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Jožef Stefan Institute, Ljubljana

Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana

and sponsored by

Ministry of Education, Science and Sport of Slovenia

Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana

Society of Mathematicians, Physicists and Astronomers of Slovenia

Organizing Committee

Simon Širca
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Simon Širca, Ljubljana, simon.sirca@fmf.uni-lj.si
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Preface

This summer’s Mini-Workshop on Quark Dynamics has been another in the tra-
ditional series of meetings held at Bled, in the inspiring atmosphere of Villa Plemelj.
The Workshop, virtually free of the time constraints imposed at large-scale venues,
has retained the spirit of “friendly confrontation” among physicists working on
closely related problems in hadronic physics. With respect to the previous Work-
shops, the emphasis has shifted from the structure of hadrons to the dynamics of
their production and detection, and a colorful set of topics has been covered.
The relativistic approach has been advanced one step further, using the spec-
tator approximation and the point form. Yet, a few “naughty” electro-magnetic
and mesonic decays of baryons remain to be open problems. To see, or not to
see a pentaquark was an unbalanced issue with prevailing arguments against the
sightings. On the other hand, the tetraquark proponents were optimistic about
the conclusion that the DD∗ state is probably bound. The Roper resonance has
been observed in lattice QCD. Production of pions was shown to be a three-
body problem sensitive to spin-orbit and tensor forces. Does the strong coupling
change over time? Maybe a laser can tell. High energies, high temperatures, high
densities, the chiral phase transition, and quark stars still excite our phantasy.
Can effective interactions be parameterized directly by Feynman graphs? What
is the role of the gluon condensate?
These Proceedings represent a succinct record of the broad range of issues dis-
cussed at the Workshop.

Ljubljana, November 2004 S. Širca
M. Rosina

B. Golli
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Bled Workshops in Physics 3 (2002) No. 1–2



Contents VII





BLED WORKSHOPS
IN PHYSICS
VOL. 5, NO. 1

Proceedings of the Mini-Workshop
Quark Dynamics (p. 1)

Bled, Slovenia, July 12-19, 2004

Polyakov Loop at Finite Temperature in Chiral Quark
Models?

E. Megı́as, E. Ruiz Arriola, and L.L. Salcedo

Departamento de Fı́sica Moderna, Universidad de Granada, E-18071 Granada, Spain

Abstract. At finite temperature, chiral quark models do not incorporate large gauge in-
variance which implies genuinely non-perturbative finite temperature gluonic degrees of
freedom. Motivated by this observation, we describe how the coupling of the Polyakov
loop as an independent degree of freedom to quarks not only accounts for large gauge
invariance, but also allows to establish in a dynamical way the interaction between com-
posite hadronic states such as Goldstone bosons to finite temperature non-perturbative
gluons in a medium which can undergo a confinement-deconfinement phase transition.

1 Large Gauge Transformations

One feature of gauge theories like QCD at finite temperatures in the imaginary
time formulation [1–3] is the non-perturbative manifestation of the non Abelian
gauge symmetry. In the Polyakov gauge, where ∂4A4 = 0 and A4 is a diagonal
and traceless Nc ×Nc matrix, and Nc is the number of colors, there is still some
freedom in choosing the gluon field. Let us consider for instance the periodic
gauge transformation [4,5]

g(x4) = ei2πx4Λ/β , (1)

where Λ is a color traceless diagonal matrix of integers. We call it a large gauge
transformation (LGT) since it cannot be considered to be close to the identity1.
The gauge transformation on the A4 component of the gluon field is

A4 → A4 +
2π

β
Λ . (2)

Thus, invariance under the LGT, Eq. (1), implies a constant shift in the A4 gluon
amplitudes, meaning that A4 is not uniquely defined by the Polyakov gauge con-
dition. These ambiguities on the choice of the gauge field within a given gauge
fixing are usually called Gribov copies. The requirement of gauge invariance ac-
tually implies identifying all amplitudes differing by a multiple of 2π/β, which
means periodicity in the diagonal amplitudes of A4 of period 2π/β. Perturba-
tion theory, which corresponds to expanding in powers of small A4 fields man-
ifestly breaks gauge invariance at finite temperature, because a Taylor expan-
sion on a periodic function violates the periodicity behavior. Thus, taking into
? Talk delivered by E. Ruiz Arriola
1 Note that they are not large in the topological sense, as discussed in [4,5].
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account these Gribov replicas is equivalent to explicitly deal with genuine non-
perturbative finite temperature gluonic degrees of freedom. A way of automat-
ically taking into account LGT is by considering the Polyakov loop Ω as an in-
dependent variable, which in the Polyakov gauge becomes a diagonal unitary
matrix

Ω = eiβA4(x) (3)

invariant under the set of transformations given by Eq. (1). The relevance of the
Polyakov loop in practical calculations is well recognized [1] but seldomly taken
into account in high temperature calculations where large gauge invariance is
manifestly broken since the gluon field is considered to be small. We have re-
cently developed an expansion keeping these symmetries in general theories and
applied it to QCD at the one quark+gluon loop level [6,7].

2 The Center Symmetry

In pure gluodynamics, or in the quenched approximation (valid for heavy quarks)
at finite temperature there is actually a larger symmetry since one can extend the
periodic transformations to aperiodic ones [3],

g(x4 + β) = zg(x4) , zNc = 1 (4)

so that z is an element of the center Z(Nc) of the group SU(Nc). This center sym-
metry is a symmetry of the action as well as the gluon field boundary conditions.
An example of such a transformation in the Polyakov gauge is given by

g(x4) = ei2πx4Λ/Ncβ . (5)

On the A4 component of the gluon field produces

A4 → A4 +
2π

Ncβ
Λ . (6)

Thus, in the quenched approximation the period is Nc times smaller than in full
QCD. Under these transformations the gluonic action, measure and boundary
conditions are invariant. The Polyakov loop, however, transforms as the funda-
mental representation of the Z(Nc) group, i.e. Ω → zΩ, yielding 〈Ω〉 = z〈Ω〉
and hence 〈Ω〉 = 0 in the unbroken center symmetry phase. At high tempera-
tures one expects perturbation theory to hold, the gluon field amplitude becomes
small and hence 〈Ω〉 → 1, justifying the choice of Ω as an order parameter for
a confinement-deconfinement phase transition. More generally, in the confining
phase

〈Ωn〉 = 0 for n 6= mNc (7)

with m an arbitrary integer. The antiperiodic quark fields at the end of the Eu-
clidean imaginary interval transform asq(x, β) = −q(x, 0) → zq(x, β) = −q(x, 0),
so that the center symmetry is explicitly broken by the presence of dynamical
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quarks. A direct consequence of such a property is that, in the quenched approx-
imation non-local condensates fulfill a selection rule of the form,

〈q̄(nβ)q(0)〉 = 0 for n 6= mNc (8)

since under the large aperiodic transformations given by Eq. (5) we have q̄(nβ)q(0) →
z−nq̄(nβ)q(0). This selection rule has some impact on chiral quark models.

3 Chiral quark models at finite temperature

To fully appreciate the role played by the center symmetry in chiral quark mod-
els (for a recent review on such models see e.g. Ref. [8] and references therein) let
us evaluate the chiral condensate at finite temperature. At the one loop level one
has2

〈q̄q〉∗ = 4MTTrc

∑

ωn

∫
d3k

(2π)3

1

ω2
n + k2 +M2

(9)

where ωn = 2πT(n + 1/2) are the fermionic Matsubara frequencies, M is the
constituent quark mass and Trc stands for the color trace in the fundamental rep-
resentation which in this case trivially yields a Nc factor. Possible finite cut-off
corrections, appearing in the chiral quark models such as the NJL model at finite
temperature have been neglected. This is a reasonable approximation as long as
the temperature is low enough T � Λ ∼ 1GeV. The condensate can be rewritten
as

〈q̄q〉∗ =
∑

n

(−1)n〈q̄(nβ)q(0)〉 (10)

in terms of nonlocal Euclidean condensates at zero temperature. After Poisson
resummation, at low temperatures we have

〈q̄q〉∗ = 〈q̄q〉 + 8Nc

∞∑

n=1

(−)n TM
2

π2
K1(Mn/T) ,

∼ 〈q̄q〉 −

∞∑

n=1

(−)nNc

2

(
2MnT

π

)3/2

e−nM/T , (11)

where the asymptotic expansion of the modified Bessel function K1 has been
used. One can interpret the previous formula for the condensate in terms of statis-
tical Boltzmann factors, since at large Euclidean coordinates the fermion propa-
gator behaves as S(iβ,x) ∼ e−Mβ, so that we have contributions from multiquark
states. This is a problem since it means that the heat bath is made out of free
constituent quarks without any color clustering3. Another problem comes from
comparison with Chiral Perturbation Theory at Finite Temperature [10]. In the

2 We use an asterisk to denote finite temperature observables.
3 One could think that this is a natural consequence of the lack of confinement in chiral

quark models such as NJL. Contrary to naive expectations this is not necessarily the
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chiral limit, i.e., for mπ � 2πT � 4πfπ the leading thermal corrections to the
quark condensate are given by

〈q̄q〉∗
∣∣∣
ChPT

= 〈q̄q〉
(
1 −

T2

8f2π
−

T4

384f4π
+ . . .

)
. (13)

This formula is derived under the assumption that there is no temperature de-
pendence of the low energy constants, i.e. L∗i ' Li so that the whole effect is due
to thermal pion loops. Thus, the finite temperature correction is Nc-suppressed
as compared to the zero temperature value. This is not what one sees in chi-
ral quark model calculations; in the large Nc limit there is a finite temperature
correction, which would mean that the low energy constants which appear in
the chiral Lagrangian would have a genuine tree level temperature dependence,
L∗i − Li ' Nce

−M/T . To obtain the ChPT result of Eq. (13) pion loops have to be
considered [11] and dominate for T � M. The problem is that already with-
out pion loops chiral quark models predict a chiral phase transition at about
Tc ∼ 170 MeV, in remarkable but perhaps unjustified agreement with lattice cal-
culations.

