Recent Results on Heavy Quark Spectroscopy

Few-quark States and the Continuum, Bled, Slovenia 15th – 22nd September 2008

- Experimental set-up and tools
- D_{sJ} states
- Charmonium
 and charmonium-like states
- Bottomonium results: \rightarrow will be skipped
- Summary and conclusions

Experimental set-up & tools

B Experimental set-up & tools

B Experimental set-up & tools

The Belle collaboration

BINP Chiba U. U. of Cincinnati Ewha Womans U. Fu-Jen Catholic U. U. of Giessen Gyeongsang Nat'l U. Hanyang U. U. of Hawaii Hiroshima Tech. IHEP, Beijing IHEP, Moscow IHEP, Vienna ITEP Kanagawa U. KEK Korea U. Krakow Inst. of Nucl. Phys Kyoto U. Kyungpook Nat'l U. EPF Lausanne Jozef Stefan Inst./ U. of Ljubljana / U. of Maribor U. of Melbourne Nagoya U. Nara Women's U. National Central U. National Taiwan U. National United U. Nihon Dental College Niigata U. Nova Gorica Osaka U. Osaka City U. Panjab U. Peking U. Princeton U. Riken Saga U. USTC

Seoul National U. Shinshu U. Sungkyunkwan U. U. of Sydney Tata Institute Toho U. Tohoku U. Tohuku Gakuin U. U. of Tokyo Tokyo Inst. of Tech. Tokyo Metropolitan U. Tokyo U. of Agri. and Tech. INFN Torino Toyama Nat'l College VPL Yonsei U.

14 countries, 55 institutes, ~400 collaborators

Charmed strange mesons (D_s, states)

Charmed strange mesons (overview)

BABAR : 91 fb⁻¹ **D**_{s1}*(2317) and **D**_{s1}(2460) first HQET: PRL 90, 242001 (2003) good Q# observed by BABAR and CLEO CLEO: 13.5 fb⁻¹ $\vec{J} = \vec{S}_0 + \vec{S}_q +$ PRD 68, 032002 (2003) in inclusive cc continuum events Belle : 124M BB PRL 91, 262002 (2003) and by Belle also in B-decays Belle : 87 fb⁻¹ PRL 92, 012002 (2004) Both masses unexpectedly low: • below D^{*}K and DK threshold, respectively Only isospin-violating or • L=0 L=1 3.2 electromagnetic decays kinematically 1/2 3/2 =1/2 allowed \Rightarrow narrow widths 3 $\stackrel{\approx}{\geq}$ 2.8 $J^{P} = 0^{-} 1^{-} 0^{+} 1^{+} 1^{+} 2^{+}$ Decay patterns and angular distributions • 2.6 now well established as: Belle : 274M BB D[•]_{sJ}(2573) BELLE-CONF-0461 (2004) 2.4P-wave cs mesons D_{sJ}(2536) with **J^P=0**⁺ and **J^P=1**⁺, respectively 2 Belle : 152M BB PRL 94, 061802 (2005) More B-decay production modes: • D_{a (}2460) $\mathbf{B}^{0} \rightarrow \mathbf{D}_{\mathbf{A}}^{-} \mathbf{K}^{+}$ (besides $\mathbf{B}^{0} \rightarrow \mathbf{\overline{D}}\mathbf{D}_{\mathbf{A}}$) Belle : 386M BB $D_{a1}(2317)$

Marko Bračko: Recent results on heavy quark spectroscopy at Belle

hep-ex/0507064

O_{sJ} - first results from cc (reminder)

O_{sJ} – first results from B decays (rem.)

Marko Bračko: Recent results on heavy quark spectroscopy at Belle

FQC 2008, Bled, Slovenia

B D_{sJ} – more results from B decays(rem.)

