Bowler-Tynemouth rule 2:2:1 to 1%; only the position of the [56, 0+ ] multiplet

(containing the Roper resonance) is variable.

In other words, the Roper resonance cannot be lowered below the odd-parity

K=N=1 states, irrespective of the string tension constant and the quark masses,
which are the only free parameters in this theory. Consequently, the energy spec-

trum pattern can not be improved, as compared with the desired/experimental

one, by a straightforward application of the Y-string three-body potential.

Table 1. The eigen-values of the unperturbed (solution to the hyper-central approxima-

tion, see the text) energy E
(0)

NK,K
, and the two perturbative (E

(1)

NK,K,L
, E

(2)

NK,K,L
), and two non-

perturbative (E
(3)

NK,K,L
, E

(4)

NK,K,L
) approximations, where the last one E

(4)

K ; is the exact (nu-

merical) result, for the various low-lying K = 0,1,2 states (with all allowed orbital waves

L).

K NK [SU(6),LP] E
(0)

NK,K
E

(1)

NK,K,L
E

(2)

NK,K,L
E

(3)

NK,K,L
E

(4)

NK,K,L

0 0 [56, 0+ ] 3.8175 4.0000 4.6658 4.5182 4.5218

1 1 [70, 1− ] 4.6582 5.3333 5.6934 5.5132 5.5176

0 1 [56, 0+ ] 5.2630 6.6667 6.4326 6.2290 6.2340

2 2 [70, 0+ ] 5.4290 6.3333 6.3942 6.2493 6.2665

2 2 [56, 2+ ] 5.4290 6.4667 6.4907 6.3199 6.3279

2 2 [70, 2+ ] 5.4290 6.7333 6.6837 6.4604 6.4617

2 2 [20, 1+ ] 5.4290 7.0000 6.8767 6.5993 6.5999

4 Discussion

We have examined the qualitative and quantitative features of the energy spec-

trum in the Y-string three-quark potential and its differences from the two-body,
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or the ∆-shaped string one. For this purpose we have studied the low-lying states

of the three-quark system (the “baryon”) in the Y-string potential (the∆-string po-

tential had been studied in Ref. [14]). It turns out that the three lowest-lying bands
of states that form the (only) set of well-established (“four-star”) resonances, do

not as yet allow a clear distinction to be made between these two types of poten-
tials: there are too few states in these shells, and their wave functions are (tightly)

constrained by the permutation symmetry. This is a bit of a surprise, as these

two string potentials have (very) different functional forms, which we expected
to predict different physics:

So, it turns out that there is only one possible clue to the form of the confining

potential in the low-lying baryon resonance spectrum, viz. the Roper resonance’s
(abnormally low) mass, that perhaps could be used to draw conclusions about the

existence and/or preponderance of one kind of potential over the other. We have

shown, however, that the Y-shaped string always leads to a Roper resonance that
is heavier than the lowest-lying odd-parity resonance. This does not mean that

the spectra of the Y- and the two-body potentials are identical, rather, it means
that one must go to the higher lying bands, and in particular to higher orbital

angular momentum states, in order to see the difference between the two.

A detailed study of the possible interference of the two- and three-body po-

tentials on the position of the first hyper-radial excitation (the “Roper resonance”)
remains a task for the future. Moreover, the behavior of the Y-string in higher or-

bital angular momentum states remains another place to look for the differences
from the ∆-string.
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Abstract. The masses of the ground and excited heavy tetraquarks with hidden charm are

calculated within the relativistic diquark-antidiquark picture.

Recently, significant experimental progress has been achieved in charmo-

nium spectroscopy. Several new charmonium-like states, such asX(3872), Y(4260),
Y(4360), Y(4660), Z(4248), Z(4430), etc., were observed [1] which cannot be sim-

ply accommodated in the quark-antiquark (cc̄) picture. These states and espe-
cially the charged ones can be considered as indications of the possible existence

of exotic multiquark states. In this talk we briefly review our papers [2,3] where

we calculated masses of the ground and excited states of heavy tetraquarks in
the framework of the relativistic quark model based on the quasipotential ap-

proach in quantum chromodynamics. For our calculations we use the diquark-
antidiquark picture to reduce a complicated relativistic four-body problem to the

subsequent two more simple two-body problems. The first step consists in the

calculation of the masses, wave functions and form factors of the diquarks, com-
posed from light and heavy quarks. At the second step, a heavy tetraquark is

considered to be a bound diquark-antidiquark system. It is important to empha-
size that we do not consider the diquark as a point particle but explicitly take

into account its structure by calculating the form factor of the diquark-gluon in-

teraction in terms of the diquark wave functions. Details of the relativistic quark
model and calculations can be found in [2,3].

In the diquark-antidiquark picture of heavy tetraquarks both scalar S (anti-

symmetric in flavour (Qq)S=0 = [Qq]) and axial vector A (symmetric in flavour
(Qq)S=1 = {Qq}) diquarks are considered. Therefore we get the following struc-

ture of the (Qq)(Q̄q̄ ′) ground (1S) states (C is defined only for q = q ′):

• Two states with JPC = 0++:

X(0++) = (Qq)S=0(Q̄q̄
′)S=0

X(0++ ′) = (Qq)S=1(Q̄q̄
′)S=1

⋆ Talk presented by D. Ebert
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• Three states with J = 1:

X(1++) =
1√
2
[(Qq)S=1(Q̄q̄

′)S=0 + (Qq)S=0(Q̄q̄
′)S=1]

X(1+−) =
1√
2
[(Qq)S=0(Q̄q̄

′)S=1 − (Qq)S=1(Q̄q̄
′)S=0]

X(1+− ′) = (Qq)S=1(Q̄q̄
′)S=1

• One state with JPC = 2++:

X(2++) = (Qq)S=1(Q̄q̄
′)S=1.

The orbitally excited (1P, 1D . . . ) states are constructed analogously. As we find, a

very rich spectrum of tetraquarks emerges. However the number of states in the
considered diquark-antidiquark picture is significantly less than in the genuine

four-quark approach.

The diquark-antidiquark model of heavy tetraquarks predicts the existence

of a flavour SU(3) nonet of states with hidden charm or beauty (Q = c, b): four
tetraquarks [(Qq)(Q̄q̄), q = u, d] with neither open or hidden strangeness, which

have electric charges 0 or ±1 and isospin 0 or 1; four tetraquarks [(Qs)(Q̄q̄) and
(Qq)(Q̄s̄), q = u, d] with open strangeness (S = ±1), which have electric charges

0 or ±1 and isospin 1
2
; one tetraquark (Qs)(Q̄s̄) with hidden strangeness and

zero electric charge. Since we neglect in our model the mass difference of u and
d quarks and electromagnetic interactions, the corresponding tetraquarks will be

degenerate inmass. Amore detailed analysis [4] predicts that the tetraquarkmass
differences can be of a few MeV so that the isospin invariance is broken for the

(Qq)(Q̄q̄) mass eigenstates and thus in their strong decays. The (non)observation

of such states will be a crucial test of the tetraquark model.

In Table 1 we compare our results (EFG) for the masses of the ground and
excited charm diquark-antidiquark bound states with the predictions of Refs. [4]

and with the masses of the observed highly-excited charmonium-like states [1].
We assume that the excitations occur only between the bound diquark and an-

tidiquark. Possible excitations of diquarks are not considered. Our calculation

of the heavy baryon masses supports such a scheme [5]. In this table we give
our predictions only for some of the masses of the orbitally and radially excited

states for which possible experimental candidates are observed. The differences
in some of the presented theoretical mass values can be attributed to the sub-

stantial distinctions in the used approaches. We describe the diquarks dynami-

cally as quark-quark bound systems and calculate their masses and form factors,
while in Refs.[4] they are treated only phenomenologically. Then we consider the

tetraquark as purely the diquark-antidiquark bound system. In distinction, Maini
et al. consider a hyperfine interaction between all quarks which, e.g., causes the

splitting of 1++ and 1+− states arising from the SA diquark-antidiquark compo-

sitions. From Table 1 we see that our dynamical calculation supports the assump-
tion [4] that X(3872) can be the axial vector 1++ tetraquark state composed from

the scalar and axial vector diquark and antidiquark in the relative 1S state. Re-
cent Belle and BaBar results indicate the existence of a second X(3875) particle a
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Table 1. Comparison of theoretical predictions for the masses of the ground and excited

charm diquark-antidiquark states (in MeV) and possible experimental candidates.

State Diquark Theory Experiment

JPC content EFG [4] state mass[1]

1S

0++ SS̄ 3812 3723

1++ (SĀ + S̄A)/
√
2 3871 3872†

{
X(3872)

X(3876)

{
3871.4 ± 0.6
3875.2 ± 0.7+0.9

−1.8

1+− (SĀ − S̄A)/
√
2 3871 3754

0++ AĀ 3852 3832

1+− AĀ 3890 3882

2++ AĀ 3968 3952 Y(3943)

{
3943 ± 11 ± 13
3914.3+4.1

−3.8

1P

1−− SS̄ 4244
4330 ± 70

(csc̄s̄)
Y(4260)

{
4259 ± 8+2

−6

4247 ± 12+17
−32

1−

0−

SS̄

(SĀ ± S̄A)/
√
2

4244

4267

}
Z(4248) 4248+44+180

−29−35

1−−

1−−

(SĀ − S̄A)/
√
2

AĀ

4284

4277

}
Y(4260) 4284+17

−16±4

1−− AĀ 4350 Y(4360)

{
4361 ± 9 ± 9
4324 ± 24

2S

1+

0+

(SĀ ± S̄A)/
√
2

AĀ

4431

4434

}
Z(4430) 4433±4±2

1+ AĀ 4461 ∼ 4470

2P

1−− SS̄ 4666

{
Y(4660)

X(4630)

{
4664 ± 11 ± 5
4634+8+5

−7−8

† input

few MeV above X(3872). This state could be naturally identified with the second

neutral particle predicted by the tetraquark model [4]. On the other hand, in our
model the lightest scalar 0++ tetraquark is predicted to be above the open charm

threshold DD̄ and thus to be broad, while in the model [4] it lies a few MeV be-

low this threshold, and thus is predicted to be narrow. Our 2++ tetraquark also
lies higher than the one in Ref.[4], thus making the interpretation of this state as

Y(3943) less probable, especially if one averages the original Belle result with the
recent BaBar value which is somewhat lower.

The discovery in the initial state radiation atB-factories of the Y(4260), Y(4360)

and Y(4660) indicates an overpopulation of the expected charmonium 1−− states
[1]. Maini et al. [4] argue that Y(4260) is the 1−− 1P state of the charm-strange

diquark-antidiquark tetraquark. We find that Y(4260) cannot be interpreted in

this way, since the mass of such ([cs]S=0[c̄s̄]S=0) tetraquark is found to be ∼ 200

MeV higher. A more natural tetraquark interpretation could be the 1−− 1P state
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([cq]S=0[c̄q̄]S=0) (SS̄) which mass is predicted in our model to be close to the

mass of Y(4260) (see Table 1). Then the Y(4260) would decay dominantly into

DD̄ pairs. The other possible interpretations of Y(4260) are the 1−− 1P states of
(SĀ − S̄A)/

√
2 and AĀ tetraquarks which predicted masses have close values.

These additional tetraquark states could be responsible for the mass difference of
Y(4260) observed in different decay channels. As we see fromTable 1, the recently

discovered resonances Y(4360) and Y(4660) in the e+e− → π+π−ψ ′ cross section

can be interpreted as the excited 1−− 1P (AĀ) and 2P (SS̄) tetraquark states, re-
spectively. The peak X(4630) very recently observed by Belle in e+e− → Λ+

c Λ
−
c

is consistent with a 1−− resonance Y(4660) and therefore has the same interpreta-
tion in our model.

Recently the Belle Collaboration reported the observation of a relatively nar-

row enhancement in the π+ψ ′ invariant mass distribution in the B → Kπ+ψ ′

decay [1]. This new resonance, Z+(4430), is unique among other exotic meson
candidates, since it is the first state which has a non-zero electric charge. Differ-

ent theoretical interpretations were suggested [1]. Maiani et al. [4] gave quali-
tative arguments that the Z+(4430) could be the first radial excitation (2S) of a

diquark-antidiquark X+
ud̄

(1+−; 1S) state (AĀ) with mass 3882 MeV. Our calcula-

tions indicate that the Z+(4430) can indeed be the 1+ 2S [cu][c̄d̄] tetraquark state.
It could be the first radial excitation of the ground state (SĀ− S̄A)/

√
2, which has

the same mass as X(3872). The other possible interpretation is the 0+ 2S [cu][c̄d̄]

tetraquark state (AĀ) which has a very close mass. Measurement of the Z+(4430)

spin will discriminate between these possibilities.

Encouraged by this discovery, the Belle Collaboration performed a study of

B̄0 → K−π+χc1 and observed a double peaked structure in the π+χc1 invariant
mass distribution. These two charged hidden charm peaks, Z(4051) and Z(4248),

are explicitly exotic. We find no tetraquark candidates for the former, Z(4051),
structure. On the other hand, we see from Table 1 that Z(4248) can be interpreted

in our model as the charged partner of the 1− 1P state SS̄ or as the 0− 1P state of

the (SĀ± S̄A)/
√
2 tetraquark.

In summary, we calculated the masses of excited heavy tetraquarks with
hidden charm in the diquark-antidiquark picture. In contrast to previous phe-

nomenological treatments, we used the dynamical approach based on the rela-
tivistic quark model. Both diquark and tetraquark masses were obtained by nu-

merical solution of the quasipotential wave equation with the corresponding rel-

ativistic potentials. The diquark structure was taken into account in terms of di-
quark wave functions. It is important to emphasize that, in our analysis, we did

not introduce any free adjustable parameters but used their values fixed from our
previous considerations of heavy and light hadron properties. It was found that

the X(3872), Z(4248), Y(4260), Y(4360), Z(4430) and Y(4660) exotic meson candi-

dates can be tetraquark states with hidden charm.

This work was supported in part by the Russian Science Support Foundation
(V.O.G.) and the Russian Foundation for Basic Research (RFBR) (grant No.08-02-

00582) (R.N.F. and V.O.G.).
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There exists a renewed interest in interactions between hyperons and nuclei, since

rich experimental data are expected to emerge from the strangeness experiments
at J-PARC. In particular, our understanding on interactions between the octet-

baryons (B8 = N, Λ, Σ and Ξ) and light nuclei will be significantly improved by

observing possible bound states and resonances of light hypernuclei. These in-
teractions are also important as basic constructing blocks of heavier hypernuclei

through sophisticated microscopic calculations of many-cluster systems. Need-
less to say, these hypernucleus data afford invaluable source of information for

underlying baryon-baryon interactions, since the direct scattering data for the

hyperon-nucleon (YN) interaction are still scarce and none exists for the hyperon-
hyperon (YY) interaction. It is therefore important to applymodels for the baryon-

baryon interaction to finite nuclei, and to clarify characteristics of the interaction
and its implications to hypernuclear physics.

We have developed a quark-model (QM) baryon-baryon interaction for the

octet-baryons [1], which reproduces all the two-nucleon data and the low-energy
YN scattering data. It is formulated in the (3q)-(3q) resonating-group method

(RGM), using the spin-flavor SU6 QM wave functions. A colored version of the
one-gluon exchange Fermi-Breit interaction is fully incorporated with the fla-

vor symmetry breaking, and effective meson-exchange potentials are introduced

between quarks. The early version, the model FSS [2] includes only the scalar
(S) and pseudoscalar (PS) meson exchange potentials, while the renovated ver-

sion fss2 [3,4] introduces also the vector (V) meson exchange potentials and the
momentum-dependent Bryan-Scott terms for the S and Vmesons. One of the im-

portant differences between FSS and fss2 is that the former describes the LS forces

only by the Fermi-Breit interaction, while the latter also contains the ordinary LS
component originating from the S-meson exchange.

As an important application of our QM baryon-baryon interactions, we have
carried out Faddeev calculations for the triton and the hypertriton in Ref. [5], in

the most reliable framework of using the energy-independent renormalized RGM

kernels [6]. The triton binding energy, predicted by fss2, is very close to the ex-

⋆ Talk delivered by Y. Fujiwara
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perimental value with about 350 keV less bound, and the Λ separation energy of

the hypertriton is 262 keV vs. the experimental value, 130± 50 keV. In the hyper-

triton calculation, the detailed information is obtained for the central force of the
ΛN interaction, since this system is S-wave dominant.

For the p-shellΛ-hypernuclei, some kinds of models inevitably need to be as-

sumed so far, to connect properties of the Λ-hypernuclei and the underlying YN
interactions. In our previous publications, we have studied B8α [7,8] and B8(3N)

potentials [9] based on the G-matrix calculations of our QM hyperon-baryon

interaction within the framework of the lowest-order Brueckner theory. Here,
(3N) stands for the triton or 3He, and rigid translational-invariant harmonic-

oscillator (h.o.) shell-model wave functions are assumed with the size parame-
ters ν = 0.257 fm−2 for α and and 0.18 fm−2 for the (3N) cluster. In these calcu-

lations, we have developed a new method to derive direct and knock-on terms

of the interaction Born kernel from the YN G-matrices with explicit treatments of
the nonlocality and the center-of-mass (c.m.) motion between the hyperon and

the α cluster. This framework makes it possible to take into account the short-
range correlations and other correlations related to the channel-coupling effect

of baryon channels, which is a new feature of the YN and YY interactions. For

example, a strong ΛN-ΣN coupling is caused by the strong tensor component of
the one-pion exchange, and the very small single-particle (s.p.) spin-orbit force of

the Λ hyperon is explained by a strong cancellation of the ordinary LS and the
antisymmetric LS (LS(−)) forces generated from the rich structure of the LS com-

ponents of the Fermi-Breit interaction. [10] The G-matrix calculations are carried
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out by assuming a constant Fermi momentum kF, which is a parameter in the

present framework. As in the Faddeev calculations of the triton and hypertriton,

the energy-independent QM baryon-baryon interaction is used for the G-matrix
calculation.

We extend this method to the B8
12C(0+) and B8

16O systems, assuming

the h.o. shell-model wave functions with ν = 0.20 fm−2 for 12C and 0.16 fm−2

for 16O. Our main interest is to find new features appearing in the core nuclei
involving the p-shell orbits. For the G-matrix calculation, we use kF = 1.35 fm−1,

which corresponds to the normal saturation density.

As an example ofΛ-core potentials, we show in Fig. 1 theΛ12C(0+) potential

for the 13Λ C ground state, calculated from the model fss2. Since theΛ12C(0+) Born
kernel, derived from the ΛNG-matrix folding is nonlocal, we have calculated the

Wigner transform in the WKB-RGM approach [11]. The effective local potential
is then obtained by solving the transcendental equation for the Wigner trans-

form. Figure 1 also shows the zero-momentumWigner transformwith the dashed

curve, which is already a good approximation to the effective local potential
(solid curve). This potential predicts the bound-state energy EB = −13.51 MeV,

which is used for the input of the transcendental equation. We compare in Table
1 our QM predictions for the bound-state energies of light Λ hypernuclei with

available experimental data. The bound-state energies are calculated by solving

the Lippmann-Schwinger equations for the Λ-core Born kernels. The result for
the hypertriton is taken from the Faddeev calculations in Ref. [5]. We find that the

present G-matrix approach can give reasonable results for the Λ s.p. potentials in
light nuclei, if an appropriate Fermi momentum for each system is chosen.

