
BLEJSKE DELAVNICE IZ FIZIKE LETNIK 2, ŠT. 1
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Preface

The series of mini-workshops at Bled, which started in 1987 with the workshop

onMesonic Degrees of Freedom in Hadrons, has established its own character of
friendly but productive confrontation of ideas, such that we intend to organize

similar workshops every year.

It is now for the seventh time that a small group of enthusiastsmet in this renowned

holiday resort to clarify several open problems of common interest. The topics of

this meeting ranged from few-quark problems, schematic models for hadronic
and nuclear physics, effective interactions between constituent quarks, baryon-

baryon and meson-meson effective interaction, semirelativistic few-body calcu-

lations, accurate few-body calculations, and quasilinearization method. The par-
ticipants enjoyed a focused, intense discussion and critical confrontation of their

results and ideas in a friendly atmosphere. Every participant had up to one hour
time for his exposition which could be interrupted by questions and remarks,

plus half an hour of general discussion. The advantage of such mini-workshops

is the ease with which the participants sincerely acknowledge not only the suc-
cesses, but also the weak points and open problems in their research.

The rather diverse set of topics covered by a relatively small group of people did
not, as one would perhaps expect, cause a breakup into smaller groups. On the

contrary, the spirit of interdisciplinarity was abundant, criticism was relaxed and

direct, and old friends retraced their paths through physics.

Themini-workshop took place in Villa Plemelj, bequeathed to the Society ofMath-

ematicians, Physicists and Astronomers by the renowned Slovenia mathemati-
cian Josip Plemelj. The beautiful environment of Lake Bled helped a lot to the

cheerful atmosphere and optimism in the presentations; and the occasional in-
clement weather contributed to the patience for long afternoon discussions.

Ljubljana, December 2001 M. Rosina
R. Krivec
B. Golli



Workshops organized at Bled

⊲ What Comes beyond the StandardModel (June 29–July 9, 1998)
⊲ Hadrons as Solitons (July 6-17, 1999)

⊲ What Comes beyond the StandardModel (July 22–31, 1999)
⊲ Few-Quark Problems (July 8-15, 2000)

⊲ What Comes beyond the StandardModel (July 17–31, 2000)

⊲ Statistical Mechanics of Complex Systems (August 27–September 2, 2000)
⊲ What Comes beyond the StandardModel (July 17–27, 2001)

⊲ Studies of Elementary Steps of Radical Reactions in Atmospheric Chemistry
(August 25–28, 2001)
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Effective interaction for the hyperspherical

formalism⋆

Nir Barneaa⋆⋆, Winfried Leidemannb,c and Giuseppina Orlandinib,c

a The Racah Institute of Physics, The Hebrew University, 91904, Jerusalem, Israel
b Dipartimento di Fisica, Università di Trento, I-38050 Povo, Italy
c Istituto Nazionale di Fisica Nucleare, Gruppo collegato di Trento

Abstract. The effective interaction method, traditionally used in the framework of an har-

monic oscillator basis, is generalized to the hyperspherical formalism. It is shown that

with the present method one obtains an enormous improvement of the convergence of the

hyperspherical harmonics series in calculating ground state properties, excitation energies

and transitions to continuum states.

In general we would like to use the hyperspherical harmonics (HH) basis func-
tions to solve the A–body Hamiltonian

H =

A∑

i=1

p 2
i

2m
+

A∑

i<j

Vij , (1)

wherem is the nucleonmass and Vij is the NN interaction. In practice, looking for

the eigenvectors of H in terms of the HH expansion turns out to be a notoriously
difficult task. Therefore, one usually has to introduce correlation functions in or-

der to accelerate the convergence of the calculation [1–4]. In this work, however,
we shall explore another possibility and instead of using correlation functions we

shall use the method of effective interactions [5]. This approach is largely used

in shell–model calculations [6,7], where the harmonic oscillator basis is used in a
truncated model space. Instead of the bare NN interaction one uses effective in-

teractions inside the model space. Defining P as the projection operator onto the
model space and Q = 1− P as the projection onto the complementary space, the

model space Hamiltonian can be written as

HP = P

[
A∑

i=1

p 2
i

2m

]
P + P




A∑

i<j

Vij




eff

P . (2)

In general the effective interaction appearing in Eq. (2) is anA–body interaction. If
it is determined without any approximation, then the model–space Hamiltonian

provides a set of eigenvalues which coincide with a subset of the eigenvalues

⋆ Talk delivered by Nir Barnea.
⋆⋆ E-mail: nir@vms.huji.ac.il



2 Nir Barnea, Winfried Leidemann and Giuseppina Orlandini

of the original full–space Hamiltonian, Eq. (1). However, calculation of the exact
A–body effective interaction is as difficult as finding the full–space solution. It is

therefore customary to approximate Veff by a sum of two–body effective interac-

tions determined from a 2–body problem.
In the effective interaction hyperspherical harmonic (EIHH) approach [9]

the division of the total HH space in P and Q spaces is realized via the HH quan-

tum number K (P(Q) space: K ≤ (>)Kmax). The total Hamiltonian is written in
hyperspherical coordinates,

H =
1

2m

(
−∆ρ +

K̂2

ρ2

)
+

∑

i<j

Vij , (3)

where ρ is the hyperradius and∆ρ contains derivativeswith respect to ρ only. The

grand-angular momentum operator K̂2 is a function of the variables of particles

A and (A − 1) and of K̂A−2 the grand angular momentum operator of the (A −

2) residual system [8]. Then from the total Hamiltonian one can extract a “two-

body” Hamiltonian of particles A and (A − 1)

H2(ρ) =
1

2m

K̂2

ρ2
+ VA(A−1) , (4)

which, however, contains the hyperspherical part of the total kinetic energy. Since

the HH functions of the (A − 2) system are eigenfunctions of K̂2
A−2 one has an

explicit dependence of H2 on the quantum number KA−2 of the residual system,

i.e. H2 → H
KA−2

2 . Applying the hermitian version of the Lee-Suzuki method [5]

to H2 one gets an effective Hamiltonian H2eff. The effective interaction Veff is
obtained from

V
KA−2

eff (ρ) = H
KA−2

2eff (ρ) −
1

2m

K̂2

ρ2
(5)

This Veff replaces Vij in Eq. (3) when we project the solution on the P-space.

This effective potential has the following property: Veff → Vij for P → 1. Due
to the “effectiveness” of the operator the solution of the Schrödinger equation

converges faster to the true one. The HH formulation leads to various advan-
tages: (i) Veff itself is ρ dependent, therefore it contains some information on

the “medium”, (ii) because of the above mentioned KA−2 dependence the (A-2)

residual system is not a pure spectator, and (iii) an additional confining potential
is not needed, since the presence of ρ in Eq. (4) automatically confines the two-

body system to the range 0 ≤ rA−(A−1) <
√
2ρ. We would like to point out that

Veff(Kmax) can be viewed as a kind of momentum expansion, since the short
range resolution is increased with growing Kmax. The convergence for the calcu-

lation of mean values can be improved introducing the corresponding effective
operators. Of course for the calculation of the mean value of the Hamiltonian, i.

e. Eb, one already makes use of an effective operator, namely HKA−2

2eff .

To this end let us present a simple example for the rate of convergence of
the HH series with the effective interaction for ground state energy, and rms mat-

ter radii. In Fig. 1 we illustrate the convergence patterns with bare and effective
interactions for binding energy and radius of 4He with the MTV potential. It is
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Fig. 1. Binding energy (a) and root mean square radius (b) of the A=4 system for the

Malfliet–Tjon potential MTV as a function of the hyperangular quantum number K. The

asymptotic value has been indicated by a dashed line.

readily seen that the effective interaction improves the convergence drastically.
For the effective interaction one nearly obtains the correct values for energy and

radius with a rather low K of 4. The convergence with the bare interaction is con-
siderably worse since even with K = 20 one does not have completely converged

results.

Summing up, in this talk we have presented the recently developed hyper-
spherical effective interaction method. In this approach the two-body effective

interaction depends on the A-body hyperradius and on the state of the A-2 rest
system explicitly. The EIHH method has been so far applied to few–body nuclei

in the mass range A = 3 ÷ 6, interacting through central and noncentral poten-

tial models including the realistic NN force AV14. Our results for these systems
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show that the method leads to an excellent convergence of the hyperspherical
expansion.
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Do we see the chiral symmetry restoration in baryon

spectrum?

L. Ya. Glozman⋆

Institute for Theoretical Physics, University of Graz, Universitätsplatz 5, A-8010 Graz,

Austria

One feature of QCD that is well understood is that the theory possess an ap-

proximate SU(2)L × SU(2)R symmetry and that this symmetry is spontaneously
broken. As a consequence the properties of the low-lying hadrons are strongly

affected by spontaneous breaking of chiral symmetry (SBCS). One striking fea-
ture of hadronic physics is the appearance of parity doublets for highly excited

baryons (baryons with a mass of ∼ 2 GeV and above). Recently it has been sug-

gested that these parity doublets can be explained by an effective restoration of
chiral symmetry for these highly excited states [1].

One of the experimentally established concepts, the quark-hadron duality,
states that the experimentally observed spectral density ρ(s) at s → ∞ is dual

to the contribution of the free quark loop plus perturbative corrections (e.g. in

e+e− → hadrons; in this case the ”asymptotic” regime sets up at s ∼ 2− 3 GeV).
However in perturbation theory there is no SBCS. Thus one sees immediately that

SU(2)L × SU(2)R symmetry must be manifest in the spectrum at asymptotically
high mass. Assuming that the process of chiral restoration is smooth (once one

goes up in excitation energy from the ground state), as it indeed follows from the

operator product expansion, one can understand the appearance of the system-
atical parity doublets in the upper part of baryon spectrum as a manifestation

of chiral symmetry restoration [2]. One of the immediate implications is that the
concept of constituent quarks, which may be adequate in the SBCS regime, be-

comes irrelevant high in the spectrum [1].

Effective chiral restoration implies that the physical baryon states high in
the spectrum fall into multiplets of SU(2)L × SU(2)R. Constraint of parity con-

servation implies that such multiplets must be a direct sum of two irreducible
representations: (1/2, 0) ⊕ (0, 1/2), (3/2, 0) ⊕ (0, 3/2) and (1/2, 1) ⊕ (1, 1/2). The

preceding representations are the only ones which contain no states with isospin

greater than 3/2. Such I > 3/2 baryon states have never been observed. If the first
two cases were realized in nature, then the spectra of highly excited nucleons and

deltas would consist of parity doublets. However, the energy of the parity dou-

blet in the nucleon spectrum a-priori would not coincide with the energy of the
doublet with the same spin in the delta spectrum. This is because these doublets

⋆ E-mail: leonid.glozman@uni-graz.at
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would belong to different representations of SU(2)L×SU(2)R. On the other hand,
if (1/2, 1)⊕(1, 1/2) were realized, then the highly lying states inN and∆ spectrum

would consists of multiplets that contain one N parity doublet and one ∆ parity

doublet with the same spin and are degenerate in mass. We show that available
spectroscopic data for nonstrange baryons in the ∼ 2 GeV region is consistent

with excited baryons approximately falling into (1/2, 1) ⊕ (1, 1/2) representation

of SU(2)L ×SU(2)R with approximate degeneracy between positive and negative
parityN and ∆ resonances of the same spin.

References
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Coupled channel formulation of decays in the point

form Goldstone boson exchange model ⋆

W. Klinka⋆⋆, S. Boffib, L. Glozmanc, W. Plessasc, M. Radicib, and R.
Wagenbrunnc

a University of Iowa, Iowa City, Iowa, USA
b University of Pavia, Pavia, Italy
c Institute for Theoretical Physics, Graz, Austria

In the Goldstone Boson Exchange (GBE) model [1] the hyperfine interaction is
generated by a constituent quark-meson vertex. Combined with a ”semi relativis-

tic” kinetic energy and linear confinement, eigenvectors of the three quark Hamil-
tonian have been calculated [2]; the eigenvalues give a good fit for the low-lying

nucleon and strange baryon spectrum. But the spectrum is a point spectrum, so

that excited states have no widths; it is desirable to augment the GBE model to
include strong and electromagnetic decays.