4 Coupling the Polyakov loop

In the Polyakov gauge one can formally keep track of large gauge invariance at
finite temperature by coupling gluons to the model in a minimal way. This means
in practice using the modified fermionic Matsubara frequencies [4,5]

ω̂n = 2πT(n + 1/2 + ν) , ν = (2πi)−1 logΩ (14)

which are shifted by the logarithm of the Polyakov loop which we assume for
simplicity to be x independent. Previous work have coupled similarly Ω on pure
phenomenological grounds [12–14], but the key role played by the implementa-
tion of large gauge invariance was not recognized. This is the only place where
explicit dependence on colour degrees of freedom appear. This coupling intro-
duces a colour source into the problem for a fixed A0 field and projection onto
the colour neutral states by integrating over the A0 field, in a gauge invariant
manner, as required. Actually, at the one quark loop level there is an accidental
Z(Nc) symmetry in the model which generates a similar selection rule as in pure
gluodynamics, from which a strong thermal suppression, O(e−NcM/T ) follows.
In this way compliance with ChPT can be achieved since now L∗i −Li ' e−NcM/T

but also puts some doubts on whether chiral quark models still predict a chi-
ral phase transition at realistic temperatures. This question has been addressed

case; Boltzmann factors occur in quark models with analytic confinement such as the
Spectral Quark Model [9]. There the condensate is given by

〈q̄q〉∗
〈q̄q〉 = tanh(M/2T ) = 1− 2e

−M/T
+ 2e

−2M/T
+ . . . (12)

where M = MS/2, despite the absence of poles in the quark propagator.
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using specific potentials for the Polyakov loop either based on one loop pertur-
bation theory for massive gluons [13] in the high temperature approximation or
on strong coupling expansions on the lattice [14]. In both cases similar mean field
qualitative features are displayed; the low temperature evolution is extremely
flat, but there appears a rapid change in the critical region, so that 〈q̄q〉∗ ' 〈q̄q〉
when 〈Ω〉 ' 0 and 〈q̄q〉 ' 0 when 〈Ω〉 ' 1. A more general discussion and di-
agramatic interpretation of these issues as well as the influence of higher quark
loop effects and dynamical Polyakov loop contributions will be presented else-
where [15] providing a justification of the one quark loop approximation at least
at low temperatures. There one obtains that the Polyakov loop effect can be fac-
tored out as follows4

〈q̄q〉∗ =
∑

n

1

Nc

Trc((−Ω)n)〈q̄(nβ)q(0)〉 . (15)

This result is consistent with applying the center symmetry selection rule, Eq. (8),
to the Z(Nc) breaking condensate, Eq. (10), of the chiral quark model without
Polyakov loops. If one now takes a suitable average on Polyakov loop configura-
tions consistent with center symmetry, i.e., including for each such configuration
all its Gribov replicas, Eq. (7) applies. Schematically, this yields

〈q̄q〉∗ ∼
∑

n

〈q̄(nNcβ)q(0)〉 ∼
∑

n

e−nNcM/T (16)

in the confining phase. (In the above sums each term carries a weight coming
from the Polyakov loop average and phase space factors.) On the other hand in
the unconfining phase, where the center symmetry is spontaneously broken, the
Polyakov loop is nearly unity and one recovers the standard chiral quark models
results, without Polyakov loop coupling.

5 Chiral Lagrangians at finite temperature

It is interesting to construct the coupling of Polyakov loops with composite pion
fields at finite temperature. Using the heat kernel techniques presented in Ref. [6]
and already applied to massless QCD [7], we can obtain the lowest order chiral
Lagrangian

L(2)
q =

f∗π
2

4
trf

(
DµU

†DµU + (χ†U + χU†)
)

(17)

whereU is the non-linear transforming pseudoscalar Goldstone field, χ̄ the quark
mass matrix and trf is the trace in flavor space. The pion weak decay constant, f∗π,
at finite temperature in the presence of the Polyakov loop and in the chiral limit
is given by

f∗π
2 = 4M2 T Trc

∑

ω̂n

∫
d3k

(2π)3

1

[ω̂2
n + k2 +M2]

2
.

4 Note that in this formula 〈q̄(nβ)q(0)〉 refers to quarks uncoupled to the Polyakov loop
while in Eq. (8) it refers to quenched QCD.
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The full calculation of the low energy constants at order O(p4) as a function of
temperature and the Polyakov loop is carried out in Ref. [15]. The main feature is,
similarly to 〈q̄q〉∗ and f∗π, a strong suppression O(e−NcMβ) at low temperatures,
but an enhancement of quark thermal effects close to the chiral-deconfinement
phase transition.

6 Conclusions

We see that the coupling of the Polyakov loop to chiral quark models at finite
temperature accounts for large gauge invariance and modifies in a non-trivial
way the results for physical observables. On the one hand, such a coupling al-
lows to satisfy the requirements of chiral perturbation theory at low tempera-
tures, generating a very strong suppression at low temperatures of quark loop
effects. Nonetheless, the onset of deconfinement through a non vanishing value
of the Polyakov loop accounts for a chiral phase transition at somewhat simi-
lar temperatures as in the original studies where the Polyakov loop was set to
one. We expect this feature to hold also in the calculation of other observables.
Although these arguments do not justify by themselves the application of these
chiral quark-Polyakov models to finite temperature calculations, they do show
that they do not contradict basic expectations of QCD at finite temperature.

This work is supported in part by funds provided by the Spanish DGI with
grant no. BMF2002-03218, Junta de Andalucı́a grant no. FM-225 and EURIDICE
grant number HPRN-CT-2003-00311.
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Abstract. We discuss the predictions of chiral quark models for basic pion properties en-
tering high-energy processes: generalized parton distributions (GPD’s) and unintegrated
parton distributions (UPD’s). We stress the role of the QCD evolution, necessary to com-
pare the predictions to data.

This is a very brief account of the talk based on Refs. [1–4], where the reader
is referred to for the details and references. We discuss the use of low-energy
chiral quark models to compute low-energy matrix elements of hadronic oper-
ators appearing in high-energy processes, in particular we evaluate the general-
ized and unintegrated parton distributions (GPD’s and UPD’s) of the pion in the
Nambu–Jona-Lasinio model and the Spectral Quark Model [4]. We carry on the
QCD evolution, necessary when comparing the model predictions to data ob-
tained at much higher scales.

The twist-2 GPD of the pion is defined as

H(x, ξ,−∆2
⊥) =

∫
dz−

4π
eixp+z−〈π+(p ′)|q̄(0,−

z−

2
, 0)γ+q(0,

z−

2
, 0)|π+(p)〉,

where the quark operator q(z+, z−, z⊥) is on the light cone z2 = 0 and the link op-
erators P exp(ig

∫z

0
dxµAµ) are implicitly present to ensure the gauge invariance

(as usual we work in the light cone gauge A+ = 0). A similar definition holds for
the gluon distribution. In chiral quark models the evaluation ofH at the leading-
Nc (one-loop) level is straightforward. For the NJL model with the Pauli-Villars
regularization we get

HNJL(x, 0,−∆2
⊥) =

[
1+

NcM
2(1− x)|∆⊥|

4π2f2πsi

∑

i

ci log
(
si + (1− x)|∆⊥|

si − (1− x)|∆⊥|

)]
θ(x)θ(1− x),

si =

√
(1− x)2∆2

⊥ + 4M2 + 4Λ2
i ,

? Talk delivered by W. Broniowski
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where M is the constituent quark mass, Λi are the PV regulators, and ci are
suitable constants. For the simplest twice-subtracted case, explored below, one
has, for any regulated function f, the operational definition

∑

i

cif(Λ
2
i ) = f(0) − f(Λ2) + Λ2df(Λ2)/dΛ2.

We use M = 280 MeV and Λ = 871 MeV, which yields the pion decay constant
fπ = 93 MeV. In the SQM the result is

HSQM(x, 0,−∆2
⊥) =

m2
ρ(m2

ρ − (1 − x)2∆2
⊥)

(m2
ρ + (1− x)2∆2

⊥)2
θ(x)θ(1− x),

where mρ is the mass of the ρ meson. We check that the pion electromagnetic
form factor is

FSQM(t) =

∫1

0

dxHSQM(x, 0, t) =
m2

ρ

m2
ρ + t

,

which is the built-in vector-meson dominance principle. For both models F(0) = 1

and HSQM(x, 0, 0) = θ(x)θ(1− x).
Our next goal is to compare the results to the data from transverse lattices

[5]. We pass to the impact-parameter space via the Fourier-Bessel transformation,
as well as carry the LO DGLAP perturbative QCD evolution from the low model
scale Q0=313 MeV [6] up to the scale of the data. The results are shown in Fig. 1.
We note that while the results at Q0 are completely different off the lattice data,
when evolved to the scale of 500 MeV, corresponding to the lattice calculations,
acquire a great resemblance to the data.

In the second part of this talk we discuss the leading-twist UPD’s of the pion,
defined as

q(x, k⊥) =

∫
dy−d2y⊥

16π3
e−ixp+y−+ik⊥ ·y⊥〈p | ψ̄(0, y−, y⊥)γ+ψ(0) | p〉,

and similarly for the gluon. An elementary one-quark-loop calculation in the NJL
model with the PV regularization gives for q and its Fourier-Bessel transform the
result

qNJL(x, k⊥,Q0) =
Λ4M2Nc

4f2ππ
3
(
k2
⊥ +M2

) (
k2
⊥ + Λ2 +M2

)2 θ(x)θ(1− x)

FNP
NJL(b) =

M2Nc

4f2ππ
2

(
2K0(bM) − 2K0(b

√
Λ2 +M2) −

bΛ2K1(b
√
Λ2 +M2)√

Λ2 +M2

)
.