The Σ-core and Ξ-core interactions are generally repulsive, except for a spe-
cial case like 4ΣHe. The origin of the repulsion in the Σ-core potential is the quark-

Pauli effect which appears in the isospin I = 3/2 3S state for the most compact
SU3 (30) configuration. On the other hand, the isospin I = 0 channel of the ΞN in-

teraction, the 1S0 H-particle channel in particular, is attractive owing to the color-

Table 1. Comparison of the ground-state energies of some light Λ hypernuclei between

the QM predictions and the experiment. The energies are measured from the Λ separation

threshold. The unit is in MeV. The listed Fermi momenta kF are used for the G-matrix

calculations except for the hypertriton 3ΛH.

System kF (fm
−1) fss2 FSS exp’t [12]

3
ΛH Faddeev [5] −0.262 −0.790 −0.13 ± 0.05

4
ΛH(0+)
4
ΛHe(0+)

1.07 −1.55 −2.29
−2.04 ± 0.04
−2.39 ± 0.03

4
ΛH(1+)
4
ΛHe(1+)

1.07 −0.97 −0.32
−0.99 ± 0.04
−1.24 ± 0.05

5
ΛHe 1.20 −3.43 −2.41 −3.12 ± 0.02
13
Λ C 1.35 −13.90 −11.31 −11.69 ± 0.12
17
Λ O 1.35 −16.04 −13.37
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magnetic term of the Fermi-Breit interaction. The I = 1 ΞN interaction is repul-
sive, but involves a strong channel-coupling effect with the ΣΛ channel. Since the

extension of the Wigner transform to the negative q2 is not easy numerically, we
only discuss the zero-momentumWigner transform, GCW(R, 0), which we call the

“B8-core potential” in the following. The Ξ12C(0+) and Ξ16O potentials, obtained

as the zero-momentum Wigner transform of the folding kernels for the G-matrix
interaction with the Fermi momentum kF = 1.35 fm−1, are illustrated in Figs. 3

and 4 for fss2. We find a weak attraction in the surface area around R ∼ 3 - 4
fm, which is a common feature to the previous Ξα potential shown in Fig. 2. The

present potentials, however, also possess an attractive pocket in the short-range

region with R ≤ 1.2 fm, which originates from the strong attraction in the isospin
I = 0 component. This feature is clearly related to the p-orbit of the core nuclei.

Such a structure of the nuclear potentials should appreciably influence on the
Coulombic bound states for the Ξ− atoms.
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Abstract. Point form quantum field theory is used to analyze the QCD gluon vacuum

and bound state problems. An algebra of operators formed from gluon creation and an-

nihilation operators is used to generate a total four momentum operator from the gluon

self coupling terms. The vacuum is then the Lorentz invariant state which is annihilated

by the four-momentum operator. Such a state is obtained from the generalization of the

coupled-cluster technique, familiar from nuclear physics. An example in which the color

symmetry is SU(2) is given.

1 Point Form Quantum Field Theory

In point form field theory [1] all interactions are in the four-momentum opera-
tor and Lorentz transformations are kinematic. Interactions are introduced via

vertices, products of local free fields, which are integrated over the forward hy-
perboloid to give the interacting four-momentum operator.

The four-momentum operator Pµ is written as the sum of free and interacting

four-momentum operators, Pµ = Pµ(fr) + Pµ(I). To guarantee the relativistic

covariance of the theory, it is required that

[Pµ, Pν] = 0, (1)

UΛP
µU−1

Λ = (Λ−1)µνP
ν, (2)

where UΛ is the unitary operator representing the Lorentz transformation Λ.

These ”point form” equations [1] lead to the eigenvalue problem

Pµ|Ψp > = pµ|Ψp >, (3)

where pµ is the four-momentum eigenvalue and |Ψp > the eigenvector of the

four-momentum operator, which acts in generalized fermion-antifermion-boson
Fock spaces. Then the physical vacuum and physical bound and scattering states

should all arise as the appropriate solutions of the eigenvalue Eq.(3). What is un-

usual in Eq.(3) is that the momentum operator has interaction terms. But since
the momentum and energy operators commute and can be simultaneously diag-

onalized, they have common eigenvectors. One of the important properties of the
point form is that since the Lorentz generators have no interactions, the action of

global Lorentz transformations on operators and states is simple.
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2 Gluons

Gluons are massless vector particles that transform as representations of the lit-

tle group E(2), the euclidean group in two dimensions [2]; a four dimensional
nonunitary irrep of E(2) generates four polarization degrees of freedom, labeled

by α. A standard four-vector kst = (1, 0, 0, 1) leaves E(2) invariant and the helic-
ity boost, B(k), which gives the four-momentum k, generates a gluon state with

transformation properties

|k, α, a >: = UB(k)|k
st, α, a >,

UΛ|k, α, a > = UΛUB(k)|k
st, α, a >

=
∑

|Λk,α
′

, a > Λα ′
α(eW),

Ug|k, α, a > =
∑

|k, α, a
′

> Da ′
a(g),

where Λ(eW) = B−1(Λk)ΛB(k) is a euclidean Wigner ”rotation”, g is an element
of the internal symmetry (color) group and a, a

′

are color indices.

Many gluon states are most simply obtained from gluon creation and anni-

hilation operators:

|k, α, a > = g†(k, α, a)|0 >

g(k, α, a)|0 > = 0, ∀k, α, a
[g(k, α, a), g†(k

′

, α
′

, a
′

)] = −gα,α ′k0δ
3(k − k

′

)δaa ′

UΛg(k, α, a)U−1
Λ =

∑
g(Λk,α

′

, a)Λα,α ′ (eW)

Ugg(k, α, a)U−1
g =

∑
g(k, α, a

′

)Da ′
a(g)

P
µ
free = −

∑∫
dkkµg†(k, α, a)gα,αg(k, α, a);

the auxiliary condition eliminating the 0 and 3 components is the annihilation

operator condition,
∑
kstα gααg(k, α, a) = 0. dk := d3k

2k
.

The free gluon field is then

Gµa(x) =

∫
dkBµα(k)(e−ik·xg(k, α, a) + eik·xg†(k, α, a));

∂G+
µ,a(x)/∂xµ = i

∫
dkkµBµα(k)gα,αe

−ik·xg(k, α, a)

= i
∑∫

dke−ik·xkstα gααg(k, α, a)

= 0;

this last relation shows the connection between the auxiliary condition and the

Lorentz gauge condition. In fact, because Lorentz transformations are kinematic,
the only gauge transformations allowed are those that leave the Lorentz gauge

condition invariant.

Gauge invariance then fixes the field tensor to be

Fµνa (x) =
∂Gνa
∂xµ

−
∂G

µ
a

∂xν
− αca,b,cG

µ
b(x)Gνc (x)
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where ca,b,c are the color structure constants and α is the strong bare coupling

constant.

By integrating the stress energy tensor generated by the field operators over
the forward hyperboloid, the pure glue part of the four-momentum operator

takes on the form

P
µ
glue = P

µ
ke + P

µ
tri + Pµquar

Pµquar = α2
∑ ∫

dxµdk1dk2dk3dk4ca,b,cca,b ′
,c

′

Bµα1(k1)B
να2(k2)B

α3
µ (k3)B

α4
ν (k4)

(e−ik1·xg(k1, α1, b) + eik1·xg†(k1, α1, b))

(e−ik2·xg(k2, α2, c) + eik2·xg†(k2, α2, c))

(e−ik3·xg(k3, α3, b
′

) + eik3·xg†(k3, α3, b
′

))

(e−ik4·xg(k4, α4, c
′

) + eik4·xg†(k4, α4, c
′

))

P
µ
tri = iα

∑
ca,b,c

∫
dxµdk1dk2dk3

(Bνα1(k1)k
µ
1 − Bµα1(k1)k

ν
1 )B

α2
µ (k2)B

α3
ν (k3)

(e−ik1·xg(k1, α1, a) − eik1·xg†(k1, α1, b))

(e−ik2·xg(k2, α2, b) + eik2·xg†(k2, α2, b))

(e−ik3·xg(k3α3, c) + eik3·xg†(k3, α3, c))

P
µ
ke = −

∑ ∫
dkkµg†(k, α, a)gααg(k, α, a)

3 The Gluon Vacuum Equations

Neglecting the quark sector, the gluon vacuum structure can be analyzed by writ-

ing the vacuum as |Ω >= F|0 > so that Pµglue|Ω >= P
µ
glueF|0 >= 0. Since there

are no quarks, the operator F will act only in the gluon space; it must satisfy the

properties of being invariant under Lorentz and color transformations. So write

F = f0I +
∑ ∫

dk1dk2fk1,β1,a−1;k2β2,a2

g†(k1, β1, a1)g
†(k2, β2, a2) + ...

fk1,β1,a1;k2,β2,a2
= f2((k1 + k2)

2)Bµβ1(k1)B
β2
µ (k2)C

1
1,a1,a2

where f2((k1 + k2)
2) is a Lorentz invariant function and C11,a1,a2

is a Clebsch-
Gordan coefficient coupling the adjoint representation to itself to give the identity

representation. There are no odd powers of gluon creation operators because of

invariance under the internal symmetry. When quarks are coupled to the gluon
sector, this will no longer be the case.

As an example of the structure of the gluon vacuum equations, choose SU(2)

as the internal symmetry. The tri interactions do not contribute when acting on F;
the general form of the equations arising from the quartic interactions are

(α2
∫
dxµ(e−ik·xg+ eik·xg†)4 −

∫
dvvµg†g)F|0 > = 0.
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The lowest order equation resulting from these equations is

α2
∫
dxµ[

∫
dk1dk2f0 − 4

∫
dk1dk2dk3f2(k2 + k3)e

−i(k2+k3)·x

+8

∫
dk1dk2dk3dk4f4(k1 + k2, k3 + k4)e

−i(k1+k2+k3+k4)·x] = 0;

where the f ′s are Lorentz invariant functions of their arguments. More generally

there is a hierarchy of equations in even powers of the gluon creation operators.
By factoring out the infinite Lorentz volume at each level of the hierarchy, a set of

recursive equations results, which have no infinities.

4 Glueballs

The simplest glueballs are bound states of two gluons, bound by their self inter-

actions [3]. A two gluon state can be written as |v, |k|, j, σ, λ1, λ2 >, where

|v, |k|, j, σλ1λ2 > =

∫
dR

∑
C11,a1a2

D
j
σ,λ1−λ2

(R) UB(v)UR

g†(k1α1a1)g
†(k2α2a2)F|0 >,

with k1 = −k2 = k, C11,a1a2
a color Clebsch Gordan coefficient, and R a rotation.

Again a set of (bound state) equations in powers of the gluon creation oper-

ators results, generated from

(Pµ − λµv )|v, k, j, σλ1λ2 > = 0.

Setting j = σ = 0 gives a scalar glueball.
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Abstract. The results of the Dyson-Schwinger approach utilizing the Witten-Veneziano

relation to obtain a description of the η and η′ mesons, are compared with the results

obtained when Shore’s generalization of the Witten-Veneziano relation is used instead. On

the examples of three differentmodel interactions, we find that irrespective of the concrete

model dynamics, our Dyson-Schwinger approach is phenomenologically more successful

in conjunction with the standard Witten-Veneziano relation than with the generalization

valid, at least in principle, in all orders in the 1/Nc expansion.

1 Introduction

The complex of the η and η′ pseudoscalar mesons is an intriguing problem in
the light-quark sector of the nonperturbative Quantum Chromodynamics (QCD).

The mixing of the pertinent isospin-zero states should be such that the physical η
meson is one of the (almost-)Goldstone bosons of the dynamical chiral symmetry

breaking (DChSB) of QCD, whereas its partner η ′ must be very massive (∼ 1

GeV) and remain such even in the chiral limit. For the correct η ′ mass behavior,
the non-abelian (gluon) axial anomaly of QCD is essential, and a way to extract

its contribution is through the Witten-Veneziano (WV) relation [1,2].

We are particularly interested in the Dyson-Schwinger (DS) approach [3–8] to

QCD and its modeling. In some variants of the DS approach (e.g., in Ref. [9]), the

⋆ Talk delivered by D. Klabučar
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WV relation has been used to obtain the description of the η-η ′ complex. In the

present paper, for three different DS models, we compare the usage of the WV

relation with the usage of its recent generalization recently proposed by Shore
[10,11]. The present paper in the Bled 2008 proceedings, is a shortened version of

Ref. [12].

The DS approach [3–8] is the chirally well-behaved bound-state approach
and thus the most suitable one to treat the light pseudoscalar mesons (those com-

posed of the u, d and s quarks), for which DChSB is essential. One solves the

DS equations (DSEs) for dressed quark propagators, which are then employed
in Bethe-Salpeter equations (BSEs). Their solving yields quark-antiquark (qq̄ ′)

bound state amplitudes and corresponding massesMqq̄ ′ .

To obtain the chiral behavior as in QCD, DS and BS equations must be solved
in a consistent approximation. The rainbow-ladder approximation (RLA), where

DChSB is well-understood, is still the most usual approximation in phenomeno-
logical applications. This also entails that in both DSE and BSE we employ the

same effective interaction. Concretely, in the present paper we recall and utilize

the results obtained i) in Refs. [13,14] by using the renormalization-group im-
proved (RGI) interaction of Jain and Munczek [15], ii) in Ref. [9] by using the RGI

gluon condensate-induced interaction [16], and iii) in Refs. [17,18] by using the

separable interaction [19]. Such effective interactions must be modeled at least in
the low-energy, nonperturbative regime in order to be phenomenologically suc-

cessful – which above all means to be sufficiently strong in the low-momentum
domain to yield DChSB. In the chiral limit (and close to it), light pseudoscalar

(P) meson qq̄ bound states (P = π0,±, K0,±, η) then simultaneously manifest

themselves also as (quasi-)Goldstone bosons of DChSB. This enables one to work
with the mesons as explicit qq̄ bound states, while reproducing the results of the

Abelian axial anomaly for the light pseudoscalars, i.e., the amplitudes for P → γγ

and γ⋆ → P0P+P−. This is unique among the bound state approaches – e.g.,

see Refs. [5,20,22,21] and references therein. Nevertheless, one keeps the advan-

tage of bound-state approaches that from the qq̄ substructure one can calculate
many important quantities (such as the pion, kaon and ss̄ pseudoscalar decay

constants: fπ, fK and fss̄) which are just parameters in most of other chiral ap-
proaches to the light-quark sector. The treatment [13,14,23,9] of the η-η ′ complex

is remarkable in that it is very successful in spite of the limitations of RLA. (Very

recently, during the work on the present paper, the first and still simplified DS
treatments of η and η ′ beyond RLA appeared [24,25]. However, RLA treatments

will probably long retain their usefulness in applications where simple modeling
is desirable, as in the calculationally demanding finite-temperature calculations

[18].) The RLA treatments [13,14,23,9,18]of the η-η ′ complex relied on theWitten-

Veneziano (WV) relation [1,2]. Nevertheless, Shore achieved [10,11] what can be
considered as a generalization of the WV relation, and the purpose of the present

paper is exploring the usage of this generalization in the DS context.

The paper is organized as follows: in the next section, we recapitulate the
procedures and results of our previous treatments [14,9,18] relying on the WV

relation (11), and present in Table I also their extension to the scheme of the four

decay constants (and two mixing angles) of η and η ′. In Section 3, we expose the



52 D. Horvatić, D. Blaschke, Yu. Kalinovsky, D. Kekez, D. Klabučar

usage of the pertinent Shore’s equations [10,11] in the context of DS approach. The

last section concludes after giving the results of solving the pertinent equations.

2 η-η ′ mass matrix fromWitten-Veneziano relation

All qq̄ ′ model massesMqq̄ ′ (q, q ′ = u, d, s) used in the present paper, and cor-
responding qq̄ ′ bound-state amplitudes, were obtained in Refs. [13,14,9,26,17,18]

in RLA, i.e., with an interaction kernel which (irrespective of how one models

the dynamics) cannot possibly capture the effects of the non-Abelian, gluon axial
anomaly. Thus, when we form the η-η ′ mass matrix

M̂2
NA =

[
M2
88 M

2
80

M2
08 M

2
00

]
, (1)

in this case in the octet-singlet basis η8-η0 of the (broken) flavor-SU(3) states of
isospin zero,

η8 =
1√
6
(uū+ dd̄ − 2ss̄), η0 =

1√
3
(uū + dd̄ + ss̄), (2)

this matrix (1), consisting of our calculated qq̄masses,

M2
88 ≡ 〈η8|M̂2

NA|η8〉 =
2

3
(M2

ss̄ +
1

2
M2
uū) , (3)

M2
00 ≡ 〈η0|M̂2

NA|η0〉 =
2

3
(
1

2
M2
ss̄ +M2

uū) , (4)

M2
80 ≡ 〈η8|M̂2

NA|η0〉 = M2
08 =

√
2

3
(M2

uū −M2
ss̄) < 0, (5)

is purely non-anomalous (NA), vanishing in the chiral limit. In the isospin limit,
to which we adhere throughout, the pion is strictly decoupled from the gluon

anomaly andMuū = Mdd̄ is exactly our model pion massMπ. Also the unphys-

ical ss̄ quasi-Goldstone’s massMss̄ results from RLA BSE and does not include
the contribution from the gluon anomaly. This is consistent with the fact that due

to the Dashen-Gell-Mann-Oakes-Renner (DGMOR) relation, it is in a good ap-
proximation [13,14,9,18] given byM2

ss̄ = 2M2
K −M2

π, i.e., by the kaon and pion

masses protected from the anomaly by strangeness and/or isospin.

In our previous DS studies [13,14,9,26,17,18], to which we refer for all model

details, the phenomenology of the non-anomalous sector was successfully repro-
duced, e.g., fπ, fK, as well as the empirical massesMπ andMK (see the upper part

of Table 1), yielding a strongly non-diagonal M̂2
NA (1). Its diagonalization leads to

the eigenstates known as the nonstrange-strange (NS-S) basis,

ηNS =
1√
2
(uū + dd̄) , ηS = ss̄ , (6)

and to M̂2
NA = diag[M2

π,M
2
ss̄]. In contrast to these mass-squared eigenvalues,

the experimental masses are such that (M2
π)expλ

2(M2
η)exp, and η

′ is too heavy,
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(Mη ′)exp = 958MeV, to be considered even as the ss̄ quasi-Goldstone boson. This

is the well-known UA(1) problem, resolved by the fact that the complete η-η ′ mass

matrix M̂2 must contain the anomalous (A) part M̂2
A. That is, M̂

2 = M̂2
NA + M̂2

A.

