

Outline of the lecture

- interaction with strangeness
 - the hyperon-nucleon interaction
- hypernuclear formation in electroproduction
 the KAOS spectrometer at the accelerator MAMI-C
- hypernuclear spectroscopy with stable heavy ion beams and rare isotope beams

 the HypHI experiment at GSI/FAIR
- hypernuclear physics with anti-protons
 - the Panda experiment at FAIR
- summary of the activities

The hyperon-nucleon interaction

- hypernuclei: nuclei with strange quarks
 - nuclear bound system with hyperon (Y)
 - a "laboratory" to study baryon-baryon interactions with strange quarks

1.5

0.5

r (fm)

[Fujiwara et al., nucl-th/0607013]

0

. Achenbach, U Mainz

Single A-hypernuclei

Single A-hypernuclei

Impurity effects

VOLUME 86, NUMBER 10

PHYSICAL REVIEW LETTERS

5 March 2001

Measurement of the B(E2) of ${}^{7}_{\Lambda}Li$ and Shrinkage of the Hypernuclear Size

K. Tanida,¹ H. Tamura,² D. Abe,² H. Akikawa,³ K. Araki,² H. Bhang,⁴ T. Endo,² Y. Fujii,² T. Fukuda,⁵ O. Hashimoto,² K. Imai,³ H. Hotchi,¹ Y. Kakiguchi,⁵ J. H. Kim,⁴ Y. D. Kim,⁶ T. Miyoshi,² T. Murakami,³ T. Nagae,⁵ H. Noumi,⁵ H. Outa,⁵ K. Ozawa,² T. Saito,⁷ J. Sasao,² Y. Sato,² S. Satoh,² R. I. Sawafta,⁸ M. Sekimoto,⁵ T. Takahashi,² L. Tang,⁹

Physics of Hypernuclei as seen by an experimenter

٢

Hyperon-hyperon interaction

Physics of Hypernuclei as seen by an experimenter

Λ

P Achenbach, U Mainz

Spectroscopy of **AA-hypernuclei**

[E. Hiyama, M. Kamimura, T. Motoba, T. Yamada and Y. Yamamoto, Phys. Rev. 66 (2002), 024007]

ΛΛ-Nuclei as Laboratory for H

H-Particle

Prog.Theor.Phys.Suppl. 137 (2000) 121-145

International hypernuclear network

Strangeness reactions

exchange of strangeness

production of open strangeness

Electroproduction

electroproduction of hypernuclei

- neutron-richer single Λ hypernuclei
- $-\Lambda$ wave-function inside hypernucleus
- large momentum transfer components

Kinematic differences to meson induced reactions

- typical momentum transfers: $\approx 300 600 \,\text{MeV/c}$
- minimum momentum transfer for $\theta_K = 0^\circ$
- energy and momentum transfer independent:
- 1000 600 recoil momentum (MeV/c) recoil momentum (MeV/c) 0° 500 800 10° 20° 400 600 300 400 200 ٥° 10° 200 100 20° 500 1000 2000 1200 1500 1000 1400 1600 1800 2000 0 beam momentum (MeV/c) beam momentum (MeV/c) [strangeness electroproduction $(e, e'K^+)$]

 $Q^{2} = -q_{\mu}q^{\mu} = \omega^{2} - \vec{q}^{2}$

- momentum transfer $\rightarrow 0$ for "magic momentum"
- minimum momentum transfer for $\theta_{\pi} = 0^{\circ}$
- momentum distributions cannot be measured

[strangeness exchange (K^-, π^-)]

hypernuclei: spectrometry of mesons at forward angles

Physics of Hypernuclei as seen by an experimenter

Sept 2008 P Achenbach, U Mainz

Extracting hypernuclear structure information

- cross sections calculated with harmonic oscillator potential and DWIA
- typical K^+ angular distributions peaked at 0°, falling rapidly:

[M. Sotona and S. Furullani, Prog. Theor. Phys. Suppl. 117, 151 (1994)]

»machines machines machines machines« »machines machines machines machines«

»It's a machines world«

Queen, April 1984

The »three« spectrometer facility at MAMI

Transport of KAOS to Mainz in June 2003

Physics of Hypernuclei as seen by an experimenter

Sept 2008 P Achenbach, U Mainz

Two-arm spectrometer operation of KAOS

Physics of Hypernuclei as seen by an experimenter

Sept 2008 P Achenbach, U Mainz

Kinematical optimisation using a Figure Of Merit for formation rate

$$\mathrm{FOM} = S_\Lambda \times \Gamma \quad \mathrm{with} \quad \Gamma = \frac{\alpha}{2\pi^2} \frac{E'}{E} \frac{k_\gamma}{Q^2} \frac{1}{1-\epsilon}$$