In SQM we find

qSQM(x, k⊥,Q0) =
6m3

ρ

π(k2
⊥ +m2

ρ/4)
5/2
θ(x)θ(1− x),

FNP
SQM(b) =

(
1+

bmρ

2

)
exp

(
−
mρb

2

)
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Fig. 1. GPD of the pion in the impact-parameter space plotted as a function of the Bjorken
x. Top: model for four momentum scales, from 313 MeV up to 2 GeV. Bottom: transverse
lattice [5]. Numbers in brackets label the plaquette [1]. The qualitative agreement to the
data is achieved at the scale of about 500 MeV.

(the meaning of b different here, it is the transverse coordinate conjugated to k⊥).
The above results are at the low model scale Q0. Next, we evolve these UPD’s
from Q0 to high scales with the Kwieciński equations [2], obtained in the CCFM
framework. The results are displayed in Fig. 2.

One may show several qualitative and quantitative results concerning UPD’s.
At large b they fall off exponentially and at large k⊥ they fall off as a power law.
Spreading with increasing Q2 occurs, with 〈k2

⊥〉 ∼ Q2αS(Q2). Also, asymptotic
formulas at limiting cases may be explicitly given [2] which may be useful in
checking numerical calculations of CCFM-type cascades [7].

Our basic conclusion is that chiral quark models may be used to provide
GPD’s and UPD’s (also the pion distribution amplitude [3] not presented here) at
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the low model scale,Q0. Upon evolution to higher scales, the agreement with the
data (experimental or lattice) is very reasonable.

Fig. 2. Valence quarks (dashed lines), sea quarks (dotted lines), and gluons (solid lines), for
the transverse coordinate b = 0, 1, 2, 3, 4, 5, and 10 fm (bottom to top). Evolution with the
Kwieciński equations from the model scale Q0=313 MeV up toQ = 2GeV has been made.
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Abstract. The phenomenology of pion production from nucleon-deuteron collisions is an-
alyzed, with reference to the outgoing channel where the three-nucleon system is bound.
The available experimental data, from threshold up to the ∆ resonance, are compared with
calculations using accurate nuclear wavefunctions coming from rigorous solutions of the
three-nucleon quantum mechanical equations. The dominant contributions for pion pro-
duction are obtained through matrix elements involving pion-nucleon rescattering mecha-
nisms in S- and P-waves. S-wave rescattering includes also an isoscalar contribution which
is generally suppressed for low-energy pion-nucleon scattering, but becomes enhanced for
pion production because the latter implies a different kinematical regime, which involves
high-momenta contributions. P-wave rescattering includes also explicitly the ∆ degrees
of freedom. It is found that the existing data could be described reasonably well with
enhanced S-wave rescattering in the isospin-even channel as is described by the Hamil-
ton model. Initial-state interactions (ISI) between the proton and the deuteron have, in
general, sizable effects on the spin-averaged and spin-dependent observables. These ISI
effects become very important for spin observables involving interference terms amongst
the various helicity amplitudes, such as for the nucleon vector analyzing power Ay.

The study of pion production from nucleon-deuteron collisions (this reaction is
called also “pionic capture of nucleons on deuterons”) represents an interesting
topic of research. Potentially, it interconnects low-energy few-nucleon physics
with intermediate-energy physics, pion dynamics, etc. With this reaction it is
possible to study the NN → NNπ inelasticities in the most simple (complex)
nuclear environment, the three-nucleon system, where rigorous few-body tech-
niques have been developed to describe adequately the nucleon dynamics. But
these reactions can also represent a window, independent and complementary,
to the diagrams that presumably contribute to the three-nucleon forces. Tradi-
tionally, 3NF’s are constructed phenomenologically in low-energy few-nucleon
physics to overcome some deficiencies in the three-nucleon and more-nucleon
systems, with parameters adjusted ad hoc to reproduce some data that could not
be reproduced with a given set of conventional 2N potentials. It is most desir-
able that those diagrams contributing to the 3NF can be studied independently
? Talk delivered by L. Canton
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by other experiments, and pion production reactions could be the kind of process
that might shed light on these diagrams. Another general aspect that makes pion-
capture reactions quite interesting is the dependence of the associated amplitude
upon the distribution of the nucleonic axial currents. This makes these processes
closely related to neutrino reactions in nuclei, which is another important topic
of research in present days.

p

d
ISI

WF
Exc

NN→NNπ

WF

π0

3He

N

N

N

N

ρ,σ
π

π

π

ρ,π

∆
N

N

N

N

π

π

π

N

N

N

N

N

N

N

N

Fig. 1. Diagrammatic representation of the calculation required for determining the pion
production amplitude from nucleon-deuteron collisions. Left, the overall diagram. Right,
the elementary production mechanisms.

In Fig.1 the base calculation for pionic capture is illustrated. It involves use
of accurate 3N bound-state wavefunctions, calculation of ISI via Faddeev-Alt-
Grassberger-Sandhas techniques [1], and an exhorbitant number of multidimen-
sional integrals for the partial-wave evaluation of the elementary pion-production
processes. Details and updates for the present calculations can be found in Refs. [2].

The elementary production mechanisms (shown in the r.h.s. of Fig.1) are cal-
culated starting from the phenomenological low-energy interaction Lagrangian,
coupling the pion with the nucleon field

Lint =
fπNN

mπ

Ψ̄γµγ5τΨ · ∂µΦ − 4π
λI

m2
π

Ψ̄γµτΨ · [Φ × ∂µΦ] − 4π
λO

mπ

Ψ̄Ψ [Φ · Φ]

(1)

and with the ∆ field

L∆
int = −

fπN∆

mπ

(
Ψ̄µ

∆TΨ · ∂µΦ + h.c.
)
. (2)

The calculations herein illustrated have been performed with the following set of
parameters: f2πNN/4π = 0.0735, f2πN∆/4π = 0.32, λI = 0.045 and λO = 0.006. A
crucial aspect is represented by the off-shell extrapolations of these parameters
in the evaluation of the π-production matrix elements. For the S-waves terms
we have (t is the square of the four-momentum transfer of the corresponding
exchange particle)

λOFF
I = λON

I

m2
ρ

m2
ρ − t

Λ2
ρ

Λ2
ρ − t

λOFF
O = λON

O

aSR + aσ
m2

σ

m2
σ−t

aSR + aσ

. (3)
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The form on the left denotes the isospin-odd contribution in terms of a ρ-exchange
model, while on the r.h.s. we describe the isospin-even term as the combined
effect of phenomenological short-range (SR) processes and an effective scalar-
meson (σ) exchange. The two combined effects act in opposite directions [3].
The form on the right leads to an off-shell enhancement of the probability am-
plitude for pion production in the scalar-isoscalar channel. The NN → NNπ

inelasticities have been studied extensively in the case of the simpler reactions
pp → π+d; pp → ppπo; and pp → π+pn. Reference to earlier works can be
found in [4]; a more updated review is Ref. [5]. An interesting element of debate
concerns the possible mechanisms responsible for the production yield for the
process pp → ppπo at threshold. This yield has been explained by resorting to
two different mechanisms, represented in Fig. 2.

To ascertain which is the kind of mechanism that contribute most likely to
the production process remains still an open issue. Studies performed in pion
production from nucleon-nucleon collisions have been able to exclude neither of
the two mechanisms shown in Fig. 2.

Fig. 2. Alternative mechanisms suggested for the pp → ppπo reaction at threshold. Left,
pion coupling to short-range two-body exchange currents, Ref. [6]. Right, pion rescattering
in the isoscalar channel, Ref. [7].

One hopes that the reactions pd → πo 3He and pd → π+ 3H could help to
clarify the question of which is, if any, the correct mechanism that describe the
process in the isospin even channel. These three-nucleon-type reactions are ex-
tremely complicated, and therefore much more difficult to analyze theoretically.
On the other hand, here the interference effects amongst the various mechanisms
are much more important than for two-nucleon collisions at threshold and there-
fore these reactions might represent a more stringent test for the possible mech-
anisms that describe the process. In the following, I will present results obtained
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assuming that the production process in the scalar-isoscalar channel is dominated
by the rescattering model (the two mechanisms on the r.h.s of Fig. 2); the mech-
anism depicted on the l.h.s of the same figure will be possibly analyzed in the
future.

The current (spin-averaged) experimental situation has been greatly improved
after the addition of recent Cosy data, as exhibited in Fig. 3.
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Fig. 3. The current experimental situation for the excitation function, in the energy range
from threshold up to the ∆-resonance, after adding recent Cosy data (black diamonds and
triangles). Reference to data can be found in [8]. The parameter η represents the pion c.m.
momentum in units of pion masses.

The next figure, Fig. 4, shows the excitation function for various plane-wave
calculations, using the Bonn-B model for 2N interaction. The dotted line denotes
calculations with the standard (nonrelativistic) definition for the πNNN Jacobi
momenta. The other two lines refer to the results with replacement the pion mass
by its total energy in this Jacobi momentum set (see details in Ref. [10]). The
dotted-dashed line denotes calculations where pion rescattering in the scalar-
isoscalar channel is omitted, while the solid line accounts for our full model
(which includes the mechanisms on the r.h.s. of Fig. 2).