The GBE Hamiltonian can be reinterpreted as a mass operator in point form
relativistic quantummechanics [3]. The goal of this note is to show how the mass

operator on the three quark space can be enlarged to a mass operator on the direct

sum of a three quark plus three quark and meson space, with transitions (off
diagonal mass operator) between the two spaces produced by the original quark-

meson vertex.
To show how the matrix mass operator is constructed it will prove useful to

review some features of the point form. Recall that in the point form of relativistic

quantum mechanics all interactions are in the four-momentum operator, which
must satisfy the point form equations:

[Pµ, Pν] = 0 (1)

UΛPµU
−1
Λ = (Λ−1)ν

µPν , (2)

whereUΛ is a unitary operator representing the Lorentz transformationΛ. These

equations are simply the Poincaré commutations relations with global rather than
infinitesimal Lorentz generators. The mass operator is given byM =

√
P · P and

must have a spectrum that is bounded from below.

Multiparticle states such as the three quark states do not have nice transfor-
mation properties under Lorentz transformations; in particular the Wigner rota-

tion of each particle is different, so that the spins and orbital angular momentum
cannot be coupled together. Velocity states are multiparticle states in their overall

⋆ Talk delivered by W. Klink.
⋆⋆ E-mail: william-klink@uiowa.edu
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center of momentum, boosted by a four-velocity v:

|v,ki, µi >: = UB(v)(|k1, µ1 > ...|kn, µn >) (3)

=
∑

(|p1, σ1 > ...|pn, σn >)πDj
σi,µi

(RWi
), (4)

where pi = B(v)ki,
∑

ki = 0, and RWi
= B−1(pi/m)B(v)B(ki/m). Under Lorentz

transformations, using the definition, Eq.3, velocity states transform as

UΛ|v,ki, µi > = |Λv, RWki, µ
′

i > πD
j

µ
′

i
,µi

(RW); (5)

that is, the Wigner rotation RW = B−1(Λv)ΛB(v) is the same in all the arguments

of the D functions, and is the same Wigner rotation multiplying all the internal

momentum vectors, ki. That means all the spins as well as orbital angular mo-
menta can be coupled together exactly as is done nonrelativistically [4]. From the

relation between external and internal momenta, it also follows that

Mfree|v,ki, µi > =
∑√

m2
i + ki

2|v,ki, µi > (6)

Vµ|v,ki, µi > = vµ|v,ki, µi >, (7)

whereMfree is the free mass operator, and Vµ is the free four-velocity operator.

Then the free four-momentum operator isMfreeVµ and it is the free mass opera-

tor that is perturbed to introduce dynamics in the relativistic system.
This so-called Bakamjian-Thomas procedure [5] is implemented in the point

form by writing Pµ = MVµ, where nowM is the sum of free and interacting mass
operators, M = Mfree + MI. M takes the place of the Hamiltonian in nonrela-

tivistic quantum mechanics and it is not hard to show that ifM commutes with

the four-velocity operator the point form Eq.1 is satisfied, while ifM commutes
with Lorentz transformations, the point form Eq.2 is satisfies.

Consider now a mass operator on the direct sum space of the form

M =

[
M3Q V†

V M3Q−M

]
(8)

whereM3Q = Mfr +Mconf but does not include the hyperfine interaction. V is
the mass operator generated by the meson-quark vertex [6],

< v,ki, µi|V |v,k
′

i
, µ

′

i > = < v,ki, µi|LI(0)|v,k
′

i
, µ

′

i > f(∆m) (9)

where ∆m is m − m
′

and m (respectively m
′

) is the mass of the velocity state,

as given in Eq.6. The interaction Lagrangian couples the quark to the meson and
f(∆m) is a form factor which is determined by the hyperfine potential.

Then the GBE mass operator can be written asMGBE = M3Q + VMπ
−1V†

where the last term gives the hyperfine mass operator.Mπ is the meson propaga-

tor whileM3Q−M =

√
M2

GBE + k2 +
√
m2

π + k2.

The goal now is to reduce the coupled channel problem to one involving
only the 3Q space, such thatMGBE has another term added to it which accounts
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for the decays of the excited states:

M|Ψ > = m|Ψ > (10)

M3Q|Ψ3Q > +V†|Ψ3Q−M > = m|Ψ3Q >

V |Ψ3Q > +M3Q−M|Ψ3Q−M > = m|Ψ3Q−M >

|Ψ3Q−M > =
1

m −M3Q−M

V |Ψ3Q >

(M3Q + V† 1

m−M3Q−M

V)|Ψ3Q > = m|Ψ3Q > (11)

(MGBE + V†(
1

m −M3Q−M

−
1

Mπ

)V)|Ψ3Q > = m|Ψ3Q > (12)

The new term added on toMGBE represents the effect of the coupled channel; it

contains the difference between the propagator from the four-particle space and

the meson propagator. Since this last term is a difference between two operators,
it is hopefully a small correction to the dominant term. If that is the case it should

be possible to use perturbation theory to calculate the level shifts and widths of
the excited states, whichwould then be small corrections to the levels given by the

GBEmass operator itself. On the other hand if the correction is large, perturbation

theory cannot be used. But then also the good fits to experimental data obtained
by just the GBE mass operator will be significantly modified by adding on the

new term so that it is no longer clear that any improvement results.
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Quasilinearization method and its application to

physical problems ⋆

V. B. Mandelzweiga⋆⋆ and R. Krivecb

a Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel
b J. Stefan Institute, P.O. Box 3000, 1001 Ljubljana, Slovenia

The general properties of the quasilinearization method [1–3], particularly its fast

convergence, monotonicity and numerical stability are analyzed and illustrated
on different physical problems. The method approximates a solution of a nonlin-

ear differential equation by treating nonlinear terms as a perturbation about lin-

ear ones, and is not based, unlike perturbation theories, on the existence of some
kind of a small parameter. Each approximation of the method sums many orders

of the perturbation theory. The method provides accurate and stable answers for
any coupling strengths, including for super singular potentials for which each

term of the perturbation theory diverges and the perturbation expansion does

not exist even for a very small couplings.
In order to further analyze and highlight the power and features of the quasi-

linearization method (QLM), we have made [2] numerical computations on the
nonlinear ordinary first order differential equations for the S-wave scattering

length a0 = a(∞) and phase shifts δ0, respectively, obtained in the variable phase

approach [4]. We have considered different singular and nonsingular, attractive
and repulsive potentials, namely Yukawa, Pöschl-Teller and Newton potentials,

and have compared the results obtained by the quasilinearization method with
the exact solutions.

It is shown also [3] that the quasilinearization method gives excellent results

when applied to different nonlinear ordinary differential equations in physics,
such as the Blasius, Duffing, Lane-Emden and Thomas-Fermi equations. The first

few quasilinear iterations already provide extremely accurate and numerically
stable answers.

Our conclusions can be formulated as follows:

i) The QLM treats the nonlinear terms as a perturbation about the linear ones
[1] and is not based, unlike perturbation theories, on the existence of some

kind of small parameter. As a result, as we see on our examples, it is able to

handle, unlike the perturbation theory, large values of the coupling constant.
ii) The method provides very accurate and numerically stable and fast conver-

gent answers for any values of the coupling constant giving the accuracy of

⋆ Talk delivered by V. B. Mandelzweig.
⋆⋆ E-mail: victor@phys.huji.ac.il
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at least five significant figures required in this work. Already the first few
iterations provide precise answers for small and intermediate values of the

coupling constant. The number of iterations necessary to reach a given preci-

sion only moderately increases for larger values of the coupling constants.
iii) The method provides very accurate and numerically stable answers also for

any potential strength in the case of super singular potentials for which each

term of the perturbation theory is infinite and the perturbation treatment is
not possible even for a very small coupling.

In view of all this, since most equations of physics, from classical mechanics
to quantum field theory, are either not linear or could be transformed to a non-

linear form, the quasilinearization method may turn out to be extremely useful

and in many cases more advantageous than the perturbation theory or its differ-
ent modifications, like expansion in inverse powers of the coupling constant, the

1/N expansion, etc.
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Abstract. The effective interaction between a quark and an anti-quark as obtained pre-

viously with by the method of iterated resolvents is replaced by the so called up-down-

model and applied to flavor off-diagonal mesons including the pion. The only free param-

eters are those of canonical quantum chromo-dynamics (QCD), particularly the coupling

constant and the masses of the quarks.

The so obtained light-cone wave function can be used to calculate the pion’s form

factor, particularly its mean-square radius can be computed analytically. The results allow

for the exciting conclusion that the pion is built by highly relativistic constituents, in strong

contrast to composite systems like atoms or nuclei with non-relativistic constituents.

1 Introduction

One of the most urgent problems in contemporary physics is to compute the

structure of hadrons in terms of their constituents, based on a covariant theory
such as QCD.

Among the hadrons the pion is the most mysterious particle. I have pro-

posed an oversimplified model, the ↑↓-model, which has many drawbacks but
the virtue of being inspired by QCD and of having the same number of param-

eters one expects in a full theory: namely the 6 flavor quark masses, the strong
coupling constant (7) and one additional scale parameter (8) originating in the

murky depth of renormalization theory.

The model is QCD-inspired by virtue of the fact, that it is based on the full
light-cone Hamiltonian as obtained from the QCD-Lagrangian in the light-cone

gauge, with zero-modes disregarded. In consequence, the pion is treated on the

same footing as all other pseudo-scalar and pseudo-vector mesons.
The model should be contrasted to Lattice Gauge Calculations, see for ex-

ample [1]. It is not generally known that LGC’s have considerable uncertainty
to extrapolate their results down to such light mesons as a pion. It is also not

generally known that lattice gauge calculations get always strict and linear confine-

ment even for QED, where we know the ionization threshold. The ‘breaking of
the string’, or in a more physical language, the ionization threshold is one of the

hot topics at the lattice conferences [2]. Moreover, in order to get the size of the
pion, thus the form factor, another generation of computers is required, as well

as physicists to run them.

⋆ E-mail: pauli@mpi-hd.mpg.de
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The model should be contrasted also to phenomenological approaches. They
usually do not address to get the pion. For the heavy mesons, as well for light

baryons [3], where they are so successful, phenomenological model have quite

many parameters, in any case more that the above canonical ones. A detailed
comparison and systematic discussion of the bulky literature can however be

postponed, until we are ready to solve the full Eq.(11).

The model should be contrasted, finally, to Nambu-Jona-Lasinio-like models
which are so successful in accounting for isospin-aspects. I cannot quote the huge

body of literature but mention in passing that the NJL-models are not renormal-
izable, that NJL has no relation to QCD, and that NJL deals mostly with the very

light mesons. There is no way to treat the heavy flavors, see also [4].

2 Motivation

The light-cone approach to the bound-state problem in gauge theory [5] aims at

solving HLC|Ψ〉 = M2|Ψ〉. If one disregards possible zero modes and works in

the light-cone gauge, the (light-cone) Hamiltonian HLC is a well defined Fock-
space operator and given in [5]. Its eigenvalues are the invariant mass-squares

M2 of physical particles associated with the eigenstates |Ψ〉. In general, they are
superpositions of all possible Fock states with its many-particle configurations.