 $[Q^2 = 0.01 \,\text{GeV}^2/c^2, W = 11.995 \,\text{GeV}, E = 1.50 \,\text{GeV}, E' = 0.650 \,\text{GeV}, \theta_e = 5.8^\circ, p_K = 0.446 \,\text{GeV}/c, p_Y = 0.423 \,\text{GeV}/c, and \theta_K = 5.5^\circ]$

Physics of Hypernuclei as seen by an experimenter

Sept 2008 P Achenbach, U Mainz

Hadron arm completed in Feb 2008

2008: data taking for kaon production is running
2009: completion of KAOS as double spectrometer at 0°
2009/10: data taking for hypernuclei production

Challenges and prospects

- special features of electro-production at MAMI-C (and JeffersonLab)
- better resolution compared to (π^+, K^+) or (K^-, π^-)
- access to new isotopes of hypernuclei (converting p into Λ)
- measurements at different kaon angles map out different parts of the Λ momentum distribution
- unique with KAOS: double spectroscopy in a single spectrometer

Networking Activity SPHERE within the EU FP7 HadronPhysics2 consortium

Physics of Hypernuclei as seen by an experimenter

Sept 2008 P Achenbach, U Mainz

HYPHI @ GSI/FAIR

Production of hypernuclei in relativistic heavy ion collisions

-production of many hyperons

–multiple coalescence of hyperons with fragments –(π ,K), (K, π) and (K⁻,K⁺) reactions on fragments

Concept of the HypHI experiment

Produced hypernucleus at similar velocity of projectiles large Lorentz factor: γ > 3: life-time 200 ps → ~600 ps hypernuclear decay in flight

Example : ${}^{12}C + {}^{12}C \rightarrow {}^{A}_{\Lambda}Z + K^{+,0} + X$

Monte Carlo simulations

Scintillating fibre detectors

- fibre diameter: 0.83 mm
- HAMAMATSU H7260KS
- X and Y tracking
 - Position resolution: ~ 0.5 mm
- discriminator cards (1400 ch) from KAOS
- energy readout by CAEN QDC for TR0
- time readout by VUPROM 2

HYPHI phases

Design study, preparation for the phase 0 experiment

- Phase 0: experiment with ${}^{3}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ H and ${}^{5}_{\Lambda}$ He
- Phase 1: Experiments with proton rich hypernuclei Phase 2: Experiment with neutron rich hypernuclei at NuSTAR/FAIR
- Phase 3: Hypernuclear separator
 - hypernuclear magnetic moments
 - hypernuclear driplines

Physics of Hypernuclei as seen by an experimenter

0001 2000

P Achenbach, U Mainz

anti-proton beam induced hypernuclei production:

- high resolution γ -spectroscopy of double $\Lambda\Lambda$ hypernuclei
- weak decays

General Idea

Use pp Interaction to produce a hyperons which are tagged by the anti-hyperon or its decay products

Double hypernuclei with kaons

 $\sigma(\theta=0) \approx 3.5 \ \mu b/sr$ (Dover & Gal) p(K⁻) $\approx 1.8 \ (1.66) \ GeV/c \rightarrow p(K^+) \approx 1.39 \ (1.24) \ GeV/c$ (forward)

 $K^- + {}^{A}Z \rightarrow through \pi^0 + {}^{A}_{\wedge}(Z-1) \rightarrow K^+ + {}^{A}_{\wedge\wedge}(Z-2)$

 $\sigma(\theta) \approx 10 \text{ nb/sr (May)}$ $p(K^{-}) \approx 1.8(1.66) \text{ GeV/} c \rightarrow p(K^{+}) \approx 1.42 (1.28) \text{ GeV/} c \text{ (forward)}$

Double hypernuclei with antiprotons

Indirect reaction:

 \overline{p} (3 GeV/c) + N $\rightarrow \Xi + \Xi^{-}$

(PANDA)

Two-step process in one nucleus:

 $\overline{p}(low p) + N \rightarrow K^* + \overline{K}^*$

 $K^* + N' \rightarrow \overline{K} + \Xi^- (\approx at rest)$

(FLAIR)