Fig. 5 shows on the l.h.s. the differential cross-section in collinear kinemat-
ics for the pd → πo 3He process. Calculations are for various 2N potentials. It
is seen that ISI have a significant effect on the angular dependence of the differ-
ential cross-section, in particular at backward angles. The same figure shows on
the r.h.s the dramatic effect that ISI’s have on the proton analyzing powersAy. In
the region of interference between s-wave and p-wave mechanisms, which cor-
responds approximately to η ≈ 0.5, the structure of Ay exhibits a rapid variation
in sign, with the appearance of an additional “bump” in the angular distribu-
tion. This structure is reproduced by our complete model independently of the
selected 2N potentials, once the effects of ISI are taken into account.
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Fig. 4. Excitation function for various plane-wave calculations, using the Bonn-B model for
2N interaction. See text for details on the line notation.
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Fig. 5. (Left) Differential production cross-section in collinear kinematics. (Right) Proton
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The thick lines denote ISI calculations for different 2N potentials, dashed (Bonn A), solid
(Bonn-B), dotted (Paris).
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Another interesting observable that has been analyzed is the deuteron ten-
sor analyzing power T20 (Fig. 6). The production reaction acts at threshold as an
helicity selector, in that the observed T20 is close to its geometrical limit -

√
2. This

limit can be obtained in plane-wave calculations with pure isovector πN s-wave
rescattering [9]. However, the trend with energy is much better reproduced once
the πN rescattering in the scalar-isoscalar channel are also considered. The repro-
duction improves further once ISI are taken into account [10].
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Fig. 6. Deuteron tensor analyzing power T20 in (forward) collinear kinematics. All lines
refer to plane-wave calculations. The solid line denotes the full model. The dot-dashed line
refers to calculations without s-wave πN rescatterings in the scalar-isoscalar channel, the
dotted line to calculations deprived also of s-wave rescatterings in the isovector channel.

In conclusion, I have reported on progresses made recently on the pion-3N
system, with respect to the pion-production reaction pd → πo 3He. The phe-
nomenology of this reaction is quite complicated, especially if one starts to con-
sider the spin-structure of the process. It is shown that a fair understanding of the
process is possible, provided that the variety of elementary production mecha-
nisms used to descibe pion-production from 2N collisions are taken into account,
and the nuclear 3-body aspects (bound-states and scattering effects in the initial
state) are carefully calculated. Also the interference effects amongst the various
production mechanisms are quite important in these processes. This should draw
attention to these type of reactions: they could help to clarify the issue of the na-
ture of the pion-production mechanisms for the process pp → ppπo at threshold.
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Abstract. Strange quark matter is studied in the framework of the Chromodielectric model
(CDM), and the corresponding equations of state are used to investigate the structure
(mass and radius) of cosmological compact objects. At high densities, the phase of QCD
known as “Color Flavour Locked” (CFL) phase, may also be modelled in the CDM through
the inclusion of a direct quark-quark correlation (pairing) energy. We studied this phase,
obtaining the corresponding equation of state, which we compared with the equations
of state of the other phases. The results show that the equations of state obtained in the
framework of the CDM are similar to those obtained in the framework of QCD. On the
other hand, the CFL phase turns out to be more stable than the normal (beta equilibrium)
phase. Work is still in progress regarding the structure of quark stars which are obtained
using the equation of state for the CFL phase.

The chromodielectric model is an effective model for the interactions amongst
quarks in the low and intermediate energy range [1]. The interactions between
the quarks are mediated by meson exchange: the scalar-isoscalar sigma (σ), the
pseudoscalar-isovector pion (π), and the scalar, isoscalar, chiral singlet chi (χ),
which is the responsible for generating confinement in the model (the χ field is
usually viewed as a glueball field). The chromodielectric model is chiral symmet-
ric, a symmetry that is spontaneously broken, leading to a dynamical generation
of quark masses which depend on χ−1. The mesons experience self-interactions:
a ‘mexican-hat’ potential for the chiral mesons and, for the confining field, a po-
tential which is usually written in the form [2]

U(χ) =
1

2
m2

χχ
2

[
1+

(
8η4

γ2
− 2

)(
χ

γmχ

)
+

(
1−

6η4

γ2

)(
χ

γmχ

)2
]
, (1)

wheremχ is the χ mass, and γ and η are parameters. It has a global minimum at
χ = 0 and a local one at χ = γmχ. The height of the local minimum, U(γmχ) =

(ηmχ)4 = B, is interpreted as a “bag pressure” [3], as in the MIT bag model, and
this correspondence is used to fix the model parameters.
? Talk delivered by M. Fiolhais
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The chiral CDM has been applied in studies of the baryon structure, in particu-
lar, the nucleon and the Delta resonance [4] and the Roper [5]. These states are
described as chiral solitons, with three valence quarks dynamically confined to a
bag whose radius is approximately 1 fm.
Quark matter has also been studied in the framework of the model [6]. The sim-
plest system which can be considered in this context is the charge neutral u and d
infinite quark matter, to which a semiclassical (Thomas-Fermi) formalism can be
applied. Such treatment allows us to readily obtain the Equation of State (EOS)
for the quark matter.
In a recent study [7], we considered strange quark matter which, in addition to
u and d quarks, also contains the strange quark, s. The requirement of (local)
charge neutrality and beta equilibrium enforces the need to include electrons into
the system. In the semiclassical approximation (quarks described by plane waves,
and constant classical meson fields) we found two distinct stable solutions for the
same set of model parameters. In both cases, σ remains always close to fπ irre-
spective of the density. In one solution (solution I in [7]), the χ field stays close to
zero, being a slowly increasing function of the density. For such small χ, the quar-
tic potential of the CDM is indistinguishable from U = 1

2
m2

χχ
2, thus, in practice,

this solution I corresponds to the one obtained and used by Drago et al. [8] in the
framework of the simpler quadratic potential [γ → ∞ in the potential (1)]. Due
to the smallness of the χ field, quark masses are large and the system is in a chiral
broken phase. As a consequence of the charge neutrality and beta equilibrium,
which are imposed in the variational calculations, a certain number of electrons
are required in the system which contains, on the other hand, u and d quarks (in
almost the same abundance) and s quark (less abundant than the other flavours).
There is another solution (solution II in [7]) corresponding to a large confining
field. This solution cannot exist for quadratic potentials such as the one in [8]
and it corresponds to a chiral symmetric phase: the quark masses for the three
flavours are all very close to zero, almost independent of the density. The chem-
ical potentials (µ) for each flavour are dominated by the Fermi momentum and
one has µu ' µd ' µs. Hence, in this chiral symmetric phase, which pertain to
the quartic potentials of the type (1), the abundance of quarks u, d and s are the
same and there are no electrons, i.e. µe ' 0.
Our results in Ref. [7] indicate that strange quark matter at high densities (solu-
tion II) is not absolutely stable. However, it is expected that a new phase that is
supposed to occur in QCD at very high densities, known as color flavor locked
(CFL) phase [9], is likely to be the ground state even if the quark masses are dif-
ferent from each other [10]. This suggests that the strange matter described by our
solution II in Ref. [7] may undergo a transition to the CFL phase, whose energy is
lowered due to a quark BCS-like pairing interaction.
A recent study described how the CFL phase in dense matter enhances the pa-
rameters space for absolute stability of the strange matter [11]. In that study, a
phenomenological vacuum energy density or bag constant B is included in the
spirit of the MIT bag model. It was shown that, when the gap energy of the QCD
Cooper pairs increases, the bag constant can be larger and the strange matter is
absolutely stable (i.e., the energy per particle is lower than for the iron).
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We performed a similar study in the CDM model including the BCS quark pairing
in it and analyze the superconducting color flavor locked phase. The quark pair-
ing interaction is introduced through the inclusion of the extra term 3∆2µ2/π2 in
the energy density. The (adjustable) parameter∆ is the paring energy and µ is the
(quark) chemical potential. Our goal was to investigate whether the inclusion in
the energy density of a negative term of the diquark condensate would maintain
the stability of quark matter even for a large potential energy.
The calculation was carried on using the parameters γ = 0.2 MeV, η = 0.096 and
mχ = 1.7 GeV for the U(χ) potential. In Fig. 1 we plot the energy per particle as a
function of the density (M = 939MeV) to study the stability in the CFL for CDM
(solution II in Ref. [7]) and QCD. We present a comparison between the EOS of
the CDM + CFL and QCD in the CFL, for ∆ = 100 MeV and ∆ = 0 (no pairing
interaction). The results show that the EOS obtained for the CFL strange matter
in the CDM is very similar to the QCD one, suggesting that the CDM has the
most relevant features of QCD at high densities. Increasing the quark pairing ∆
interaction, the strange quark matter becomes more stable. This result indicates
that even for large potential energies of the confining field (η > 0.096) the CFL
strange quark matter may exist as an absolutely stable state.

0.0 0.2 0.4 0.6 0.8 1.0
ρ [fm3]

−200.0

−100.0

0.0

100.0

200.0

300.0

ε/
ρ 

− 
M

 [M
eV

]

∆=0 CDM+CFL
∆=0 QCD in CFL
∆=100 CDM+CFL
∆=100 QCD in CFL

Fig. 1. Stability of the strange quark matter in the CFL phase for CDM (solution II in
Ref. [7]) and QCD [11].

This study can be relevant for the structure and formation of compact quark
[12,13] and hybrid stars [14]. In Ref. [7] we showed that quark stars with one
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solar mass and a radius in the range 6-8 km could be formed if no pairing inter-
action was included, though they were not absolutely stable. We expect that CFL
stars might be absolutely stable and even more compact than strange stars.
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A Time Dependence of the Scale of QCD
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Abstract. From astrophysics there are indications that the finestructure constant α has
changed during the past 10 billion years. Within grand unification one can deduce that
also the QCD scale has changed. Tests for a time variation of this scale are described. The
result of the new experiment in Munich is discussed.