O_{sJ} D_s states – updates from B decays

$\sum_{sJ}^{*} (2700)^{+} \text{ in } B^{+} \rightarrow \overline{D}^{0} D^{0} K^{+} \text{ cont'd}$

B D_{sJ} meson spectroscopy update

B D_s, meson spectroscopy update

$\bigcup_{s_1}^{s_1} (2536)^* \rightarrow D^* \pi K^*, D^{*+} K_s^{o}$

- Another result of the renewed interest $\frac{462 \text{ fb}^{-1}}{1000 \text{ in measurements of charm mesons after } D_{sl}^*(2317) \& D_{sl}(2460) \dots$
- First observation of: $D_{s1}(2536)^+ \rightarrow D^+\pi^-K^+(in \ e^+e^- \rightarrow D_{s1}(2536)^+X)$
 - no D*⁰ { M(D*⁰) < M(D⁺)+M(π⁻) }
 only 2nd three-body decay mode of D_{s1}(2536)⁺after D_s⁺π⁺π⁻
- Also: $D_{s1}(2536)^+ \rightarrow D^{*+}K_{s0}^{0}$

very clean and large sample

improves PID efficiency for K[±]&π[±] and removes D_{s1}(2536)⁺ from B's

FQC 2008. Bled. Slovenia

PRD 77, 032001 (2008)

$\bigcup_{s_1}^{s_1} (2536)^* \rightarrow D^* \pi K^*, D^{**} K_s^{c_1}$

- Another result of the renewed interest $\frac{462 \text{ fb}^{-1}}{1000 \text{ in measurements of charm mesons after } D_{sl}^*(2317) \& D_{sl}(2460) \dots$
- First observation of: $D_{s1}(2536)^+ \rightarrow D^+\pi^-K^+(in \ e^+e^- \rightarrow D_{s1}(2536)^+X)$
 - no D*⁰ { M(D*⁰) < M(D⁺)+M(π⁻) }
 only 2nd three-body decay mode of D_{s1}(2536)⁺after D_s⁺π⁺π⁻
- Also: $D_{s1}(2536)^+ \rightarrow D^{*+}K_s^0$

very clean and large sample

⇒ partial wave analysis (PWA)

PRD 77, 032001 (2008)

D_1(2536)⁺→ D⁺π⁻K⁺, D^{*+}K₂⁰

- 462 fb⁻¹ Another result of the renewed interest in measurements of charm mesons after $D_{s,1}^*(2317) \& D_{s,1}(2460) \dots$
- First observation of: $D_{s1}(2536)^+ \rightarrow D^+\pi^-K^+(in \ e^+e^- \rightarrow D_{s1}(2536)^+X)$
 - no D^{*0} { $M(D^{*0}) < M(D^{+})+M(\pi^{-})$ }
 - only 2nd three-body decay mode of $D_{1}(2536)^{+}$ after $D_{1}^{+}\pi^{+}\pi^{-}$
- Also: D_{s1}(2536)⁺→ D^{*+}K_s⁰

very clean and large sample

⇒ partial wave analysis (PWA) **Motivation:**

HQET exact: D(S)-wave for $j_a = 3/2$ (1/2)

HQET not exact:

 $D_{s1}(2536)^+$ contains small admixture of $j_a = 1/2$

0 2500

2510

150

2520

2530

 $D^{+}\pi^{-}K^{+}$ mode

2560

2560

MeV/c²

PRD 77, 032001 (2008)

2540

2540

 $+ M(D_{PD})^{+}$

2550

2550

Marko Bračko: Recent results on heavy quark spectroscopy at Belle

21

Charmonium(-like) states

CR cc[-like] production at B-factories

<u>B-meson decays</u>:

e.g. $B \rightarrow X_{cc} K^{(*)}$

0⁻⁺, 1⁻⁻, 1⁺⁺

Double cc production:

Marko Bračko: Recent results on heavy quark spectroscopy at Belle

<u>Two-photon production</u>:

<u>e⁺e⁻</u> radiative return (ISR):

e.g.
$$e^+e^- \rightarrow \gamma_{ISR} X_{cc} \rightarrow \gamma_{ISR} \psi \pi \pi$$

CR cc[-like] production at B-factories

B Charmonium spectroscopy status

And also many new states (X, Y, Z)