For a meson, for example, holds

|Ψmeson〉 =
∑
i

Ψqq̄(xi,k⊥i
, λi)|qq̄〉 +

∑
i

Ψgg(xi,k⊥i
, λi)|gg〉

+
∑
i

Ψqq̄g(xi,k⊥i
, λi)|qq̄g〉 +

∑
i

Ψqq̄qq̄(xi,k⊥i
, λi)|qq̄qq̄〉 + . . . .

If all wave functions like Ψqq̄ or Ψgg are available, one can analyze hadronic
structure in terms of quarks and gluons [5].

For example, one can calculate the space-like form factor of a hadron quite
straightforwardly. As illustrated in Fig. 1, it is just a sum of overlap integrals

analogous to the corresponding non-relativistic formula [5]:

F(q2) =
∑

n,λi

∑

a

ea

∫ ∏

i

dxi d
2k⊥i

16π3
ψ(Λ)∗

n (xi, ℓ⊥i, λi)ψ
(Λ)
n (xi,k⊥i, λi). (1)

Here ea is the charge of the struck quark, Λ2 ≫ q 2
⊥, and

ℓ⊥i ≡
{

k⊥i − xiq⊥ + q⊥ for the struck quark

k⊥i − xiq⊥ for all other partons,

with q 2
⊥ = Q2 = −q2. All of the various form factors of hadrons with spin can be

obtained by computing the matrix element of the plus current between states of

different initial and final hadron helicities.

3 The method of iterated resolvents

Because of the inherent divergences in a gauge field theory, the QCD-Hamiltonian

in 3+1 dimensions must be regulated from the outset. One of the few practi-
cal ways is vertex regularization [5,6], where every Hamiltonian matrix element,
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particularly those of the vertex interaction (the Dirac interaction proper), is mul-
tiplied with a convergence-enforcing momentum-dependent function. It can be

viewed as a form factor [5]. The precise form of this function is unimportant here,

as long as it is a function of a cut-off scale (Λ).
Perhaps one can attack the problem of diagonalizing the (light-cone) Hamil-

tonian HLC by the discretized light cone quantization (DLCQ), see for example

[7]. But, alternatively, it might be better to reduce the many-body problem behind
a field theory to an effective one-body problem. The derivation of the effective in-

teraction becomes then the key issue. By definition, an effective Hamiltonian acts
only in the lowest sector of the theory (here: in the Fock space of one quark and

one anti-quark). And, again by definition, it has the same eigenvalue spectrum

as the full problem. I have derived such an effective interaction by the method of
iterated resolvents [6], that is by systematically expressing the higher Fock-space

wave functions as functionals of the lower ones. In doing so the Fock-space is not
truncated and all Lagrangian symmetries are preserved. The projections of the

eigenstates onto the higher Fock spaces can be retrieved systematically from the

qq̄-projection, with explicit formulas given in [8].

γ∗

Σ

6911A174-91

n

p+qp

e '

γ∗

e

=

 Tx, k

q2 =   Q2

p+qp

ψn ψn

 Tx, k + (1-x) q T

Fig. 1. Calculation of the form factor of a bound state from the convolution of light-cone

Fock amplitudes. The result is exact if one sums over all ψn .

Let me sketch the method briefly. Details may be found in [6,8]. DLCQ with
its periodic boundary conditions has the advantage that the LC-Hamiltonian is

a matrix with a finite number of Fock-space sectors, which we denumerate by

n, with 1 < n ≤ N. The so called harmonic resolution K = LP+/(2π) acts as a
natural cut-off of the particle number. As shown in Figure 2, K = 3 allows for

N = 8, and K = 4 for N = 13 Fock-space sectors, for example. The Hamiltonian
matrix is sparse: Most of the matrix elements are zero, particularly if one includes

only the vertex interaction V . For n sectors, the eigenvalue problem in terms of

block matrices reads

n∑

j=1

〈i|Hn(ω)|j〉〈j|Ψ(ω)〉 = E(ω) 〈i|Ψ(ω)〉, for i = 1, 2, . . . , n. (2)
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Fig. 2. The Hamiltonian matrix for a meson. The matrix elements are represented by en-

ergy diagrams. Only vertex diagrams V are shown. Zero matrices are marked by a dot

(·).

I can always invert the quadratic block matrix of the Hamitonian in the last sector
to define the n-space resolvent Gn, that is

Gn(ω) =
1

ω −Hn(ω)
. (3)

Using Gn, I can express the projection of the eigenfunction in the last sector by

〈n|Ψ(ω)〉 = Gn(ω)

n−1∑

j=1

〈n|Hn(ω)|j〉 〈j|Ψ(ω)〉, (4)

and substitute it in Eq.(2). I then get an effective Hamiltonian where the number
is sectors is diminished by 1:

Hn−1(ω) = Hn(ω) +Hn(ω)Gn(ω)Hn(ω). (5)

This is a recursion relation, which can be repeated until one arrives at the qq̄-
space. The fixed point equation E(ω) = ω determines then all eigenvalues.

For the block matrix structure as in Figure 2, with its many zero matrices, the
reduction is particularly easy and transparent. For K = 3 one has the following

sequence of effective interactions:

H8 = T8, H7 = T7 + VG8V, H6 = T6 + VG7V, H5 = T5 + VG6V. (6)
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The remaining ones get more complicated, i.e.

H4 = T4 + VG7V + VG7VG6VG7V, (7)

H3 = T3 + VG6V + VG6VG5VG6V + VG4V, (8)

H2 = T2 + VG3V + VG5V, (9)

H1 = T1 + VG3V + VG3VG2VG3V. (10)

For K = 4, the effective interactions in Eq.(6) are different, see for example [8],
but it is quite remarkable, that they are the same for the remainder, particularly

Eq.(10). In fact, the effective interactions in sectors 1-4 are independent of K: The

continuum limit K→ ∞ is then trivial, and will be taken in the sequel.
In the continuum limit, the effective interaction in the qq̄-space has thus

two contributions: A flavor-conserving piece Ueff−conser = VG3V and a flavor-
changing piece Ueff−change = VG3VG2VG3V . The latter cannot get active in flavor-

off-diagonal mesons. Notice that these expressions are an exact result.

4 The eigenvalue equation in the qq̄-space

After some approximations [6], the effective one-body equation for flavor off-
diagonal mesons (mesons with a different flavor for quark and anti-quark), be-

comes quite simple:

M2〈x,k⊥; λ1, λ2|ψ〉 =

[
m2

1 + k 2
⊥

x
+
m2

2 + k 2
⊥

1− x

]
〈x,k⊥; λ1, λ2|ψ〉 (11)

−
1

3π2

∑

λ′

q,λ′

2

∫
dx′d2k′

⊥ R(x ′,k ′
⊥;Λ)√

x(1− x)x′(1− x′)

α

Q2
〈λ1, λ2|S|λ′1, λ

′
2〉 〈x′,k′

⊥; λ′1, λ
′
2|ψ〉.

Here,M2 is the eigenvalue of the invariant-mass squared. The associated eigen-
functionψ ≡ Ψqq̄ is the probability amplitude 〈x,k⊥; λ1, λ2|ψ〉 for finding a quark

with momentum fraction x, transversal momentum k⊥ and helicity λ1, and cor-

respondingly the anti-quark with 1 − x, −k⊥ and λ2. The m1 and m2 are (effec-
tive) quarkmasses and α is the (effective) coupling constant. Themean Feynman-

momentum transfer of the quarks is denoted by

Q2 ≡ Q2(x,k⊥; x ′,k ′
⊥) = −

1

2

[
(k1 − k ′

1)2 + (k2 − k ′
2)2
]
, (12)

and the spinor factor S = S(x,k⊥; x ′,k ′
⊥) by

〈λ1, λ2|S|λ′1, λ
′
2〉 = [u(k1, λ1)γµu(k′1, λ

′
1)] [v(k′2, λ

′
2)γµv(k2, λ2)] . (13)

The regulator function R(x ′,k ′
⊥;Λ) restricts the range of integration as function of

some mass scale Λ. I happen to choose here a soft cut-off (see below), in contrast
to the previous sharp cut-off [9]. Note that Eq.(11) is a fully relativistic equation. I

have derived the same effective interaction also with the method of Hamiltonian

flow equations, see [10].
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The effective quark massesm1 andm2 and the effective coupling constant α
depend, in general, on Λ. In the spirit of renormalization theory they are renor-

malization constants, subject to be determined by experiment, and hence-forward

will be denoted by m1, m2, and α, respectively. In next-to-lowest order of ap-
proximation the coupling constant becomes a function of the momentum transfer,

α −→ α(Q;Λ), with the explicit expression given in [6].

5 The ↑↓-model and its renormalization

It might be to early for solving Eq.(11) numerically in full glory like in Ref.[9].

Rather should I try to dismantle the equation of all irrelevant details, and develop

a simple model.
The quarks are at relative rest, when k⊥ = 0 and x = x ≡ m1/(m1 +m2). For

very small deviations from these equilibrium values the spinor matrix is propor-

tional to the unit matrix, with

〈λ1, λ2|S|λ ′
1λ

′
2〉 ∼ 4m1m2 δλ1,λ ′

1
δλ2,λ ′

2
, (14)

for details see [10]. For very large deviations, particularly for k′2
⊥ ≫ k 2

⊥ , holds

Q2 ≃ k′2
⊥ , and 〈↑↓ |S| ↑↓〉 ≃ 2k′ 2

⊥ . (15)

Both extremes are combined in the “↑↓-model” [10]:

S

Q2
≡ 4m1m2

Q2
+ 2 =⇒ 4m1m2

Q2
+ 2R(Λ,Q), with R(Λ,Q) =

Λ2

Λ2 +Q2
. (16)

It interpolates between two extremes: For small momentum transfer, the ‘2’ gen-

erated by the hyperfine interaction is unimportant and the dominant Coulomb
aspects of the first term prevail. For large momentum transfers the Coulomb as-

pects are unimportant and the hyperfine interaction dominates.

Themodel over-emphasizesmany aspects: It neglects themomentum depen-
dence of the Dirac spinors and thus the spin-orbit interaction; it also neglects the

momentum dependence of the spin-spin interaction. But the 2 creates havoc: Its
Fourier transform is a Dirac-delta function with all its consequences in a bound-

state equation.

Here is an interesting point: One is familiar with field theoretic divergences
like the effective masses and the effective coupling constant. One is used less to

“divergences” residing in a finite number 2. They must be regulated also, and

renormalized.
In consequence I replace Eq.(11) by

M2ψ(x,k⊥) =

[
m2

1 + k 2
⊥

x
+
m2

2 + k 2
⊥

1− x

]
ψ(x,k⊥)

−
α

3π2

∫
dx ′d2k ′

⊥√
x(1− x)x ′(1− x ′)

(
4m1m2

Q2
+

2Λ2

Λ2 +Q2

)
ψ(x ′,k ′

⊥), (17)

where ψ(x,k⊥) ≡ 〈x,k⊥; ↑, ↓ |ψ〉.
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Fig. 3. Nine contours αn(Λ) are plotted versus Λ/∆, from bottom to top with n =

4, 3, · · · ,−3,−4. The contours are obtained byM2
0(α,Λ) = n∆2 +M2

π . The thick contour

n = 0 refers to the pion withM2
0 = M2

π . Mass unit is ∆ = 350MeV.

0.0 0.5 1.0 1.5 2.0 2.5
0.0
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10.0

Fig. 4. The pion wave function Φ(p) is plotted versus p/(1.338m) in an arbitrary nor-

malization. The filled circles indicate the numerical results, the open circles the analytical

function Φa(p).

For equal quark masses m1 = m2 = m, the eigenvalues depend now on

three parameters, the canonical α andm, and the regularization scale Λ. The de-

pendence can be quite strong as seen in Figure 3. There, the lowest mass-squared
eigenvalue is plotted versus α and Λ for the fixed quark massm = 406MeV.