However, M̂2
A is inaccessible to RLA which yields our Goldstone pseudo-

scalars. In Refs. [13,14,9,17,18], M̂2
A was extracted from lattice data through the

WV relation [the second equality in Eq. (11)]. The main purpose of the present
paper, instead, is to approach η and η ′ through Shore’s [10,11] recent generaliza-

tion of that relation.

Before that, nevertheless, we review the usage of the WV relation in Refs.
[13,14,9,17,18]. The expansion in the large number of colors, Nc, indicates that

the leading approximation in that expansion describes the bulk of main features

of QCD. The gluon anomaly is suppressed as 1/Nc and can be viewed as a pertur-
bation in the largeNc expansion. In the SU(3) limit, it is coupled only to the singlet

combination η0 (2); only the η0 mass receives, from the gluon anomaly, a contri-
bution which, unlike quasi-Goldstone massesMqq̄ ′ ’s comprising M̂2

NA, does not

vanish in the chiral limit. As discussed in Refs. [13,9], in the present bound-state

context it is thus meaningful to include the effect of the gluon anomaly just on the
level of a mass shift for the η0 as the lowest-order effect, and retain the qq̄ bound-

state amplitudes and the corresponding mass eigenvaluesMqq̄ as calculated by

solving DSEs and BSEs with kernels in RLA.

References [13,14,9,17,18] thus break the UA(1) symmetry, and avoid the

UA(1) problem, by shifting the η0 (squared) mass by an amount denoted by 3β

(in the notation of Refs. [14,9]). The complete mass matrix M̂2 = M̂2
NA + M̂2

A

then contains the anomalous part M̂2
A = diag[0, 3β], where the anomalous η0

mass shift 3β is related to the topological susceptibility of the vacuum, but in the
present approach must be treated as a parameter to be determined outside of our

RLA model, i.e., fixed by phenomenology or taken from the lattice calculations

[27]. (The possibility of employing an additional microscopic model for the gluon
anomaly contribution, such as the one of Ref. [28], is presently not considered.)

The SU(3) flavor symmetry breaking and its interplaywith the gluon anomaly

[9] modifies M̂2
A = diag[0, 3β] to

M̂2
A = β

[
2
3
(1− X)2

√
2
3

(1− X)(2+ X)√
2
3

(1 − X)(2 + X) 1
3
(2+ X)2

]
, (7)

where X is the flavor symmetry breaking parameter. It is most often estimated as

X = fπ/fss̄ ∼ 0.7 − 0.8 (see, e.g., Refs. [30,29,14,9], although there are some other
[14], of course related, estimates of X). Presently we also adopt X = fπ/fss̄, which

means that X is a calculated quantity in our approach. The employed models

achieved good agreement with phenomenology [13,14,9,18], e.g., fitted the ex-
perimental value ofM2

η +M2
η ′ for β around 0.26 – 0.28 GeV2. The anomaly con-

tribution M̂2
A then brings the completeM2 rather close to a diagonal form for all

considered models [13,14,9,18]; that is, to diagonalizeM2, only a relatively small

rotation (|θ| ∼ 13◦ ± 2◦) of the η8-η0 basis states,

η = cosθ η8 − sinθ η0 , η′ = sinθ η8 + cosθ η0 , (8)
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is needed to align them with the mass eigenstates, i.e., with the physical η and η′.

In contrast to this, the η-η′ mass matrix in the NS-S basis (6),

M̂2 =

[
M2
ηNS

M2
ηSηNS

M2
ηNSηS

M2
ηS

]
=

[
M2
π + 2β

√
2βX√

2βX M2
ss̄ + βX2

]
−→
φ

[
M2
η 0

0 M2
η ′

]
(9)

is then strongly off-diagonal. The indicated diagonalization, given by

η = cosφηNS − sinφηS , η′ = sinφηNS + cosφηS , (10)

is thus achieved for a largeNS-S state-mixing angle φ ∼ 42◦±2◦. Of course, this is

again in agreement with phenomenological requirements [14,9], since φ is fixed

to the angle θ by the relation φ = θ+ arctan
√
2 = θ+ 54.74◦ .

The invariant trace of the mass matrix (9), together withM2
ss̄ = 2M2

K −M2
π

(from the DGMOR relation), gives the first equality in

β (2+ X2) = M2
η +M2

η ′ − 2M2
K =

6

f2π
χYM . (11)

The second equality is the Witten-Veneziano (WV) relation [1,2] between the η, η ′

and kaon masses and χYM, the topological susceptibility of the pure gauge, Yang-
Mills theory. Thus, β does not need to be a free parameter, but can be determined

from lattice results on χYM, so that no fitting parameters are introduced. For the

three models [15,16,19] utilized in our treatments [13,14,9,18] of η and η ′, the
bare quark mass parameters and the interaction parameters were fixed already in

the non-anomalous sector, by requiring the good pion and kaon phenomenology.
(See the π and K masses and decay constants in Table 1.) Then, following Refs.

[9,18] in adopting the central value of the weighted average of the recent lattice

results on Yang-Mills topological susceptibility [31–33],

χYM = (175.7 ± 1.5MeV)4 , (12)

we have obtained the good descriptions of the η-η ′ phenomenology [13,14,9,18],

exemplified by the first three columns (one for each DS models used) of the mid-

dle part of Table 1, giving the predictions for the η and η ′ masses and for the NS-S
mixing angle φ.

The lowest part of the table, below the second horizontal dividing line, con-

tains the results on the quantities (θ0, θ8, etc.) defined in the scheme with four η
and η′ decay constants and two mixing angles, introduced and explained in the

following Section 3. Table 1 also compares these results of ours (in the first three
columns) with the corresponding results of Shore’s approach [10,11], in which the

experimental values of the meson massesMπ,MK,Mη, andMη′ , as well as the de-

cay constants fπ and fK (in contrast to our qq̄ bound-state model predictions for
these quantities) are used as inputs enabling the calculation of various decay con-

stants in the η-η ′ complex and the two mixing angles θ0 and θ8 (corresponding
to φ = 38.24◦ in our approach).

3 Usage of Shore’s equations in DS approach

The WV relation was derived in the lowest-order approximation in the large Nc
expansion. However, considerations by Shore [10,11] contain what amounts to
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from [14] [9] [18] Shore

Ref. & WV & WV & WV [10,11] Experiment

Mπ 137.3 135.0 140.0 (138.0)
isospin
average

MK 495.7 494.9 495.0 (495.7)
isospin
average

Mss̄ 700.7 722.1 684.8

fπ 93.1 92.9 92.0 92.4 ± 0.3
fK 113.4 111.5 110.1 113.0 ± 1.0
fss̄ 135.0 132.9 119.1

Mη 568.2 577.1 542.3 547.75 ± 0.12
Mη′ 920.4 932.0 932.6 957.78 ± 0.14
φ 41.42◦ 39.56◦ 40.75◦ (38.24◦)

θ0 −2.86◦ −5.12◦ −6.80◦ −12.3◦

θ8 −22.59◦ −24.14◦ −20.58◦ −20.1◦

f0 108.8 107.9 101.8 106.6

f8 122.6 121.1 110.7 104.8

f0η 5.4 9.6 12.1 22.8

f0η′ 108.7 107.5 101.1 104.2

f8η 113.2 110.5 103.7 98.4

f8η′ -47.1 -49.5 -38.9 -37.6

Table 1. The results of employing the WV relation (11) in our DS approach for the three

dynamical models used in Refs. [14,9,18], compared with the results of Shore’s analysis

[10,11] and with the experimental results. The first column was obtained by the WV-

recalculation of the results of Ref. [14], which in turn used the Jain-Munczek Ansatz for

the gluon propagator [15]. Column 2: the results based on Ref. [9], which used the OPE-

inspired, gluon-condensate-enhanced gluon propagator [16]. Column 3: the results based

on Ref. [18], which utilized the separable Ansatz for the dressed gluon propagator [19].

Column 4: The results of Shore [10,11], who used the lattice result χYM = (191MeV)4 of

Ref. [32], and not the weighted average (12), in contrast to us. Column 5: the experimental

values. All masses and decay constants are in MeV, and angles are in degrees. For more

details, see text.

the generalization of theWV relation, which is valid to all orders in 1/Nc. Among
the relations he derived through the inclusion of the gluon anomaly in DGMOR

relations, the following are pertinent for the present paper:

(f0η ′)2M2
η ′ + (f0η)

2M2
η =

1

3

(
f2πM

2
π + 2f2KM

2
K

)
+ 6A , (13)

f0η ′f8η ′M2
η ′ + f0ηf

8
ηM

2
η =

2
√
2

3

(
f2πM

2
π − f2KM

2
K

)
, (14)

(f8η ′)
2M2

η ′ + (f8η)
2M2

η = −
1

3

(
f2πM

2
π − 4f2KM

2
K

)
, (15)

where A is the full QCD topological charge parameter, which is presently un-

known, but in the large Nc limit, it reduces to YM topological susceptibility:

A = χYM + O(1/Nc). Besides fπ, they contain fK and the four decay constants
[34–36], f0η ′ , f8η, f

0
η, and f

8
η ′ , associated with the two pseudoscalars η and η ′.
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Adding Eqs. (13) and (15), one gets the relation

(f0η ′)
2M2

η ′ + (f0η)
2M2

η + (f8η)
2M2

η + (f8η ′)
2M2

η ′ − 2f2KM
2
K = 6A (16)

which is the analogue of the standard WV formula (11), to which it reduces in

the large Nc limit where A → χYM, the f
0
η ′ , f8η, fK → fπ limit, and the limit of

vanishing subdominant decay constants (since η and η ′ are dominantly η8 and

η0, respectively), i.e., f
0
η, f

8
η ′ → 0. Nevertheless, we will need to use not just this

single equation, but the three equations (13)-(15) from Shore’s generalization.

These four η and η ′ decay constants are often parameterized in terms of two
decay constants, f8 and f0, and two mixing angles, θ8 and θ0:

f8η = cosθ8 f8 , f0η = − sin θ0 f0 , f8η ′ = sin θ8 f8 , f0η ′ = cosθ0 f0 . (17)

This is the so-called two-angle mixing scheme, which shows explicitly that it is

inconsistent to assume that the mixing of the decay constants follows the pattern
(8) of the mixing of the states η8 and η0 [34–36,30,37,29].

The advantage of our model is that, as we shall see, we are able to calculate

the f8 and f0 parts of the physical decay constants (17) from the qq̄ substructure.
However, we cannot keep the full generality of Shore’s approach, which allows

for the mixing with the gluonic pseudoscalar operators, and therefore employs

the definition [10,11] of the decay constants which, in general, due to the gluonic
contribution, differs from the following standard definition through the matrix

elements of the axial currents Aaµ(x):

〈0|Aaµ(x)|P(p)〉 = ifaP p
µe−ip·x, a = 8, 0; P = η, η′ . (18)

Nevertheless, Shore’s definition [10,11] coincides with the above standard one in
the non-singlet channel, where there cannot be any admixture of the pseudoscalar

gluonic component. Similarly, since our BS solutions (from Refs. [13,14,9,18]) are
the pure qq̄ states, without any gluonic components, using Shore’s definition

would not help us calculate the gluon anomaly influence on the decay constants.

We thus employ the standarddefinitions (18), also used by, e.g., Gasser, Leutwyler,
and Kaiser [34–36], as well as by Feldmann, Kroll, and Stech (FKS) [30,37,29].

Equivalently to f0η ′ , f8η, f
0
η, and f

8
η ′ , defined by Eq. (18), one has four related

but different constants fNS
η ′ , fNS

η , f
S
η, and f

S
η ′ , if instead of octet and singlet axial

currents (a = 8, 0) in Eq. (18) one uses the nonstrange-strange axial currents (a =

NS, S)

A
µ
NS(x) =

1√
3
A8µ(x) +

√
2

3
A0µ(x) =

1

2

[
ū(x)γµγ5u(x) + d̄(x)γµγ5d(x)

]
, (19)

A
µ
S (x) = −

√
2

3
A8µ(x) +

1√
3
A0µ(x) =

1√
2
s̄(x)γµγ5s(x) . (20)

The relation between the two equivalent sets is thus

[
fNS
η fSη
fNS
η′ fSη′

]
=

[
f8η f

0
η

f8η′ f0η′

]


1√
3

−

√
2
3√

2
3

1√
3


 . (21)
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Of course, this other quartet of η and η ′ decay constants can also be parameter-

ized in terms of other two constants and two other mixing angles:

fNS
η = cosφNS fNS , fSη = − sinφS fS , fNS

η ′ = sinφNS fNS , fSη ′ = cosφS fS ,

(22)

where fNS and fS are given by the matrix elements

〈0|AµNS(x)|ηNS(p)〉 = ifNS p
µe−ip·x , 〈0|AµS (x)|ηS(p)〉 = ifS p

µe−ip·x , (23)

while 〈0|AµNS(x)|ηS(p)〉 = 0 and 〈0|AµS (x)|ηNS(p)〉 = 0 .

In the NS-S basis, it is possible to recover a scheme with a single mixing an-

gle φ through the application of the Okubo-Zweig-Iizuka (OZI) rule [30,37,29].
For example, fNSfS sin(φNS − φS) differs from zero just by an OZI-suppressed

term [29]. Neglecting this term thus implies φNS = φS. (Refs. [30,37,29] denote

fNS, fS, φNS, φS by, respectively, fq, fs, φq, φs.) In general, neglecting the OZI-sup-
pressed terms, i.e., application of the OZI rule, leads to the so-called FKS scheme

[30,37,29],which exploits a big practical difference between the (in principle equiv-
alent) parameterizations (17) and (22): while θ8 and θ0 differ a lot from each other

and from the octet-singlet state mixing angle θ ≈ (θ8 + θ0)/2, the NS-S decay-

constant mixing angles are very close to each other and both can be approximated
by the state mixing angle: φNS ≈ φS ≈ φ. Therefore one can deal with only this

one angle, φ, and express the physical η-η ′ decay constants as

[
f8η f0η
f8η′ f0η′

]
=

[
fNS cosφ −fS sinφ
fNS sinφ fS cosφ

]


1√
3

√
2
3

−

√
2
3

1√
3


 . (24)

This relation is valid also in our approach, where η and η ′ are the simple ηNS-
ηS mixtures (10). In our present DS approach, mesons are pure qq̄ BS solutions,

without any gluonium admixtures, which are prominent possible sources of OZI
violations. Therefore, our decay constants are calculated quantities, fNS = fuū =

fdd̄ = fπ and fS = fss̄, in agreement with the OZI rule. Our DS approach is thus

naturally compatible with the FKS scheme, and we can use the η and η ′ decay
constants (24) with our calculated fNS = fπ and fS = fss̄ in Shore’s equations

(13)-(15).

4 Results and conclusions

All quantities appearing on the right-hand side of Eqs. (13)-(15), namelyMπ,MK,
fπ, and fK, are calculated in our DS approach [14,9,18] (for the three dynamical

models [15,16,19]), except the full QCD topological charge parameterA. Since it is
at present unfortunately not yet known, we follow Shore and approximate it by

the Yang-Mills topological susceptibility χYM.

On the left-hand side of Eqs. (13)-(15), the model results for fNS = fπ and fS =

fss̄ and Eq. (24) reduce the unknown part of the four η and η ′ decay constants f0η,
f0η′ , f8η, and f

8
η′ , down to the mixing angle φ. The three Shore’s equations (13)-(15)

can then be solved for φ,Mη and Mη′ , providing us with the upper three lines
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Inputs: from Ref. [14] from Ref. [9] from Ref. [18]

χ
1/4

YM 175.7 191 175.7 191 175.7 191

Mη 485.7 499.8 482.8 496.7 507.0 526.2

Mη′ 815.8 931.4 818.4 934.9 868.7 983.2

φ 46.11◦ 52.01◦ 46.07◦ 51.85◦ 40.86◦ 47.23◦

θ0 1.84◦ 7.74◦ 1.39◦ 7.17◦ −6.69◦ −0.33◦

θ8 −17.90◦ −12.00◦ −17.6◦ −11.85◦ −20.47◦ −14.11◦

f0 108.8 108.8 107.9 107.9 101.8 101.8

f8 122.6 122.6 121.1 121.1 110.7 110.7

f0η -3.5 -14.7 -2.6 -13.5 11.9 0.6

f0η′ 108.8 107.9 107.9 107.1 101.1 101.8

f8η 116.7 119.9 115.4 118.5 103.7 107.4

f8η′ -37.7 -25.5 -37.6 -24.9 -38.7 -27.0

Table 2. The results of the three DS models obtained through Shore’s equations (13)-(15)

for the two values of χYM approximating A: (175.7MeV)4 and (191MeV)4. Columns 1 and

2: The results when the non-anomalous inputs for Eqs. (13)-(15), namely Mπ ,MK , fπ =

fNS, fss̄ = fS and fK , are taken from Ref. [14], which uses Jain–Munczek Ansatz interaction

[15]. Columns 3 and 4: The results for the non-anomalous inputs from Ref. [9] using OPE-

inspired interaction nonperturbatively dressed by gluon condensates [16]. Columns 5 and

6: The results for the inputs from Ref. [18] using the separable Ansatz interaction [19]. All

masses and decay constants, as well as χ
1/4

YM , are in MeV, and angles are in degrees.

of Table 2. For each of the three different dynamical models which we used in

our previous DS studies [13,14,9,26,17,18], these results are displayed for χYM =

(175.7MeV)4 as in Refs. [9,18] and for χYM = (191MeV)4 [32] (adopted by Shore

[10,11]). The lower part of the table, displaying various additional results, is then
readily obtained through Eq. (24) and/or the following useful relations [29,14]:

f8 =

√
1

3
f2NS +

2

3
f2S , θ8 = φ− arctan

(√
2fS

fNS

)
, (25)

f0 =

√
2

3
f2NS +

1

3
f2S , θ0 = φ− arctan

(√
2fNS

fS

)
. (26)

Note that f0 and f8 do not result from solving of Eqs. (13)-(15), but are the cal-

culated predictions of a concrete dynamical DS model, independently of Shore’s
equations.

For all three quite different (RGI [15,16] and non-RGI [19]) dynamical mod-

els which we used in our previous DS studies [13,14,9,26,17,18], the situation
with the results turns out to be rather similar. The most conspicuous feature is

that η and η ′ masses are both much too low when the weighted average χYM =

(175.7±1.5MeV)4 of Refs. [31–33] is used, in contrast to the results from the stan-

dard WV relation, displayed in Table 1. If we single out just the highest of these

values (191MeV)4 [32]), the masses improve somewhat. However, other results
are spoiled – e.g., the mixing angle φ becomes too high to enable agreement with

the experimental results on η, η ′ → γγ decays, which require φ ∼ 40◦ [9].
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When we turn to the lower parts of Tables 1 and 2, where the results for the

η and η ′ decay constants, and the corresponding two mixing angles θ0 and θ8,

are given, we notice a feature common to all our results, as well as Shore’s (also
given in Table 1). The diagonal ones, f0η′ and f8η, are all of the order of fπ, being

larger by some 10% to 30%. The off-diagonal ones, f8η′ and f0η, are, on the other
hand, in general strongly suppressed. This is expected, as η′ is mostly singlet,

and η is mostly octet. The feature that may be surprising is that Shore’s results

(which, to be sure, were obtained [10,11] in quite a different way from ours) are
more similar to our results obtained through the standard WV relation, than to

our results obtained through Shore’s Eqs. (13)-(15).