State	EXP	M + i Γ (MeV)	J ^{PC}	Decay Modes Observed	Production Modes Observed	
X(3872)	Belle,CDF, DO, Cleo, BaBar	3871.2±0.5 + i(<2.3)	1++	π⁺π⁻Ϳ/ψ, π⁺π⁻π⁰Ϳ/ψ, ΥͿ/ψ	B decays, ppbar	
	Belle BaBar	3875.4±0.7 ^{+1.2} -2.0 3875.6±0.7 ^{+1.4} -1.5		D ^o D ^o π ^o	B decays	
Z(3930)	Belle	3929±5±2 + i(29±10±2)	2++	D⁰D⁰, D+D-	ŶŶ	
Y(3940)	Belle BaBar	3943±11±13 + i(87±22±26) 3914.3 ^{+3.8} -3.4 ±1.6+ i(33 ⁺¹² -8 ±0.60)	1	ωJ/ψ	B decays	
X(3940)	Belle	3942 ⁺⁷ -6±6 + i(37 ⁺²⁶ -15±8)	J ^p ⁺	DD*	e⁺e⁻ (recoil against J/ψ)	
Y(4008)	Belle	4008±40 ⁺⁷² -28 + i(226±44 ⁺⁸⁷ -79)	1	π⁺π⁻ፓ/ψ	e⁺e⁻ (ISR)	
X(4160)	Belle	4156 ⁺²⁵ ₋₂₀ ±15+ i(139 ⁺¹¹¹ -61±21)	J ^p ⁺	D*D*	B decays	
Y(4260)	BaBar Cleo Belle	$4259\pm8^{+8}_{-6}$ + i(88±23 ⁺⁶ _4) 4284 ⁺¹⁷ _{16} ±4 + i(73 ⁺³⁹ _{25}±5) 4247±12 ⁺¹⁷ _{32} + i(108±19±10)	1	π⁺π⁻J/ψ, π⁰π⁰ፓ/ψ, Κ⁺Κ⁻J/ψ	e⁺e⁻ (ISR), e⁺e⁻	
Y(4350)	BaBar Belle	4324±24 + i(172±33) 4361±9±9 + i(74±15±10)	1	π⁺π⁻ψ(2S) e⁺e⁻ (ISR)		
Z+(4430)	Belle	4433±4±1+ i(44 ⁺¹⁷ -13 ⁺³⁰ -11)	Jp	π ⁺ ψ(2S) B decays		
Y(4620)	Belle	4664±11±5 + i(48±15±3)	1	π⁺π⁻ψ(2S)	e⁺e⁻ (ISR)	

E. Eichten QWG -- 5th International Workshop on Heavy Quarkonia DESY October 17-20, 2007

Conventional mesons $(q_1 \overline{q}_2)$

Exotic mesons:

- not forbidden in SM;
- exotic J^{PC} (e.g. 0⁺⁻, 1⁻⁺, 2⁺⁻,... forbidden for qq);
- exotic decay modes (not possible from qq);
- strange properties (widths,...);
- Hybrid states (qq+g)
- Multiquark states (qq qq or qq qq)
- "Molecules" (loosely bound mesons: M M)
- Glueballs (gg, ggg)
- Mixtures of states above
- More exotic states?

Conventional mesons $(q_1 \overline{q}_2)$

Exotic mesons:

Important characteristic of multiquark states (and not hybrids or charmonia):

It is possible to have charmonium-like mesons

with non-zero charge (e.g. [cucd]) ...

- Hybrid states (qq+g)
- Multiquark states (qq qq or qq qq)
- "Molecules" (loosely bound mesons: M M)
- Glueballs (gg, ggg)
- Mixtures of states above
- More exotic states?

Recent hot topic: Z(4430)⁺ state

 一般向けページ >> 研究者向けページ >> English Pages >> Press Release Top Access For Visitors Map & Guide Document Site Map Search > Top >PressRelease >this page 	大学共同利用機関法人 大学共同利用機関法人 人の日本 人の日本 <th人< th=""></th人<>						
Press Release							
Belle Discovers a New Type of Meson							
High Energy Accelerator	November 13, 2007 Research Organization (KEK)						
An international team of researchers at the High Energy Accele (KEK) in Tsukuba, Japan, the "Belle collaboration" ^{*1} , recently an exotic new sub-atomic particle with non-zero electric charge researchers have named the Z(4430) ^{*2} , does not fit into the combinations of a quark ^{*3} and an antiquark that are held togeth interaction. The Z(4430) particle was found in the decay products of B-m "bottom" quark) that are produced in large numbers at electron-positron collider at the KEK laboratory. While investiga meson in a data sample containing about 660 million pairs of B team observed 120 B mesons that decay into a Z(4430) and a instantly decays into a "Psi-prime" (Ψ) particle and a pi-meson (s found that this particle has the same electric charge as the ele- times that of the proton.	erator Research Organization nounced the discovery of an ge. This particle, which the usual scheme of "mesons", ner by the force of the strong esons (mesons containing a : the KEKB "B-factory", an ating various decays of the B and anti-B mesons, the Belle K-meson. The Z(4430) then see Figure-1). The Belle team ectron and a mass about 4.7						