The theory of QCD is very remarkable. It is a theory of very few parameters, i.
e. only Λc and the quark masses. The latter are related to inputs by the flavor
interactions and have nothing to do with the strong interactions. The parameter
Λc just sets the scale of the strong interactions and is not a real parameter for
the strong interaction itself. Thus the QCD–theory, proposed by Gell–Mann and
myself in 19721, is indeed an exceptional theory, describing lots of complexities
in terms of very few parameters, which, as discussed below, might even depend
on time.

Usually in physics, especially in particle physics, we deal with the local laws of
nature, say the field equations of QCD or the Maxwell equations. But when it
comes to the fundamental constants, like the finestructure constant α, we must
keep in mind that also questions about the boundary conditions of the universe
come up. We do not know, where these constants, like α or αs or the lepton and
quark masses, come from, but it could well be that at least a few of them are prod-
ucts of the Big Bang. If the Bing Bang would be repeated, these constants could
easily take different values. But in this case it is clear that the constants could
never be calculated.

So in connection to the fundamental constants the question comes up, whether
they are really cosmic accidents, or whether they are determined by the dynam-
ics, whether they are changing in time or in space, or whether they are indeed
calculable in a hypothetical theory going far above the present Standard Model.
Also considerations related to the Anthropic Principle should be made. Life in
our universe can exist only if the values of the fundamental constants take on
certain values. In a universe in which, for example, the u–quark is heavier than
the d-quark, the proton would decay in a neutron, and life would not exist, at
least not in a form known to us.
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Of course, todayα is just the interaction constant, describing e. g. electron–scattering
at low energies:

α−1 = 137.03599976 . (1)

But it is remarkable. Based on this number, one can calculate all effects in QED to
an accuracy of about 1 : 10.000.000, e. g. the magnetic moment of the electron. Of
course, QED is only a part of the Standard Model of today, based on a superpo-
sition of QCD and the SU(2) × U(1) – electroweak theory, and α is just one of at
least 18 parameters, entering the Standard Model.

One of the fundamental quantities is the proton mass. I should like to stress that
the proton mass is a rather complicated object in the Standard Model. The cou-
pling constant of QCD follows in leading order the equation:

αs

(
Q2
)

=
2π

b0

ln
(
Q

Λ

)
, b0 = 11 −

2

3
nf . (2)

Here the scale parameter Λ enters, which has been determined to be:

Λ = 214+38
−35 MeV . (3)

Λ is a free parameter of QCD, and all numbers of QCD scale with Λ, at least in
the limit where the masses of the quarks are set to zero. But Λ can be expressed
in terms of MeV, i. e. it is given in reference to the electron mass, which is outside
QCD. The physical parameters like the proton mass are simply proportional to
Λ, apart from a small correction due to quark masses. The scale of confinement
of the quarks is inversely proportional to Λ.

I should also remind you that Grand Unification imposes that the parameters
αs, α and αw are not independent. They are related to each other, and related to
the unified coupling constant, describing the interaction at the unification scale
Λun.

It is known that the group SU(5) does not describe the observations, since the
three coupling constants do not converge precisely. If supersymmetric particles
are added at an energy scale of about 1 TeV, a convergence takes place, however2.
In SO(10), proposed by P. Minkowski and me3 the situation is different, since in
this group the unification is a two–step process, where another mass scale, the
mass scale for the righthanded W–boson, enters. If this mass scale is chosen in
the right way, the unification can be achieved without supersymmetry.

After these preparations let me come to the question of time dependence. A
group of physicists has recently published their evidence that the finestructure
constant had a different value billions of years ago4. They were investigating the
light from about 134 quasars, using the so–called “many multiplet method”. They
were looking at the fine–structure of atomic lines, originating from elements like
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Fe, Ni, Mg, Sn, Ag etc. .

One particular aspect is that the fine–structure is a rather complex phenomenon,
fluctuating in particular also in the sign of the effect. These sign changes have
been observed and used in fixing the experimental values of α. The result is:

∆α

α
= (−0.72± 0.18) · 10−5 . (4)

Thus α was slightly larger in the past. If one takes a linear approximation and
uses a cosmic lifetime of 14 billion years, the effect is α̇/α ≈ 1.2 · 10−15 per year.

If α depends on time, the question arises, how this time–variation is generated.
Since α = e2/~c, a time variation could come from a time variation of ~ or c. Both
cases are, I think, not very likely. If c depends on time, it would mean, that we
have a serious problem with relativity. If ~ would depend on time, atomic physics
runs into a problem. So I think that a time dependence of α simply means that e
is becoming time–dependent.

Let me also mention that according to the results of Dyson and Damour5 there
is a rather strong constraint on a time–variation of α, derived from the investiga-
tion of the remains of the Oklo reactor in Gabon. If no other parameters change
as well, the relative change (α̇/α) per year cannot be more than 10−17, i. e. there
is a problem with the astrophysical measurements, unless the rate of change for
α has become less during the last 2 billion years. The constraint is derived by
looking at the position of a nuclear resonance in Samarium, which cannot have
changed much during the last 2 billion years. However, I tend not to take this
constraint very seriously. According to the Grand Unification αs and Λ should
have changed as well, and the two effects (change of α and of Λ) might partially
cancel each other.

The idea of Grand Unification implies that the gauge group SU(3) of the strong
interactions and the gauge group SU(2)×U(1) of the electroweak sector are sub-
groups of a simple group, which causes the unification.

Both the groups SU(5) and SO(10) are considered in this way. I like to empha-
size that the group SO(10) has the nice property that all leptons and quarks of
one generation are described by one representation, the 16–representation. It in-
cludes a righthanded neutrino, which does not contribute to the normal weak
interaction, but it is essential for the appearance of a mass of the neutrino, which
is expected in the SO(10)–Theory.

In SU(5) two representations of the group are needed to describe the leptons and
quarks of one generation, a 10– and a (5̄)–representation.

I should also like to emphasize that the gauge couplings αs, αw and α meet in
the SU(5)–theory only, if one assumes that above about 1 TeV supersymmetry
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is realized. In the SO(10)–theory this is not needed. A convergence of the cou-
pling constants can be achieved, since at high energies another energy scale en-
ters, which has to be chosen in a suitable manner.

A change in time of α can be obtained in two different ways. Either the coupling
constant αun stays invariant or the unification scale changes. I consider both ef-
fects in the SU(5)–model with supersymmetry. In this model the relative changes
are related:

1

α

α̇

α
=
8

3

1

αs

−
10

π

Λ̇un

Λun

(5)

One may consider the following scenarios:

1) ΛG invariant, αu = αu(t). This is the case considered in6 (see also7), and one
finds

1

α

α̇

α
=
8

3

1

αs

α̇s

αs

(6)

and
Λ̇

Λ
≈ 39 · α̇

α
(7)

2) αu invariant, ΛG = ΛG(t). One finds

1

α

α̇

α
= −

1

2π

(
bS

2 +
5

3
bS

1

)
Λ̇G

ΛG

, (8)

Λ̇

Λ
=

(
bS

3

bSM
3

1

α

α̇

α

)
≈ −30.8

α̇

α
(9)

3) αu = αu(t) and ΛG = ΛG(t). One finds

Λ̇

Λ
∼= 46

α̇

α
+ 1.07

Λ̇G

ΛG

where theoretical uncertainties in the factor R = (Λ̇/Λ)/(α̇/α) = 46 have been
discussed in6. The actual value of this factor is sensitive to the inclusion of the
quark masses and the associated thresholds, just like in the determination of
Λ. Furthermore higher order terms in the QCD evolution of αs will play a
role. In [1] it was estimated: R = 38± 6.

According to6 the relative changes of Λ and α are opposite in sign. While α is
increasing with a rate of 1.0× 10−15/yr, Λ and the nucleon mass are decreasing,
e.g. with a rate of 1.9× 10−14/yr. The magnetic moments of the proton µp as well
of nuclei would increase according to

µ̇p

µp

= 30.8
α̇

α
≈ 3.1× 10−14/yr. (10)
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The time variation of the ratio Mp/me and α discussed here are such that they
could by discovered by precise measurements in quantum optics. The wave length
of the light emitted in hyperfine transitions, e.g. the ones used in the cesium
clocks being proportional to α4me/Λ will vary in time like

λ̇hf

λhf

= 4
α̇

α
−
Λ̇

Λ
≈ 3.5× 10−14/yr (11)

taking α̇/α ≈ 1.0× 10−15/yr. The wavelength of the light emitted in atomic tran-
sitions varies like α−2:

λ̇at

λat

= −2
α̇

α
. (12)

One has λ̇at/λat ≈ −2.0× 10−15/yr. A comparison gives:

λ̇hf/λhf

λ̇at/λat

= −
4α̇/α− Λ̇/Λ

2α̇/α
≈ −17.4. (13)

At present the time unit second is defined as the duration of 6.192.631.770 cycles
of microwave light emitted or absorbed by the hyperfine transmission of cesium-
133 atoms. If Λ indeed changes, as described above, it would imply that the time
flow measured by the cesium clocks does not fully correspond with the time flow
defined by atomic transitions.

Recently a high precision experiment was done at the MPQ in Munich, using
the precise cesium clock PHARAO from Paris8.

In this experiment the drift between the year 1999 and 2003 could be measured
since in 1999 a similar experiment has been done accidentally. Today the fre-
quency of the 1S–2S–transition is measured to 2466 061 413 187 127 Hz, with an
uncertainty of 18 Hz. The drift during the past 43 months is given by 24 Hz, un-
certainty about 50 Hz. This implies a change of -0.9 (2.9) 10−15 per year.

Thus it is found that the prediction of about 2 × 10−14 per year is presumably
not realized. But further tests are going on.

