
Pion electro-production in the 1st and 2nd resonance regions

S. Širca, U. of Ljubljana, Slovenia Bled | September 16, 2008

1



Motivation

• Understand (****, ***) baryon spectra: masses, widths, form-factors

• Understand structure of resonances, related to
— confinement
— chiral symmetry of QCD (meson cloud)

• Distinguish structure from reaction mechanisms, compare to models

• Current focus of “overall” phenomenological analyses is above ≈ 1.7 GeV
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Key issues with P33(1232)

• Textbooks say mostly OK, but...

• EMR/CMR at low Q2: situtation unclear (both theory and exp)

• Discrepancies at Q2 ≈ 1

• Transition to pQCD (EMR→ 1, CMR→const) not established

• Calculation of reaction amplitudes on the Lattice in its infancy
Alexandrou++ PRL 94 (2005) 021601
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N→ ∆(1232) transition low Q2

EMR = E3/2
1+ /M3/2

1+ CMR = S3/2
1+ /M3/2
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• pion-cloud physics at low Q2: MIT-Bates, A1/Mainz

• stringent constraints on models, both quark and baryon sector

• experimentally, tremendous advantage in polarization DOFs

• transition to pQCD at very high Q2: JLab (?)
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N→ ∆(1232) transition high Q2

Ungaro++ PRL 97 (2006) 112003
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Key issues with P11(1440) ... and S11(1535)

• Large width of Roper

• Atypical behaviour of ImTπN in P11

• Inconsistent M , Γ (πN XS ... 1470, 350 MeV), (|dT /dW |) ... 1375, 180 MeV
for the Roper

• Large width of S11(1535)→ ηN at threshold

• Level ordering (parity inversion) of P11(1440) wrt. S11(1535)

× Hard to reconcile in 3q picture (OZI-violating):

• Large S11(1535)→ φN coupling in near-threshold pp→ ppφ, π−p→ nφ
Xie++ PRC 77 (2008) 015206

• Large S11(1535)→ ΛN coupling in Ψ → pp̄, p̄ΛK+

Liu++ PRL 96 (2006) 042202
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SAID PWA of πN scattering in P11 channel
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SAID PWA of πN scattering in P11 channel contd.

ImT

← ImT − |T |2

ReT

SAID FA02 MBW = (1468± 4.5) MeV, Γ/2 = (180± 13) MeV

Mpole = 1357− i 80 MeV (I RS)

1385− i 83 MeV (II RS)
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Roper pole-ology

Arndt++ PRC 52 (1995) 2120, 69 (2004) 035213

• single BW with two poles on different Riemann sheets

• doublet ?
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Roper in quark models

• Spherically symmetric SU(6)
Radial excitation (“breathing mode”) of proton (1s)3 -→ (1s)2(2s)1

Sizeable monopole strength (C0 / Sp
1/2 / S1−) + dipole (M1 / Ap

1/2 / M1−)

• Hybrid models
Gluonic partner of proton (q3g)
Li, Burkert, Li PRD 46 (1992) 70

Same quantum numbers as (q3), indistinguishable by spectroscopy alone
Equal radial WF ⇒ C0 suppressed, no “breathing”, M1 dominates
Roper mass through QCD sum rules
in pQCD (asymptotic electroproduction rate off (q3g) vs. (q3))

• Constituent, semi-relativistic, relativistic QM and QM with meson DOFs
Extensive studies with varying success
Mostly limited to masses and photo-couplings
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Additional qq̄ components

• ≈ 30% admixture of qqqqq̄ components in the Roper⇒ Γ(theory) = Γ(exp)
Li, Riska PRC 74 (2006) 015202

• Lowest 5q configuration in S11(1535) is qqqss̄
⇒ correct P11(1440) wrt. S11(1535) mass ordering
⇒ large S11(1535)→ φN, ΛK couplings without OZI violation
An, Zou nucl-th/0802.3996
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P11(1440) and S11(1535) on the Lattice

• close to CL, effects of CSB important

• level ordering should change with mq

Heavy q: 1st radial above 1st orbital exc
CL: reversed levels

Bern-Graz-Regensburg / PRD 70 (2004) 054502

“... do not attempt a chiral extrapolation of our data ... numbers
seem to approach the experimental data reasonably well”