Recent hot topic: Z(4430)⁺ state PRL 100, 142001(2008)

657 BB

PRL 100, 142001 (2008)

PHYSICAL REVIEW LETTERS

week ending 11 APRIL 2008

Observation of a Resonancelike Structure in the $\pi^{+-}\psi'$ Mass Distribution in Exclusive $B \to K \pi^{+-}\psi'$ Decays

S.-K. Choi,⁶ S. L. Olsen,^{8,10} I. Adachi,⁹ H. Aihara,⁴² V. Aulchenko,¹ T. Aushev,^{18,13} T. Aziz,³⁹ A.M. Bakich,³⁸ V. Balagura,¹³ I. Bedny,¹ U. Bitenc,¹⁴ A. Bondar,¹ A. Bozek,²⁷ M. Bračko,^{20,14} J. Brodzicka,⁹ T. E. Browder,⁸ P. Chang,²⁶ Y. Chao, ²⁶ A. Chen, ²⁴ K.-F. Chen, ²⁶ W. T. Chen, ²⁴ B. G. Cheon, ⁷ R. Chistov, ¹³ Y. Choi, ³⁷ J. Dalseno, ²¹ M. Danilov, ¹³ M. Dash,⁴⁶ S. Eidelman,¹ N. Gabyshev,¹ B. Golob,^{19,14} J. Haba,⁹ T. Hara,³² K. Hayasaka,²² H. Hayashii,²³ M. Hazumi,⁹ D. Heffernan, 32 Y. Hoshi, 41 W.-S. Hou, 26 H. J. Hyun, 17 T. Iijima, 22 K. Inami, 22 A. Ishikawa, 34 H. Ishino, 43 R. Itoh, 9 M. Iwasaki,⁴² Y. Iwasaki,⁹ D. H. Kah,¹⁷ J. H. Kang,⁴⁷ N. Katayama,⁹ H. Kawai,² T. Kawasaki,²⁹ H. Kichimi,⁹ H. O. Kim,¹⁷ S.K. Kim,³⁶ Y.J. Kim,⁵ K. Kinoshita,³ P. Križan,^{19,14} P. Krokovny,⁹ R. Kumar,³³ C.C. Kuo,²⁴ A. Kuzmin,¹ Y.-J. Kwon,⁴⁷ J. S. Lange,⁴ J. S. Lee,³⁷ M. J. Lee,³⁶ S. E. Lee,³⁶ T. Lesiak,²⁷ A. Limosani,²¹ S.-W. Lin,²⁶ Y. Liu,⁵ D. Liventsev,¹³ F. Mandl,¹¹ A. Matyja,²⁷ S. McOnie,³⁸ T. Medvedeva,¹³ W. Mitaroff,¹¹ K. Miyabayashi,²³ H. Miyake,³² H. Miyata,²⁹ Y. Miyazaki,²² R. Mizuk,¹³ G. R. Moloney,²¹ E. Nakano,³¹ M. Nakao,⁹ S. Nishida,⁹ O. Nitoh,⁴⁵ T. Nozaki,⁹ S. Ogawa,⁴⁰ T. Ohshima,²² S. Okuno,¹⁵ H. Ozaki,⁹ P. Pakhlov,¹³ G. Pakhlova,¹³ C. W. Park,³⁷ H. Park,¹⁷ L. S. Peak,³⁸ R. Pestotnik,¹⁴ L. E. Piilonen,⁴⁶ H. Sahoo,⁸ Y. Sakai,⁹ O. Schneider,¹⁸ A. J. Schwartz,³ K. Senyo,²² M. Shapkin,¹² C. P. Shen,¹⁰ H. Shibuya,⁴⁰ B. Shwartz,¹ J. B. Singh,³³ A. Somov,³ S. Stanič,³⁰ M. Starič,¹⁴ T. Sumiyoshi,⁴⁴ S. Y. Suzuki,⁹ F. Takasaki,⁹ K. Tamai,⁹ M. Tanaka,⁹ Y. Teramoto,³¹ I. Tikhomirov,¹³ S. Uehara,⁹ T. Uglov,¹³ Y. Unno,⁷ S. Uno,⁹ P. Urquijo,²¹ G. Varner,⁸ K. Vervink,¹⁸ S. Villa,¹⁸ C. H. Wang,²⁵ M.-Z. Wang,²⁶ P. Wang,¹⁰ X. L. Wang,¹⁰ Y. Watanabe,¹⁵ R. Wedd,²¹ E. Won,¹⁶ B. D. Yabsley,³⁸ Y. Yamashita,²⁸ C. Z. Yuan,¹⁰ Z. P. Zhang,³⁵ V. Zhulanov,¹ A. Zupanc,¹⁴ and O. Zyukova¹