All in all, inspection and comparison of the results in Table 2 with the results

(in Table 1) from the analogous calculations but using the standard WV relation
to construct the complete η-η ′ mass matrix, leads to the conclusion that the DS

approach with the standard WV relation (11) is phenomenologically more suc-

cessful, yielding the masses closer to the experimental ones. This may seem sur-
prising, as Shore’s generalization is in principle valid to all orders in 1/Nc, while

the standard WV relation is a lowest order 1/Nc result. Nevertheless, one must
be aware that we do not yet have at our disposal the full QCD topological charge

parameter A, and that we (along with Shore) had to use its lowest 1/Nc approxi-

mation, χYM. Also, we should recall from Sections 1 and 2 that the very usage of
the RLA assumed that the anomaly is implemented on the level of the anomalous

mass only, as a lowest order 1/Nc correction [13,14,9,17,18]. Thus, with respect to
the orders in 1/Nc, the usage of the standard WV relation is consistent in the

present formulation of our DS approach, whereas the usage of Shore’s general-

ization is not, which is probably the cause of its lesser phenomenological success.
However, the usage of Shore’s generalization in the DS context as exposed here,

will likely find its application at finite temperatures. Namely, there it may help
alleviate the difficulties met due to the usage of the standard WV relation in the

DS approach at T > 0, as discussed in Ref. [18].
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Abstract. We report on the first calculation of excited baryons with a chirally symmetric

Hamiltonian, modeled after Coulomb gauge QCD (or upgraded from the Cornell meson

potential model to a field theory in all of Fock-space) showing the insensitivity to chiral

symmetry breaking. As has recently been understood, this leads to doubling between two

hadrons of equal spin and opposite parity. As a novelty we show that three-quark ∆ states

group into quartets with two states of each parity, all four states having equal angular mo-

mentum J. Diagonalizing the chiral charge expressed in terms of quarks we show that the

quartet is slightly split into two parity doublets by the tensor force, all splittings decreasing

to zero high in the spectrum.

Our specific calculation is for the family of maximum-spin excitations of the Delta

baryon. We provide a model estimate of the experimental accuracy needed to establish

Chiral Symmetry Restoration in the high spectrum. We suggest that a measurement of

masses of high-partial wave ∆ resonances with an accuracy of 50 MeV should be sufficient

to unambiguously establish the approximate degeneracy, and test the concept of running

quark mass in the infrared.

The idea of chiral symmetry restoration has been around for a while, for ex-
ample parity doubling was examined for the proton in the context of the linear

sigma model in [1]. By current ideas we believe that this restoration should occur

for higher excitations. Glozman and collaborators [2–8] (see also [9]) have the-
oretically examined (qq̄) mesons, and also shown marginal empirical evidence

for chiral symmetry restoration in both meson and hadron spectra, that rekin-
dles interest on intermediate energy resonances. Chiral symmetry restoration, or

more precisely, Spontaneous Chiral Symmetry Breaking Insensitivity high in the

spectrum, is established as a strong prediction of the symmetry breaking pattern
of QCD, and such prediction in an energy region where little else can be stated,

needs to be confirmed or refuted by experiment.

The baryon spectrum is a more difficult theoretical problem given the mini-
mum three-body wavefunction (as opposed to only quark-antiquark for mesons)

and in this paper we provide the necessary theoretical background to under-

stand parity doubling, in agreement with a prior study by Nefediev, Ribeiro and

⋆ Talk presented by F. J. Llanes-Estrada
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Szczepaniak [10], and give the first model estimate of what the experimental

target-precision should be. This should help quantify what “high enough” in the

spectrum means, to assist experimental planning.

We customarily employ a truncation of Coulomb-gauge QCD by ignoring

the Faddeev-Popov operator and substituting the Coulomb kernel by its vacuum

expectation value, that takes the usual linear plus Coulomb form. This can be
seen as a field theory upgrade of the Cornell potential model. The Hamiltonian

reads

H = −gs

∫
dxΨ†(x)α·A(x)Ψ(x) + Tr

∫
dx(E·E+ B·B)

+

∫
dxΨ†

q(x)(−iα·∇+ βmq)Ψq(x) +
1

2

∫
dxdyρa(x)VL(|x − y|)ρa(y) (1)

with a strong kernel containing a linear potential VL, with string tension σ =

0.135 GeV2, coupled to the color charge density ρa(x) = Ψ†(x)TaΨ(x)+fabcAb(x)·
Πc(x) . In our past work we have solved the BCS gap equation to spontaneously
break chiral symmetry. This model has the same chiral structure of QCD, satisfy-

ing the Gell-Mann-Oakes-Renner relation, the low-energy theorems for pion scat-

tering [14] and allowing computations of static pion-nucleon observables [15].We
have employed it in studies of gluodynamics [16] shown at this workshop that

agree with lattice gauge theory and are of qualitative phenomenological interest.

In any case, these play a minor role in the topic of this article, as the decreasing
of the splittings is dominated by chiral symmetry breaking alone. For a reduced

baryon sector application we are going to perform two more simplifications. We
employ only the VL linear potential, and neglect all magnetic interactions. This

makes the ∆-nucleon mass splitting too small, but does not affect the ∆ spectrum

much.

We truncate the Fock space variationally, as customary, to the |qqq〉 mini-

mum wavefunction. Since radial excitations of this system compete with multi-

quark excitations, we concentrate instead on maximum angular-momentum ex-
citations J = 3/2 + l. Chiral forces are too weak to compensate large centrifugal

forces and can hardly maintain l = 3 or l = 4, so one hopes to reduce the molec-
ular component by studying the ground state in each J-channel, so that the |qqq〉
correlation remains important high in the spectrum.

As a rule of thumb, one needs to keep in the Fock-space expansion |qqq〉 +

|qqqqq̄〉+ |qqqg〉+ . . . . as many states as will be competitive by phase space con-
siderations, considering the quark and gluon dynamical mass gaps established

by lattice and Dyson-Schwinger studies. When pentaquark correlations are more
abundant than three-quark correlations (see figure 1) the typical quark momen-

tumwill be lower than extrapolated from the ground-state baryons, so that chiral

symmetry restoration will not be quite so fast.

This puts pentaquark correlations above 2GeV , with the exception of possi-

ble meson-baryon resonances (as the Goldstone bosons avoid the mass-gap). In

any case it seems well established that three-quark correlations play an impor-
tant role in baryon-phenomenology, so it is worth examining the effect of a chiral

transformation on a three-quark variational wavefunction |N〉 = FijkB
†
iB

†
jB

†
k|0〉.
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Fig.1. The typical momentum of a quark in a three-quark state is (by kinetic energy con-

siderations alone, with a running mass-gap) |k〉 ∝M∆J
. Plotted is the typical momentum

in a three quarks and five quark wavefunction. At the jump the phase space for five-quark

states is larger, so it is more likely that a baryon of that mass is in a five-quark configura-

tion, and the typical momentum is therefore smaller. Hence chiral symmetry restoration

has to be somewhat slower than three-quark models would indicate.

We proceed variationally and employ several types of wavefunctions, ra-

tional and Gaussian, but the lowest energy (binding the model’s J-ground state

from above by the Rayleigh-Ritz principle) is obtained by employing the chiral
limit pion-wavefunction rescaled with two variational parameters in terms of Ja-

cobi coordinates, sinφ(kρ/αρ) sinφ(kλ/αλ)Y
ml

l (k̂ρ). We have found the angular
excitation in λ to be slightly higher in energy and neglect the correlation. Part of it

though reenters the calculation upon (anti)symmetrizing the wavefunction, since

quark exchange mixes the ρ and λ variables.

A typical variational search is represented in figure 2. Table 1 presents the
intradoublet splittings. The interdoublet splittings, as well as improved precision

on our three-body variational Montecarlo method, will be given in an upcoming
publication. As can be seen from the table, the model doublet splittings dropwith

the orbital angular momentum. This is easy to understand from the structure of

the model Hamiltonian. The kernel for baryons is proportional to

F∗s1s2s3
(k1,k2)U

†
k1s1

Uk1+qλ1
U

†
k2s2

Uk2−qλ2
(2)

×Fλ1λ2s3
(k1 + q,k2 − q)

that, upon becoming insensitive to the gap angle, sinφ(k >> ΛQCD) → 0, turns

into

F∗s1s2s3

(
δs1λ1

+ (σ·k̂1σ·k̂1 + q)s1λ1

)
· (3)

(
δs2λ2

+ (σ·k̂2σ·k̂2 − q)s2λ2

)
Fλ1λ2s3

.
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Fig.2.Variational minimum-energy search E(αρ, αλ) with a two-parameter family of func-

tions. Best results are obtained when the (chiral-limit) pion wavefunction is rescaled and

used to build the Jacobi-radial part of the ∆ wavefunctions, sinφ(kρ/αρ) sinφ(kλ/αλ).

For maximum spin∆ states, J = 3/2+ lρ the angular wavefunction before symmetrization

is Y
ml
l (k̂ρ) (we set lλ = 0 consistent with the variational approximation, but numeri-

cally symmetrize the spin-space wavefunction, which reintroduces it through exchanged-

quarks).

Table 1. Experimental and computed doublet splittings. The entire quartet degenerates

high in the spectrum, with the +− parity doubling proceeding faster due to insensitiv-

ity to χSB and the interdoublet splitting decreasing slower, as they are due to the tensor

force and dynamical. We give a preliminary calculation of the intradoublet splitting (par-

ity degeneracy). From the decreasing theory splittings we deduce that an experimental

measurement of the parity splitting M+ − M− to an accuracy of 100, or better 50 MeV,

should suffice to see the effect. Note that our excited splittings become compatible with

zero within errors in the Montecarlo 9-d integral.

J Exp. Theory

M+ −M− intradoublet

3/2 470(40) 450(100)

5/2 70(90) 400(100)

7/2 270(120) 50(100)

9/2 50(250) 200(100)

11/2 - 100(100)

13/2 - 100(100)

If instead of F∗s1s2s3
one substitutes its chiral partner F∗s ′

1
s2s3

(σ · k̂1)s ′
1
s1

(and the

same for the ket), the two states are seen to be degenerate. Also apparent in Eq.(3)

is the role of the tensor force in enforcing chiral cancellations.
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Finally, the first computation of the parity doubling for baryons is presented

in figure 3.
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Fig.3. Parity doubling in the spin-excited ∆ spectrum. Top: with infrared quark mass as

calculated in the model (probably too low). Bottom: quark mass rescaled to fit Landau-

gauge lattice data. The model clearly displays parity doubling. The experimental situa-

tion is still unclear, the degeneracy can be claimed for the 9/2 states alone, and the chiral

partners higher in the spectrum are not experimentally known.

Let us now show that there are indeed two closely separated baryon dou-

blets, slightly split by tensor forces. We find convenient to employ the gap angle
instead of the quark mass

sinφ(k) ≡ M(k)√
M(k)2 + k2
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and the Dirac spinors can be easily parametrized as

Uκλ =
1√
2

[ √
1+ sinφκχλ√

1− sinφκσ · κ̂χλ

]
(4)

V−κλ =
1√
2

[
−
√
1− sinφκσ · κ̂iσ2χλ√
1+ sinφκiσ2χλ

]
. (5)

Substituting these spinors, and in terms of Bogoliubov-rotated quark and anti-

quark normal modes B, D, the chiral charge takes the form

Q5a =

∫
d3k

(2π)3

∑

λλ ′ff ′c

(
τa

2

)

ff ′
(6)

(cosφ(k)

(σ·k̂)λλ ′

(
B
†
kλfcBkλ ′f ′c +D

†
−kλfcD−kλ ′f ′c

)
+

sinφ(k)

(iσ2)λλ ′

(
B
†
kλfcD

†
−kλ ′f ′c + BkλfcD−kλ ′f ′c

))
.

In the presence of Spontaneous Chiral Symmetry Breaking, sinφ(k) 6= 0, and the
two terms in the second line are responsible for the non-linear realization of chiral

symmetry in the spectrum. One can see this by applying the chiral charge on a

hadron state to collect the same hadron state plus a pion. As in Jaffe, Pirjol and
Scardiccio [11],

[Qa5 , N
±
i ] = v0(π

2)ǫabcπ
cΘbijN

±
j . (7)

(Here, i and j are the chiral multiplet indices).

Eq. (7 ) is easy to derive because the iσ2 matrix couples the quark-antiquark pair
to pseudoscalar quantum numbers, so the terms in the second line of eq.(6) pro-

vide an interpolating field for the pion. In fact, if the vacuum is variationally
chosen as the BCS ground state |Ω〉 with B|Ω〉 = 0, D|Ω〉 = 0, sinφ(k) then pro-

vides precisely the RPA pion wavefunction in the chiral limit, and the terms with

sinφ(k) become the RPA pion-creation operator.

If instead Chiral Symmetrywas not spontaneously broken in QCD,M(k) ≃ 0
and sinφ(k) ≃ 0. As a consequence, it is obvious that the chiral charge would not
change the particle content since the second line of eq.(6) would vanish, and the

first line is made of quark and antiquark number operators. Then chiral sym-

metry would be linearly realized in Wigner-Weyl mode where hadrons come in
degenerate opposite-parity pairs

[Qa5 , N
+
i ] = ΘaijN

−
j

[Qa5 , N
−
i ] = ΘaijN

+
j .

The parity change follows from the σ·k̂ p-wave present in the first line of eq.(6).

In fact, the contemporary realization is that both phenomena are simulta-

neously realized in QCD. The vacuum is not annihilated by the chiral charge,
forcing spontaneous symmetry breaking, but the mass gap angle has compact

support and if, in a hadron, the typical quark momentum is high, as illustrated in
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figure 4, its wavefunction is insensitive to Chiral Symmetry Breaking. Therefore

one asymptotically recovers degenerate Glozman parity doublets. We will in the

following drop the isospin index.
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Fig.4. The sine of the gap angle M(k)/
p

(M(k)2 + k2) has limited support if the chiral-

symmetry breaking quark mass remains of orderΛQCD or less. Top: we show the running

mass from a model computation for a linear potential with string tension σ = 0.135 GeV2 ,

and its rescaling to match Landau-gauge data [12,13] (no Coulomb-gauge lattice data

for the quark mass is known to us). Bottom: Quark-momentum distributions for ∆3/2
and ∆9/2 with simple variational wavefunctions. The quark-momentum distribution for

higher hadron resonances has smaller overlap with this gap angle, and therefore the

quarks in those hadrons behave effectively as if they were massless. Hence they become

insensitive to the gap angle, and chiral symmetry is restored in Wigner-Weyl mode with

degenerate multiplets.
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If a given resonance is high enough in the spectrum so the quarks have a

momentum distribution peaked higher than the support of the gap angle, as in

figure 4, only the first line of Eq.(6) is active. Q5|N〉 contains also three quarks,
but one of them is spin-rotated from Bkλ to σ·k̂λλ ′Bkλ ′ . Successive application of

the chiral charge spin-rotates further quarks, changing each time the parity of the
total wavefunction. However the sequence of states ends since σ·k̂σ·k̂ = I. In fact,

starting with an arbitrary such wavefunction, one generates a quartet

|NP0 〉 =
∑

FPijkB
†
iB

†
jB

†
k|Ω〉

|N−P
1 〉 =

1

3

∑
FPijk

((
σ·k̂iB†

)
i
B
†
jB

†
k + permutations

)
|Ω〉

|NP2〉 =
1

3

∑
FPijk

((
σ·k̂iB†

)
i

(
σ·k̂jB†

)
j
B
†
k + permutations

)
|Ω〉

|N−P
3 〉 =

∑
FPijk(

σ·k̂iB†
)
i

(
σ·k̂jB†

)
j

(
σ·k̂kB†

)
k

|Ω〉

that is the natural basis to discuss chiral symmetry restoration in baryons, through

wavefunctions that are linear combinations |N〉 =
∑
ci|Ni〉.

Because the Hamiltonian and the chiral charge commute, they can be diago-

nalized simultaneously.

The quartet then separates into two doublets connected by the chiral charge

Q5(N0 −N2) = N1 −N3 (8)

Q5(N1 −N3) = N0 −N2

Q5(N0 + 3N2) = 3(3N1 +N3)

Q5(3N1 +N3) = 3(N0 + 3N2)

Since the quartet can be divided into two two-dimensional irreducible representa-

tions of the chiral group, (with different eigenvalues of Q25, 1 and 9 respectively),
the masses of the two doublets may also be different, and the interdoublet split-

ting becomes a dynamical question. However, the splitting within the doublet

must vanish asymptotically. This is a prediction following from first principles-
understanding of QCD alone. Should it not be borne experimentally, it would

falsify the theory.

Of course, parity doubling is a property of a more general class of theories

than QCD. Even for fixed (not running) quark mass, when the typical momenta

are high enough 〈k/〉 >> m in the kinetic energy, the effects of the quark mass are
negligible. Parity doubling then comes down to whether the interaction terms are

also chiral symmetry violating or not.

To round off this work, let us look ahead to what the highly excited spin

spectrum may reveal. The J-dependence of the fall-off of the splittingsM+ −M−
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is an observable that reveals the underlying chiral theory. If precise data becomes

available at ELSA or Jefferson Lab (note the EBAC, Excited Baryon Analysis Cen-

ter effort [19]), in particular for the ∆J with J = 7/2, 9/2, 11/2 parity doublets,
one should be able to distinguish between the typical 1/

√
l fall-off for non-chiral

models and the faster drop for chiral theories. (Higher yet in the spectrum, also
the chiral theory may take on the 1/

√
l behavior due to the small remaining cur-

rent quark mass that falls only logarithmically)1.

Since the two doublets are closely degenerate, both positive and negative

parity ground states will have a nearby resonance with identical quantum num-
bers. Given the width of those states, it is likely they will only be distinguished

by very careful exclusive decay analysis. Meanwhile, if interpreted as only one
resonance, their decay pattern will defy intuition.

It is also worth remarking that the spin-orbit interaction is very small in the

low-lying spectrum, due to cancellations between scalar and vector potentials
and the Thomas precession [20]. However, higher in the spectrum, the vector

γ0γ0 potential comes forward, and it is known to present larger spin-orbit split-

tings than found to date. Therefore not all splittings in a given baryon shell will
disappear alike: while parity splittings must decrease fast by chiral symmetry,

other spin-orbit splittings will stay constant or even grow. This is demanded by a

necessary cancellation between L·S, centrifugal forces l(l + 1) and tensor forces.
This has been explicitly shown for mesons in [21].

Table 2. Total width, exclusive pion-nucleon width and semiinclusive pion width (decay

to one pion plus any other particles excluding pions) for the ground state ∆J resonances.

All unitsMeV . Data adapted from PDG[23] .