Nevertheless we have to think what might be the reason that no change seems
to be there on the level of 10−14. Of course, there is the possibility that the as-
trophysics result is wrong. Further tests to check this are being prepared. But is
could also be that a cancellation takes place. The time change (α̇s/αs) receives 2
contributions, one by (α̇/α), but also one by

(
Λ̇GUT/ΛGUT

)
. If both are present,

one could have a suppression such that e. g.
(
Λ̇/Λ

)
is not 30 · (α̇/α), but only

3× (α̇/α). This would imply that in the experiment of Haensch et al. the effect is
there at the level of few ×10−15 / year.

Tests to look for such an effect are being prepared. But it will take at least one
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year, before results are known. It might also be that the astrophysics observations
are wrong. Recently new observations were published, indicating a null-effect9.

I like to thank in particular Prof. Rosina for the arrangement of this nice meet-
ing in the wonderful town of Bled close to the mountains of Slovenija.
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L. Ya. Glozman

Institute for Theoretical Physics, University of Graz, Universitätsplatz 5, A-8010 Graz,
Austria

Some experimental and theoretical doubts about the Θ+(1540) positive results
at LEPS, CLAS, COSY-TOF and others are discussed. Negative results at HERA-
B, E690, CDF, HYPERCP, PHENIX, ALEPH, DELPHI, BABAR and BELLE are
reviewed. If Θ+(1540) exists, its production mechanism should be significantly
different from the production mechanism of Λ(1520) which is well seen in all
high statistics and high resolution high energy experiments.
Arguments are given against the Jaffe-Wilczek diquark scheme of the pentaquark
antidecuplet.
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A new technique is presented how to extract several excited baryon states si-
multaneously from lattice QCD calculations. The results onN(939),N∗(1440) and
N∗(1710) and the negative parity states are pesented.
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Abstract. We have recently proposed that an effective strong running coupling, which
may reproduce the hadronic phenomenology through the Schwinger-Dyson approach in
the rainbow-ladder approximation, can originate from the interplay of the dimension 2
gluon condensate 〈A2〉 and the dimension 4 gluon condensate 〈F2〉. Here we give an alter-
native, heuristic derivation of this effective running coupling.

1 Introduction

The important role played in QCD by the gauge-invariant, dimension-4 gluon
condensate 〈Fa

µνF
aµν〉 ≡ 〈F2〉, has been known for a long time [1]. On the other

hand, there was a wide-spread opinion that the dimension-2 gluon condensate
〈Aa

µA
aµ〉 ≡ 〈A2〉 cannot have observable consequences, since it is not gauge in-

variant. Still, 〈A2〉 condensate attracted the attention of some researchers well
over a decade ago, e.g., in Refs. [2–6]. After it turned out more recently that
the Landau-gauge value of 〈A2〉 corresponds to a more general gauge-invariant
quantity, it attracted a lot of theoretical attention [7–17], to quote just several
of many papers offering evidence that this condensate may be important for
the nonperturbative regime of Yang-Mills theories. In our Ref. [14], we argued
that 〈A2〉 condensate may be relevant for the Schwinger-Dyson (SD) approach
to QCD. Namely, in order that this approach leads to a successful hadronic phe-
nomenology (which has so far been treated widely only in the rainbow-ladder
approximation), an enhancement of the effective quark-gluon interaction seems
to be needed at intermediate (Q2 ∼ 0.5 GeV2) momenta1. Ref. [14] showed that
the interplay of the dim.-2 condensate 〈A2〉 with the dim.-4 condensate 〈F2〉 pro-
vides such an enhancement. It also showed that the resulting effective strong run-
ning coupling leads to the sufficiently strong dynamical chiral symmetry break-
ing (DχSB) and successful phenomenology in the light sector of pseudoscalar
mesons. In addition, the issue of the parameter dependence of the results was
discussed in more detail in Ref. [18]. In the present paper, we give an alternative,
heuristic derivation of this effective running coupling.
? Talk delivered by D. Klabučar
1 Our convention is k2 = −Q2 < 0 for spacelike momenta k.
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2 On SD approach to hadronic phenomenology

In SD approach, the constituent quarks arise through dressing resulting from
DχSB in the (“gap”) SD equation for the full quark propagators, while mesons
are solutions of the Bethe-Salpeter (BS) equation for bound states of these dynam-
ically dressed quarks and antiquarks. Unfortunately, in the system of SD equa-
tions, solving for Green’s functions of lower order requires also the knowledge
of those of Green’s functions of higher orders. In other words, the SD equation
for a n-point function requires a (n + 1)-point function, etc., so that an infinite
tower of SD equations arises. Since it is impossible to solve such infinite towers
of SD equations, it is inevitable at some point to truncate such an infinite system
of equations, which should then be patched up by some modeling. Of course,
it is essential to use such truncations which preserve important characteristics
of the full theory. For the low-energy QCD, the nonperturbative phenomenon
of DχSB is the most important one. Phenomenological SD studies have there-
fore mostly been relying on the consistently used rainbow-ladder approximation
(RLA). Namely, the generation of DχSB and, consequently, the appearance of
light pseudoscalar mesons as (almost-)Goldstone bosons, is well-understood in
RLA [19–23]. In practice this means that for interactions between quarks one uses
Ansätze of the form

[K(k)]
hg
ef = i4παeff(−k

2)Dfree
µν (k) [

λa

2
γµ]eg[

λa

2
γν]hf , (1)

where e, f, g, h schematically represent spinor, color and flavor indices,αeff(−k
2) =

αeff(Q
2) denotes an effective running coupling, andDfree

µν (k) is the free gluon prop-
agator in the gauge in which the aforementioned SD studies have been carried out
almost exclusively, namely the Landau gauge:

Dfree
µν (k) =

1

k2
(−gµν +

kµkν

k2
) . (2)

The BS equation for the bound-state vertex Γqq̄ ′ of the meson composed of the
quark of the flavor q and antiquark of the flavor q ′, is then

[Γqq̄ ′(k, P)]ef =

∫
d4`

(2π)4
[Sq(`+

P

2
)Γqq̄ ′(`, P)Sq ′(` −

P

2
)]gh[K(k− `)]

hg
ef . (3)

The consistent RLA requires that the same interaction kernel (1) be previously
used in the SD equation for the full quark propagator Sq. That is, dressed quark
propagators Sq(k) for various flavors q,

S−1
q (p) = Aq(p2)p/− Bq(p2) , (q = u, d, s, ...) , (4)

are obtained by solving the gap SD equation

S−1
q (p) = 6p− m̃q − i4π

∫
d4`

(2π)4
αeff[−(p− `)2]Dab

µν(p− `)0

λa

2
γµSq(`)

λb

2
γν , (5)

where m̃q is the bare mass of the quark flavor q breaking the chiral symmetry ex-
plicitly. The case m̃q = 0 corresponds to the chiral limit where the current quark



32 Dalibor Kekez and Dubravko Klabučar
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Fig. 1. A typical example of a momentum-dependent dynamically generated constituent
quark mass function, which has values of the order of one-third of the nucleon mass at low
momenta squared. It is the non-strange (q = u) dynamical quark mass of the lightest quark
flavor, Mu(−Q2), calculated using the effective coupling (18) and the input parameters
given in Ref. [14] by Eq. (26) there. In the exact chiral limit, the result forMu(−Q2) is very
similar.

mass mq = 0. In that limit the dynamically generated “momentum-dependent
constituent mass function”Mq(p2) ≡ Bq(p2)/Aq(p2) stems exclusively from the
nonperturbative phenomenon of DχSB. (Of course, for any m̃q which is small with
respect to the typical hadronic mass scale ∼ 1 GeV, Mq(p2) stems largely from
DχSB for values of p2 below the perturbative domain.) The “constituent quark
mass” can be defined as the value of this momentum-dependent constituent mass
function at some low −p2, say p2 = 0. The important thing for obtaining a
successful hadronic phenomenology, especially in the light-quark sector (q =

u, d, s), is that DχSB be sufficiently strong; i.e., the gap equation (5) should yield
quark propagator solutions Aq(p2) and Bq(p2) giving the dressed-quark mass
function Mq(p2) whose values at low −p2 are of the order of typical constituent
mass values, namely several hundred MeV, as exemplified in Fig. 1.
It turns out that the interaction (1), or, equivalently, αeff(Q

2), which would lead
to successful hadronic phenomenology through RLA, must have fairly high inte-
grated strength in the domain of intermediate (around Q2 ∼ 0.5 GeV2) and low
momenta. Only then RLA equations (4) and (3) can give acceptable description
of hadrons, notably mass spectra and DχSB [20,24]. On the other hand, at large
spacelike momenta, the running coupling αeff(Q

2) must reduce to αpert(Q
2), the

well-known running coupling of perturbative QCD. The question is how to ob-
tain theoretically such an interaction.
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Fig. 2. The effective coupling (18) proposed and analyzed in the present paper is depicted
by the solid curve. The two older and also phenomenologically successful effective strong
running couplings, namely JM [21] and MRT [23,20]αeff(Q

2), are depicted by, respectively,
dashed and dash-dotted curves.