Since Λ is an unphysical parameter, its impact must be removed by renor-
malization. Recently, much progress was made on this question [11,12]: Adding
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u d s c b

u 768 871 2030 5418

d 140 871 2030 5418

s 494 494 2124 5510

c 1865 1865 1929 6580

b 5279 5279 5338 6114

Table 1. The calculated mass eigenvalues in MeV. Those for singlet-1s states are given in

the lower, those for singlet-2s states in the upper triangle.

to R(Λ,Q) a countertermC(Λ,Q) and requiring that the sum R̃(Λ,Q) = R(Λ,Q)+

C(Λ,Q), and thus M2(Λ;α,m), be independent of Λ, determines C(Λ,Q). One

remains with R̃(Λ,Q) = µ2/(µ2 + Q2). In line with renormalization theory, one
then can go to the limit Λ −→ ∞. In turn, µ becomes one of the parameters of the

theory to be determined by experiment.

6 Determining the canonical parameters

The theory has seven canonical parameters which have to be determined by ex-
periment: α, µ and the 5 flavor massesmf (if we disregard the top). How can we

determine them?
The problem is not completely trivial. Let me restrict first to the light flavors.

With mu = md = m, one has 3 parameters, and in consequence needs 3 experi-

mental data. The pion massMπ = 140MeV and the rho massMρ = 768MeV do
not suffice. One needs a third datum, the mass of an exited pion, for example.

Since the mass of the excited pion π± is not known with sufficient exper-

imental precision, and since the ↑↓-model might be to crude a model to begin
with, I choose here mu = md = 406 MeV and Mπ∗ = Mρ = 768 MeV, for no

good reason other than convenience. These assumptions are less stringent than
they sound, by two reasons. First, the rho has a mass less than 2m and should be

a true bound state. Second, the Yukawa potential in Eq.(17) acts like a Dirac-delta

function in pairing theory for example: it pulls down essentially one state, the
pion, but leaves the other states unchanged.

We thus remain with the two parameters α and µ. Each of the two equations,
M2

0(α, µ) = M2
π andM2

1(α, µ) = M2
π∗ determine a function α(µ). Their intersec-

tion point determines the required solution, which is α = 0.761 and µ = 1.15 GeV

[11]. These differ marginally from the previous analysis [10], with µ = 1.33 GeV,
for which Figure 3 yields α = 0.6904. Once I have the up and down mass, the

strange, charm and bottom quark mass can be determined by reproducing the
masses of the K,− D0 and B,− respectively. The parameters in the ↑↓-model can

thus be taken as
α µ mu = md ms mc mb

0.6904 1.33 GeV 406 MeV 508 MeV 1666 MeV 5054 MeV.
(I)
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u d s c b

u 768 892 2007 5325

d 140 896 2010 5325

s 494 498 2110 —

c 1865 1869 1969 —

b 5278 5279 5375 —

Table 2. Empirical masses of the flavor-off-diagonal physical mesons in MeV. Vector

mesons are given in the upper, scalar mesons in the lower triangle.

Mff̄ M Mexp

π0 140 140 135

η 140 485 549

η ′ 661 958 958

ηc 2870 2915 2980

ηb 8922 8935 —

Table 3. Flavor-diagonal mass eigenvalues in the FM-model for pseudo-scalar mesons

with the parameter a = (491MeV)2 .

Mff̄ M Mexp

ρ0 768 768 768

ω 768 832 782

Φ 973 1019 1019

J/Ψ 3231 3242 3097

Υ 9822 9825 9460

Table 4. Flavor-diagonal mass eigenvalues in the FM-model for pseudo-vector mesons

with the parameter a = (255MeV)2 .

7 The masses of the physical mesons

Solving Eq.(17) with the parameters of Eq.(I) generates the mass2-eigenvalues of

all flavor off-diagonal pseudo-scalar mesons. They are compiled in Table 1. The

corresponding wave functions are also available, but not shown here. In view
of the simplicity of the model, the agreement with the empirical values [13] in

Table 2 is remarkable. The mass of the first excited states in Table 1 correlates
astoundingly well with the experimental mass of the pseudo-vector mesons, as

given in Table 2. Notice that all numbers in Tables 1 and 2 are rounded for conve-

nience.
Since the ↑↓-model in Eq.(17) does not expose confinement one should em-

phasize that the difference between the physical meson masses in Table 1 and the
sum of the bare quark masses is larger than a pion mass. One could call this a

kind of practical confinement.
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What about the flavor diagonalmesons?– They cannot be a solution to Eqs.(11)
or (17), since the flavor-changing piece of the full effective interaction can gener-

atematrix elements between different flavors. Thus far the precise structure of the

flavor changing part Ueff−change = VG3VG2VG3V has not been analyzed in detail,
because it requires a considerable effort.

Rather, the following flavor-mixing model (FM-model [15]) has been investi-

gated. In the FM-model, the full effective Hamiltonian including its flavor mixing
is reduced to the lowest ff̄-states, i.e. to

〈ff̄|Heff |f
′f̄ ′〉 = 〈ψff̄|T + VG3V + VG3VG2VG3V |ψf ′f̄ ′〉 = M2

ff ′ δff ′ + a. (18)

Conceptually, it is important that M2
ff ′ is the eigenvalue of Eq.(17). The flavor-

mixing matrix element a = 〈ψff̄|VG3VG2VG3V |ψf ′f̄ ′〉 depends on the flavors and

could be calculated with a solution of Eqs.(11) or (17). In the crude FM-model,
however, it is treated as a flavor-independent parameter to be fixed by experi-

ment. For 5 flavors one faces thus the numerical diagonalization of a 5×5matrix.

The parameter a for pseudo-scalar mesons was fitted to the mass of the η ′,
and for pseudo-vector mesons to theΦ, with the results compiled in Tables 3 and

4 . Three facts, however, one gets for free: First, the π0 is degenerate in mass with

π±, as well as the ρ0 with ρ±. That they form isospin-triplets is a non-trivial aspect
of QCD. Second, both the η–η ′ and the ω–Φ splitting are in the right bull park.

Third, that the wave functions of the π0, η and η ′ have verymuch SU(3)-character
[15] is even less trivial from the point of view of QCD.

8 The wavefunction of the pion

For carrying out this programme in practice, I need an efficient tool for solving

Eq.(17). Such one has been developed recently [10]. I outline in short the proce-
dure for the special casem1 = m2 = m. I change integration variables from x to

kz by substituting

x(kz) =
1

2
+

kz

2

√
m2 + k 2

⊥ + k2
z

, ψ(x,k⊥) =

√
1+ (k 2

⊥ + k2
z)/m2

√
x(1− x)

φ(kz,k⊥).

(19)
The variables (kz,k⊥) are collected in a 3-vector p and Eq.(17) becomes

[
M2 − 4m2 − 4p 2

]
φ(p) = −

4α

3π2

∫
d3p ′

(
2m

(p − p ′)2
+
1

m

µ2

µ2 + (p − p ′)2

)
φ(p ′).

(20)

For the present purpose it suffices to restrict to spherically symmetric s-states

φ(p) = φ(p) and to apply Gaussian quadratures with 16 points. On an alpha
work station it takes a couple of micro-seconds to solve this equation for a par-

ticular case. The resulting numerical wavefunction φ(p) is displayed in Figure 4
and compared with

Φa(p) = N
(
1+

p2

p2
a

)−2

, with pa = 1.338 m. (21)
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Such an analytical form is convenient in many applications. For example, the
light-cone wavefunction ψ(x,k⊥) can be obtained in closed form by Eq.(19), i.e.

ψ(x,k⊥) =
N√

x(1− x)

(
1+

m2 (2x− 1)
2

+ k 2
⊥

4x(1 − x)m2

) 1
2

(
1+

m2 (2x − 1)
2

+ k 2
⊥

4x(1 − x) p2
a

)2
. (22)

I can use this to calculate the form factor from Eq.(1), and thus the exact root-
mean-square radius [14], even in closed formwith 〈r2〉 = −6 dF2(Q2)/dQ2

∣∣
Q2=0

:

〈r2〉 =
3

4p2
a

34 + 37s2 − 41s4 + 15s6 + 3b(s)(−8 − 16s2 + 21s4 − 17s6 + 5s8)

5(s2 − 1)[4 − 4s2 + 3s4 + 3b(s)s4(−2+ s2)]
,

(23)

with s = m/pa and the abbreviation b(s) = arctan(
√
s2 − 1)/

√
s2 − 1. The size of

the qq̄ wavefunction is thus 〈r2〉1
2 = 0.33 fm, half as large as the empirical value

〈r2〉
1
2
exp = 0.67 fm.
This completes the goal: I have a pion with the correct mass, and I have an

analytic expression for its light-cone wave function. Eq.(22) could be used thus as
a baseline for calculating the higher Fock-space amplitudes, as explained in [8].

It might well be that the wavefunction in Eq.(22) is consistent with Ashery’s

experiment [16].

9 Conclusions

The proposed pion of the ↑↓-model is rather different from the pions in the liter-
ature. I have found no evidence that the vacuum condensates are important, but

I conclude that the pion is describable by a QCD-inspired theory: The very large

coupling constant in conjunction with a very strong hyperfine interaction makes
it a ultra strongly bounded system of constituent quarks. More then 80 percent

of the constituent quark mass is eaten up by binding effects. No other physical
system has such a property.

The effective Bohr momentum of the constituents in the pion turns out as

pa = 1.338m, see Eq.(21). The mean momentum of the constituents is thus 40
percent larger than their mass, which means that they move highly relativisti-

cally quite in contrast with the constituents of atoms or nuclei. No wonder that

potential models thus far have failed for the pion. One might mention that lat-
tice gauge calculations use all the computer power in this world to generate the

potential energy of the quarks and then one uses a non-relativistic Schrödinger
equation to calculate the bound states.

All this is to be confronted with the present oversimplified ↑↓-model, which

however has the virtue to calculate the pion and other physical mesons by a co-
variant and relativistically correct theory. To the best of my knowledge there is no

other model which can describe all mesons quantitatively from the π up to the Υ
from a common point of view, which here is QCD.
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Abstract. We discuss the role of a three-body colour confinement interaction introduced

on algebraic grounds and present some of its implications for the spectra of baryons,

tetraquarks and six-quark systems within a simple quark model.

In quark models two distinct types of three-body forces have been introduced

so far, namely long-range, confinement forces, as e.g. in [1] or short-range forces,
associated to the instanton ’t Hooft interaction, as e.g. in [2].