(Belle Collaboration)

Observation of Z(4430)⁺ state PRL 100, 142001(2008) 657 BB New state observed in $B \rightarrow K\pi^{\pm}\psi(2S)$ decays 1000 • $\mathbf{B} \rightarrow \mathbf{K} \pi^{\pm} \psi'$ ($\mathbf{K} = \mathbf{K}^{\pm}, \mathbf{K}_{s}^{0}; \psi' \rightarrow \mathbf{I}^{+} \mathbf{I}^{-}$ or $\mathbf{J} / \psi \pi^{+} \pi^{-}$) • Clear signals is both ΔE and M_{hc} seen 400 500 • Breit-Wigner and PS-like function in M($\pi^{\pm}\psi'$) fit K*(890) K*(1430) 23 veto ^{5.250} M_{bc} (GeV) 0.00 ∆E (GeV) 5.300 -0.20 22 (GeV²/C⁴) Z(4430)⁺ 121±30 events 20 (6.5σ) M²(μμ)¹⁷ $M = (4433 \pm 4 \pm 2) MeV/c^2$ $\Gamma = (45 + 18 + 30 + 30 + 30 + 13) \text{ MeV}$ →robust signal (subsamples;veto) 15 →too narrow state to be explained 4.05 4.8 14 by interference of known $M^{2}(K\pi) (GeV^{2}/c^{4})$ 0.5 2.5 $M(\pi\psi')$ (GeV/c²) S-, P- D-wave K π resonances

Marko Bračko: Recent results on heavy quark spectroscopy at Belle

FQC 2008, Bled, Slovenia

Z(4430)⁺ state cont'd

$Z(4430)^{\scriptscriptstyle +} \rightarrow \psi(2S)\pi^{\scriptscriptstyle +}$:

Charged state that decays like charmonium (charged charmonium-like state)

Br($\overline{B}^{0} \rightarrow K^{-}Z(4430)^{+}$)×Br($Z(4430)^{+} \rightarrow \pi^{+}\psi'$) = (4.1 ± 1.0 ± 1.4) x 10⁻⁵

Not enough statistics to determine J^P

Marko Bračko: Recent results on heavy quark spectroscopy at Belle

PRL 100, 142001(2008)

657 BB

New states observed in $\bar{B^0} \to K^{\mathchar`} \pi^{\mathchar`} \chi_{_{\mbox{c1}}}$ decays

- B⁰ \rightarrow K⁻ $\pi^+ \chi_{c1}$ ($\chi_{c1} \rightarrow$ J/ $\psi\gamma$; J/ $\psi \rightarrow$ I⁺I⁻)
- Clear signals in ΔE , $M_{_{bc}}$, $M(J/\psi\gamma)$

- Isobar model: superposition of formfactors, Breit-Wigner amplitudes, Γ(E)
- Integrated χ_{c1} , J/ ψ angular distributions
- (no sensitivity)
- Correction for Lorentz non-invariance of helicity
- Binned (400x400) maximum likelihood fit
- Fit results depicted in M_1^2 for M_2^2 bands

FQC 2008, Bled, Slovenia

34

4.8

Data favour fit with 2 resonant structures: Z₁ and Z₂

Hot topic #2: Z₁⁺ and Z₂⁺ continued

 Z_2^+

• Z_1^+ , Z_2^+ join Z^+ (4430) as charged charmonium-like exotics \rightarrow confirmation needed

4248+44

- Spin of Z_{1,2} is not determined: J=0 and J=1 hypotheses give comparable results
- Z_{1,2} parameters:

M/MeV

 Γ/MeV

 $\mathcal{B}_{\overline{\mathrm{R}}\,^0} imes \mathcal{B}_{Z^+}$

large syst. errors due to model uncertainties

 Z_1^+

 $4051 \pm 14^{+20}_{-41}$

 $(3.1^{+1.5}_{-0.9})$

• BF product comparable to Z⁺(4430), X(3872)...

