Λ(1405) and X(3872) as Multiquark Systems Sachiko Takeuchi (Japan College of Social Work)

Contents

• $\Lambda(1405)$ by a (q³-qq̄ + q³) quark model

- What are the difference between the quark model and the chiral unitary model?
- X(3872) by a ($(q\bar{q})^2 + q\bar{q}$) quark model

rch 2006 by C. Amster However However where the second our review QCD suggest or qq-paint color with spin The constituent que mectrum as bound leee our review on e calstence of a low-mase

1 into

1 oscribes

Multi-hadron systems ?

- nuclei, hypernuclei
- mesic nuclei

VESONS

- non qqq baryons
 - meson-baryon systems
 - pentaquarks or $q^3-(q\bar{q})$ systems
- non-qq mesons

• (qq̄)², (qq̄)³, glueball, (qq̄g) systems

extra qq

rch 2006 by C. Amster ual three quarks. In In 2003, the fit The constituent our review QCD suggests or qq-palled color and s quarks. In In 200; The constituent our review QCD suggests or qq-palled color a low-mase of Cee our review on

a into

However

1 scribes

Pentaquarks (q⁴q̄)

Θ⁺, Ξ, …

TESONS

- negative-parity $\Lambda^* \rightarrow \text{This talk}$ S.T. and K Shimizu, P.R. C76, 035204(07)
- (qq)² Mesons
 - $X(3872) \rightarrow This talk$
 - D*₀(2317)[±], D*₁(2460)[±]
 - f₀(600) f₀(980) a₀(980) κ (800) ? Adding $(q\bar{q})$ is important because of the parity Ref. Particle Data Group 17 Sep 2008 @ Bled

// (1405) peak in a q³-qq scattering with a q³ pole

Sachiko Takeuchi (Japan College of Social Work) Kiyotaka Shimizu (Sophia Univ)

Λ(1405)

Models for q⁴q

QCD-SR

Lattice

- How to extract signals from the continuum?
 - parity
 - comparison to the other channels

Λ(1405)

(q⁴q)(0s)⁵ v.s. q³(0s)²0p ?

- Negative parity Baryons' mass from quark models
 - q³ ~ 1600MeV
 - q³+qq
 (940 + 500~600) MeV
 - q⁴q
 ~ (940 + 500~600) MeV + K + V

$$K < 3/2\hbar w_q$$

V < 0

(q⁴q̄)(0s)⁵ v.s. q³(0s)²0p ?

 Flavor-singlet P-wave q³ state ?
 Observed Λ₈-Λ₁ splitting
 Observed large LS splitting Λ(1405)-Λ(1520) —These two facts are difficult to reproduce...

(q⁴q̄)(0s)⁵ V.S. q³(0s)²0p ?

Flavor-singlet P-wave q³ state ? • Observed $\Lambda_8 - \Lambda_1$ splitting Observed large LS splitting -These two facts are difficult to reproduce... S-wave q⁴q state ? • CMI $(\lambda \cdot \lambda)(\sigma \cdot \sigma)$ can be strongly attractive in some states of T=0 $J^{P}=1/2^{-1}$ - but also in T=1 1/2⁻ ····· Light Σ^* ? Hogaasen Sorba NPB145(78)119 17 Sep 2008 @ Bled

$\Lambda(1405)$ is a resonance!

- Treating Λ(1405) as a resonance in the B-M scattering is absolutely necessary.
 - Chiral unitary model
 - Λ(1405) appears as a resonance in the BM scattering. Oset Ramos NPA635(98)99
 - Self energy of meson field
 - Mass of the q³ state reduces considerably.

Arima Matsui Shimizu PRC49(94)2831

17 Sep 2008 @ Bled

$\Lambda(1405)$ is a resonance!

- How to extract signals from the continuum? (in the quark models)
 - solved models
 change model space
 - complex scaling method
 - configuration-restricted models
 quark cluster model Oka Yazaki

Baryon-meson scattering (QCM)

From Schrödinger eq for quarks: $(H_q - E)\phi = 0$ Assuming wave function as $\Psi = A_q \{ \phi_B \phi_M \chi \}$ By integrating the internal modes out we get RGM eq (using real meson mass) $(H - EN)\chi = 0$ 3-channel coupled QCM scattering calc. for m_u≠m_s

No peak is found for $q^4\overline{q}$!!

Provide the mass of Σπ is small → Kinetic term is large → Short range attraction is suppressed.
 No attraction in the NK channel.