Here we shall discuss the implications on baryon spectroscopy of the long-

range confinement forces only. We are not presently concerned with the origin of
these forces which is still controversial, as lattice calculations suggest [3].We shall

use an algebraic approach inspired by Ref. [4], based on the invariant operators

of SU(3).
Let us consider the Hamiltonian

H = T + V2b + V3b , (1)

where T is the kinetic energy and V2b a 2-body confinement interaction of the
form

V2b =
∑

i<j

Vij (c1 +
4

3
+ Fa

i F
a
j ) , (2)

where Fa
i = 1

2
λa

i is the colour charge operator of the quark i and c1 an arbitrary
constant which we set equal to 1 as in Ref. [4]. For simplicity we take

Vij =
1

2
mω2 (ri − rj)

2 . (3)

V3b is the 3-body confinement interaction

V3b = Vijk = VijkCijk , (4)

with

Vijk =
1

2
c mω2 [(ri − rj)

2 + (rj − rk)2 + (rk − ri)
2] , (5)

⋆ Talk delivered by Fl. Stancu.
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where c is a strength parameter and Cijk a colour operator of type

Cijk = dabc Fa
i F

b
j F

c
k . (6)

The coefficients dabc are some real constants, symmetric under any permutation
of indices (see e.g. Ref. [5], chapter 8). Performing integration in the colour space

and expressing H in terms of the internal coordinates ρ = (r1 − r2)/
√
2 and

λ = (r1 + r2 − 2r3)/
√
6, we have:

H = 3m −
~

2

2m
(∇2

ρ + ∇2
λ) +

3

2
mω2χi(ρ

2 + λ2) , (7)

with

χi =






5

3
+
10

9
c i=1 (singlet)

13

6
−
5

36
c i=8 (octet)

8

3
+
1

9
c i=10 (decuplet)

(8)

In the expressions of χi (i = 1, 8 or 10), the first and second terms stem from the
colour part of V2b and V3b respectively. The energies E1, E8 and E10 of the singlet,

octet and decuplet states in a 3q system are

E1 = 3m + 3~ω
√
3χ1 , (9)

E8 = 3m + 4~ω
√
3χ8 , (10)

E10 = 3m + 5~ω
√
3χ10 . (11)

The baryon spectrum is correctly described provided [4]

−
3

2
< c <

2

5
. (12)

The lower limit comes from the stability constraint χ1 > 0 and the upper limit
from imposing the right sequence in the spectrum, i.e. from the requirement χ8 >

χ1. The closer c is to the lower limit, the larger is the gap between the colour

octet and singlet states. To see this, let us take c = -1.43. There is of course some
arbitrariness in choosing m and ~ω. As typical values for quark models we take

m = 0.340 GeV and ~ω = 0.6 GeV [6]. This implies an octet-singlet gap ∆E =

E8 −E1 ≈ 5.5 GeV. For c = 0 (no three-body force) one would have ∆E = 3.5~ω ≈
2.1 GeV. Therefore the gap is increased considerably by a three-body force with

a strong negative strength. This is a desired feature for quark models with three
valence quarks (no gluons). In the same way one can show that the decuplet state

is located above the octet with quite a large gap for a limiting value of c.

Let us now consider tetraquarks, i.e. q2q2 systems and denote the quarks by
1 and 2 and the antiquarks by 3 and 4. One can first form qq pairs which are next

coupled to colour singlets. These states are either singlet-singlet states |113124〉
or octet-octet states |813824〉 (see Ref. [5], chapter 10). One can have a three-body

interaction acting in a q2q subsystem as

Cijk = −dabc Fa
i F

b
j F

c

k , (13)
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or a three-body interaction acting in a qq2 subsystem as

Cijk = dabc Fa
i F

b

j F
c

k , (14)

where

F
a

i = −
1

2
λa∗

i , (15)

is the charge operator of an antiquark. The operators (13) or (14) between these
tetraquark states have the same eigenvalue, which is calculated in two steps. First,

one evaluates the eigenvalue between the states |3̄12334〉 and |6126̄34〉, where the

two quarks couple either to a 3 or a 6 state and the antiquarks to a 3 or a 6 state.
One obtains −5/9 for the |3̄12334〉 state and 5/18 for |6126̄34〉. The physically rele-

vant states |113124 > and |813824 > are then defined by the transformations (see
e.g. Ref. [7]):

|113124 >=

√
1

3
|312334 > +

√
2

3
|612634 > , (16)

|813824 >= −

√
2

3
|312334 > +

√
1

3
|612634 > . (17)

Thus one gets:

〈113124|C123|113124〉 ∝ [
1

3
(−
5

9
) +

2

3

5

18
] c = 0 , (18)

and

〈813824 |C123|813824〉 ∝ [
2

3
(−
5

9
) +

1

3

5

18
] c = −

5

18
c , (19)

which shows that with a negative c one raises the expectation value of the octet-
octet above the singlet-singlet state more than with c = 0. This implies that in the

presence of a 3-body confinement interaction with c < 0 the coupling between

octet-octet and singlet-singlet states due to a hyperfine splitting will be dimin-
ished, which amounts to make a ground state tetraquark less stable. This seems

to be consistent with the experimental observation that no stable tetraquark sys-
tem has been seen so far.

The q6 systems are important for theNNproblem.Herewe discuss the sector

IS = (01) or (10). It is well known that the physical NN state is a combination
of three symmetry states containing the orbital configurations [6]O and [42]O, as

shown for example in [8]. In fact the three symmetry states allowed by the Pauli
principle can be combined into the NN and ∆∆ states and the unphysical hidden-

colour CC state. The latter has an important role at short separation between the

3q clusters. Using 3-body fractional parentage coefficients, one can calculate the
matrix elements of the three-body force (4)-(6) in the basis of the states |NN >,
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|∆∆ > and |CC >. This gives rise to the following matrix:

NN ∆∆ CC

NN
28

81
c

38
√
5

405
c

38
√
5

135
c

∆∆
38
√
5

405
c

121

405
c

76

135
c

CC
38
√
5

135
c

76

135
c

9

5
c

(20)

The eigenvalues of this matrix are E1 = c/9, E2 = c/9 and E3 = 20c/9. This
shows that the effect of the 3-body colour confinement on NN and ∆∆ is identical

and rather small as compared to that on CC. In particular for a negative value

of c, the spectrum of NN, ∆∆ and CC lowers and shrinks. For a positive c, the
situation is the other way round. This means that, for c < 0, V3b itself brings

some attraction and implies a stronger coupling of CC to NN and ∆∆ due to a
hyperfine interaction. This will lead to a reduced hard core repulsion in the NN

potential.

In conclusion, a three-body confinement force can affect the spectrum of mul-
tiquark systems in a positive or negative way, depending on the strength c. In

particular, if c is negative, the unphysical octet and decuplet states of a system
of three quarks become well separated from the colour singlet states, which is a

desired feature for models with three valence quarks only. In tetraquarks its role

is also positive because it decouples the colour octet-octet state from the singlet-
singlet one, the first being unphysical. For six-quark systems the role of the three-

body confinement force with a negative strength is controversial. It increases the
coupling of the hidden-colour CC states to the physical NN and ∆∆ states. On

one hand, this brings more attraction into the NN potential, which is useful to

lower too high hard core potentials, but on the other hand this implies stronger
Van der Waals forces. The latter is in contrast with the hopes of Ref. [4].

Details of the calculations can be found in Ref. [9]. One should notice that

the present study is based on a simple harmonic oscillator confinement. It would
be useful to extend it to a more realistic confinement. Also, for tetraquarks and

six-quark systems the results are derived for compact configurations, i.e. for zero
separation between the hadronic clusters, here of type qq or q3. It would certainly

be interesting to study non-zero separation distances (molecular type configura-

tions).

Acknowledgements: We are most grateful for the useful comments made by Mitja

Rosina regarding the role of the three-body forces in tetraquarks and six-quark

systems.
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Abstract. The study of few-nucleon reactions at low energies has evolved into a mature

area of research. We present a brief review of the methods and recent advances obtained

by the Pisa-Jefferson Lab/ODU collaboration.

One of the most important applications of nuclear physics is to make precise
model-independent predictions of rates of astrophysical reactions, with possibly

quantitative estimates of “theoretical” uncertainties. This goal is particularly im-

portant for providing nuclear physics input to stellar models. In fact, for several
of these reactions the rates are too small to be measured in laboratories and there-

fore their estimates can be obtained only by using a theoretical model.

The description of these processes requires the knowledge of the initial (bound)
and final (in general, continuum) nuclear states and the use of electromagnetic

(EM) and weak current operators constructed consistently with the interaction
used to generate the wave functions. The nuclear EM and weak current models

developed so far (see, for example, Refs. [2,3]) include one– and two–body op-

erators. The EM two–body current is constructed consistently with the nucleon–
nucleon interaction, in order to satisfy current conservation [4]. The vector part of

the weak current is obtained from the isovector EM current via the CVC hypothe-
sis. The axial part has been constrained by reproducing the experimental value of

tritium beta decay. The present model of the current has been tested in numerous

few–nucleon processes and it is thought to be quite realistic.
The A = 3, 4 bound and continuum wave functions have been calculated by

expanding on a basis of correlated hyperspherical harmonic (CHH) functions [1].
Such a technique has been proven to be rather accurate. It should be emphasized

that with the CHH technique the inclusion of the Coulomb potential, clearly very

important in the energy range considered here, does not present any difficulty.
Let us review briefly the CHH method for the trinucleon bound state. The wave

function has been written as

Ψ3 =

Nc∑

α=1

KM∑

K=K0

uαK(ρ)

ρ5/2

∑

ijk cyclic

fα(rjk) (2)Pℓα,Lα

K (φi)Yα(jk, i) , (1)

⋆ Talk delivered by M. Viviani.
⋆⋆ E-mail: michele.viviani@pi.infn.it
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where

xi = rj − rk , yi = (rj + rk − 2 ri)/
√
3 , (2)

ρ =

√
x2

i + y2
i , cosφi = xi/ρ , (3)

ri denoting the position of particle i, and the variable ρ is the so–called hyperra-
dius. The correlation functions fα(rjk) have been introduced in order to accelerate

the convergence, as explained below. The angle–spin–isospin functions Yα(jk, i)

are defined as

Yα(jk, i) = {[Ylα
(x̂i) ⊗ YLα

(ŷi)]Λα
[sjkα ⊗ siα]Sα

}JJz
[tjkα ⊗ tiα]TTz

. (4)

Each α–channel is specified by the angular momenta ℓα, Lα coupled to give Λα,
and by the spin (isospin) sjkα (tjkα ) and siα (tiα) of the pair jk and the third particle

i, coupled to give Sα (T ). The antisymmetrization of the wave function Ψ requires
ℓα + s

jk
α + t

jk
α be odd; in addition, ℓα + Lα must be even for positive parity states

and odd for negative ones. The hyperspherical polynomials (2)Pℓα,Lα

K are given

by [5]

(2)Pℓα,Lα

K (φi) = Nℓα,Lα

n (sinφi)
Lα(cosφi)

ℓαPLα+1/2,ℓα+1/2
n (cos 2φi) , (5)

where Nℓα,Lα
n is a normalization factor and Pa,b

n a Jacobi polynomial. The grand

orbital quantum number is given by K = ℓα + Lα + 2n , n being a non–negative
integer. In Eq. (1), K0 = ℓα + Lα is the minimum grand orbital quantum number

and Kα is the maximum selected value.
In the limit Nc , Kα → ∞, the expansion basis used in Eq. (1) is complete. In

a practical calculation,Nc and Kα are kept finite and increased until convergence

in the binding energy is achieved. In this regard, it should be stressed the impor-
tance of the inclusion of the correlation functions fα(rjk) in Eq. (1) for improving

the convergence rate. The standard (uncorrelated) HH expansion is recovered if
such functions are set equal to one. However, for potentials containing a strong re-

pulsion at small distances, the rate of convergence of the HH expansion is found

to be very slow. The role of the correlation function fα(r) in Eq. (1) is therefore
to accelerate the convergence of the expansion by improving the description of

the system when two particles are close to each other. These correlation functions
are obtained from solutions of suitable two–body zero–energy Schrödinger equa-

tions, with a technique outlined in ref. [1]. The present approach has been applied

also to the the study of the ground state of the α particle and to the continuum
states of A = 3, 4 nuclear systems.