“... the Roper’s leading Fock component is a 3-quark state”
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Formalism for p(~e, e′p)π

Tremendous simplification when only beam is polarized:

dσ
dΩ
= σT + εσL +

√
2ε(ε + 1)σLT cos φ+ εσTT cos 2φ+ h

√
2ε(1− ε)σLT′ sin φ

Separate strong and EM vertex:

With sufficient angular coverage: extract Legendre moments

σα(W, cos θ) =
∑

l
Dl(W)Pl(cos θ)

→ still “easy”

→ typical for CLAS (Hall B @ JLab)
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Available data (photoproduction) example: dσ , Σ
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Phenomenology: extraction of resonance parameters

Ideal case:

1 At given energy E, perform complete/over-complete measurements
at all angles θ, i.e. 8 observables for pseudo-scalar photo-production
dσ , single-pol Σ, T , P , double-pol G, H, E, F

2 Extract amplitudes Fλfλγλi(E, θ)

3 Project out partial-wave amplitudes f[LS]J(E) from Fλfλγλi(E, θ)

4 Extract resonance poles and residues from f[LS]J(E)
• speed-plot method (Höhler)
• time-delay method (Wigner)
• analytic continuation to complex E plane

— dispersion relations
— isobar and/or K-matrix equations
— dynamical scattering equations

× Electro-production: more observables, more multipoles
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Dispersion relations

1 Build Im parts of amplitudes from s-channel resonance contributions
with Breit-Wigner parameterization; include all ****, ***, ** resonances

2 Use fixed-t dispersion relations to find Re parts
There are 18 amplitudes B(+,−,0)

i (s, t, Q2) for γ?N→ Nπ

Re Bi(s, t, Q2) = Born+ 1
π

∫∞
thr

Im Bi(s, t, Q2)
(

1
s′ − s

± 1
s′ −u

)
ds′

Born =

3 Constraint: Fermi-Watson theorem

× Example: P33(1232),M∈ {M3/2
1+ , E3/2

1+ , S3/2
1+ }

Integral equations forM, particular + homogeneous solution
particular sol: magnitude fixed by Born terms
homogeneous sol: shapes fixed by DR, weight fitted to data
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Advantage of dispersion relations

• Im of amplitudes determined mainly by resonance contributions

bg
total

◦ SAID PWA

• Re parts of amplitudes can contain large non-resonant contributions
fixed by DR

× Example: Im parts of amplitudes in P33(1232) region can generate
non-resonant multipoles E(0)

0+ , E(1/2)
0+ , E(3/2)

0+ , S(0)
0+ , S(1/2)

0+ , S(3/2)
0+

— Re parts fixed by DR
— Im parts fixed by Fermi-Watson with phenomenological δ(1/2)

0+ , δ(3/2)
0+
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Unitary Isobar Models, Dynamical Models

All used in the past for N→ ∆, uncertainties ↑↑ beyond ∆

MAID — Mainz unitary isobar model MAID2003 w/o CLAS (2003) data

• effective L, adjustable parameters
• resonances in BW forms
• backgrounds are Born terms, ρ-, ω-exch
• total amplitudes unitarized
• attempt to incorporate all EP data

into “super-global” fits
⇒ Need XS, single-, and double-pol

observables to stabilize fits

DMT — Dubna-Mainz-Taipei dynamical model

• Include πN FSI such that unitarity preserved
• tγπ = tB

γπ + tR
γπ = vγπ g0 tπN

• tπN fitted to πN (SAID), vγπ fitted to γN→ πN

SL — Sato-Lee
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Example result: Q2-dependence of D0

UIM
DR D0(σT + εσL) = σtot/4π

• For Q2 large, P11(1440), S11(1535), D13(1520)
become more dominant w.r.t. P33

• Similar: slow Q2 decrease of D0,1,2(σT + εσL)
⇐ due to slow fall-off of A1/2 of the P11, S11, D13
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Helicity amplitudes for γ∗p→ P11(1440)

MAID 2007 “Super-global” fits, Drechsel++ EPJA 34 (2007) 69
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P11(1440) as a 3q state