JP Γ ΓπN ΓπX
3
2

+
118(2) 118(2) 118(2)

3
2

−
300(100) 50(30) 190(90)

5
2

+
330(60) 42(18) < 80(20)

5
2

−
350(150) 40(30) -

7
2

+
285(50) 115(35) 170(30)

7
2

−
400(150) 30(20) -

9
2

+
400(150) 30(20) -

9
2

−
400(180) 35(25) -

11
2

+
450(150) 50(40) -

11
2

−
- - -

13
2

+
- - -

13
2

−
400(200) 20(12) -

13
2

+
550(300) 30(25) -

1 Other authors have argued that flattening of the potential in a non-relativistic quark

model for large distances due to screening (string-breaking) also leads to parity degen-

eracy [18]. We are preparing an additional paper that will provide the necessary detail

for chiral models to distinguish them.
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It has also been pointed out [8,22,10] that the pion decouples from the very

excited resonances due to the falling overlap between the ∆∗ wavefunctions and

sinφ(k) (the pion wavefunction in the chiral limit). This might already be observ-
able in the known widths for pion decays, that decrease even with larger phase

space, see table 2. There are lattice calculations addressing low-excited baryons
[24], but it is still a long way to go until highly excited states can be examined.
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Abstract. We have investigated the effects of (qq) pairs on the baryons and mesons by em-

ploying two examples: Λ(1405) and X(3872). The Λ(1405) resonance is treated as a q3-qq

scattering which couples to the q3 orbital (0s)20p state by the one-gluon exchange interac-

tion. Due to the coupling of this q3 state, we find that a peak appears at around 1405 MeV.

We also investigate the system by employing a baryon-meson model with a separable in-

teraction. By simplifying the model, we can clarify the mechanism and condition to form a

peak. As for the X(3872), we investigate qqcc isospin 1 and 0 systems with the orbital cor-

relation. For the isospin 0 system, we also consider its coupling to the cc state. The results

show that there can be a bound state of qqcc with JPC = 1++ , which is a coupled state of

the J/ψ-ρ(or ω) and D-D∗ molecules with a multiquark configuration in the short range

region. Both of the two examples indicate that an extra (qq) pair may play important roles

especially in the excited hadrons.

1 Λ(1405) by a quark model1

Properties of the Λ(1405) is hard to understand; the conventional quark picture,

which assumes the q3 (0s)2(0p) configuration, cannot give the observed Λ(1405)
light mass, nor the large splitting between Λ(1405) and Λ(1520) [2]. Moreover,

since Λ(1405) has a large width, the mixing between this q3 state and the contin-
uum should not be neglected.

To describe Λ(1405) as a peak in the baryon-meson scattering, we have in-

vestigated q3-qq scattering system with a q3 pole [1]. The scattering is solved

by employing the Quark Cluster Model (QCM). The pole, which we assume the
flavor-singlet q3 (0s)2(0p) state, is treated as a bound state embedded in the con-

tinuum (BSEC). In the present model, the effective quark interaction consists of
the one-gluon exchange (OGE) and the instanton-induced interaction (Ins) aswell

as the linear confinement potential. With a parameter set which reproduces both

of the observed S-wave flavor-octet baryon and meson mass spectra, we perform
the Σπ-NK coupled channel QCM.

We found that the peak energy can be 1405 MeV, namely by about 30 MeV

below the NK threshold in the spin 1
2
isospin 0 channel even if the mass of the

q3 pole without the coupling is taken to be the conventional quark model value,

which is above the threshold by about 55 MeV. The peak disappears when the

1 This work has been done in collaboration with Kiyotaka Shimizu (Sophia University)

[1].
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Fig.1.Mass spectrum and the phase shift (δ) of the Σπ and NK coupled channel QCM.

coupling to the q3 pole is switched off. The obtained peak width agrees with

the experiments reasonably well. The NK scattering length is roughly half of the

observed value [3]. For details, please check our paper [1].

2 Λ(1405) by a baryon-meson model2

Recently, it was reported that a baryon-meson model with the chiral unitary ap-

proach can reproduce the Λ(1405) peak without the help of an quark pole [4,5].
Then a new question arises: there should be the flavor-singlet q3 state, which is

supposed to affect the baryon-meson scattering in this energy region.

To investigate the mechanism and condition to form the peak, we employ a
simple baryon-meson model with the semi-relativistic kinematics.

T = V + VG(0)T (1)

G
(0)

P = i

∫
d4q

(2π)4
M

Ω

1

Etot − q0 −Ω+ iǫ

1

q0
2

−ω2 + iǫ

=

∫
d3q

(2π)3
mM

ωΩ

1

2m

1

Etot − q0 −Ω + iǫ
, (2)

whereM[m] is the baryon [meson] mass,Ω =
√
M2 + q2, andω =

√
m2 + q2.

The model also includes BSEC, which can be considered as the flavor-singlet
q3 pole, or more accurately, as a pole not originated from the baryon-meson de-

grees of freedom.We divide the model space into P (the baryon-meson space) and

Q (the BSEC space). Because the Q-space contains only one state, we can safely

2 This work has been done in collaboration with Kiyotaka Shimizu (Sophia University).
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set VQQ = 0. Using P +Q = 1, we obtain the T -matrix as:

T = T (P) + (1+ VPPGP)VPQGQVQP(1+GPVPP) , (3)

where T (P) is the T-matrix solved within the P-space.

The potential we employ is separable:

VPP =
∑

i<j

fij
V0

8
exp[−

1

4
a2(p2 + p ′2)] (4)

VPQ = V ′
0

∑

i

f ′i(c1 + cpb
2p2) exp[−

1

4
b2p2] . (5)

Here V0 is taken so that the strength of the potential is the same as that of the

chiral model approach. The factor fij corresponds to the Casimir operator in the

flavor space, 〈FBi · FMj〉, when we investigate the chiral-unitary type model. This
we call the FF-type in the following. To investigate the quark model, we also use

fij whose channel dependence is color-magnetic-like: 〈−(λ · λ)(σ · σ)〉, which we
call λλσσ-type. As shown in Table 1, the FF-type interaction is strongly attractive

both in the NK and Σπ channels, while λλσσ-type is attractive in the Σπ channel,

but not in the NK channel. We also show the f ′i value for the transfer potential.
This is calculated by assuming that the pole is flavor-singlet for the FF-type, while

we use the quark model value for the λλσσ-type.

Table 1.Matrix elements fij and f
′
i for the FF-type and and λλσσ-type models.

FF-type Σπ NK Λη ΞK

Σπ −8
√
6 0 −

√
6

NK −6 3
√
2 0

Λη 0 −3
√
2

ΞK −6

f ′i

q

3
8

− 1
2

q

1
8

1
2

λλσσ-type Σπ NK Λη ΞK

Σπ − 16
3

116
√
7

21
− 16

√
105

105
0

NK 0 28
√
15

15
0

Λη 112
15

− 40
√
70

21

ΞK − 160
21

V ′
0f

′
i 140 −85 53 -

The condition to form the resonance by about 30MeV below the NK thresh-
old and 80 MeV above the Σπ threshold, which is numerically we confirmed in

this work, is as follows. (A) Suppose there is no Q-space, there has to be a strong

attraction in the NK channel, but not in the Σπ channel. Otherwise, there may be
a Σπ bound state or threshold enhancement, but it is impossible to form a reso-

nant peak by 80 MeV above the Σπ threshold. (B) Suppose the NK channel is not
attractive enough, it is necessary to introduce theQ-space. In the case (B), there is

another kind of condition to have a ‘broad’ peak. All the continuum states except

for those below the pole energy push the pole state downwards by the interaction
VQP. On the other hand, the width is governed by the size of VQP at around the
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pole energy, where p is about 0.75 fm−1. So, suppose the interaction VQP is pro-

portional to p2 (the cp term), the real part of the pole energy reducesmore rapidly

than the imaginary part increases. This will result a narrow peak. In contrast to
this, the c1 term tends to produce a peak with a broader width.
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Fig.2. Mass spectrum and the phase shift (δ) given by the baryon-meson model with the

FF-type (left figure) or the CM-type (right figure) potential.

It is found that the FF-type model can reproduce the peak without introduc-

ing an extra pole if the cutoff energy of the baryon-meson interaction is rather
high. This situation is similar to the chiral unitary approach. One of the key points

here is that the green function, eq. (2), contains them/ω factor, which suppresses

the strong attraction in the πΣ channel. This picture corresponds to the condition
(A) mentioned above.

When one uses the form factor which corresponds to the baryon and meson

sizes in the quark model, however, the effective cutoff becomes lower, and the in-
teraction becomes weaker. In such a case, the model requires an extra pole, which

can be considered as the flavor-singlet q3 pole, to reproduce the observed peak

(Figure 2). The situation corresponds to the condition (B). By assuming c1 6=0 and
and cp=0 (c1-type in the Figure 2), the peak actually becomes broad. The NK scat-

tering length becomes −1.68+i0.42, which also agrees well with the experimental
value, −(1.70±0.07)+i(0.68±0.04) [3].

When we employ the λλσσ-type interaction, we find that the model repro-

duces a peak similar to the original one by introducing the q3 pole. The situation

also corresponds to the condition (B). Here, we use the c1-type for the simplicity,
though both of the c1 and cp have nonzero values in the quark model picture,

which can be obtained by keeping the center of mass momentum of the quark
system equal to zero.
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Table 2.Matrix elements of the interactions between qq pairs. The color-magnetic interac-

tion, −〈(λ · λ)(σ · σ)〉, is denoted as CMI, the pair-annihilating term of OGE (OGE-a), the

spin-color part of the instanton induced interaction (Ins), and estimate value by a typical

parameter set, E.

color spin flavor CMI OGE-a Ins E[MeV] States

1 0 1 −16 0 12 84 η

1 0 8 −16 0 −6 −327 π, K

1 1 1 16/3 0 0 63 ω

1 1 8 16/3 0 0 63 ρ

8 0 1 2 0 3/4 41

8 0 8 2 0 −3/8 15

8 1 1 −2/3 9/2 9/4 97

8 1 8 −2/3 0 −9/8 −34 ccqq with JPC=0++ ,1+− ,1++ ,2++

We argue that both of the pole originated from the quark degrees of free-

dom and the baryon-meson continuum play important roles to form the Λ(1405)
resonance[6].

3 X(3872)3

After the discovery and the confirmations of the peak X(3872) and enhancement

X(3941) in the π+π−J/ψ channel [8,9], many works on these peaks have been re-
ported. The peak X(3872) does not seem a simple cc state, as was summarized in,

e.g., Ref. [10]. The fitting of the ππmass spectrum of the experiment suggests that

the peak X(3872) is ρ+ J/ψwith JPC = 1++ [11]. Many theoretical works have also
been performed. It was suggested that this peak is a higher partial wave of the

charmonium state, a DD∗ molecule, a qqcc multiquark state, or the bound state
of the charmonium with a glue-ball, ccg. The situation is summarized, e.g., in ref.

[12].

One of the most promising explanations is that the peak is a qqcc state. The

width of the X(3872) is narrow, less than 2.3 MeV [9]; namely, its decay to theDD

channel should be forbidden. This restricts the spin-parity of the state. It seems
that 1++ state is the strongest candidate [12].

In this work, the qqcc systems are investigated by a quark model with the

orbital correlations. The model hamiltonian has the long-range π- and σ-meson
exchange between quarks in addition to OGE and Ins.

The wave function of the qqcc systems consists of the color, flavor, spin, and
orbital parts. The flavor part is taken to be qqcc. The spin of the qq, as well as that

of cc, is taken to be 1, so that the C-parity is kept positive within this part. The

total spin is also taken to be 1. The orbital correlation is fully taken into account
by performing the the stochastic variational approach. The color part has two

3 This work has been partially done in collaboration with Amand Faessler, Thomas

Gutsche, Valery E. Lyubovitskij (X(3872), Inst. für Theo. Physik, Universität Tübingen)

and published in Ref. [7].
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Fig.3. Density distribution of the qqcc bound

state in the T=1 JPC=1++ channel.

Table 3: Binding energies of the qqcc state.

IJPC 11++ 01++

Parameter set A 26 MeV 5 MeV

Parameter set B 5 MeV Not bound

Parameter set A
+ cc-pole 26 MeV ∼25 MeV

components: the one where the cc pair is color-singlet, (J/ψρ)11, and the color-

octet one, (J/ψρ)88.

Since the hyperfine interaction between the quarks is inversely proportional

to mquark, properties of this system depend mainly on the interaction between
the light quark-antiquark pair. In Table 2, we show thematrix elements of relevant

interactions: the color-magnetic interaction (CMI), the pair-annihilating term of

OGE (OGE-a), Ins, and an estimate by a typical parameter set used for a quark
model. The most attractive pair is the color-singlet, spin 0, flavor-octet, which

exists, e.g. in the pion. There is another weak, but still attractive pair: the color-
octet, spin 1, flavor-octet one. Such a pair is found in the qqcc isospin T=1 systems.

T=0 pairs may also be attractive if OGE-a and Ins are weak, whose size is not well

known in these channels.

By using a parameter set which gives correct baryon and meson spectrum,

we find a JPC = 1++ bound state for each of the T=1 and 0 channels (Table 3). The
absolute value of the binding energy, however, depends on the strength of the

σ-meson exchange: we can also find a parameter set which gives equally good

hadron mass spectrum, but gives a bound state only for the T=1 state.

In Figure 3, the density distribution of the (J/ψρ)11 and (J/ψρ)88 components

in the T=1 bound state is shown as a function of relative distance between J/ψ
and ρ. The (J/ψρ)11 component, having a long tail, looks like a J/ψ-ρ molecule.

(J/ψρ)88, in which the confinement keeps the two color-octet mesons close, has
large overlap to (DD∗)11. So, we also show the the density distribution of the

(DD∗)11 and (DD∗)88 components as a function of relative distance between D

and D∗ in the figure. The (DD∗)11 component has also a long tail, which looks
again like a molecule.

The obtained bound state, however, is not a simple two-meson molecule.
The multiquark component, where quarks in different color-singlet mesons are

also correlated, is found to be important; suppose the orbital wave function is re-
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stricted to φJ/ψφρψ(RJ/ψρ) and φDφD∗ψ(RDD∗) without inter-meson quark cor-

relation, the binding energy reduces by 17 MeV.

As for the T=0 channel, there should be a mixing between the qqcc state and

the cc excited state. We assume that it occurs by OGE, as we did in Λ(1405), and
that the mass of cc state is 3950 MeV, which corresponds to the value calculated

by Godfrey et al. [13].When this coupling is switched on, we find that the binding
energy increases by about 20MeV (the precise value depends on the parameters).

Namely, masses of the isospin 1 state and 0 state can be close to each other, which

may cause a rather large mixing between these states.

Since the isospin symmetry of this system is broken as seen from mD± −

mD0 = 4.78 MeV, X(3872) may be a superposition of the above two bound states.

Actually, a toy model of two free scattering channels and two poles with T=0 and
1, shows us that the threshold difference mixes the isospin of the shallow bound

state considerably.

We consider that feature of the system can be explained by a two-meson
molecule with a short-ranged attractivemultiquark configuration and the excited

cc core state.
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Abstract. The Belle experiment at the KEKB asymmetric-energy e+e− collider provides

an excellent environment not only for B physics, but also for studies in charm and charmo-

nium spectroscopy. Most important Belle achievements in this field include observations

of several yet undiscovered particles and measurements of their properties. In this paper

we report and briefly discuss most recent of these experimental results.

1 Introduction

The Belle detector [1] at the asymmetric-energy e+e− collider KEKB [2] has ac-
cumulated about 850 fb−1 of data by July 2008. The KEKB collider is called a B-

factory; it operates with a peak luminosity that exceeds 1.7× 1034 cm−2s−1 at the

Υ(4S) resonance, slightly above the BB-production threshold, and the accumu-
lated data set contains a large number of BB pairs. Although both B-factories—a

similar collider called PEP-II delivers data to the BABAR detector—were initially
designed for measurements of CP violation in the B-meson system, it was soon

clear that excellent detector performance and large amount of experimental data

also enable searches for new charm and charmonium states as well as studies of
their properties.

2 Excited charmed strange mesons (DsJ)

The interest in DsJ mesons received a boost after recent discoveries of two states:

D∗
s0(2317)

+ in D+
s π
0 decay mode1 and Ds1(2460)

+ in D∗+
s π

0 mode, both ob-

served with continuum e+e− → cc events by the BABAR [3] and CLEO [4] collabo-
rations, respectively. Belle confirmed the existence of the two states in continuum

events [5], but also in B → DDsJ decays [6]. An angular analysis performed in the

latter case, favours the JP = 0+ and 1+ values for D∗
s0(2317)

+ and Ds1(2460)
+,

respectively.

Due to theDsmeson in their final state, the statesD∗
s0(2317)

+ andDs1(2460)
+

are most naturally interpreted as P-wave excited cs states with j = |L + Ss| =

1/2, where |L| = 1 is the orbital angular momentum and Ss is the spin of the

1 Charge-conjugated modes are implied, unless explicitly stated otherwise.
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light s-antiquark. Nonetheless, while the masses and widths of previously ob-

servedDs1(2536)
+ andDs2(2573)

+ are in relatively good agreement with poten-

tial model predictions, both themasses andwidths ofD∗
s0(2317)

+ andDs1(2460)
+

states are smaller than expected (see Ref. [7] for a discussion of cs models). Ad-

ditionally, the mass difference between the two newly observed states is much
larger that the difference between the masses ofDs1(2536)

+ andDs2(2573)
+. All

these properties have led to interpretations of the D∗
s0(2317)

+ and Ds1(2460)
+

as four-quark states or at least as states with significant four-quark content. Ex-
perimentally, these interpretations could be tested in decays B0 → D+

sJK
−, where

the initial B0-meson quark content (bd) is completely different from the one in
theD+

sJK
− final state (cssu). However, Belle results [8] were not conclusive about

the four-quark content ofD∗
s0(2317)

+ andDs1(2460)
+, but at least supported the

claim that these two states do not belong to the same spin-doublet.

2.1 Observation of a new state DsJ(2700)+

Fig.1. Left: Dalitz plot for B+ → D0D0K+ decays. Centre: B meson signal yield versus

M(D0K+) forM(D0D0) > 3.85 GeV/c2 . The solid curve denotes the total fit result, while

the dotted curve shows the sum of non-DsJ(2700)
+ components—including the ψ(4160)

reflection on the right. Right: Efficiency corrected DsJ(2700)
+ helicity-angle distribution

together with predictions for various spin hypotheses: J = 0 (dotted line), 1 (solid line)

and 2 (dashed line).