Some of the computed S-factors are presented in Table 1. The effect of the
two-body currents is seen to increase significantly as the number of particles in-

volved in the reaction grows. The last column of the table shows the “theoretical

uncertainty”, namely the variance of the S-factor values obtained by choosing dif-
ferent realistic nuclear Hamiltonians H for calculating the bound and scattering

wave functions. This choice is reflected also in the current. Indeed, the EM current

j(q)–more precisely, its longitudinal part–is constructed to satisfy the continuity



Few-nucleon reactions of astrophysical interest 31

reaction S1(0) S1+2(0) ∆S/S

p + p → 2H+e+ + νe 3.90 × 10−25 3.95 × 10−25 0.5%

p + d → 3He + γ 1.32 × 10−7 1.88 × 10−7 2%

p + 3He → 4He + e+ + νe 29.0 × 10
−23 9.64 × 10−23 5%

Table 1. Zero energy S-factors (in Mev-barn) for various reactions. In the column labelled

S1(0) (S1+2(0)), the S-factors obtained including the one-body (one– and two–body) terms

in the nuclear current are reported. In the last column, the “theoretical uncertainty” (ob-

tained as explained in the text) is also reported.

equation q ·j(q) = [H, ρ(q)] and therefore depends on the nuclear interaction cho-
sen to describe the nuclear states. The axial weak current too is related to H via

PCAC and also because one of its parameter is fixed by reproducing the tritium
beta decay rate within a given model Hamiltonian. These theoretical uncertain-

ties are rather small, indicating that the dependence on the interaction model is

rather weak.
Recently, another model for the transition current, obtained from an effec-

tive field theory (EFT) based on the chiral symmetry, has been developed [6].
Using this approach, the transition operators are organized according to a “sys-

tematic”power counting in the heavy baryon chiral perturbation theory. They

have been worked out up to N3LO: at this level the transition operators have
one and two body terms and there appears one unknown parameter in the chiral

Lagrangian, which has been fixed again by fitting the tritium β-decay rate [7].
With this model for the transition current, and using the nuclear wave func-

tions calculated as above, the S-factors of the first and third reaction considered in

Table 1 turn out to be rather close to those calculated here. For example, S1+2(0)

for the reaction p+ p → 2H+e+ + νe is 3.94× 10−25 [7], only 0.25% smaller than

the result reported in Table 1. This substantiates the confidence on the accuracy
of the theoretical estimates of these S-factors. The extension to other processes, as

muon capture on light nuclei, is in progress.
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Abstract. We show that within the Goldstone-boson-exchange constituent quark model

not only the light and strange baryon spectra but also electromagnetic and axial nucleon

form factors come out in rather good agreement with phenomenology. A consistent de-

scription of the electroweak nucleon form factors is essentially dependent on the inclusion

of Lorentz boost effects which can be treated accurately in the point form approach to

relativistic quantum mechanics.

1 GBE constituent quark model

A promising approach to low-energy hadrons consists in constituent-quark mod-
els (CQMs). Starting from rudimentary attempts more than two decades ago,

one has constantly improved the description and gained a lot of insight into the
properties of hadrons at low and intermediate energies. Evidently, CQMs can at

most be effectivemodels of quantum chromodynamics (QCD) in a domain where

the fundamental theory is not (yet) accurately solvable. It appears that below a
certain energy scale in the light-flavor sector the spontaneous breaking of chiral

symmetry (SBχS) of QCD is responsible for the generation of constituent quarks
as quasiparticles with dynamical masses much greater than the corresponding

current-quark masses. Numerous theoretical as well as experimental evidences

hint to a chirally broken phase of QCD.
If one understands the generation of constituent quarks as being caused by

SBχS, one should at the same time also accept the other consequences of SBχS. Ac-
cording to that one is left with a residual SU(3)V symmetry associated with the

existence of Goldstone bosons. It follows that one is dealing with new degrees

of freedom in the light-flavor sector of QCD, namely with constituent quarks
and Goldstone bosons instead of current quarks and gluons, which represent the

⋆ Talk delivered by W. Plessas and R.F. Wagenbrunn.
⋆⋆ E-mail: plessas@bkfug.kfunigraz.ac.at

⋆⋆⋆ E-mail: Robert.Wagenbrunn@uni-graz.at
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original degrees of freedom in the QCD Lagrangian. Following this idea, already
several years ago, Glozman and Riska have suggested a quark-quark hyperfine

interaction in light and strange baryons which is mediated by Goldstone boson

exchange (GBE) [1]. This interaction has a spin-flavor symmetry, which is obvi-
ously most appropriate for describing the spectra of light and strange baryons.

Evidently, in addition to this hyperfine interaction one has to advocate some con-

fining forces.
Here we specifically adhere to the version of the GBE CQM published in Ref.

[2]. It comes with a mutual quark-quark interaction

Vij = Vconf + Vχ, (1)

with a confinement potential in linear form

Vconf(rij) = V0 + Crij (2)

and the chiral interaction consisting of only the spin-spin part of the pseudoscalar

meson exchange

Vχ(rij) =

[
3∑

F=1

Vπ(rij)λ
F
i λ

F
j +

7∑

F=4

VK(rij)λ
F
i λ

F
j + Vη(rij)λ

8
i λ

8
j +

2

3
Vη ′(rij)

]
σi ·σj.

(3)

Here σi are the Pauli spin matrices and λi the Gell-Mann flavor matrices of the
individual quarks. For all details of the parameterization of the Vπ,K,η,η ′ and the

values of all parameters of the model we refer to the original paper Ref. [2].

The complete three-QHamiltonian of the model is then given by

H = Hrel
0 + V (4)

where Hrel
0 is the relativistic kinetic-energy term

Hrel
0 =

3∑

i=1

√
k 2

i +m2
i , (5)

with mi the masses and ki the 3-momenta of the constituent quarks, which are

restricted by
∑3

i=1 ki = 0.
The phenomenological spectra of the light and strange baryons are reason-

ably well described by the model. In Fig. 1 we show here just the spectra of N

and ∆. The complete spectra including all the strange baryons can be found in
Ref. [2].

2 Electromagnetic and axial nucleon form factors

For the calculation of electromagnetic and axial nucleon form factors one has to

deal with boosts from the rest frame in which the nucleon wave function is orig-
inally obtained to a moving frame since at least one, the incoming or outgoing

nucleons is moving in the scattering process. In any CQM the intrinsic move-
ment of the constituent quarks inside a nucleon is highly relativistic making a
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Fig. 1. N and ∆ spectra of the GBE CQM. The bars are the calculated masses of states with

angular momentum and parity JP . The shaded boxes are the experimental masses.

nonrelativistic treatment of boosts obsolete. Even for very low momenta trans-

ferred to the nucleon from the external probe (electron or neutrino) constituent
quarks with large momenta are involved.

One can incorporate relativity into a quantum theory with a finite number

of degrees of freedom (as a CQM) by utilizing relativistic Hamiltonian dynam-
ics (i.e. Poincaré-invariant quantum mechanics) [3]. From the various (unitarily

equivalent) forms that are possible when defining the (kinematic) stability sub-
group [4] the point form has some obvious advantages [5] in our studies. In this

form the four-momentum operators Pµ contain all the dynamics. They commute

with each other and can be diagonalized simultaneously. All other generators of
the Poincaré group are not affected by interactions. In particular, the Lorentz gen-

erators are interaction-free and make the theory manifestly covariant. Through
the introduction of so-called velocity states [6] we can carry out all necessary

transformations of the momentum dependences in the wave functions and the

relativistic quark spin rotations associated with boosting the nucleon state in an
accurate manner.

In order to come from the semirelativistic Hamiltonian as given in section
1 to relativistic Hamiltonian dynamics one can apply the so-called Bakamjian-

Thomas (BT) construction [7] where all dynamical generators of the Poincaré

group are obtained from one auxiliary operator. This mass operator consists of
a free part, which is just the relativistic kinetic energy, as given in Eq. (5), and an

interaction term. The potential of the GBE CQM satisfies all conditions required
for the relevant operators to fulfill the Poincaré algebra. Even if the potential term
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is nonrelativistic one can thus arrive at a relativistic quantum theory by reinter-
preting the Hamiltonian as a mass operator in a BT construction.

For the calculation of electromagnetic form factors it can be shown that the

electromagnetic current operator can be written in such a way that it transforms
as an irreducible tensor operator under the strongly interacting Poincaré group.

Thus the electromagnetic form factors can be calculated as reduced matrix ele-

ments of such an irreducible tensor operator in the Breit frame. The same proce-
dure can be applied to the axial current.

The current operator is assumed to be a single-particle current operator for
point-like constituent quarks. This corresponds to a relativistic impulse approxi-

mation but specifically in point form. It is called the point-form spectator approx-

imation (PFSA) because the impulse delivered to the nucleon is different from
that delivered to the struck constituent quark. The electromagnetic current ma-

trix elements have the usual form for a point-like Dirac particle, i.e.

〈p ′
i, λ

′
i|j

µ|pi, λi〉 = eiū(p ′
i, λ

′
i)γ

µu(pi, λi), (6)

with u(pi, λi) the Dirac spinor of quark iwith charge ei, momentum pi, and spin

projection λi. Such a jµ is not conserved a-priori but one can always construct a

conserved current j̃µ = jµ − qµ(q · j/q2), with q the 4-momentum transfer. The

new added term does not affect the µ = 0, 1, 2 components which are used to
calculate the form factors. The axial current matrix elements have the form

〈p ′
i, λ

′
i|A

µ
a|pi, λi〉 = ū(p ′

i, λ
′
i)

[
g

q
Aγ

µ +
2fπ

Q̃2 +m2
π

gπqq̃
µ

]
γ5

1
2
τau(pi, λi), (7)

where mπ is the pion mass, fπ = 93.2 MeV the pion decay constant, and Q̃2 =

−q̃2, with q̃ = p ′
i − pi the momentum transferred to a single quark. The quark

axial charge is assumed to be gq
A = 1, as for free bare fermions, and gπq is identi-

fied with the pion-quark coupling constant, with a numerical value as employed

in the GBE CQM of Ref. [2].
Along this formalism we have calculated the complete set of electromagnetic

and axial form factors, i.e. the electric and magnetic proton and neutron form
factors as well as the axial and induced pseudoscalar nucleon form factors. The

results have been published in a series of papers [9].

For example we show in Fig. 2 the ratios of the electric proton form factor
to the dipole parameterization and to the magnetic proton form factor. The latter

has recently been determined experimentally in a direct measurement at Jefferson

Lab [8]. The data start to fall below one for momentum transfer squared Q2 &

1 GeV2. Obviously this tendency is reproduced by the PFSA result though the

agreement with the data is not perfect. However, in a completely nonrelativistic
impulse approximation (NRIA) calculation the ratio would be 1 for all Q2. In

general the shapes of all electromagnetic form factors calculated in PFSA are in

good agreement with the data up to Q2 ∼ 1 GeV2. We mention, however, that
for the magnetic form factors there are some small discrepancies from the data

even at very low momentum transfers; of course, this affects also the magnetic
moments.
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Fig. 2. Ratios of the proton electric form factor to the dipole form, GD(Q2) = (1 +

Q2/(0.71 GeV2))−2, (left) and to the proton magnetic form factor (right). The latter is nor-

malized to 1 at Q2 = 0. Solid lines: PFSA, dashed lines: NRIA. Experimental data as in

Ref. [9].

The results for the axial and the induced pseudoscalar form factors are pre-
sented in Fig. 3. In case of the axial form factor we slightly underestimate the

experimental values for the axial charge and the axial radius. The PFSA results
are, however, much closer to the data than the ones from a completely nonrela-

tivistic calculation. In case of the induced pseudoscalar form factor it is evident

that the data can only be described by including the pion pole term in the axial
current of the constituent quark. This is consistent with the basic assumption of

the GBE CQM that pions couple to the constituent quarks.
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Fig. 3. Nucleon axial form factor (left) and induced pseudoscalar form factor (right). The

solid lines are the PFSA predictions of the GBE CQM. In the left plot the dashed curve is

the NRIA result and the dashed-dotted curve the result without Lorentz boosts but with

a relativistic axial current. In the right plot the dashed curve is the PFSA result obtained

without the pion-pole term in the axial current of the constituent quark. Experimental data

as in Ref. [9]
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In summary, the GBE CQM yields quite a consistent picture of the elec-
troweak nucleon structure. The usage of a relativistic approach appears as most

important. It is remarkable how the inclusion of relativistic effects in PFSA brings

the theoretical predictions close to experiments.
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Abstract. We study the contribution of glueball and σ-meson degrees of freedom to nu-

cleon excited states in the framework of a chiral version of the chromodielectricmodel. We

have found that these degrees of freedom considerably lower the energy of the Roper and

may substantially weaken the electroexcitation amplitudes for the N(1440) and in particu-

lar for the N(1710).