No peak is found for $q^4\overline{q}$!!

Provide the mass of Σπ is small → Kinetic term is large → Short range attraction is suppressed.
 No attraction in the NK channel.

Channel dep of VBM (T=0)

Short range part of VBM by the

	Σπ	NK	$\wedge \eta$	ΞK
Σπ	<u>-16</u> 3	116√7 21	1 <u>6√105</u> 105	0
NK		0	<u>28√15</u> 15	0
$\wedge \eta$			<u> 112 </u> 15	- <u>40√70</u> 21
ΞK				<u>-160</u> 21

Table:
Matrix elements,
$$-\langle \lambda.\lambda \sigma.\sigma \rangle$$

 $(\lambda . \lambda \sigma . \sigma)$ model

Channel dep of VBM (T=0)

Short range part of VBM by the

	Σπ	NK	$\wedge \eta$	ΞK	7
Σπ	-5.33	14.61	-1.56	0	
NK		0	7.23	0	
$\wedge \eta$			7.47	-15.94	
ΞK				-7.62	

$$(\lambda . \lambda \sigma . \sigma)$$
 model

Table: Matrix elements, $-\langle \lambda.\lambda \sigma.\sigma \rangle$

With q³-pole …

$$(1405) = \alpha |q^3\rangle + \beta |q^3 - q\bar{q}\rangle$$

Transition potential is:

⟨ q ³ \	/ q ³ -	·qā> =	= \1	$q^{3}(0s)^{2}Op\rangle$ (BM $q^{4}\bar{q}(0s)^{5}$
Λ11	/2-	Σ81	/2-	$\times \langle \lambda \lambda \lambda \lambda \rangle$
Σπ	145	$\wedge \pi$	-32	
NK	-85	Σπ	-51	
$\wedge \eta$	53	NK	60	
(in MeV)		Ση	2	

$q^3-q\overline{q}$ scattering with q^3 -pole

q³-pole at $\Sigma\pi$ + 160MeV (~1490 MeV) gives a resonance at ~1405MeV!

wave functions at resonance

Contribution of the q³-pole is large. $|\psi|^2$ NK : q³ = 1 : 2.8

Can this be observed...?

Scattering Observables

- mixing of Σπ and NK is strong at the threshold.
- NK scattering length : -0.75+i 0.38 fm

Exp. (-1.70±0.07) + *i*(0.68±0.04) Martin NPB179(81)33

Summary

- A(1405) resonance can be described by
 a ($|q^3\rangle + |q^3-q\bar{q}\rangle$) system.
 - Interaction for $|q^3-q\bar{q}(\Sigma\pi)\rangle$ is attractive, but not for $|q^3-q\bar{q}(NK)\rangle$.
 - Kinetic energy suppress the short-range attraction of $|q^3-q\bar{q}(\Sigma\pi)\rangle$.
 - Without the mixing of $|q^3\rangle$, no peak appears.
 - With the mixing of |q³>, Λ(1405)-like peak appears!

Quark model v.s. Chiral unitary model

Quark model can reproduce the peak, but so does the chiral unitary model.

Quark model:

 quarks, no attraction between NKbar, nonrelativistic, q³ pole

Chiral Unitary model:

 no internal structure, large attraction between NKbar, semi-relativistic, no q³ pole

Channel dep of VBM (T=0)

- **Short range part of VBM**
 - Difference is found in the NK diagonal part.
 - $-\langle \lambda . \lambda \sigma . \sigma \rangle$
 - No NK diagonal attraction : need something to make a peak just below the NK threshold.

 $\langle \mathsf{F}.\mathsf{F} \rangle$

 NK diagonal attraction makes a peak just below the NK threshold.

Channel dep of VBM (T=0)

Short range part of VBM by the

	Σπ	NK	$\wedge \eta$	ΞK
Σπ	-8	√6	0	-√6
NK		-6	3√2	0
$\wedge \eta$			0	-3√2
ΞK				-6

(F.F) model (WT-term)

Table: Matrix elements, $\langle F.F \rangle$

Simplified model - kinematics

Simplified model - int

separable int with gaussian cut-off
strength is the same as Oset-Ramos.
two types of channel dependence:
- (λ.λ σ.σ) (F.F)

	Σ	π	NK	$\wedge \eta$		Σπ	NK	$\wedge \eta$
Σπ	-5.	33	14.61	-1.56	Σπ	-8	2.45	0
NK			0	7.23	NK		-6	4.24
Λη	Cancelled by the kinetic energy part in the propergator							

(a) Blec

The situation is...