In order to obtain further experimental data and help resolve the issues for

DsJ states, Belle recently performed an analysis of the B+ → D0D0K+ decays
using a data sample containing about 449 · 106 BB pairs [9]. A study of the Dalitz

plot for the ∆E-Mbc signal region
2 (see the left-most plot in Fig. 1) revealed that

the decay B+ → D0D0K+ proceeds dominantly via quasi-two-body channels:
B+ → ψ(3770)K+ and B+ → D0DsJ(2700)

+ . While the observed rate for ψ(3770)

production in B meson decays is consistent with our previous observation [10],

2 The two kinematic variables identify B-meson candidates: ∆E ≡ EB − Ebeam and

Mbc ≡ 1/c2
q

E2beam − (pBc)2 , where EB and pB are the energy and momentum of the B

candidate, and Ebeam is the beam energy, all expressed in the centre-of-mass (CM) frame.
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the DsJ(2700)
+ is a previously unobserved resonance in the D0K+ system (see

the central plot in Fig. 1) with a mass ofM = (2708 ± 9+11
−10) MeV/c2 and a width

of Γ = (108 ± 23+36
−31) MeV/c2. The observed decay mode and angular analysis

(see the right-most plot in Fig. 1) clearly favour the interpretation of DsJ(2700)
+

as a cs meson with JP = 1−. The new meson could be a cs radially excited 23S1
state [11] with a mass of (2710− 2720) MeV/c2 or the 1− chiral partner [12] of the

Ds1(2536)
+ meson with a mass of (2721±10) MeV/c2. Additional measurements

are needed for the new meson to distinguish between the two existing interpre-
tations.

2.2 Ds1(2460)+ - Ds1(2536)+ Mixing

Another interesting result on DsJ mesons comes from the recent study [13] of

Ds1(2536)
+ mesons, produced inclusively in e+e− → Ds1(2536)

+Xanything reac-
tions. The analysis is based on the e+e− continuum data set corresponding to

462 fb−1 and uses two decay modes for a Ds1(2536)
+ reconstruction, namely

Ds1(2536)
+ → D+π−K+ and Ds1(2536)

+ → D∗+K0S. The observed invariant

mass MD+π−K+ and the invariant mass difference MD0π+K0
S

− MD0π+ for all

selected D+π−K+ and D0π+K0S combinations are shown in Fig. 2. The ratio of

branching fractions of the two studied decaymodes is found to be: B(Ds1(2536)+

→D+π−K+)/B(D0π+K0) = (3.27±0.18±0.37)%. The decay channelDs1(2536)
+

→D+π−K+ is only the second observed three-body decaymode of theDs1(2536)
+

meson (afterDs1(2536)
+ → D+

s π
+π−) [14].

The large and clean Ds1(2536)
+ → D∗+K0S sample enables a partial-wave

analysis for this decaymode. HeavyQuark Effective Theory (HQET) predicts that

for an infinitely heavy c-quark the D∗+K0S decay of the |JP = 1+; j = 3/2〉 state,
Ds1(2536)

+, should proceed via a pure D-wave [15]. The same decay of its part-

nerDs1(2460)
+, the |1+; 1/2〉 state, would proceed via a pure S-wave—if this was

energetically allowed. Since the heavy quark symmetry is not exact, the two states

can mix, and an S-wave component can appear in the decayDs1(2536)
+ → D∗K.

Even if mixing is small, the S-wave contribution to the total width can be size-
able, since the D-wave contribution is strongly suppressed by the small energy

release in this decay. Using a small polarization of Ds1(2536)
+ mesons produced

in e+e− annihilations and performing a simultaneous fit to the three angles in

the decay Ds1(2536)
+ → D∗+K0S;D

∗+ → D0π+, the measurement shows that

the S-wave actually dominates. Its contribution to the total width in the decay
Ds1(2536)

+ → D∗+K0S is ΓS/Γtotal = 0.72 ± 0.05 ± 0.01. This result indicates there
is a mixing between the two states:Ds1(2536)

+ and Ds1(2460)
+.

3 Charmonium and Charmonium-like States

There are several possible mechanisms of the charmonium(-like) particle produc-

tion at B-factories: production in the B-meson decays, formation of C-even states
in γγ processes and in e+e− annihilation into J/ψ(cc), and creation of JPC = 1−−

resonances in e+e− annihilation after the photon radiative return. Several of these
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Fig.3. Invariant mass distributions of

J/ψπ+π− combinations for B+ →
K+X(3872) (Top) and B0 → K0SX(3872)

(Bottom) decay candidates. The fit results

are shown with solid curves.

charmonium(-like) particles have been recently discovered. The naming conven-
tion for these new X, Y, Z states indicates the lack of knowledge about their struc-

ture and properties at the time of discovery.

3.1 The X(3872) news

In 2003 Belle reported on the B+ → K+J/ψπ+π− analysis [16], where a narrow
charmonium-like state X(3872) decaying to J/ψπ+π− was discovered, and soon

confirmed by CDF, D0 and BABAR[17]. In PDG2006 [14], the world average of the

mass is (3871.2 ± 0.5) MeV/c2 and the upper limit on its width, as measured by
Belle, is 2.3MeV.X(3872) does not appear to be a simple charmonium state and its

quantum numbers are not yet determined. The observed X(3872) → γJ/ψ decay
[18] (implying C = +1) as well as results of angular analyses [19,20] and studies

of J/ψπ+π− kinematical properties favour JPC = 1++ and 2−+ assignments. The

latter possibility could have been ruled out by the study of B → KD0D0π0 de-
cays, where a near-threshold enhancement for the D0D0π0 invariant mass was

observed at (3875.4 ± 0.7 ± 1.1) MeV/c2 [21]. However, since the invariant mass
of the DDπ peak was about 2σ higher than the world average value for X(3872),

this result encouraged speculations about the two similar states, as predicted by

a four-quark model of X(3872)[22]. Another interpretation of X(3872), a D0D∗0
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molecule, is strongly motivated by the fact that the X(3872) mass is very close to
the D0D∗0 threshold [23].

Belle recently reported on the updated X(3872) analysis, using the data sam-

ple of 657·106 BB pairs [24].X(3872) → J/ψπ+π− decays are reconstructed in both
charged and neutral B decays (see Fig. 3), and the observed ratio of the branching

fractions, B(B0 → K0SX(3872))/B(B+ → K+X(3872)) = 0.82± 0.22± 0.05, is of the
order of unity. Comparison of the neutral and charged B-meson signal can serve

as a test for the four-quark hypothesis of X(3872), which predicts the existence

of two four-quark states—cc̄uū should be produced mainly in charged and cc̄dd̄
in neutral B-meson decays—with a mass difference of ∆M = (8 ± 3) MeV/c2

[22]. In contrast to this expectation, no mass difference between the X(3872) can-
didates in charged and neutral B-meson decay is observed: ∆M = (0.18 ± 0.89 ±
0.26) MeV/c2. The measurements therefore favour the charm-meson molecular

interpretation of X(3872), although the virtual state of two charm mesons is also
not excluded [25].

3.2 Charged charmonium-like state: Z+(4430), ...

Recently a new charged state was observed by the B → Kπ±ψ(2S) Dalitz anal-

ysis, performed on a data sample with 657 · 106 BB pairs [26]. Both charged

and neutral B decays are used, and the ψ(2S) candidates are reconstructed in
four decay modes: e+e−, µ+µ−, and J/ψπ+π− with J/ψ → e+e−, µ+µ−. Af-

ter excluding the Kπ Dalitz regions that correspond to K∗(890) and K∗
2(1430)
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Table 1. Properties of JPC = 1−− states (Y resonances) observed by Belle using the ISR

technique.

Y state Decay mode M (MeV/c2) Γ (MeV)

Y(4008) J/ψπ+π− 4008 ± 40+114
−28 226 ± 44 ± 87

Y(4260) J/ψπ+π− 4247 ± 12+17
−32 108 ± 19 ± 10

Y(4360) ψ(2S)π+π− 4361 ± 9± 9 74 ± 15 ± 10
Y(4660) ψ(2S)π+π− 4664 ± 11 ± 5 48 ± 15 ± 3

mesons, a strong enhancement is seen in the π+ψ(2S) invariant mass distribu-

tion (Fig. 4). A fit with a Breit-Wigner shape yields a peak mass and width of
(4433 ± 4 ± 2) MeV/c2 and (45+18

−13
+30
−13) MeV, with a 6.5σ statistical significance.

The observed resonance called Z+(4430)—if confirmed by other experiments—
would be the first charmonium-like meson candidate with non-zero charge, and

could be interpreted as a charged molecular or a four-quark state. Systematic

studies of B → Kπ(cc) decays could reveal other similar neutral and charged
partners [22]. During the preparation of this paper, a study was already reported,

indicating the existence of a broad doubly peaked structure in the π+χc1mass for
exclusive B0 → K−π+χc1 decays [27].

3.3 Study of JPC = 1−− states using ISR

Initial-state radiation (ISR) has proven to be a powerful tool to search for 1−−

states at B-factories, since it allows to scan a broad energy range of
√
s below

the initial e+e− CM energy, while the high luminosity compensates for the sup-

pression due to the hard-photon emission. With the ISR technique, BABAR dis-

covered Y(4260) state above D(∗)D(∗) threshold in the e+e− → γISRY(4260) →
γISRJ/ψπ

+π− process [28].

Using the same method as BABAR on a data sample of 548 fb−1, Belle recently

confirmed the Y(4260) state, but also found another resonant structure, called
Y(4008) (see the top plot of Fig. 5)[29]. A similar analysis was performed on a

673 fb−1 data sample to study the ISR e+e− annihilation process resulting in the

ψ(2S)π+π− final state [30]. The obtained ψ(2S)π+π− mass distribution, shown
in the bottom plot of Fig. 5, reveals two resonant structures, called Y(4360) and

Y(4660). While Y(4660) still needs a confirmation, the former resonance, Y(4360),
has a mass similar to the wide structure at (4324 ± 24) MeV/c2, observed previ-

ously by BABAR[31]. Fit results for Belle measurements are summarized in Table 1.

The four Y states observed in J/ψπ+π− and ψ(2S)π+π− decay modes are distinc-
tive, although there is a hint that Y(4260) could also be seen in the ψ(2S)π+π−

decay mode [32]. The nature of Y states and their strong couplings to J/ψπ+π−

and ψ(2S)π+π− are somewhat puzzling: such heavy charmonium(-like) states

should decaymainly toD(∗)D(∗), but it seems that observed Y states do not match

the peaks in e+e− → D(∗)±D(∗)∓ cross sections, measured by Belle with ISR at√
s < 5 GeV [33].
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Fig.6. Left: J/ψD(∗) recoil mass distribution, showing peaks at D, D∗ and D∗π mass.

Histograms show the scaled D(∗) sidebands; curves indicate the total fit result (solid) and

the background component (dashed). Right: TheD(∗)D(∗) mass distributions for e+e− →
J/ψD(∗)D(∗) events.

3.4 Double cc production in e+e− annihilation

Belle observed a surprisingly large double charmonium production in a study
of the J/ψ and ψ(2S)(→ J/ψπ+π−) recoil mass3 spectrum for inclusive e+e− →
J/ψX processes [34]. The extracted e+e− → J/ψ(cc) cross-section was more than
five times larger than values from the tree-level QCD calculation and still rep-

resents a challenge for theorists. The J/ψ recoil method was further improved

Table 2. Properties of two states observed in double cc production. Significance includes

systematic uncertainties.

X state Decay mode M (MeV/c2) Γ (MeV) Significance (σ)

X(3940) DD(∗) 3942+7
−6 ± 6 37+26

−15 ± 8 5.7

X(4160) D(∗)D(∗) 4156+25
−20 ± 15 139+111

−61 ± 21 5.1

and used for studies of C = +1 charmonium states above DD threshold. A

D(∗) meson besides the J/ψ is reconstructed, and a constraintMrecoil(J/ψD
(∗)) ∼

M(D
(∗)

PDG) is then applied to select e+e− → J/ψD(∗)D(∗) events (see the recoil
mass distributions in Fig. 6). As a result of this method, two states, X(3940) and

X(4160), were identified in theDD∗ andD∗D∗ distributions, respectively [35,36].
The fit results for the two peaks, shown in Fig. 6, are summarized in Table 2.

Possible interpretation for these states include conventional ηc(3S) and χc0(3P)

charmonia.

3 E.g. the J/ψ recoil mass, Mrecoil(J/ψ) = 1/c2
p

(ECM − E∗)2 − (cp∗)2 , is calculated in

the CM frame with the total event energy (ECM) and J/ψ energy and momentum (E∗

and p∗).
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4 Summary and Conclusions

The Belle experiment at the KEKB collider provides an excellent environment
for charm and charmonium spectroscopy. As a result, many new particles have

already been discovered during the Belle operation, and some of them — like
DsJ(2700)

+, X(3872), X(3940), X(4160) and Z+(4430)— are mentioned in this re-

port. As new experimental data are still accumulated and many studies are on-

going, more interesting results on charm and charmonium spectroscopy are to be
expected from Belle in the near future.

The Belle experimental results have already raised a lot of interest among

theoretical physicists. Various interpretations for the nature and properties of
newly observed states have been proposed. Some of the answers might be found

in the near future, perhaps following also the ideas presented at this workshop.
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Abstract. We present a method to calculate the pion electro-production amplitude in a

framework of a coupled channel formalism incorporating quasi-bound quark-model states.

1 Introduction

In our previous work ([1] and [2]) we have developed a general method to in-

corporate excited baryons represented as quasi-bound quark-model states into a
coupled channel calculation using the K matrix. The method has been applied to

calculate pion scattering amplitudes in the energy region of low-lying P11 and

P33 resonances. In addition to the elastic channel we have included the π∆ and
σN (σ∆) channels where the σ-meson models the correlated two-pion decay. We

have been able to explain a rather intriguing behaviour of the scattering am-
plitudes in these two partial waves in the range of invariant energies from the

threshold up toW ∼ 1700MeV. In this work we show how the formalism can be

extended to the calculation of electro-production amplitudes.

2 Incorporating quark-model states into multi-channel
formalism

We consider a class of chiral quark models in which mesons (the pion and the
sigma meson in our case) couple linearly to the quark core:

Hmeson =

∫
dk

∑

lmt

{
ωk a

†
lmt(k)almt(k) +

[
Vlmt(k)almt(k) + V

†
lmt(k)a

†
lmt(k)

]}
,

where a†lmt(k) is the creation operator for amesonwith angularmomentum l and

the third components of spinm and isospin t. In the case of the pion, we include

only l = 1 pions, and Vmt(k) = −v(k)
∑3
i=1 σ

i
mτ

i
t is the general form of the pion

source, with the quark operator, v(k), depending on the model. It includes also

⋆ Talk delivered by B. Golli
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the possibility that the quarks change their radial function which is specified by

the reducedmatrix elements VBB ′(k) = 〈B||V(k)||B ′〉, where B are the bare baryon

states (e.g. the bare nucleon, ∆, Roper, . . .)

We have shown that in such models it is possible to find an exact expression
for the K matrix without explicitly specifying the form of the asymptotic states.

In the basis with good total angular momentum J and isospin T , the elements of
the Kmatrix take the form:

KJTH ′H = −πNH〈ΨHJT ||V(k)||Ψ̃B ′〉 , NH =

√
ωEB ′

kW
, (1)

where ω and k are the energy and momentum of the meson. Here ΨHJT is the

principal value state corresponding to channel H specified by the meson (π, σ,

. . .) and the baryon B (N, ∆, . . .):

|ΨHJT 〉 = NH
{

∑

R
cHR|ΦR〉 + [a†(k)|Ψ̃B〉]JT +

∑

H ′

∫
dk χH

′H
JT (k)

ωk + E(k) −W
[a†(k)|Ψ̃B ′〉]JT

}

.

(2)
The first term is the sum over bare tree-quark states ΦR involving different ex-

citations of the quark core, the next term corresponds to the free meson and the
baryon (N or ∆) and defines the channel, the third term introduces meson clouds

around different isobars. The sum in the latter term includes also inelastic chan-

nels in which case the integration over the mass of unstable intermediate hadrons

(σ-meson, ∆-isobar, . . .) is implied. The state Ψ̃B ′ in Eqs (1) and (2) represents ei-

ther the nucleon or the intermediate ∆with invariant massM; in the latter case it
is equal to (2) withH = (π,N) and normalized as 〈Ψ̃∆(M ′)|Ψ̃∆(M)〉 = δ(M−M ′) ,

E(k) is the energy of the recoiled baryon (nucleon or ∆). The on-shell meson am-
plitudes χH

′H
JT are proportional to the corresponding matrix elements of the on-

shell K matrix

KH ′H = πNH ′NH χH
′H

JT (kH ′) . (3)

From the variational principle for the K matrix it is possible to derive the inte-

gral equation for the amplitudes which is equivalent to the Lippmann-Schwinger
equation for the K matrix. The resulting expression for χH

′H
JT can be written in the

form

χH
′H

JT (k) = −
∑

R
cHRVH ′R(k) + DH ′H

JT (k) (4)

where VHR are the dressed matrix elements of the interaction Vlmt between the
resonant state and the baryon state in channel H, and DH ′H

JT is the background

contribution.

3 T and K matrices for πN electro-production

We start with the definition of the T matrix for the pion electro-production on the
nucleon:

TπNγN = −π〈Ψ(+)(ms,mt; k0, t)|Hγ|ΨN(m ′
s,m

′
t; kγ, µ)〉 , (5)
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where ms and mt are the third components of baryon spin and isospin, k0 and

t are the outgoing pion momentum and the third component of isospin, and kγ
and µ the momentum (along the coordinate z-axis) and the polarization of the
incident photon. The interaction Hamiltonian is taken in the form

Hγ =

∫
dkγ

∑

µ

[Vγ(µ,kγ)aµ(kγ) + h.c.] ,

Vγ(µ,kγ) =
1

√
2π
3
Ṽγ(µ,kγ) , Ṽγ(µ,kγ) =

e0√
2ωγ

∫
dr εµ · j(r)eikγ·r . (6)

The state representing the photon-nucleon system reads

|ΨN(m ′
s,m

′
t; kγ, µ)〉 = Nγa†γ(kγ)|ΨN(m ′

sm
′
t)〉 , Nγ =

√
kγωγ

√
E
γ
N

W
. (7)

Here ωγ = (W2 − M2
N − Q2)/2W , k2γ = ω2γ + Q2 , E

γ
N = W − ωγ , with Q2

measuring the photon virtuality. We perform the spin-isospin decomposition of

the outgoing state

|Ψ(+)(ms,mt; k0, t)〉 =
∑

lmJT

ilY∗lm(k̂0)|Ψ
(+)

JT (MJ,MT ; k0, l,m, t)〉CJMJ
1
2
mslm

CTMT
1
2
mt1t

.