40

35

M(χ_{c1}π⁺) for 1<M²(K⁻π⁺)<1.75GeV

arXiv:0806.4098[hep-ex]

657 BB

X(3872): Discovery by Belle(reminder)

X(3872) continued (reminder)

- Confirmed by BaBar, CDF, D0 World average: M_x = (3871.2 ± 0.5) MeV/*c*² Γ < 2.3 MeV at 90% CL
- Near threshold: $M_x m(D^0) m(\overline{D^{*0}}) < 1 MeV$
- From M($\pi^{+}\pi^{-}$): clustering on high end X(3872) \rightarrow J/ ψ ρ (S or P wave) (J = 1 or 2)
- Decay modes: J/ψγ (C=+1),
 J/ψω and J/ψρ (isospin breaking)
 DDπ (but no DD)
- From angular analysis, M(π⁺π⁻), observed decay modes:

favoured J^{PC} = 1⁺⁺ or 2⁻⁺; no cc candidate

$$\frac{Br(X \to \gamma J/\psi)}{Br(X \to \pi^+ \pi^- J/\psi)} = 0.14 \pm 0.05$$

- No obvious charmonium assignment ...
- Other possible interpretations:
 - ➡ [cu][cu] or [cd][cd] tetraquark:
 - Would require different mass of X produced in Btand B⁰ decays.

CX(3872): DºĒºπº decay mode

<u>Belle</u>: 447M B<u>B</u> PRL 97, 162002 (2006)

$B^+ \rightarrow K^+ D^0 \overline{D}^0 \pi^0 / B^0 \rightarrow K^0 D^0 \overline{D}^0 \pi^0$

Z(3930): conventional cc (X_{c2})

Double c̄c production:J/ψ & C=+1 state

Belle : 357 fb⁻¹

Double cc production: recent update PRL 100, 202001(2008)

- Used the established method to look for the
 D^(*)D^(*) resonances in e⁺e⁻→J/ψ D^(*)D^(*) with larger statistics ...
- Reconstruct $J/\Psi + D^{(*)}$: Accompanying $D^{(*)}$ peaks seen in $M_{recoil}(J/\Psi D^{(*)})$ dist.
- Processes tagged this way: J/ΨDD, J/ΨDD*, J/ΨD*D*, J/ΨD*D, J/ΨD*D*

• Constrain $M_{recoil}(J/\Psi D^{(*)})=M_{nominal}(D^{(*)})$ and look at $M_{recoil}(J/\Psi) = M_{recoil}(D^{(*)}\overline{D^{(*)}})$ distributions ...

Marko Bračko: Recent results on heavy quark spectroscopy at Belle

693 fb⁻¹

- Possible assignments: η_c(3S), η_c(4S), χ_{c0}(3P) (but masses 100-150 MeV too large)
- Needed to be done: angular analysis; search in $\gamma\gamma \rightarrow DD^*$, D^*D^*

Study of 1^{...} states with ISR

- ISR gives access to J^{PC} = 1⁻⁻ states
- Information on 1⁻⁻ charmonia above the open-charm threshold
- Exclusive hadronic cross sections at √s < E_{cms} can be successfully performed at B-factories: ISR enables wide energy range,

high luminosity "compensates" for the emission of hard photons

• Y(4260) observed via ISR by BaBar, later confirmed by CLEO

Using BaBar's approach and large collected statistics Belle reports new results for these 1⁻⁻ mesons

$Study of 1^{--} states in e^+e^- \rightarrow \gamma_{ISR} \psi' \pi^+ \pi^-$

- Study of $e^+e^- \rightarrow \gamma_{ISR} \psi(2S)\pi^+\pi^-$
- Reconstruction: π⁺π⁻& ψ(2S)(→π⁺π⁻J/ψ(→e⁺e⁻,μ⁺μ⁻)) (no extra tracks allowed; γ_{ISR} not detected)
- Missing(rec.) mass identifies ISR process:

$$A_{rec} = \sqrt{(E_{cms} - E_{\psi(2S)\pi^{+}\pi^{-}}^{*})^{2} - p_{\psi(2S)\pi^{+}\pi^{-}}^{*}}$$

- Fit to M($\psi(2S)\pi^+\pi^-$) with two coherent BW curves M_{rec}^2
- Y(4360) resonance: close to BaBar's (4324±24)MeV/c²), but narrower
- New Y(4660) resonance?