To understand the situation, we perform simplified baryon meson scattering problems such as

- scattering of baryon and meson without internal structure.
- semi-relativistic kinematics
- interaction is F.F like or $\lambda\lambda\sigma\sigma$ -like and separable.
- a 'q³-pole' couples to the continuum.

Simplified model - q³ pole

Flavor singlet transition for FF model

$$|1_{BM}\rangle = \sqrt{\frac{3}{8}}|\Sigma\pi\rangle - \frac{1}{2}|N\bar{K}\rangle + \sqrt{\frac{1}{8}}|\Lambda\eta\rangle + \frac{1}{2}|\XiK\rangle$$

$$(1/2^{-})$$

$$i\sigma \cdot (k+\alpha p)$$
Matrix element
$$(B'1/2^{-}|O|B1/2^{+}M)$$
baryon meson
$$(1/2^{+}) \quad (0^{-})$$

$$(bk)^{2}/6]$$

Chiral-Unitary-like

• semi-rela, $\langle F.F \rangle$, no pole, energy-dep

Chiral-Unitary-like

• semi-rela, $\langle F.F \rangle$, no pole, energy-dep

color-magnetic-like

• nonrela, $-\langle \lambda . \lambda \sigma . \sigma \rangle$, with pole (1-coupling)

• semirela, $-\langle \lambda . \lambda \sigma . \sigma \rangle$, with pole (1-coupling)

Quark model v.s. Chiral unitary model

- To have an internal structure is not important to obtain $\Lambda(1405)$ peak.
- Kinematics is not important.
- For the color-magnetic-like potential, one needs 'q³-pole'.
- For FF-type potential, one may not need the 'q³pole'. but the NKbar scattering length seems to become better.
- The width of the peak is affected largely by the coupling of 'q³-pole'.

... and Outlook

- Other Baryon resonances ?
- Production and decay process ?
- More (qq̄)-rich states ?

X(3872): ($q\overline{q}$)-($c\overline{c}$) ($c\overline{q}$)-($q\overline{c}$) molecule

Sachiko Takeuchi (Japan College of Social Work) V.E. Lyubovitskij, Th. Gutsche, Amand Faessler (Institut für Theoretishe Physik, Univ Tübingen)

Multiquark exotic systems

Multiquark exotic systems non qqq baryons meson-baryon systems (Pentaquarks) • Θ^+, Ξ, \cdots • negative-parity Λ (q³-q \bar{q} + q³) non-qq mesons • (qq̄)² systems Barnea et al scalar mesons < 1GeV</p> qQqQQ, qsqQ, systems

Multiquark exotic systems

Multiquark exotic systems non qqq baryons meson-baryon systems (Pentaquarks) • Θ^+, Ξ, \cdots • negative-parity Λ (q³-q \bar{q} + q³) non-qq mesons • (qq̄)² systems Barnea et al scalar mesons < 1GeV</p> qQqQQ, qsqQ, systems

Non qq meson candidates

(qq)² Mesons?

- $\mathbf{qc}\overline{\mathbf{qc}}$? Refs. Particle Data Group W.-M. Yao et al., J of Phys., G 33(2006)1
 - X(3872), Y's, Z(4430)[±]
- qsąc?
 D*0(2317)*, D*1(2460)*,
 D*1(2536)*, D*2(2573)*
- qsqs or K+K-?
 ao(980), fo(980), X(1576)

Hamiltonian for quarks

• H = Nonrela Kin + linear Conf + OGE + Ins + π , σ exch • OGE

Hamiltonian for quarks

H = Nonrela Kin + linear Conf + OGE + Ins + π, σ exch q(qq)→q, q(qq)→qq transfer interaction

$$V_{i;j\overline{k}} = \lambda_i \cdot \lambda_{\overline{k}j} \frac{\alpha_s}{4} \frac{\pi}{m_a^2} \left[\left(\frac{k}{2m_a} - \frac{p_i + p'_i + i\sigma_i \times k}{2m_i} \right) \cdot \sigma_{\overline{k}j} \right] \delta_{\overline{k}j}^f$$

• consider only btw (Os)⁴ and (Op) $V_{tr} = |(q\bar{q})^2(Os)^4\rangle V_{OGE} \langle q^2(Op)|$

Ins (affects only light quark pairs.)

Estimate by (Os)⁴

Effects of the interaction on $q\bar{q}$ pairs Rough sizes are obtained from N Δ , and $\eta' - \eta$ mass differences.