3 Strong coupling enhanced by gluon condensates

We already gave an answer to the above question in our paper [14]. There, we
pointed out that such an interaction kernel for SD studies in RLA and the Landau
gauge resulted from combining the form the running coupling has in the Landau-
gauge SD studies, namely Eq. (6) below [19,25–28], and the ideas on the possible
relevance of the dimension 2 gluon condensate 〈A2〉 [7–13,3–6]. In the present
paper, we give a simplified and more intuitive derivation thereof as follows.
The definition of the strong running couplingαs(Q

2) which is appropriate for the
SD studies in the Landau gauge [19,25–28] is

αs(Q
2) = αs(µ

2)Z(Q2)G(Q2)2 , (6)

where αs(µ
2) = g2/4π and Z(µ2)G(µ2)2 = 1 at the renormalization point Q2 =

µ2. The gluon renormalization function Z(−k2) defines the full gluon propagator
Dµν(k) in the Landau gauge:

Dµν(k) = Z(−k2)Dfree
µν (k) =

Z(−k2)

k2

(
−gµν +

kµkν

k2

)
. (7)

Similarly, G(−k2) is the ghost renormalization function which defines the full
ghost propagator:

DG(k) =
G(−k2)

k2
. (8)

It is sometimes convenient to express the gluon and ghost renormalization func-
tions through the corresponding gluon (A) and ghost (G) polarization functions
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ΠG(Q2) and ΠA(Q2):

Z(Q2) =
1

1+
ΠA(Q2)

Q2

, G(Q2) =
1

1 +
ΠG(Q2)

Q2

. (9)

From the recent flurry of papers on 〈A2〉, Refs. [7–10] are particularly relevant
for the exposition below, but already a long time ago it was pointed out by, e.g.,
Refs. [3–6], that in the operator product expansion (OPE) the gluon condensate
〈A2〉 can contribute to QCD propagators. Their [3–6] 〈A2〉-contributions to the
OPE-improved gluon (A) and ghost (G) polarization functions were recently con-
firmed by Kondo [10]. For LG (adopted throughout this paper), number of QCD
colors Nc = 3 and space-time dimensions D = 4, their expressions for the polar-
izations reduce to

Πi(Q
2) = m2

i + Oi(1/Q
2) , (i = A,G) , (10)

m2
A =

3

32
g2〈A2〉 = −m2

G . (11)

Here mA and mG are, respectively, dynamically generated effective gluon and
ghost mass. For g2〈A2〉, LG lattice studies of Boucaud et al. [7] yield the value
2.76 GeV2, compatible with the bound resulting from the discussions of Gubarev
et al. [8,9] on the physical meaning of 〈A2〉 and its possible importance for con-
finement. Using this value in Eq. (11) yieldsmA = 0.845 GeV, which will turn out
to be a remarkably good initial estimate formA,G.
One should expect that in the contributions Oi(1/Q

2) in Eq. (10), a prominent role
is played by the dimension-4 gluon condensate 〈F2〉, which, contrary to 〈A2〉, is
gauge invariant [1]. Refs. [4,5] showed that the OPE contributions of dimension-4
condensates were far more complicated [6] than found previously [3]: not only
many kinds of condensates contributed to terms ∝ 1/Q2, but for many of them
(gauge-dependent gluon, ghost and mixed ones) there has been no assignments
of any kind of values yet. Terms ∝ (1/Q2)n (n > 1) were not considered at all.
Thus, at this point, the only practical approach is that the contributions Oi(1/Q

2)

(i = A,G) in Eq. (10) are approximated by the terms ∝ 1/Q2 and parametrized,
i.e.,

OA(1/Q2) ≈ CA

Q2
, OG(1/Q2) ≈ CG

Q2
. (12)

In Eqs. (12), both CA and CG would thus be free parameters to be fixed by phe-
nomenology. Still, we should mention that the effective gluon propagator advo-
cated by Lavelle [29] would indicate CA ≈ (0.640 GeV)4 for the following reason:
for LG andD = 4, the contribution which this gluon propagator receives from the
so-called “pinch diagrams” vanishes, and its [29] OA(1/Q2) polarization

Π
〈F2〉
A (Q2) =

34Ncπαs〈F2〉
9(N2

c − 1)Q2
=

(0.640 GeV)4

Q2
(13)

originates entirely from the gluon polarization function in Ref. [4], provided one
invokes some fairly plausible assumptions, like using equations of motion, to
eliminate all condensates except 〈F2〉. (The quark condensate 〈q̄q〉 could also be
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neglected [29].) Since Ref. [30] indicates that the true value of αs〈F2〉 is still rather
uncertain, and since Refs. [5,6] make clear that Lavelle’s [29] propagator misses
some (unknown) three- and four-gluon contributions, we do not attach too much
importance to the precise value CA = (0.640 GeV)4 [29,1] in Eq. (13), but just use
it as an inspired initial estimate. Fortunately, the corresponding variations of CA

still permit good phenomenological fits, since we found in Refs. [14,18] that our
results are not very sensitive to CA.
We do not have a similar estimate for CG, but one may suppose that it would not
differ from CA by orders of magnitude. We thus try CG = CA = (0.640 GeV)4 as
an initial guess. It turns out, a posteriori, that this value of CG leads to a very good
fit to phenomenology [14,18].
We can now give a general, although heuristic argument why the contribution
(11) of the dimension-2 〈A2〉 condensate to the gluon and ghost polarizations (10),
should indeed lead to the form of αeff(Q

2) already found in Ref. [14]. As the first
step, let us assume that in the gluon and ghost polarization functions, ΠA and
ΠG, one can disentangle the perturbative (pert) from nonperturbative (Npert) parts,
Πi = Π

pert
i +Π

Npert
i (i = A,G). At least for high momentaQ2, it is then possible to

approximately factor away the perturbative from nonperturbative contributions;
for i = A,

Z(Q2) ≈ 1

1+
Π

pert
A

(Q2)

Q2

1

1+
Π

Npert
A

(Q2)

Q2

≡ Zpert(Q2)ZNpert(Q2) , (14)

where we neglect the Πpert
A (Q2)Π

Npert
A (Q2)/Q4 term. Analogously,

G(Q2) ≈ 1

1+
Π

pert
G

(Q2)

Q2

1

1+
Π

Npert
G

(Q2)

Q2

≡ Gpert(Q2)GNpert(Q2) . (15)

For sufficiently highQ2, the general QCD coupling αs(Q
2) reduces to the pertur-

bative QCD couplingαpert(Q
2), so that Eq. (6) suggests that (g2/4π)Zpert(Q2)Gpert(Q2)2

should be identified with αpert(Q
2).

For high Q2, we can also assume that nonperturbative parts are given by the
OPE-based results of Refs. [3–6,10] [which in our present case boil down to Eqs.
(10)-(11)], and by the parametrization (12). Then

ZNpert(Q2) =
1

1+
m2

A

Q2 + CA

Q4

, (16)

GNpert(Q2) =
1

1−
m2

A

Q2 + CG

Q4

, (17)

wheremA is given (11) by the 〈A2〉 condensate.
Obviously, Eqs. (6), (14), (15), (16) and (17) suggest an effective coupling αeff(Q

2)

of the form
αeff(Q

2) = αpert(Q
2)ZNpert(Q2)GNpert(Q2)2 . (18)

The derivation of the coupling (18) is obviously only heuristic and is far from
rigorous. However, we already obtained the same result through a more rigorous
derivation in Ref. [14].
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Already in Ref. [14], and in more detail also in Ref. [18], we saw how and why
the form (18) was sufficiently enhanced at intermediate Q2 to lead to successful
phenomenology when used in quark gap SD equation (5) and bound-state BS
equation (3) through Eq. (1), at least in the case when the contribution of the
dimension-4 〈F2〉 condensate to CA and CG in Eq. (12), was given by Eq. (13).
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Abstract. A relativistic quantum mechanics is formulated in terms of four-momentum op-
erators. The free part of the four-momentum operator is built from irreducible represen-
tations of the Poincaré group, while the interacting part comes from integrating a vertex
operator over the forward hyperboloid. If the Fock space on which these operators act is
truncated, the Poincaré commutation relations no longer hold. But a relativistic few-body
theory can still be formulated by using the vertex to define an interacting mass operator.
Applications of these ideas are also briefly discussed.

1 Formulation of Relativistic Quantum Mechanics in terms of
Vertex Interactions

The foundations of nonrelativistic quantum mechanics can be formulated in terms
of representations of the Galilei group, the ten parameter group of transforma-
tions connecting different inertial frames. Irreducible representations of the Galilei
group provide the Hilbert space for free particles, while the unitary operators
representing elements of the group specify the connection between wavefunc-
tions in different inertial frames [1]. The exponential of these unitary operators
also generate operators such as the momentum, angular momentum (including
spin), position and free energy operators. For example, if ψ(p) is the momentum
space wavefunction for a spinless particle of mass m, and Uv = e−imvX is the
unitary operator representing a boost, a transformation from one inertial frame
to another given by x → x + vt, then the wavefunction in the boosted frame is
given by (Uvψ)(p) = e−imvXψ(p) = ψ(p+mv), where X is the position operator,
which is i ∂

∂p
in a momentum representation.