Recoilless production:

 \overline{p} (>15 GeV/c) + N $\rightarrow \Xi + \Xi^{-}$

Formation of double hypernuclei from cascade particles

Production mechanism at FLAIR

[original idea K. Kilian 1987]

GSI and FAIR facilities

GSI, Darmstadt

- heavy ion physics
- nuclear structure
- atomic and plasma physics
- cancer therapy

PANDA

FAIR: New facility

- heavy ion physics
- higher intensities & energies
- antiproton physics

FAIR facilities

High Energy Storage Ring

HESR Performance Racetrack shaped ring: 574 m length Luminosity/Intensity:

- Pbar production rate: 2x10⁷ /s
- High luminosity mode: $L = 2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
- High resolution mode: L = 2x10³¹ cm⁻²s⁻¹ (for target thickness 4x10¹⁵ atoms/cm²)
 Momentum range:
- 1.5 15 GeV/c (0.831- 14.1 GeV)
- Revolution frequency: 5x10⁵ Hz Momentum resolution:
- High luminosity mode: △p/p=10⁻⁴ (stochastic cooling above 3.8 GeV/c)
- High resolution mode: ∆p/p=10⁻⁵ (electron cooling)

Beam cooling in HESR

Physics of Hypernuclei as seen by an experimenter

Sept 2008 P Achenbach, U Mainz

ī a nìd a

Production mechanism at PANDA

Detection and triggering

P Achenbach, U Mainz

Recoil momentum

Physics of Hypernuclei as seen by an experimenter

Sept 2008

P Achenbach, U Mainz

Application to target design

Preparatory experiment in 2004-5

Physics of Hypernuclei as seen by an experimenter

Sept 2008 P Achenbach, U Mainz

Hypernuclear set-up at PANDA

- θ_{lab} < 45°: Ξ -bar, K trigger and PID in PANDA spectrometer
 - θ_{lab} = 45°-90°: Ξ -capture and hypernuclei formation
- θ_{lab} >90°: γ -detection with HPGe at backward angles

The PANDA PID detectors

TOF for low momentum kaons

Physics of Hypernuclei as seen by an experimenter

Sept 2008 P Achenbach, U Mainz

Comparison of experiments

experiment	reaction	device	beam/ target	status
BNL-AGS E885	$(\Xi^{-},^{12}C) \rightarrow \frac{12R}{\Lambda\Lambda} + n$	neutron detector arrays	K ⁻ beam, diamond target	20,000 stopped Ξ ⁻
BNL-AGS E906	2 <mark>π decays</mark>	cylindrical detector system	K⁻ beam	few tens 2π decays of ${}^{4}_{\Lambda\Lambda}H$
KEK-PS E373	(K⁻,K⁺)Ξ	emulsion	(K ⁻ ,K ⁺)	several hundred stopped =-
facility	reaction	device	beam/ target	captured
JHF	(K⁻,K⁺)Ξ	spectrometer, $\Delta\Omega = 30 \text{ msr}$	8·10 ⁶ /sec 5 cm ¹² C	< 7,000 expected
cold anti- protons	$\underline{p} \ \overline{p} \rightarrow K^* \overline{K}^*$ K*N $\rightarrow \Xi K$	vertex detector	10^{6} stopped \overline{p} per sec	2,000 expected
PANDA	p p → ΞΞ	vertex detector + _{y-a} rray	L=2.10 ³² , thin target, production & decay target	3,000 "golden events" expected ~ 300,000 KK trigger expected

P Achenbach, U Mainz

"Golden events":

 $\Xi^{-} \ \text{to } \Lambda\Lambda-\text{nucleus conversion probability} \qquad p_{\Lambda\Lambda} \approx 0.05 \\ \text{total } \Lambda\Lambda \ \text{hypernucleus production} \qquad \Rightarrow \qquad 4500 \ \text{/ month}$

gamma emission/event, γ-ray peak efficiency p_γ ≈ 0.5 p_{GE}≈ 0.1

~ 7/day "golden" γ -ray events with Ξ ⁺ trigger ~ 700/day with *KK* trigger

Summary

Hypernuclei offer a bridge between traditional nuclear and hadron physics

It helps to explore fundamental questions

- how do nucleons and nuclei form out of quarks?
- can nuclear structure be derived *quantitatively* from QCD?
- properties of strange baryons in nuclei and structure of QCD vacuum?

Thank you!