Color	Spin	Flavor	CMI	OgE-a	Ins	E[MeV]	States
1	0	1	-16	0	12	84	η ι
1	0	8	-16	0	-6	-327	π η_8
1	1	1	16/3	0	0	63	ω
1	1	8	16/3	0	0	63	ρ
8	0	1	2	0	3/4	41	
8	0	8	2	0	-3/8	15	
8	1	1	-2/3	9/2	9/4	97	
8	1	8	-2/3	0	-9/8	-34	In J ^{PC} = 0 ⁺⁺ , 1 ⁺⁻ ,1 ⁺⁺ , 2 ⁺⁺

Estimate by (Os)⁴

Effects of the interaction on $q\bar{q}$ pairs Rough sizes are obtained from N Δ , and $\eta' - \eta$ mass differences.

Color	Spin	Flavor	CMI	OgE-a	Ins	E[MeV]	States
1	0	1	-16	0	12	84	η 1
1	0	8	-16	0	-6	-327	π η_8
1	1	1	16/3	0	0	63	ω
1	1	8	16/3	0	0	63	ρ
8	0	1	2	0	3/4	41	
8	0	8	2	0	-3/8	15	
8	1	1	-2/3	9/2	9/4	97	
8	1	8	-2/3	0	-9/8	-34	$\ln J^{PC} = 0^{++}, \\ 1^{+-}, 1^{++}, 2^{++}$

Estimate by (Os)⁴

Difference between the flavor singlet and octet pairs comes from annihilating diagrams.

Not yet obtained from Lattice or QCDSR.

Color	Spin	Flavor	CMI	OgE-a	Ins	E[MeV]	State
8	٦	1	-2/3	9/2	9/4	97	
8	1	8	-2/3	0	-9/8	-34	In J ^{PC} = 0 ⁺⁺ , 1 ⁺⁻ ,1 ⁺⁺ , 2 ⁺⁺

X(3872) facts

• X(3872)

- $M(X) = 3871.4 \pm 0.6 \text{ MeV}$
- Γ < 2.3 MeV
- IG(JPC)=0?(1++) I=0 as No X-
- found in $B^{\pm} \rightarrow K^{\pm}X$, $p\bar{p} \rightarrow X$
- decay mode $X \rightarrow J/\psi \pi \pi$, $J/\psi \pi \pi \pi$, $J/\psi \gamma$
- $\Gamma(X \rightarrow J/\psi \gamma)/\Gamma(X \rightarrow J/\psi \pi^2) = 0.14 \pm 0.05$

X

X(3872) facts

X(3872) Threshold • $J/\psi \omega = 3879.5 MeV$ <mark>D[±]D*</mark>∓ = 3879.1MeV • $J/\psi \rho = 3872.7 MeV$ D⁰D^{*0} = 3871.3MeV isospin violated.

uū rather than I=0,1?

$$\begin{array}{c} & D_{s}^{\pm}D_{s}^{\mp} & 64.7 \text{MeV} \\ & & D^{\pm}D^{\mp}* & J/\psi \ \omega & 8 \text{MeV} \\ & & X & D^{*0}\overline{D}^{0} & J/\psi \ \rho \\ & & & D\overline{D} & -138 \text{MeV} \end{array}$$

Non $q\bar{q}$ meson candidates?

(qq)² Mesons? • qcqc? X(3872) qsąc? D*2(2573)* D*1(2536)* D*1(2460)* D*0(2317)*

Realistic Calc. - qqcc

Stochastic variational approach

 $\Psi = \sum c_{k,m} \psi_m^c \psi^f \psi^\sigma \psi_k^{orb}$ $\psi_m^c = (\psi^c(1)\psi^c(3))(\psi^c(2)\psi^c(4)), \quad (\psi^c(1)\lambda^a\psi^c(3))(\psi^c(2)\lambda^a\psi^c(4))$ $\psi^f = u(1)c(2)\overline{d}(3)\overline{c}(4), \frac{1}{\sqrt{2}}\{u(1)\overline{u}(3) + d(1)\overline{d}(3)\}c(2)\overline{c}(4)$

$$\psi^{orb} = \sum_{k} c_k \exp\left[-\sum_{i < j} \beta_{ij}^{(k)} r_{ij}^2\right]$$
$$\psi^{\sigma} = |(11)1\rangle \quad (X: J/\psi, \rho)$$

$$\psi^{f} = u(1)s(2)\overline{d}(3)\overline{c}(4), \frac{1}{\sqrt{2}} \{u(1)\overline{u}(3) + d(1)\overline{d}(3)\} s(2)\overline{c}(4)$$

$$\psi^{\sigma} = |(00)J\rangle, |(11)J\rangle \quad (D_{sJ}: KD \text{ and } K^{*}D^{*})$$