Among the excited states of the nucleon the Roper resonance, N(1440), plays a

rather special role since, due to its relatively low excitation energy, a simple pic-

ture in which one quark populates the 2s level does not work here. The relatively
low energy of the N* has been explained by

• the residual interaction originating from chiral mesons exchange [1],
• allowing the confining potential to vibrate (e.g. in the MIT bag model [2], or

in models with dynamically generated confinement, [3]),
• describing the N* as a pure sigma meson excitation rather than the excitation

of the quark core [4],
• explicit excitations of glue-field [5].

We present a simple model, the chromodielectric model (CDM), which is

particularly suitable to describe the interplay of glueball and meson excitations

together with quark radial excitations. The model includes a chromodielectric
field χ which assures quark dynamical confinement, and the chiral fields, σ and

π. The Lagrangian takes the form [6]:

L = iψ̄γµ∂µψ +
g

χ
ψ̄(σ̂+ iτ · π̂γ5)ψ+ Lσ,π + Lχ , (1)

where

Lχ = 1
2
∂µχ̂ ∂

µχ̂−
1

2
M2 χ̂2 , Lσ,π = 1

2
∂µσ̂∂

µσ̂+ 1
2
∂µπ̂ ·∂µπ̂−U(π̂2+ σ̂2) , (2)

and U is the usual Mexican hat potential. The model parameters g = 0.03 GeV
and M = 1.4 GeV are chosen to reproduce best the ground state properties [7];

formσ we have taken 0.6 GeV < mσ < 1.2 GeV.

⋆ Talk delivered by B. Golli.
⋆⋆ E-mail: Bojan.Golli@ijs.si
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The Roper resonance is described as a cluster of three quarks in radial-orbital
configuration (1s)2 (2s)1, surrounded by pion and σ-meson clouds and by a chro-

modielectric field. The fields oscillate together with quarks. The ansätze for the

nucleon |N〉 and the Roper |R ′〉 are assumed in the form of coherent states [8] on
top of (1s)3 and (1s)2 (2s)1 configurations, respectively, projected onto subspace

with good angular momentum and isospin. Different profiles are assumed for

the Roper and the nucleon, and the boson fields are allowed to adapt to the quark
configuration. The ‘potential’ breathes together with the quarks as illustrated in

Fig. 1. The proper orthogonalization of both states is ensured by writing:

|R〉 =
1√
1− c2

(|R ′〉 − c|N〉) , c = 〈N|R ′〉 . (3)
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Fig. 1. The baryon densities (solid lines) and the effective potentials (dashed lines) gener-

ated by the self-consistently determined π, σ and χ fields in the nucleon and the Roper.

We investigate here another possible type of excitation in which the quarks
remain in the ground state configuration (1s)3 while the chromodielectric field

and the σ-field oscillate. Such oscillations can be described by expanding the bo-

son fields as small oscillations around their ground state values. For the σ-field
we write:

σ̂(r) =
∑

n

1√
2εn

ϕn(r)
1√
4π

[
ãn + ã†n

]
+ σ(r) ,

where ϕn and εn satisfy the Klein-Gordon equation
(

−∇2 +m2 +
d2V(σ(r))

dσ(r)2

)
ϕn(r) = ε2

nϕn(r) . (4)

A simple ansatz for the annihilation (creation) operator of the n-th mode is given
by

ãn =

∫
dk ϕ̃n(k)

(
ã(k) −

√
2πωσ(k) η(k)

)
, ãn|N〉 = 0 , (5)

where η(k) and ϕ̃n(k) are the Fourier transforms of σ(r) and ϕn(r), respectively,
andωσ(k) = k2 +m2

σ. The effective potential in (4) is

Vσσ(r) =
d2V(σ(r))

dσ(r)2
= λ

[
C2φ(r)2 + 3σ(r)(σ(r) + 2σv)

]
, (6)
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where σ is the fluctuating part of the full field and C2 is a projection coefficient
slightly smaller than unity. Similar expressions hold for the χ field with the effec-

tive potential

Vχχ(r) =
d2V(χ(r))

dχ(r)2
= −

3

2π

g

χ(r)3

[
(σ(r) + σv)(u(r)2 − v(r)2) + 2φ(r)u(r)v(r)

]
.

(7)

The effective potential turns out to be repulsive for the χ-field and attractive for

the σ-field; in the latter case there exists at least one bound state with the energy
ε1 of typically 100 MeV below the σ-meson mass.

The ansatz for the Roper can now be simply extended as

|R∗〉 = c1|R〉 + c2ã
†
σ|N〉 , (8)

where ã†σ is the creation operator for the lowest vibrational mode. The coefficients

ci and the energy are determined by solving the generalized eigenvalue problem
in the 2 × 2 subspace. The solution with the lowest energy corresponds to the

Roper, while the orthogonal combination to one of the higher excited states with
nucleon quantum numbers, e.g., theN(1710), provided the σ-mesonmass is suffi-

ciently small. The energy of the Roper is reduced (see Table 1), though the effect is

small due to weak coupling between the state (3) and the lowest vibrational state
with the energy ε1. The reduction becomes more important if the mass of the σ-

meson is decreased. The energy of the combination orthogonal to the ground state
is close to EN + ε1 with σ-meson vibrational mode as the dominant component.

mσ EN 2s–1s ∆ER ∆ER∗ c2 ε1

1200 1269 446 354 353 0.05 1090

700 1249 477 367 364 0.12 590

Table 1. For two σ-masses we show the nucleon energy (EN), the Roper-nucleon energy

splittings calculated from the single particle energy difference (2s–1s), the state (3) (∆ER)

and the state (8) (∆ER∗). All energies are given in MeV.

The electromagnetic nucleon-Roper transition amplitudes aswell as the tran-

sition amplitudes to higher excitations with nucleon quantum numbers represent
an important test which may eventually distinguish between the models listed at

the beginning. The transverse helicity amplitude is defined as

A1/2 = −ζ

√
2πα

kW

∫
d3rrr 〈R̃+ 1

2
,MT

|JJJem(rrr) · ǫǫǫ+1 e
ikkk·rrr|Ñ− 1

2
,MT

〉 (9)

where kW is the photon momentum at the photon point, and the scalar helicity
amplitude as

S1/2 = ζ

√
2πα

kW

∫
drrr 〈R̃+ 1

2
,MT

|J0em(rrr) eikkk·rrr|Ñ+ 1
2

,MT
〉 . (10)
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Here Jµem is the EM current derived from the Lagrangian density (1):

Jµem =

3∑

i=1

qiγ
µ(i)

(
1

6
+
1

2
τ0(i)

)
qi + (π × ∂µπ)0 . (11)

The amplitudes (9) and (10) contain a phase factor, ζ, determined by the sign of

the decay amplitude into the nucleon and the pion.
The new term in (8) does not contribute to the nucleon-Roper transition ampli-

tudes. Namely, for an arbitrary EM transition operator Ô involving only quarks
and pions we can write

〈N|ã1Ô|N〉 = 〈N|[ã1, Ô]|N〉 = 0 , (12)

because of (5) and since the operators ãn commute with Ô.

A possible way to identify such a state would be to search for those excited
states for which the amplitudes are strongly reduced compared to those calcu-

lated in a model with only quark degrees of freedom. There have been several
attempts to calculate these amplitudes in various models, such as in chiral quark

models [9,10], models with explicit gluon degrees of freedom [5] and relativistic

versions of the constituent quark model [11]. Unfortunately, the present status of
theoretical prediction is rather unclear because of a strong sensitivity of transi-

tion amplitudes on small variation of the Roper wave function. To understand

the nature of the Roper remains a big challenge for theoreticians as well as for
experimentalists.
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Abstract. From the assumption of a two-particle Hilbert space for mesons and from rather

general properties of the effective quark-quark potential we constrain considerably the

choice of effective constituent quark masses.

1 Nonrelativistic models

We consider the following form of the Hamiltonian for the quark-antiquark sys-
tem

H =
p2

2µ
+ V0(r) + σ1 · σ2Vs(m1,m2; r),

where µ is the reduced mass of the system and m1 and m2 are the quark and
antiquark masses.

We make rather general assumptions about the potential:

1. The central potential V0(r) is flavour independent
2. The central potential is monotonic function or r and satisfies the conditions

for a positive Laplacian and concavity

d

dr
r2
dV0

dr
> 0 and

d2V0

dr2
< 0.

3. The spin-spin potential Vs satisfies the condition that µVs decreaseswith total
mass of both quarksM = m1 +m2

4. The spin-spin potential for vector mesons is a monotonic function of r and

has positive Laplacian
d

dr
r2
dVs

dr
> 0

In the family of potentials which satisfy the conditions 1. and 2. one can find

the “QCD inspired” Coulomb-plus-linear potential and power law potential

V0(r) = −
α

r
+ βr+U0,

V0(r) = A+ Brβ,

⋆ Talk delivered by D. Janc.
⋆⋆ E-mail: damjan.janc@ijs.si
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while the conditions 3. and 4. are satisfied for example by

Vs(m1,m2; r) =
α

m1m2

e−r/r0

r
α, r0 > 0.

From these assumptions one can obtain inequalities between quark masses and
masses of ground states of pseudoscalar and vectormesons, which to some extent

restrict masses of constituent quarks as shown in Fig(1).
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Fig. 1. Allowed mass region for strange and charmed quarks for different choices of light

and bottom quarks.

2 Semirelativistic models

For heavy quark Q - light (or heavy) antiquark q pseudoscalar mesons we use

the semirelativistic model with the Hamiltonian

H =
√
p2 +m2

Q +
√
p2 +m2

q +
σq · σQ

mq

F(mQ)Vss + V,

where we assume that the expectation value of F(mQ)Vss/mq is a monotonically

decreasing function of mq and that both Vss and V are flavour (mass) indepen-
dent.

The Hamiltonian for all vector mesons in our model has the general form

H =

√
p2 +m2

1 +

√
p2 +m2

2 + V(m1,m2),

where we demanded that the expectation value of V(m1,m2) is a decreasing
function of the quarks masses from where it follows that

E(K∗) − E(ρ) < ms −mu,

E(D∗) − E(K∗) < mc −ms,

E(B∗) − E(D∗) < mb −mc.
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Using these assumptions we again obtained inequalities between masses
of quarks and mesons which allowed us to constrain the masses of constituent

quarks. In Fig(2) one can see that it is not possible to reproduce correctly the

masses of ground state mesons with semirelativistic model if one takes mass of
the charmed quark smaller then 1650 MeV. Then the mass of the bottom quark

must be, according to upper inequalities, always larger then 4970 MeV.

260 280 300 320 340
400

420

440

460

480

500

u[MeV]

s [MeV]

c < 1700MeV

c < 1750MeV

c < 1800MeV

c < 1850MeV

c < 1900MeV

Fig. 2.Allowedmass regions for light and strange quarks for five different choices formass

of charm quark.
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Are there locally precise three-body wave functions? ⋆
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Abstract. This paper concentrates on two topics. First it presents cases which show that

even in atomic physics, contrary to expectations, variational methods have problems on

the 4-5th digits in expectation values which depend on the values of Ψ at the cusps, as

opposed to the energy. Second, we compare the results of the direct method, CFHHM

(Correlation function hyperspherical harmonic method), in atomic ionization calculations

of the single and double ionization of the Helium atom and the Helium isoelectronic se-

quence for Z up to 10 and excited states up to n = 5. We calculate more n, Z dependencies

than before; make predictions on corrections due to quasi-free mechanism using a new

formula (several new light sources are becoming available).