Marko Bračko: Recent results on heavy quark spectroscopy at Belle

5.5

PRL 99, 142002 (2007)

673 fb-1

-0.5

 $\cos\theta$ of $\pi^{+}\pi^{-}\psi(2S)$

_ 60

.0 89/0

20 Entri

(GeV²/c⁷) Background-subtracted

distributions (MC check)

+ data

- MC

+ data

- MC

20 פ

Entries/0

T 1-Y states with ISR: What are they?

Charmonium options:

- Y states above D<u>D</u> threshold but don't match well the peaks in D^(*)D^(*) cross-sections
- Large widths for ψππ transition: not likely for conventional cc
- No cc assignments available in this mass region (there are too many 1⁻ states)

Other options:

- Charm-meson threshold effects
- DD₁ or D^{*}D₀ molecules
- cqcq tetraquarks
- ccg hybrids predicted@4.2-5GeV DD1 mode should dominate
- Coupled-channel effects

Exclusive D^(*)D^(*) cross sections w. ISR

- e⁺e⁻→ D<u>D</u>, D<u>D</u>*, D*<u>D</u>* cross sections measured with ISR
- DD*, D*D*: using partial reconstruction; γ_{ISR} detected
 DD: fully reconstructed; γ_{ISR} used if detected
- Recoil mass is again used to identify ISR events
- Method is well established
- Difficult interpretation

 in terms of resonances
 (there are many maxima/minima, model dependent coupled-chann and threshold effects...)

Few new states added...

... but we still do not understand them ...

Bummary and conclusions

Marko Bračko: Recent results on heavy quark spectroscopy at Belle

FQC 2008, Bled, Slovenia

Bummary and conclusions

- D_{sJ} states :
 - \Longrightarrow D_{so}^{*}(2317)[±] and D_{so}(2460)[±] better understood, but mass shift not clear yet ... → New D_{s_1} state observed in $B \rightarrow \overline{D}^0 D^0 K^+$: $D_{s_1}(2700)^+ \rightarrow D^0 K^+$ 3.2 \implies D₁(2460)[±] - D₁(2536)[±] mixing? Mass(GeV/c²) L=1 L=03 (HQET not so good ...) $J_{a}=1/2$ 1/2 3/2 O D_{sJ}(2860) ??. 2.8 D_(2700) 1

New results eagerly awaited ...

2.6

2.4

2.2

2

1.8

D_{s.}(2573)

D_{s.}(2536)

D. (2460)

 $D_{a1}(2317)$

Bummary and conclusions

• Charmonium(-like) states :

Two radially excited conventional states: η_c' , χ_{c2}' Following the X(3872) "tradition" of discoveries New exotic state observed in B $\rightarrow \psi(2S)\pi^{\pm}K$ decays:

Z(4430)⁺ (charged charmonium-like state)

... also Z_1^+ and Z_2^+ in $B^0 \rightarrow K^-\pi^+\chi_{c1}^-$ decays

New charmonium spectroscopy established at 4GeV? Good candidates for molecular states, multiquarks; hybrids; ... X(3872), Z(4430)⁺, Z₁⁺ and Z₂⁺; Y(4260); ...

Same type of XYZ spectroscopy in b(s)-quark sector?

Many interesting results and new states come from Belle it is important that a lot of studies are still ongoing, so expect more exciting news soon ...

Asymmetric-energy e⁺e⁻ colliders

Analysis tools: B reconstruction

Marko Bračko: Recent results on heavy quark spectroscopy at Belle

FQC 2008, Bled, Slovenia

B Continuum background suppresion

O_{sJ} D_s states – updates from B decays

O_{sJ} states – updates from B decays

 $B \rightarrow \overline{D} D_{sJ}(2460)^{+}; (b) D_{sJ}(2460)^{+} \rightarrow D_{s}^{+} \gamma; (c) D_{sJ}(2460)^{+} \rightarrow D_{s}^{*}(2112)^{+} \pi^{0}, D_{s}^{*+} \rightarrow D_{s}^{+} \gamma$