Binding Energy: X (only qcq̄c̄ compo)

IJPC	weaker meson-exch	stronger meson-exch		
ll++ (J/ψρ)	5 MeV	26 MeV		
01++ $(J/\psi \omega)$	Not Bound	5 MeV		

Density distri & rms

δ (R_{mm}'-X)>

 $\sqrt{\langle \delta(R_{mm'}-X) r_{ij}^2 \rangle}$

()

0

3

2

R [fm]

3

2

R [fm]

0.0

X

Density distri & rms

$$\sqrt{\langle \delta(R_{mm'}-X) r_{ij}^2 \rangle}$$

Effects of multiquark

When only correlations between uū & cc or uc & cu are included, what happens?

No correlations among more than 3quarks \rightarrow two-meson-like configuration

Effects of multiquark

Binding Energy

IJPC	weaker meson-exch	stronger meson-exch	J/ψρ DD*
11++ (J/ψρ)	5 MeV	26 MeV	0.33 0.85
O−○ config	Not Bound	9 MeV	0.26 0.89

17 MeV difference: effects from correlations among more than 3quarks

Realistic Calc. $q\bar{q}c\bar{c}+c\bar{c}$

- Binding Energy: X (qcq̄c̄ + cc̄)
 - I=0 becomes comparable to I=1 !

IJPC	stronger meson-exch			
$01^{++} (J/\psi \omega)$	5 MeV			
01++ (J/ψ ω) +q² pole at 3950 MeV	20MeV more bound (pole amp 0.1)			

Godfrey et.al. calc by $(S\overline{C})$

Summary for X(3872)

X(3872) : can be explained as a shallow bound state just below the DD* threshold.

I=0 state has a repulsion from the OGE annihilation diagram and attraction from the $c\bar{c}$ coupling. So, it seems I=0 ~ I=1.

ambiguity: int. strength, size of cc, Epole

$m_u \neq m_d$

The threshold difference between D⁰D*⁰ and D+D*- enhances the uu component of X.

estimate by a toy model

	Ho	0	V	V		uccu conti
H =	0	$H_0+2\Delta m_q$	-v	V	$\psi =$	dccd conti
	V	-V	E _{I=0}	0		I=0
	V	V	0	E _{I=1}		I=1

$m_u \neq m_d$

m_u ≠ m_d (resonance 1.2MeV above threshold)

$$\begin{array}{cccc} X & X & S(E) \\ I = 0 & 0.7 & I = 0 \\ I = 1 & 0.3 & I = 1 \end{array}$$

The threshold difference between D⁰D*0 and D+D*- mixes I=1 and 0 $\rightarrow J/\psi \pi^2$ and $J/\psi \pi^3$?

More $q\bar{q}$ meson candidates

 $(q\bar{q})^2$ Mesons? 2.8 qsąc? D*2(2573)* 2.4D*1(2536)* D*1(2460)* ••••• (]⁻) ••••• ()⁻ Exp Calc D*0(2317)* 2.0 lighter than Ref. Godfrey et.al. calc by $(S\overline{C})$ sc p-wave mass by 160 or 90 MeV.
More $q\bar{q}$ meson candidates

17 Sep 2008 @ Bled

J=0 D*(2317)*

- qsqc couples to D-K, D*-K*, η -Ds, ω -Ds*
 - Without a pole, attractive but No bound.
 - Adding a sc pole at 2480MeV makes the state bound by 3MeV (pole amp 0.03).
 - but should be <u>40 to 50 MeV more bound</u>.

J=0 D*(2317)*

- qsqc couples to D-K, D*-K*, η -Ds, ω -Ds*
 - Without a pole, attractive but No bound.
 - Adding a sc pole at 2480MeV makes the state bound by 3MeV (pole amp 0.03).
 - but should be 40 to 50 MeV more bound.

Outlook

Tetraquark systems may exist.

- A shallow bound state is a two-meson molecule with a multiquark componet at the center, which gives an attraction for the binding. → X(3872)
- To describe a deeply bound state (~40MeV), an extra attraction or some other mechanism is necessary.