Weber PRC 41 (1990) 2783

Capstick, Keister PRD 51 (1995) 3598

Pace, Simula PLB 397 (1997) 13

Aznauryan PRC 76 (2007) 025212

• All LF RQM: sign change of A1/2, magnitude of S1/2

• Solid evidence in favour of P11(1440) as first radial excitation of 3q ground state

• All fail to describe A1/2 at low Q2
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P11(1440) as a q3g hybrid state

Li, Burkert, Li, PRD 46 (1992) 70

• Suppression of S1/2 due to form of γ?q→ qg vertex

• Hybrid q3g picture ruled out
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Helicity amplitudes for γ∗p→ S11(1535)

• First measurement of S1/2 in Nπ

× Hard to extract S1/2 in η electroproduction

• Slow fall-off of A1/2 seen in η production confirmed by π data

• Results for A1/2 from η and π production ≈ agree with βπN = 0.45, βηN = 0.52
(PDG: βπN = 0.35− 0.55, βηN = 0.45− 0.60)
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Helicity amplitudes for γ∗p→ D13(1520)

24



Much harder: p(~e, e′~p)π

dσ
dE′e dΩe dΩ?

p
= σ0

2

[
1+ P · ŝr + h[Ae + P′ · ŝr]

]

xy

z

e

e’

q

scattering plane (lab)

reaction plane (cm)

p

0

t = n x l

l
n = q x p p

dσ
dE′e dΩe dΩ?

p
= Γv

|p?
p |W

KγMp

[
(RT + Rn

TSn)+ 2ε?
L (RL + Rn

L Sn)

+
√

ε?
L (1+ ε)[(RLT + Rn

LTSn) cos φ+ (Rl
LTSl + Rt

LTSt) sin φ ]
+ε [(RTT + Rn

TTSn) cos 2φ+ (Rl
TTSl + Rt

TTSt) sin 2φ ]

+h
√

ε?
L (1− ε)[(R′LT + R′nLTSn) sin φ+ (R′lLTSl + R′tLTSt) cos φ ]

+h
√

1− ε2 [ R′lTTSl + R′tTTSt ]
]
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E91-011 p(~e, e′~p)π0

• Angular distributions of recoil polarization components

• Billinear combinations of transition multipoles (magnitudes and phases)

• Different observables, different billinears

• Q2 = (1.0± 0.2) (GeV/c)2

W = (1.23± 0.02) GeV

• large Q2

⇒ large out-of-plane acceptance

• 14 independent responses
2 Rosenbluth combinations
⇒ multipole analysis up to l = 1

• l ≤ 1 truncation too severe

• M1+ dominance picture inadequate

• 1− (“Roper”) multipoles out of range
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N→ ∆(1232) at Q2 ' 1 JLab/Hall A (E91-011)

Kelly++ PRL 95 (2005) 102001, PRC 75 (2007) 025201
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EMR and CMR in N→ ∆(1232) transition E91-011

Kelly++ PRL 95 (2005) 102001
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N→ ∆(1232) vs. N→ N?(1440)

XS is not the way to go... rates in Roper at least ∼ 10× smaller
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L.C. Smith  JLAB Users Group Meeting  2005

Amplification Through Interference

• Real LT Response 

• Imaginary LT Response
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MAID07 vs. DMT01 (Roper “on”/“off”) p(~e, e′~p)π0

• Different treatment of resonances in isobar models (e.g. MAID)
vs. dynamical models (e.g. DMT) ... “dressed” vs. “bare” vertices

• nice distinctions in all components of ~P
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MAID07 vs. DMT01 (full calculations) p(~e, e′~p)π0

• Tremendous sensitivity to Roper

• CLAS results on P11, S11, D13 great, but lagging behind the ∆(1232) sophistication

• (Too) few measurements of double-polarization observables

32



Outlook: EBAC @ JLab

Goal (2009): “Complete the combined analysis of available single pion, eta and kaon photo-
production data for nucleon resonances and incorporate analysis of two-pion final states
into the coupled-channel analysis of resonances.”
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Wish list: this figure at W = 1440 instead of W = 1232 MeV
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A1 @ MAMI
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Hall A @ Jefferson Lab
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