(8)
Commuting a†γ in (5) to the left and using the expansion (8), we can write the T

matrix in the JT basis as

T JTπNγN = −πNγ 〈Ψ(+)

JT (MJMT ; k0, l)|Vγ(µ,kγ)|ΨN(m ′
sm

′
t)〉 . (9)

The electro-production amplitude is proportional to (9) through
T =

√
k0kγ/8πM, hence

MJT
πN = −

Nγ√
k0kγ

〈Ψ(+)

JT (MJMT ; k0, l)|Ṽγ(µ,kγ)|ΨN(m ′
sm

′
t)〉 . (10)

The amplitudes proportional to the elements of the K matrix are obtained by re-

placing the state Ψ
(+)

JT by the corresponding principal value state:

MKJT
H = −

Nγ√
k0kγ

〈ΨHJT (MJMT ; k0, l)|Ṽγ(µ,kγ)|ΨN(m ′
sm

′
t)〉 . (11)

The procedure to calculate the electro-production amplitudes in our formal-
ism is the following: we first evaluate (11) using (2) as obtained in pion scattering,

and then compute (10) using M = MK + iTMK. (This equation trivially follows

from the Heitler’s equation T = K + iTK since the proportionality factor between
T and M is the same as between K and MK.) In principle, this equation involves

also the matrix elements corresponding to Compton scattering. They can be ne-
glected since they are orders of magnitude smaller than those containing strong

interaction. In the P11 case we have

MπN(W) = MK
πN(W) + i

[
TπNπN(W)MK

πN(W) + TπNπ∆(W)MK

π∆(W)

+TπNσN(W)MK

σN(W)

]
. (12)



90 B. Golli and S. Širca

We have further simplified the equation by using averaged values for amplitudes

involving the π∆ and the σN channels and thus avoiding integration over the

corresponding invariantmasses. In the P33 case we have also added the πN(1440)

channel, while the σN channel has been replaced by the σ∆ channel.

4 The behaviour of the amplitudes close to a resonance

From (3) and (4) it follows that close to a resonance, denoted by R, the K matrix
element between the elastic channel and the πB channel can be cast in the form

KπBπN = −π

√
ω0ωBENEB

k0kBW2
cBRVNR(k0) + K

background
πBπN .

After some rearrangements, the principal value states (2) take the form

|ΨH〉 = −KπBπN

√
k0W

π2ω0EN

√
ZR

VNR
|Ψ̂res〉 + |ΨH non−res〉

with

|Ψ̂res
R 〉 =

1√ZR

{

|ΦR〉−
∫
dk

VNR(k)[a†(k)|ΨN〉]JT
ωk + EN(k) −M

−
∑

B

∫
dk

VBR(k)[a†(k)|Ψ̂B〉]JT
ωk + EB(k) −M

}

.

(the inclusion of the σN channel in the P11 case is straightforward). We can now

split the K-matrix type amplitudes (11) into the resonant part containing the pole
and the “non-resonant” part:

MK
H =

√
ωγE

γ
N

k0W

√
k0W

π2ω0EN

√
ZR

VNR
KNH〈Ψ̂(res)

R (W)|Ṽγ|ΨN〉 + MK (non)

H . (13)

We see that the resonant matrix elements depend on a particular channel (H)

only through the K matrix element referring to that channel. Next we plug (13)
into (12) and take into account the relation between the T and the K matrix (T =

K+ iTK). The resonant part of the electro-production amplitudes then reads

M(res)
N =

√
ωγE

γ
N

k0W

√
k0W

π2ω0EN

√ZR
VNR

〈Ψ̂(res)
R (W)|Ṽγ|ΨN〉 TπNπN , (14)

while the non-resonant part satisfies

M(non)

N = MK (non)

N + i

[
TπNπNMK (non)

N + TπNπ∆M
K (non)

∆ + TπNσNM
K (non)

σ

]
.

Let us note that 〈Ψ̂(res)
R (W)|Ṽγ|ΨN〉 is the electro-excitation amplitude for the res-

onance R. For a sufficiently weak meson field the state Ψ̂ is dominated by the

bare-three quark core surrounded by a cloud of pions, which is a familiar form

of a baryon state in chiral-quark models. The relation (14) can be rewritten in a
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more familiar form by noting that the elastic part of the K matrix can be written

as

KπNπN = π
ω0EN

k0W

V2NR
ZR(MR)

=
1
2
Γel

MR −W
, (15)

where Γel is the elastic width of the resonance. Expressing VNR from (15) we get

M(res)
N = i

√
ωγE

γ
NΓel

2πk0W Γ2tot
〈Ψ̂(res)

R (W)|Ṽγ|ΨN〉 , (16)

where we have taken into account that at the resonance TπNπN = iΓel/Γtot.

5 Multipole decomposition for the P11 and P33 wave

Expanding (6) into multipoles, we have in the P33 case:

M
(3/2)

1+ =

√
ωγE

γ
N

6k0W
〈Ψ(+)

JT ||ṼM1γ ||ΨN〉 , E
(3/2)

1+ = −

√
ωγE

γ
N

30k0W
〈Ψ(+)

JT ||ṼE2γ ||ΨN〉 ,
(17)

and in the P11 (J = T = 1
2
) case

M
(1/2)

1− =

√
ωγE

γ
N

6k0W
〈Ψ(+)

JT ||ṼM1γ (IV)||ΨN〉 , M
(0)

1− =

√
ωγE

γ
N

18k0W
〈Ψ(+)

JT ||ṼM1γ (IS)||ΨN〉 ,

related to π0 production amplitude on the proton asMp
1− = M

(0)

1− + 1
3
M

(1/2)

1− , and

on the neutron asMn
1− = M

(0)

1− − 1
3
M

(1/2)

1− . Here IV and IS denote the isovector

and the isoscalar part of the interaction, respectively. The same formulas apply to

the MK amplitudes. (Similar relations can be derived for the scalar amplitudes.)

The transverse electro-excitation amplitudes are defined in terms of the he-
licity amplitudesAMJ

. In the P33 case we separate them into the magnetic dipole

and the electric quadrupole part:

M1 = −1
2

[√
3A 3

2
+A 1

2

]
= −

√
8

3
〈Ψ̂(res)

R ||Ṽγ(M1)||ΨN〉 , (18)

E2 =
1

2
√
3

[
A 3

2
−
√
3A 1

2

]
=

√
8

45
〈Ψ̂(res)

R ||Ṽγ(E2)||ΨN〉 . (19)

Taking into account (17) and (16) we reproduce the familiar relation

M
(3/2)

1+ = if M1 , E
(3/2)

1+ = if E2 , f =

√
3ωγE

γ
NΓel

8π k0W Γ2tot
.

In the P11 case only one transverse helicity amplitude appears and we find

A
p,n
1
2

=

√
2

3

[
〈Ψ̂(res)

R ||ṼM1(IS)||ΨN〉 ±
1√
3
〈Ψ̂(res)

R ||ṼM1(IV)||ΨN〉
]

(the reduced matrix elements appear only in the angular momentum, the third

component of the isospin areMT = m ′
t = 1

2
).
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6 Preliminary results in the N(1440) sector

The P33 wave amplitudes in the region of the ∆(1232) have been extensively in-

vestigated in our previousworks (see e.g. [3] and [4]). Since the electro-production
amplitudes are dominated by the resonant contribution, they follow the shape of

the elastic T matrix accordingly to (14).

This is not the case in the P11 wave. In Fig. 1 we show some preliminary re-
sults (without including the π∆ and the σN channels) for the electro-production

amplitude in the region of the N(1440) resonance showing the important role of
the background processes. These are dominated by the nucleon pole contribution,

the contribution from the second term in (2) (t-channel), and by a u-channel-type

process with the ∆ in the intermediate state. Below the resonance, the contribu-
tion of the resonant term is almost negligible. The resonant contribution itself is

dominated by the pion cloud and the admixture of the nucleon component which

considerably reduces the contribution. This point is still under investigation; we
expect that inclusion of higher resonances may cure this deficiency.
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Fig.1. The real (left panel) and the imaginary (right panel) parts of the electro-production

amplitudes Mp
1− for the P11 partial waves. The MAID result is taken from [5]; the ex-

perimental points from [6]. The thin dashed curve in the right panel shows the effect of

omitting the nucleon component in the resonant state.
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Workshop “Hadron Structure and Lattice QCD”, July 9–16, 2007, Bled, Slovenia, p. 61.
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Abstract. The observed mass pattern of scalar resonances below 1 GeV gives preference

to the tetraquark assignment over the conventional q̄q assignment for these states. We

present a search for tetraquarks with isospins 0, 1/2, 1 in lattice QCD using diquark anti-

diquark interpolators [1]. We determine three energy levels for each isospin using the vari-

ational method. The ground state is consistent with the scattering state, while the two ex-

cited states have energy above 2 GeV. Therefore we find no indication for light tetraquarks

at our range of pion masses 344 − 576MeV.

1 Introduction

The observed mass pattern of scalar mesons below 1 GeV, illustrated in Fig. 1,

does not agreewith the expectations for the conventional q̄q nonet. The observed

ordering mκ < ma0(980) can not be reconciled with the conventional ūs and ūd
states since mūs > mūd is expected due to ms > md. This is the key observa-

tion which points to the tetraquark interpretation, where light scalar tetraquark

resonances may be formed by combining a “good” scalar diquark

[qQ]a ≡ ǫabc[qTbCγ5Qc −QTbCγ5qc] (color and flavor anti − triplet) (1)

with a “good” scalar anti-diquark [q̄Q̄]a [2]. The states [qq]3̄f,3̄c
[q̄q̄]3f,3c

form a
flavor nonet of color-singlet scalar states, which are expected to be light. In this

case, the I = 1 state [us][d̄s̄] with additional valence pair s̄s is naturally heavier

than the I = 1/2 state [ud][d̄s̄] and the resemblance with the observed spectrum
speaks for itself.

Light scalar tetraquarks have been extensively studied in phenomenological

models [2], but there have been only few lattice simulations [3–6]. The main ob-
stacle for identifying possible tetraquarks on the lattice is the presence of the scat-

tering contributions in the correlators. All previous simulations considered only

I = 0 and a single correlator, which makes it difficult to disentangle tetraquarks
from the scattering. The strongest claim for σ as tetraquark was obtained for

mπ ≃ 180 − 300 MeV by analyzing a single correlator using the sequential em-
pirical Bayes method [4]. This result needs confirmation using a different method

(for example the variational method used here) before one can claim the existence

of light tetraquarks on the lattice with confidence.
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We study the whole flavor pattern with I = 0, 1/2, 1 and our goal is to find

out whether there are any tetraquark states on the lattice, which could be identi-

fied with observed resonances σ(600), κ(800) and a0(980). Our methodology and
results are explained in more detail in [1].

−1  −1/2    0    1/2     1

 I=1/2

I=0

I=0,1 a0(980)

?

3I

?

(below 1 GeV) 
mass          Observed scalars
                  

σ(600)

κ(800)

f0(980)

−1  −1/2    0    1/2     1

dssd
ussu

ussd

udds

udud

mass           Tetraquark nonet

 I=1/2

I=0

I=0,1

3I

                  

3
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uu
dd

us

ss

K*

ρ,ω

φ

−1  −1/2    0    1/2     1

mass       qq nonet

           (vector meson case)

I

                  

Fig.1. Schematic illustration of the observed spectrum for scalar mesons below 1GeV (left),

together with the expected mass spectrum for the nonet of scalar tetraquarks (middle),

compared with a typical q̄q spectrum (right).

2 Lattice simulation

In our simulation, tetraquarks are created and annihilated by diquark anti-diquark

interpolators

OI=0 = [ud][ūd̄] , OI=1/2 = [ud][d̄s̄] , OI=1 = [us][d̄s̄] . (2)

In each flavor channel we use three different shapes of interpolators at the source
and the sink

OI1 = [qnQn][q̄′nQ̄
′
n] , OI2 = [qwQw][q̄′wQ̄

′
w] , OI3 = [qnQw][q̄′wQ̄

′
n] . (3)

Here qn and qw denote Jacobi-smeared quarks with approximately Gaussian

shape and two different widths: “narrow” (n) and “wide” (w) [8].

In order to extract energies En of the tetraquark system, we compute the 3×3
correlation matrix for each isospin

CIij(t) =
∑

x

eipx〈0|OIi (x, t)OI†j (0, 0)|0〉p=0

=
∑

n

〈0|OIi |n〉〈n|OI†j |0〉 e−Ent =
∑

n

wijne
−Ent .

Like all previous tetraquark simulations, we use the quenched approxima-

tion and discard the disconnected quark contractions. These two approximations
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allow a definite quark assignment to the states and discard [q̄q̄][qq] ↔ q̄q ↔ vac

mixing, so there is even a good excuse to use them in these pioneering studies.

We work on two volumes V = L3 × T = 163 × 32 and 123 × 24 at the same lattice
spacing a = 0.148 fm [8]. The quark propagators are computed from the Chirally

Improved Dirac operator [7]. We use mla = mu,da = 0.02, 0.04 and 0.06 corre-
sponding tomπ = 344, 475 and 576MeV, respectively. The strange quark mass is

msa = 0.08. The analysis requires the knowledge of the kaon masses, which are

528, 576, 620MeV formla = 0.02, 0.04, 0.06.

The extraction of the energies from the correlation functions using a multi-

exponential fit Cij =
∑
nw

ij
ne

−Ent is unstable. A powerful method to extract
excited state energies is the variational method, so we determine the eigenvalues

and eigenvectors from the hermitian 3× 3matrix C(t)

C(t)vn(t) = λn(t)vn(t) . (4)

The resulting large-time dependence of the eigenvalues

λn(t) = wne
−Ent [1+ O(e−∆nt)] (5)

allows a determination of energies E0,1,2 and spectral weights w0,1,2. The eigen-
vectors vn(t) are orthogonal and represent the components of physical states in

terms of variational basis (3).
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Fig.2. The symbols present the three lowest energy levels from tetraquark correlators in

I = 0, 1/2, 1 channels at lattice volume 163 × 32. The lines give analytic energy levels for

scattering states: full lines present non-interacting energies (6), while dashed lines take

into account tree-level energy shifts.
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3 Results

Our interpolators couple to the tetraquarks, if these exist, but they also unavoid-

ably couple to the scattering states ππ (I = 0), Kπ (I = 1/2) and KK̄, πηss (I = 1)
as well as to the heavier states with the same quantum numbers. The lowest few

energy levels of the scattering states P1(k)P2(−k)

EP1(j)P2(−j) ≃ mP1 +mP2, ... ,

√
m2P1 +

(
2πj

L

)2
+

√
m2P2 +

(
2πj

L

)2
, ... (6)

are well separated for our L and we have to identify them before attributing any
energy levels E ≃ mσ,κ,a0

to the tetraquarks.

Ourmain result is presented in Fig. 2, where the energy levels of the tetraquark

system for all isospin channels are shown. These energy levels E0,1,2 are extracted
from λ0,1,2(t) with fitting details1 given in [1].

The ground state energies in I = 0, 1/2 and 1 channels are close to 2mπ,mπ +

mK and 2mK, mπ + mηss
, respectively, which indicates that all ground states

correspond to the scattering states P1(0)P2(0). Another indication in favor of this
interpretation comes from the study of the volume dependence of the spectral

weights w, defined in (5). For the ground state we get w0(L = 12)/w0(L = 16) ≃
163/123, as shown in Fig. 3. This agrees with the expected dependencew0 ∝ 1/L3
for scattering states [4], which follows from the integral over the loop momenta∫

dk
(2π)3 f(k, t) → 1

L3

∑
k f(k, t) with dki = 2π/L.
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Fig.3. The ratio of spectral weights w0(L = 12)/w0(L = 16) for I = 0, 1/2 as computed

from the ground state eigenvalues for two volumes L3 .

The most important feature of the spectrum in Fig. 2 is a large gap above the
ground state: the first and the second excited states appear only at energies above

1 We observed a non-conventional time dependence of λ0(t) near t ≃ T/2, which is dis-

cussed in detail in [1].



Searching for tetraquarks on the lattice 97

2 GeV. Whatever the nature of these two excited states are, they are much too

heavy to correspond to σ(600), κ(800) or a0(980), which are the light tetraquark

candidates we are after. The two excited states may correspond to P1(k)P2(−k)

with higher k or to some other energetic state. We refrain from identifying the

excited states with certain physical objects as such massive states are not a focus
of our present study.

At first sight it is surprising that there are no states close to the energies of
P1(1)P2(−1) with |k| = 2π/L in the spectrum of Fig. 2. In [1] we argue that this is

due to the fact that our basis (3) does not decouple the few lowest scattering states

to separate eigenvalues. Our data supports the hypothesis that the few lowest
scattering states contribute to the ground state eigenvalue.

4 Conclusions and outlook

We find no indication for light tetraquarks at our range of pion masses 344 −

576 MeV. However, one should not give up hopes for finding these interesting
objects on the lattice. Indeed, our simulation does not exclude the possibility of

finding tetraquarks for lighter mu,d or for a larger (different) interpolator basis.

A stimulating lattice indication for σ as a tetraquark state atmπ = 182−300MeV
has already been presented in [4].

The present and past pioneering quenched tetraquark simulations, which

discard disconnected diagrams, provide valuable information on the states with

a definite quark assignment. The final conclusions will have to await dynamical
simulations incorporating both disconnected quark diagrams and the q̄q̄qq ↔
q̄q ↔ vacmixing.

Acknowledgments

I would like to thank D. Mohler, C. Lang, C. Gattringer, L. Glozman, Keh-Fei Liu,

T. Draper, N. Mathur, M. Savage, W. Detmold, S. Fajfer and T. Burch for useful
discussions. This work is supported in part by European RTN network, contract

number MRTN-CT-035482 (FLAVIAnet).

References

1. S. Prelovsek and D. Mohler, A lattice study of light scalar tetraquarks, arXiv:0810.1759

[hep-lat]; S. Prelovsek, A lattice study of light scalar tetraquarks with isospins 0, 1/2 and

1, presented at “Lattice 2008”, to be publushed in PoS, arXiv:0809.5134 [hep-lat].
2. R. L. Jaffe, Phys. Rev. D 15 (1977) 267 and 281; R. L. Jaffe, Exotica, hep-ph/0409065;

L. Maiani, F. Piccinini, A. Polosa and V. Riquer, Phys. Rev. Lett. 94 (2004) 212002.
3. M. Alford and R. Jaffe, Nucl. Phys. B 578 (200) 367, hep-lat/0001023.
4. N. Mathur et al., Phys. Rev. D76 (2007) 114505, hep-ph/0607110.
5. H. Suganuma et al., Prog. Theor. Phys. Suppl. 168 (2007) 168, arXiv:0707.3309.
6. M. Loan, Z.-H. Luo and Y. Y. Lam, Eur. Phys. J. C 57 (2008), arXiv: 0809.5121.
7. C. Gattringer, Phys. Rev. D 63 (2001) 114501; C. Gattringer, I. Hip and C. Lang, Nucl.

Phys. B 597 (2001) 451.
8. T. Burch, C. Gattringer, L. Glozman, C. Hagen, C. Lang, and A. Schäfer, Phys. Rev.
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Abstract. Lattice models as well as few-body models with a finite Hilbert space do not

provide a continuum description of the two-body decay channel. Instead, the diagonal-

ization of the Hamiltonian yields a discrete spectrum which hides, however, a lot of in-

formation about the relevant continuum. We show a method which extracts the effective

pion-pion potential and applies it to the pion-pion scattering amplitude.

As a toy model to study the relation between continuum and discrete spectrum we

are using a schematic quasispin model inspired by the Nambu – Jona-Lasinio model but

restricted to a finite number of quarks occupying a finite number of states in the Dirac sea

and in the valence space.