1 Precision of the CFHHMwave function

Sophisticated variational methods nowadays try to overcome the fact that math-
ematically there is no reason to assume that a variational method would give

accuracy for the expectation values comparable to that of the energy E. The moti-

vations in this section is to show several examples where such variational calcu-
lation indeed break down.

CFHHM [1] is a direct solution of the Schrödinger equation by the separation
of Ψ into the singular part (caused by the Coulomb interaction; this is specific to

the atomic physics) and the smooth part, Ψ = efφ. The Schrödinger equation

is converted into the equation for χ = ρ2φ expanded into the hyperspherical
harmonic basis (index ν; µ is connected with the global angular momentum):

χ ′′
µν +

1

ρ
χ ′

µν +

[
2E−

(2µ+ 2)2

ρ2

]
χµν = 2

∑

µ ′ν ′

Wµν,µ ′ν ′χµ ′ν ′ , (1)

where ρ is the hyperradius (a permutation-invariant measure of system size,
given by a weighted sum of squares of the Jacobi coordinates), and W is the

velocity-dependent potential, W = V − (∇f,∇) − 1
2
∇2f − 1

2
(∇f)2 + 2

ρ2
∂f
∂ρ

. The

essential physical input to CFHHM is the correlation function which in general is
nonlinear

f =

3∑

k=1

[
ak + (bk − ak) exp

(
rk

nk〈rk〉

)]
rk, ak = ZiZj

mimj

mi +mj

,

⋆ Talk delivered by R. Krivec.
⋆⋆ E-mail: rajmund.krivec@ijs.si
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where {i, j, k} are a permutation of {1, 2, 3}, and Zi andmi are charges and masses
of the particles. f but can be used in its linear form (bk = ak) for Helium and its

isoelectronic sequence except H−. Mathematically this function is an accelerator

of the convergence but it also lowers the minimum µ where convergence starts;
it reduces the number of HH required for a given precision by orders of magni-

tude; in addition, it can at the same time incorporate some asymptotic (clustering)

properties. For example, the nonlinear correlation function for the positronium
negative ion (Ps-) reduces the error of observables by two orders of magnitude

while making the calculation even less time consuming.
The sticking probabilities (Table 1) in the muon-catalyzed fusion process are

an example of CFHHMgiving much smaller errormargins than even the discrep-

ancies between different variational calculations.

Table 1. Sticking probabilitiesωnl (Q = 5.844).

Method Km 1s 2s 4s 2p

CFHHM 0.6819(1)0.0978 0.0126 0.0238

HCM (Abramov) 15 0.829 (?)

21 0.906 (?)

21 0.7001 0.1004 0.0130 0.02451)

Var. (Hu) 0.6932 0.0992 0.0128 0.0241

Var. (Haywood) 0.6846

Var. (Hu) 0.6817

Kamimura 0.6842

Var. (Hu) 0.6802 0.0975 0.0126 0.0237

Var. (recent) 0.6802-

0.8422

1) Q = 5.846.

In eµ4He we have a case where CFHHM has resolved high precision dis-
crepancies. Even E converged faster than in a variational method (SVM), but the

“local” expectation values definitely are better than the differences between two

high-precision calculations by the same author:

108〈δ(rµHe)〉 0.207 001 354 2(6) CFHHM

0.207 001 373 610 Smith-Frolov 1995

0.207 001 373 43 Frolov 2000

〈δ(reµ)〉 0.313 762 07(7)
0.313 763 0

0.313 760 812

〈δ(reHe)〉 0.320 633 27(6)
0.320 626 88

0.320 631 162
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Fig. 1.D = HΨ/EΨ − 1 for Ps− .
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Bartlett (in 1935) suggested comparing the local energy,D = HΨ/EΨ−1. Fig.
1 shows the comparison of SVM (Varga, Kukulin) and CFHHM for Ps- from Ref.

[2]. While CFHHM is clearly better especially around the repulsive cusp which

SVM avoids because it contributes little to E, CFHHM turns out to be “much
worse” than SVM for almost all expectation values. However the δ operators are

much better:

〈H〉 0.262 005 069 5 CFHHM

0.262 005 070 226 SVM

0.262 005 070 232 965 EVE

〈ree〉 8.548 5(2)

8.548 580 655 061
8.548 580 655 12

〈δ(rep)〉 0.020 733 14(6)∗

0.020 731 048 976

0.020 733 198 0

〈δ(ree)〉 0.170 997(2)[-3]

0.171 112 600 741[-3]
0.170 996 99[-3]

2 Ionization

The motivations of ionization calculations is to test CFHHM against systematic

variational calculations by Forrey [3].

Experimentally it turns out that one electron takes away almost all energy
(shake-off mechanism). Very soon (Byron et al.) it was also realized that in the

early calculations the shake-off mechanism underestimates σ++(ω) by a factor
of 2, which indicates the importance of correlations in this three-body system;

indeed, Helium is very strongly correlated. We shall calculate ratios of cross sec-

tions because they are independent of the photon energy at high (but nonrela-
tivistic) photon energies (this just gets rid of the ω−7/2 factor). For precise calcu-

lations the dipole approximation (golden rule) is good but good initial three-body
wave function is needed. This leads to the expressions for the double ionization

cross section,

σ++(ω) ≈ 32
√
2Z2π2

3cω7/2

{∫ ∣∣∣∣∣Ψ(0, s)

∣∣∣∣∣

2

ds−
∑

νlm

∣∣∣∣∣

∫
Ψ(0, s)ψνlm(s)ds

∣∣∣∣∣

2}
(2)

where ψνlm(s) describes the unperturbed second electron in the field of the nu-
cleus. (The cross section σ+(ω) contains only the lowest integral, and σ+∗(ω)

contains only the excitation integrals.) We start out with Ψ corresponding to rea-
sonable E which need not be very precise (in CFHHM), but also should not be

too imprecise (Table 2). Nevertheless, we end up with differences at 3rd – 4th digit

(Table 3).
We anticipate several works with relevant data for experiments. For exam-

ple, we obtain a 35 % quasi-free correction at 100 keV [4]. Rather small compu-
tational demands have been placed on CFHHM, but state-of-the-art results were
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Table 2. Helium binding energy and R values: various methods.

Work Basis E R

Present/ 121 2.9037243643 .01644

CFHHM 441 2.9037243765 .01644

[3] 2.903724377034 .01644

Kheifets 7/MCHF 2.90181 .0167

Dalgarno 20 2.9037179 .0168

Table 3. R = σ++(ω)/(σ+(ω) + σ+∗(ω))|ω→∞ values for the n1S states in the Helium

isoelectronic sequence (in percent), and the differences with Ref. [3].

n 1 2 3 4 5

Z

1 1.602

2 1.644 0.903 0.369 0.169 0.088

3 0.855 1.204 0.830 0.546 0.360

4 0.508 0.994 0.849 0.677 0.530

5 0.334 0.768 0.728 0.643 0.553

6 0.235 0.595 0.599 0.561 0.512

7 0.175 0.469 0.491 0.479 0.453

8 0.135 0.377 0.406 0.406 0.395

9 0.107 0.309 0.339 0.346 0.344

10 0.087 0.258 0.287 0.297 0.299

improved. This calculation for the first time separates the three-body input from

approximations like the dipole approximation. Higher excited states and QF cor-

rections were calculated for the first time. We plan to extend this work to triplet
states and Compton scattering.
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Abstract. An adequate description of heavy dimesons (tetraquarks) requires a unified ef-

fective interaction which fits both light and heavy meson as well as light and heavy baryon

spectra. Some aspects of the problem have been elucidated in lively discussions.

In the constituent quark model one needs effective quark masses and effective
quark-quark interactions. There are two approaches to this input information. In

the first principle (ab initio) calculations one would like to derive effective masses

and interactions from QCD, at least approximately. We are, however, involved
in the practical (phenomenological) approach to the constituent quark model: fit

effective quark masses and effective interaction parameters so as to reproduce
the known meson and baryon spectra, and then predict new states and explain

dynamical processes! The usual restriction is to the two-particle Hilbert space

for mesons and the three-particle Hilbert space for baryons. The question arises
whether in this restricted space a good fit is possible at all, andwhether it contains

correct physics.

Since our main interest is in dimesons and dibaryons we need a unified
interaction for all sectors. A possible unified picture of meson and baryon sec-

tors assumes the one-gluon-exchange potential + linear confining potential. This
model has had some success [1–4], but due to flavour independence and due to

the colour structure of the spin-spin interaction it sacrifices several states in the

baryon sector (for example Roper).
The one-Goldstone-boson-exchangemodel of Riska, Glozman, Plessas et al.[5,6]

has a different flavour-spin structure and is more successful for light baryons,
but it leaves it as an open question how to extend such a model to describe heavy

baryons and mesons. Heavy baryons and mesons certainly need a spin-spin force

of the one-gluon-exchange type since they do not feel pions.
The discussions at Bled was centered around five issues.

1. It has been suggested in the literature to simply take a combination of the

meson-exchange and gluon-exchange effective interactions. The practical dif-
ficulty is to get enough spin-spin splitting for heavy mesons (OGE), enough

⋆ E-mail: mitja.rosina@ijs.si
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lowering of Roper (OME), and still not to exceed theN−∆ splitting (OGE+OME).
The conceptual difficulty, strongly advocated by Leonid Glozman, is, how-

ever, the coexistence of chirally broken and chirally symmetric phase. Accord-

ing to this doctrine, at the energy scale of light quarks, the chiral symmetry
is spontaneously broken and the effective degrees of freedom are constituent

quarks and light mesons (Goldstone bosons) – no explicit gluons – therefore

OGE would make no sense. At the energy scale of heavy quarks the chiral
symmetry plays no role and the effective degrees of freedom are quarks and

gluons – perturbative QCD and OGE would make sense. It is then unclear
what to use when there are both light and heavy quarks present in the system.

The topic remained controversial. A compromise is needed, possible with a

modified strength of OGE between a heavy and a light quark.
2. It has been suggested to extend the OME interaction between two quarks

(such as has been successfully used by the Graz group) to the light quark-
antiquark pair simply by the G-parity transformation. It has to be clarified,

however, whether one should invent also relevant annihilation-creation graphs

and how should one fit their strength. Such additional interaction would in-
troduce many-quark many-antiquark configurations and the truncation to

the one-quark one-antiquark space is questionable. Anyway, also the OGE in-
teraction is not immune against this effect. Moreover, one should avoid dou-

ble counting. Especially the description of pion using pion-exchange between

quarks is very delicate.
3. The extended meson-exchange model (with vector meson exchange) offers

improvements in dynamical processes of baryons (form factors) but it opens
many new problems for the mesonic sector. For example, the G-parity trans-

formed ω-exchange becomes strongly attractive at short distance; we are ex-

ploring good and bad consequences.
4. The NJL model is unified for the light meson and baryon sectors (containing

u, d and/or s quarks). However, due to lack of confinement, and due to the

need of a complicated cutoff, little can be calculated for excited mesons, and
it is not easy to solve for baryons. Maybe NJL can at least inspire meaningful

effective q− q and q− q̄ interactions [7].
5. It is of interest to verify as much as possible the “Vqq = 1

2
Vqq̄” rule. It

is implicit in OGE and reasonable fits with lowest experimental levels do

not contradict it. A crucial test would be the comparison of charmonium (or
botomium) with the QQq baryons as well as QQq̄q̄ dimesons (tetraquarks)

[8]; Q = c, b and q = u, d, s. I would like to emphasise the paramount im-
portance to search for these doubly-heavy baryons and dimesons, possibly at

LHC.
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