Z(4430)+ state: more info

Marko Bračko: Recent results on heavy quark spectroscopy at Belle

FQC 2008, Bled, Slovenia

60

 \mathbf{Z}_1^+ and \mathbf{Z}_2^+ : fit fractions

	One Z ⁺		Two Z⁻	Two Z^+			
Contribution	Fit fraction	Signif.	Fit fraction	Signif.			
$Z^{+}_{(1)}$	$(33.1^{+8.7}_{-5.8})\%$	10.7 σ	$(8.0^{+3.8}_{-2.2})\%$	5.7σ			
Z_2^+	_	_	$(10.4^{+6.1}_{-2.3})\%$	5.7σ			
κ	$(1.9\pm1.8)\%$	2.1σ	$(3.6\pm2.6)\%$	3.5σ			
K*(892)	$(28.5\pm2.1)\%$	10.6 σ	$(30.1\pm2.3)\%$	9.8 σ			
$K^{*}(1410)$	$(3.6\pm4.4)\%$	1.3σ	$(4.4\pm4.3)\%$	2.0σ			
$K_0^*(1430)$	$(22.4\pm5.8)\%$	3.4σ	$(18.6\pm5.0)\%$	4.5σ			
$K_{2}^{*}(1430)$	$(8.4\pm2.7)\%$	5.2σ	$(6.1\pm2.9)\%$	5.4 σ			
$K^{*}(1680)$	$(5.2\pm3.7)\%$	2.2σ	$(4.4\pm3.1)\%$	2.4σ			
$K_{3}^{*}(1780)$	$(7.4\pm3.0)\%$	3.6 σ	$(7.2\pm2.9)\%$	3.8σ			
	110.5%	-	92.8%				
	There is small net interference effect						

Marko Bračko: Recent results on heavy quark spectroscopy at Belle

FQC 2008, Bled, Slovenia

X(3872): properties (by Belle)

Br(B \rightarrow XK) Br(X $\rightarrow \pi^{+}\pi^{-}J/\psi$) = (1.31 ± 0.24 ± 0.13) x 10⁻⁵

charmonium, DD*, tetraquarks...?

E.S.Swanson,PLB588,189(2004) L.Maiani et al.,PRD71,014028(2005)

$$\frac{Br(X \to \gamma J/\psi)}{Br(X \to \pi^+ \pi^- J/\psi)} = 0.14 \pm 0.05$$

X(3872): properties (by Belle)

Belle: 275M B<u>B</u> hep-ex/0505038

● X(3872)→γ J/ψ

- angular distribution
- M($\pi^+\pi^-$) in
 - $X(3872) \rightarrow \pi^+\pi^- J/\psi$

disfavour all of J=0,1,2 cc̄ states

except

1++, 2++

```
X(3872)→D<sup>0</sup>D<sup>0</sup>π<sup>0</sup> ??
1<sup>++</sup> → DD* S-wave
2<sup>++</sup> → DD* D-wave,
suppressed by
(q*)<sup>2L+1</sup>
```

X(3872): properties (by Belle)

X(3872): interpretation

Tetraquarks:

L. Maiani et al., PRD71, 014028 (2005)

- predicted spectrum
- mass difference:

$$M(X_h) - M(X_l) = \frac{7 \pm 2}{\cos \theta} MeV$$

 θ : mixing angle

DD* molecule:

E.S.Swanson, PLB588, 189 (2004)

wave function fractions

$$\begin{aligned} &\frac{Br(B^0 \to K^0 X)}{Br(B^+ \to K^+ X)} = \frac{|4Z_{+-}^{1/2} + Z_{00}^{1/2}|^2}{|4Z_{00}^{1/2} + Z_{+-}^{1/2}|^2} \\ &R = \frac{2Z_{00}\Gamma(D^{*0})}{Z_{\rho\psi}\Gamma(\rho)}.\\ &R = \frac{Br(X \to D^0 D^0 \pi^0)}{Br(X \to J/\psi \pi^+ \pi^-)} = 10 \pm 4 \end{aligned}$$

SY(3940)

X(3940): Interpretation (at 357 fb⁻¹)

<u>Belle</u> : 357 fb⁻¹ PRL 98, 082001 (2007)

- There is no evidence for $X(3940) \rightarrow J/\psi \omega$: $X(3940) \neq Y(3940)$
- Combine inclusive/D*D tagged samples, common events removed, corrections for tagging & veto efficiencies, assume equal fractions of X(3940)→D^{*0}D⁰ and X(3940)→D^{*+}D⁻

Br (X(3940)→J/ψ ω) < 26% @90% C.L.

There are several speculations on X(3940) nature, all with pro's and con's

 \rightarrow further experimental study needed (angular distributions)