1 Introduction

The diagonalization of the Hamiltonian in few-body models with a finite Hilbert

space yields a discrete spectrum. There is, however, a lot of hidden information

about the continuum and we have to develop a reliable method how to extract it.
For this purpose we show a possible method how to extract the effective pion-

pion potential and the pion-pion scattering amplitude from the discrete spec-
trum. The method relies on the first order Born approximation or on its suitable

generalization. The Luescher formula [1] known in the literature, for example, is

a special case of the (generalized) first order Born approximation.

The simplest two-level model of chiral symmetry breaking is a schematic

quasispin model similar to the Nambu – Jona-Lasinio model and it is developed

in the spirit of the Lipkin model [2] known from nuclear physics as a test differ-
ent approximate approaches. Our model is characterized by a finite number of

quarks occupying a finite number of states in the Dirac sea and in the valence

space (due to a sharp momentum cutoff and periodic boundary condition). This
allows us to use the first quantization and an explicit wavefunction.

Most low-lying states in the excitation spectrum can be interpreted as multi-

pion states and one can deduce the effective pion-pion interaction and scattering
length. However, the intruder states can be recognized as sigma-meson excita-

tions or their admixtures to multi-pion states.

⋆ Talk delivered by M. Rosina
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The lesson learned from the toy model can be useful in a similar problem in

lattice calculations – how to extract effective potential and scattering amplitudes

from the discrete excitation spectrum.

2 The two-level quasispin model

In this section we repeat some properties of the two-level quasispin model which

we have presented in previous Bled Workshops [3,4]. We partially use those re-
sults and partially add some new ones (arguments using N-dependence of spec-

tra) in order to discuss the relation between the discrete spectrum and the contin-
uum in the two-body channel.

We are aiming at a finite-dimensional N-body Hilbert space, therefore we
enclose N = N quarks in a periodic box V and use a sharp momentum cutoff Λ,

leading to a finite numberN = NxNsNcNf of states in the Dirac sea and the same

number of states in the valence “shell”. HereNx = V 4πΛ3/(3 (2π)3 is the number
of spacial states in each ”shell”, we have Ns = 2 helicities, Nc = 3 colours and

we restrict the simple model toNf = 1 flavour. Then N = N = 6Nx = VΛ3/π2.
Furthermore, we take all quark kinetic energies equal to 3

4
Λ and neglect the

interaction terms which change the individual quark momenta:

H =

N∑

k=1

(
γ5(k)h(k) 3

4
Λ+m0β(k)

)
− 2G

V

N∑

k,l=1

(
β(k)β(l)+iβ(k)γ5(k)·iβ(l)γ5(l)

)

Here h = σ ·p/p is helicity and γ5 and β are Dirac matrices. We use the pop-

ular model parameters close to [5,6],Λ = 648MeV, G = 40.6MeV fm, m0 = 4.58

MeV, which yield the phenomenological values of quark constituent mass, quark

condensate and pion mass both in full Nambu – Jona-Lasinio model as well as

in our quasispin model (using in both cases the Hartree-Fock + RPA approxima-
tions). It has been shown in [3] that in the large N limit the exact results of our

quasispin model tend in fact to the Hartree-Fock + RPA values.

It is usually overlooked that the following operators obey (quasi)spin com-

mutation relations jx = 1
2
β , jy = 1

2
iβγ5 , jz = 1

2
γ5 . The (quasi)spin com-

mutation relations are also obeyed by separate sums over quarks with right and

left helicity as well as by the total sum (α = x, y, z)

Rα =

N∑

k=1

1+ h(k)

2
jα(k) , Lα =

N∑

k=1

1− h(k)

2
jα(k) , Jα = Rα + Lα =

N∑

k=1

jα(k) .

The model Hamiltonian can then be written as

H = 2P(Rz − Lz) + 2m0Jx − 2g(J2x + J2y) . (1)

It commutes with R2 and L2 but not with Rz and Lz. Nevertheless, it is conve-

nient to work in the basis |R, L, Rz, Lz 〉.The Hamiltonian matrix elements can be
easily calculated using the angular momentum algebra. By diagonalisation we

then obtain the energy spectrum of the system.
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Table 1. The spectrum of the quasispin model withN = 144 andN = 192, and the ground

state quantum numbers R + L = N/4

n Parity (E − E0)[MeV] (E − E0)[MeV] V̄ [MeV] V̄ [MeV]

N=144 N=192 N=144 N=192

10 + 932 (942) -9.5 (-5.4)

9 − 803 (805) -11.7 (-7.2)

8 + 771 861 -11.3 -8.3

7 − 767 802 -8.8 -7.3

6 + 646 709 -11.4 -7.3

6 + 634 655 -12.2 -10.9

5 − 580 611 -10.0 -7.2

4 + 482 503 -10.5 -7.1

3 − 378 388 -10.1 -7.1

2 + 261 266 -10.3 -7.1

1 − 136 137

0 + 0 0

3 Extraction of pion-pion interaction

The average effective pion-pion potential V̄ given in Table 1 has been extracted

from the energy levels of n-pion states

Enπ = nmπ +
n(n − 1)

2
V̄.

An important test to distinguish one-pion and two-pion properties is the
volume-dependence (N-dependence). In a larger volume, pions are more dilute

pions leading to a proportionally smaller V̄ . In fact, the ratio of V̄ in Table 1 for

N = 144 and N = 192 is 10.3/7.1 = 1.45, close to 192/144 = 1.33. (The small dis-
crepancy does indicate that we are not yet quite in the large-N limit and further

corrections might be needed).

We calculate the s-state scattering length in the first-order Born approxima-
tion (”Lüscher formula” [1])

a0 =
mπ/2

2π

∫
V(r)d3r =

mπ

4π
V̄V . (2)

In our example for N = 192 we have V̄ = −7.1MeV and V = π2N/Λ3 =

53 fm3. This gives

a0mπ =
m2π
4π
V̄V = −0.077. (3)

Since there are no experiments with one-flavour pions it is tempting to com-

pare with the two-flavour value (I = 2). The chiral perturbation theory (soft pi-

ons) suggests in leading order aI=20 mπ = −m2π/16πf
2
π = −0.0445. Our almost

twice larger value might be due to the artifact that we made up for the second

flavour by replacing Gwith 2G. Further investigation is in progress.
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4 The intruder state - the sigma meson

In the spectrum in Table 1 one can clearly distinguish the presence of the sigma

meson by noticing the doubling of the positive parity states at 634 and 646 MeV

for N = 144 (655 and 709 MeV for N = 192). Moreover, the states at 646 MeV
(655 MeV)indicated in boldface have strong one-body transition matrix elements

from the ground state. Note that going from N=144 to 192 the ordering of the
two positive parity states (”σ” and ”6π”) has reversed because for larger N the

six pions are more dilute and the energy is less depressed by attractive effective

interactions between pions.

5 Relation to lattice calculations

The discrete single-particle space in ourmodel is analogous to a lattice. Themodel
assumption 0 ≤ |pi| ≤ Λ corresponds to the cell size (resolution)

a = 3

√
V
Nx

=

3
√
6π2

Λ
= 1.2 fm .

Here V/Nx = V/(N/6) is the ”land” available per particle in case of 2 helicities, 3
colours and one flavour.

The periodic boundary condition in V corresponds to the block size

L =
3
√
V =

3
√
6π2Nx
Λ

= 3.7 fm ≈ 3a.

It is surprising that such a poor resolution and block size yields excellent results.

One reason is that the model interaction is not very sensitive to the number of
dimensions, there are no spacial correlations. In one dimension, the ratio between

the block size and the cell size Nx = 32 is much larger than 3
√Nx ≈ 3 but the

structure of results is the same. This is a general feature of Nambu – Jona-Lasinio
models.

Furthermore, we were dealing with soft pion excitations and we get an im-

pression that in this case a high resolution is not crucial.
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Abstract. Many pion photo- and electro-production experiments in the energy region of

the ∆(1232) resonance have been performed in the past decade, and the multipole struc-

ture of the N-∆ transition is becoming increasingly well known at least at low values of

momentum transfer. In contrast, the Roper resonance, while firmly established and seen

in many pion-nucleon scattering observables, it resists a clear identification and character-

ization by the electro-magnetic probe. I will discuss some of the outstanding theoretical

and experimental issues concerning the Roper and possible means to join them fruitfully.

1 Introduction and motivation

The primary motivation to study pion electro-production in the energy region

reaching to about 700 MeV above the pion production threshold is to better un-
derstand the qualitative and quantitative features of the excited baryon spectrum,

and to relate the structure of baryon resonances to the mechanism of confinement

and to the chiral symmetry of QCD. In addition, the results of experimental stud-
ies of nucleon resonances represent an important testing ground of theoretical

models, offering in particular a way to separate the effects of resonance structure

from those related to the reaction mechanism.

2 The P33(1232) resonance

After an initial set of precision pion photo- and electro-production studies in the
1990s, mostly at energies close to threshold and only partly devoted to the N-∆

program, themore recent experiments on theN-∆ transition have completed their

second stage. We have witnessed great progress and a substantial accumulation
of data at many Q2 on both unpolarized and polarized observables. The most

frequently utilized quantities, used as cross-over points of experiment and theory,
are the EMR and CMR ratios

EMR = Re
(
E

(3/2)

1+ /M
(3/2)

1+

)
, CMR = Re

(
S

(3/2)

1+ /M
(3/2)

1+

)

which quantify the strength of the electric and Coulomb quadrupole amplitudes
E1+ (or E2) and S1+ (or C2) for the N → ∆ transition in the isospin-3/2 chan-

nel relative to the dominant spin-isospin-flip transition amplitudeM1+ (or M1).
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The E2 and EMR are more difficult to isolate in pion electro-production than C2

and CMR because the transverse parts of the cross-section are dominated by the

|M1+|2 term which is absent in the longitudinal parts.

The EMR and CMR ratios have been measured in a series of experiments

ranging from very low Q2 (pion cloud physics), mostly performed at Mainz [1],
through moderate to high Q2, mostly performed at Jefferson Lab [2]. In spite of

these multivariate efforts, the experimental situation at both low and high Q2 is
unsatisfactory. There are disagreements between the data, at least some of which

can be attributed to the model dependence of the experimental extraction of the

amplitudes, and/or to the truncation of the partial-wave series. At very high Q2,
where a particular scaling of the EMR and CMR ratios is expected [3], there are

no data, and it remains an immense experimental challenge to reach that region.
Moreover, lattice calculations of the ∆ [4], although reaching high levels of so-

phistication, are in their infancy and are burdened with large uncertainties, and

no definitive conclusions can be reached from the comparisons.

3 The P11(1440) and S11(1535) resonances

The situation for the P11(1440) and S11(1535) resonances is even less clear. The

P11(1440) (the Roper resonance) has an unusually large width and an atypical
behaviour of the πN scattering amplitudes. The masses and the widths of the

Roper as obtained in different phenomenological analyses differ [5].

The S11(1535) resonance has an intimate connection to the Roper, in particu-

lar from the viewpoint of the lattice calculations. In the chiral limit, the first radial
excitation is expected to come below the first orbital excitation in the energy spec-

trum, while in the heavy-quark limit, the situation should be reverse. In the past

few years, there have been several attempts by various groups to observe this
level ordering (parity inversion), so far with no conclusive evidence that upon

chiral extrapolation, such an effect is indeed seen [6,7]. On the other hand, lattice
calculations do seem to support the simple picture of the Roper, i.e. that most

of its essential physics is captured by using light quarks (i.e. no quark-antiquark

pairs [6].

Lattice findings are in stark contrast to two recent calculations which in-

clude also quark-antiquark components in the Roper wave-function. These stud-
ies were motivated by the failure to understand relatively large S11(1535)→ φN

couplings in near-threshold pp → ppφ and π−p → nφ processes, as well as
large S11(1535)→ ΛK couplings in Ψ → pp [8] and Ψ → pΛK+ decays [9], all of

which are hard to reconcile in the 3q picture due to the OZI rule. Li and Riska [10]

find that an ≈ 30% admixture of the qqqqq components in the Roper reproduces
the measured total width. An and Zou [11] found that the lowest 5q configu-

ration in the S11(1535) resonance is qqqss; that correct P11(1440) vs. S11(1535)
level ordering can thus be achieved; and that large S11(1535)→ φN, ΛK cou-

plings can be understood without violating the OZI rule. Recent measurements

of double-polarized asymmetries in eta electro-production at the S11(1535) reso-
nance at MAMI/A1 also yielded interesting results which can only be explained

by a phase rotation between the E0+ and E2− +M2− multipoles [12].
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4 Helicity amplitudes

Helicity amplitudes represent the strengths of the electro-magnetic vertex of the

pion electro-production process. TheQ2 → 0 limit of the amplitudes are the helic-
ity couplings. The most comprehensive analysis of the couplings for all nucleon

resonances below W ∼ 1.8GeV are being performed at Jefferson Lab [13], and
are fed by the multitude of data from single- and double-pion electro-production

experiments of Hall B at that laboratory. It is the complete angular distribution

that makes these data so powerful.

A coherent picture has started to emerge for the A1/2 and S1/2 helicity am-

plitudes for the P11(1440). A zero crossing of the A1/2 at Q2 ≈ 0.5GeV2 is now

firmly established. The Q2-dependence of the A1/2 rules out hybrid q3g models
of the Roper [14] which predict no zero crossing and a rapid decrease of the am-

plitude to zero. Moreover, the S1/2 should vanish in the q3g configuration, while

the experimental data exhibit a large S1/2 with a strong Q2-dependence.

The A1/2 helicity amplitude for the S11(1535) has recently been obtained
with much greater precision and in a much largerQ2-range than previously [15].

The S1/2 has been measured for the first time in pion electro-production. The

A1/2, A3/2 and S1/2 for D13(1520) have also been obtained from the dispersion-
relation analysis of all available data.

5 Experimental proposal for the P11(1440)

In spite of all recentmeasurements of single- and double-pion electro-production,
double-polarized experiments beyond the ∆(1232) region are rare birds. Mea-

suring double-polarization observables allows one to access excitation ampli-

tudes (or their bilinear forms, or interferences) much more selectively, with much
greater predictive and interpretive power. Unfortunately, double-polarized mea-

surements typically suffer from low yields and/or figures of merit and are no-
toriously hard to perform in the region of higher nucleon resonances where the

reaction rates are small. Nevertheless, the tremendous lever arm one obtains by

measuring carefully selected highly sensitive observables far outweighs the diffi-
culties.

At MAMI, the A1 Collaboration presently pursues a feasibility study to mea-

sure recoil polarization components of protons ejected in the p(e, e ′p)π0 process

at the Roper resonance. The experiment would be devised in analogy to the well-
established procedure from the ∆(1232) case.

Ideally, one would access the polarization components in parallel (or anti-

parallel) kinematics for the pion (i.e. cosθ = ±1). In this case, they can be ex-

pressed in terms of three structure functions:

σ0(P
′
x/Pe) = ±

√
2ε⋆

L(1− ε)RtLT ′ ,

σ0Py = −

√
2ε⋆

L(1+ ε)RnLT ,

σ0(P
′
z/Pe) = ∓

√
1− ε2 RlTT ′ .
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where Pe is the electron polarization. The multipole decomposition of RtLT ′ up to

p-waves is

RtLT ′ = Re { L∗0+(2M1+ +M1−) + (2L∗1+ − L∗1−)E0+

− cosθ (L∗0+E0+ − 2L∗1+(3E1+ + 7M1+ + 2M1−)

+L∗1−(3E1+ + 7M1+ + 2M1−) )

− cos2 θ ( 3L∗0+(E1+ +M1+) + 6L∗1+E0+ )

− cos3 θ ( 18L∗1+(E1+ +M1+) ) } (1)

(note that the scalar and longitudinal multipoles are connected through L ≡
(ω/q)S). In anti-parallel kinematics, the RtLT ′ and RnLT measure the real and the

imaginary parts respectively of the same combination of interference terms given

by (1), up to a sign:

P ′
x ∼ RtLT ′ = Re { L∗0+E0+

+ (L∗0+ − 4L∗1+ − L∗1−)M1− + L∗1−(M1+ − E0+ + 3E1+)

− L∗0+(3E1+ +M1+) + L∗1+(4M1+ − E0+) + 12L∗1+E1+ ,

Py ∼ RnLT = − Im { · · · }

In the case of the Roper resonance, the “M1-dominance” approximation applica-

ble in the ∆ region can not be used as many multipoles are comparable in size.
With model guidance (MAID), we can estimate the role of individual terms in

the expansion. The L∗0+E0+ interference is relatively large and prominent in all
kinematics. The combinations L∗1−(−E0+ +3E1+) and (−4L∗1+ −L∗1−)M1− involv-

ingM1− and/or L1− are either relatively small or cancel substantially. The terms

largest in magnitude and sensitivity are the L∗0+M1− and the L∗1−M1+ each in-
volving one of the relevant Roper multipoles linearly. The contributions of the

M1− and S1− multipoles to P ′
x and Py depend strongly on Q2 andW, so a mea-

surement of P ′
x and Py in a broad range of Q2 andW would allow us to quantify

these dependencies.

The expansion of the RlTT ′ response (or P ′
z) in anti-parallel kinematics is

P ′
z ∼ RlTT ′ = Re {E∗0+(3E1+ +M1+ + 2M1−) }

+|E0+|2 + 9 |E1+|2 + |M1+|2 + |M1−|2

−6ReE∗1+M1+ − 2ReM∗
1+M1− − 3ReE∗0+(3E1+ +M1+) .

This response is dominated by E0+ andM1+ multipoles and is therefore less sen-

sitive to the Roper, but it would still be important as a benchmark measurement
and for calibration purposes. Most of our attention will be devoted to P ′

x and Py.

Unfortunately, due to instrumental or kinematics constraints, the measure-

ments can only be performed at an angle near 90◦. Even at this angle, all polar-
ization components exhibit tremendous sensitivities to the inclusion or exclusion

of the Roper, as predicted by both the unitary isobar model MAID and the DMT

dynamical model; see Figs. 1 and 2. These are state-of-the-art calculations which
predict very different Q2- and θ-, and W-) dependencies, mostly because res-

onances are treated in distinct way in the two approaches. MAID works with
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dressed resonances (in terms of effective Lagrangians); DMT incorporates bare

resonances which are dressed dynamically through generation of pion loops.

From the experimental standpoint, the polarization components (the magni-

tudes of which roughly correspond to the sizes of themeasured raw asymmetries)
are very large, on the scale not typically seen in other resonances. Given sufficient

beam time and a careful selection of kinematics, our measurements could help
distinguish between the methods.

Fig.1. Recoil polarization components of protons ejected in the p(e, e ′p)π0 process as a

function of the CM emission angle. Calculations are in the MAID2007 unitary isobarmodel

and the DMT2001 dynamical model. Shown is the effects of switching the Roper on or

off. The rectangles show possible kinematical regions where measurement appear to be

feasible and would have a significant impact.

Fig.2. Recoil polarization components of protons ejected in the p(e, e ′p)π0 process as a

function of the invariant mass R and of the CM emission angle. Shown is the comparison

of MAID2007 and DMT2001 models. Projected error bars are as mentioned in Fig. 1.
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