Few-body quantum mechanics can then be formulated on tensor products of irre-
ducible representation spaces. However, it is simpler to formulate a many-body
theory by introducing creation and annihilation operators with the same argu-
ments as one-particle states, and which transform under Galilei transformations
as one particle states. Then the free Hamiltonian and momentum operators can
be written as

H(fr) =
∑ ∫

d3p
p2

2m
a†(pms)a(pms) (1)

P(fr) =
∑ ∫

d3ppa†(pms)a(pms) (2)

and must satisfy a number of commutation relations in order to have a Galilei
covariant theory. Interactions are introduced by modifying the free Hamiltonian
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in such a way that the commutation relations are preserved. For example an n-
body kernel must be rotationally and Galilei boost invariant in order to satisfy
the commutation relations.
The procedure just outlined can be generalized to relativistic systems. Relativis-
tic transformations are generated by Poincaré transformations, in which a space-
time point x is transformed to x

′

= Λx+ a, where Λ is a Lorentz transformation,
and a a space-time four-vector translation.
Irreducible representation spaces for particles of mass m and spin j are most
simply realized as functions over the forward hyperboloid specified by the four-
velocity satisfying v · v = 1, which is related to the four-momentum by p = mv.
Then the Hilbert space for a particle of mass m and spin j is H = L2(v) × V j,
where V j is the usual 2j+ 1 dimensional spin space[2].
From a relativistic state |v, σ >, where σ is the relativistic spin projection ranging
between −j and j, a many-particle Fock space is generated by creation and anni-
hilation operators satisfying [a(v, σ), a†(v

′

, σ
′

)]± = v0δ
3(v − v

′

)δσσ
′ . To satisfy

locality requirements needed for the vertex interactions, it is necessary to also in-
troduce antiparticle creation and annihilation operators satisfying the same com-
mutation relations.
Then the free four-momentum operator can be written as

Pµ(fr) = m
∑ ∫

d3v

v0

vµ(a†(v, σ)a(v, σ)

+b†(v, σ)b(v, σ)); (3)
[Pµ(fr), Pν(fr)] = 0 (4)
UΛPµ(fr)U−1

Λ = (Λ−1)ν
µPν(fr), (5)

where the last two equations guarantee the commutation relations of the Poincaré
group.
Interactions are generated by vertices with the following properties, the first of
which is a locality requirement:

[V(x), V(y)] = 0, (x− y)2 < 0, (6)
UaV(x)U−1

a = V(x+ a), (7)
UΛV(x)U−1

Λ = V(Λx); (8)

Pµ(I) : =

∫
d4xδ(x · x− 1)θ(x0)xµV(x), (9)

where the interacting four-momentum operator in Eq.(9) is obtained by integrat-
ing the vertex operator over the forward hyperboloid.
It then follows that the interacting four-momentum operator satisfies

[Pµ(I), Pν(I)] = 0, (10)
UΛPµ(I)U−1

Λ = (Λ−1)ν
µPν(I), (11)

so that the Poincaré conditions are satisfied for the interacting four-momentum
operator[3].
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The total four-momentum operator is the sum of free and interacting four-momen-
tum operators and satisfies

[Pµ, Pν] = [Pµ(fr) + Pµ(I), Pν(fr) + Pν(I)]

= [Pµ(fr), Pν(I)] − [Pν(fr), Pµ(I)]

=

∫
d4xδ(x · x − 1)

(xµ

∂

∂xν
− xν

∂

∂xµ
)V(x)

= 0.

Vertex operators satisfying the above properties are generally made out of local
fields. For the local charged scalar field

Φ(x) =

∫
d3v

v0

(e−ip·xa(v) + eip·xb†(v)), (12)

an example of a vertex operator is
V(x) =

∑
anD

µ1...µnΦ†(x)Dµ1...µn
Φ(x), where Dµ1...µn

= ∂...∂
∂xµ1 ...∂xµn

and the
an are constant coefficients. The local charged scalar field can readily be gener-
alized to include spin [4] and internal symmetries, including gauge transforma-
tions.

2 Application of Vertex Interaction to a Charged Particle in an
External Electromagnetic Field

Let Jµ(x) be the (local) electromagnetic currrent operator for a particle of massm
and spin j. Such an operator can be written as a linear combination of bilinears in
creation and annihilation operators and hence is an element of a representation
of U(N,N) on Fock space[4]. A vertex can be defined by V(x) = Jµ(x)Aext

µ (x) and
the four-momentum operator for a particle in an external electromagnetic field is
given by

Pµ = Pµ(fr) + Pµ(ext),

Pµ(ext) =

∫
d4xδ(x · x− 1)xµθx0

V(x); (13)

Ψt = e−iP0tΨ (14)

gives the time evolution of the system. But the exponential of the energy opera-
tor is an element of the representation of U(N,N) on Fock space and the action of
this representation is known[5]. Hence one can use such a vertex interaction to
explicitly calculate particle production from a time independent external electro-
magnetic field.

3 Bakamjian-Thomas Mass Operators in terms of Vertex
Interactions

If the Fock space on which the vertex generated four-momentum operators act is
truncated, the components of the four-momentum operator will no longer com-
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mute. A procedure for constructing a commuting four-momentum operator is to
use the vertex operator to define an interacting mass operator on the truncated
Fock space.
To prepare for the construction of interacting mass operators, introduce velocity
states, states with simple Lorentz transformation properties. If a Lorentz trans-
formation is applied to a many-particle state, |p1, σ1...pn, σn >= a†(p1, σ1)...

a†(pn, σn)|0 >, then it is not possible to couple all the momenta and spins to-
gether to form spin or orbital angular momentum states, because the Wigner ro-
tations for each momentum state are different. However, velocity states, defined
as n-particle states in their overall rest frame boosted to a four-velocity v will
have the desired Lorentz transformation properties:

|v,ki, µi >: = UB(v)|k1, µ1...kn, µn > (15)

=
∑

|p1, σ1...pn, σn >
∏

Dji
σi,µi

(RWi
). (16)

UΛ|v,ki, µi > = UΛUB(v)|k1, µ1...kn, µn >

= UB(Λv)URW
|k1, µ1...kn, µn >

=
∑

|Λv, RWki, µ
′

i >
∏

D
ji

µ
′

i
,µi

(RW). (17)

Now all the Wigner rotations in the D functions are the same. Moreover the same
Wigner rotation also multiplies the internal momentum vectors, which means
that for velocity states, spin and orbital angular momentum can be coupled to-
gether exactly as is done nonrelativistically. The relationship between single par-
ticle and internal momenta is given by pi = B(v)ki,

∑
ki = 0;

From the definition of velocity states it then follows that

Vµ|v,ki, µi > = vµ|v,ki, µi >, (18)
M(fr)|v,ki, µi > = mf |v,ki, µi >, (19)
Pµ(fr)|v,ki, µi > = mfv

µ|v,ki, µi >, (20)

with mf =
∑√

m2
i + ki

2 the free ’mass’ of the n-particle velocity state and
Pµ(fr) = M(fr)Vµ. On velocity states the free four-momentum operator has been
written as the product of the four-velocity operator times the free mass oper-
ator[6]. Four-momentum operators are written as Pµ = MVµ, where the four-
velocity operator is defined by Vµ :=

Pµ(fr)

M(fr)
. The mass operator is the sum of

free and interacting mass operators, M = M(fr) + M(I); if the mass operator
commutes with the four-velocity operator and Lorentz transformations, then the
Poincaré commutation relations, Eqns.(4),(5), are satisfied. Since the four-velocity
of the overall system is kinematic, it can be ignored; what remains then is to solve
the mass operator eigenvalue equation, MΨ = mΨ.
Now the vertex operator at the space-time point 0 is a Lorentz scalar. Velocity
state matrix elements of V(0) can then be used to generate an interacting mass
operator:
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M(I) : = < v
′

,k
′

i, µ
′

i |V(0)|v,ki, µi > |v ′
=vf(∆m), (21)

where the the initial four velocity equals the final four-velocity; the form factor
f(∆m) = f(m

′

f − mf) with m
′

f,mf given in Eq.(19), guarantees the interacting
mass operator is well defined on the truncated Fock space.
From its definition it follows thatM(I) is independent of the four-velocity:

M(I) = < v
′

,k
′

i , µ
′

i |V(0)|v,ki, µi > |v ′
=vf(∆m)

= < k
′

1µ
′

1...|U
−1
B(v)

V(0)UB(v)|k1µ1... > |v ′
=vf(∆m)

= < k
′

1µ
′

1...|V(0)|k1µ1... > |v ′
=vf(∆m), (22)

and has only off-diagonal matrix elements in the truncated Fock space[6].

4 Application of Vertex Interactions to Strong Decays

Consider a (too) simple model in which negative parity vector mesons (ρ,ω...)
are considered to be QQ̄ bound states produced by a harmonic oscillator mass
operatorMHO [7].
Truncate Fock space to the direct sum of QQ̄ and QQ̄M spaces and couple Q, Q̄
to pseudoscalar mesons via the vertex V(x) = gΨ̄(x)γ5λFΨ(x) · φ. For such a
coupled channel problem, the free mass operators are modified to MHO for QQ̄

space andM2Q−M =

√
M2

HO + k2 +

√
m2

M + k2 for theQQ̄M space.
The coupled channel mass operator eigenvalue equation with off-diagonal mass
operator given by K =< QQ̄|V(0)|QQ̄M > is

M|Ψ > = m|Ψ > (23)
MHO|ΨQQ̄ > +K|ΨQQ̄M > = m|ΨQQ̄ >

K†|ΨQQ̄ > +M2Q−M|ΨQQ̄M > = m|ΨQQ̄M >

|ΨQQ̄M > =
1

m −M2Q−M

K†|ΨQQ̄ >

(MHO + K
1

m−M3Q−M

K†)|ΨQQ̄ > = m|ΨQQ̄ >, (24)

which is a nonlinear eigenvalue equation.
To get the eigenvalues choose a set of valuesma for them appearing in the prop-
agator and then solve a conventional eigenvalue problem. The resulting eigen-
values will depend parametrically on the chosen values λi(ma) and may be com-
plex, above the threshold for meson production. The intersection of the interpo-
lated chosen values with the calculated values give the actual eigenvalues via the
equation m = Re(λi(m)). The widths are given by Γ(mi) = 2|Im(λi(mi))|. Once
the two-body wave functions known by solving the above eigenvalue equation, it
is possible to get three body wavefunctions from the coupled channel equations.
For this model it is possible to get level shifts and widths from the harmonic os-
cillator spectrum; however the model is too simple to get good agreement with
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experiment [7]. In contrast the Graz Goldstone Boson Exchange (GBE) mass op-
erator has eigenvalues that are in good agreement with the experimental mass
spectrum [8]; however it is a point spectrum with no widths for excited states. By
augmenting this mass operator to a coupled channel mass operator in which me-
son decays are possible, it should be possible to produce a more realistic baryon
spectrum.
The simplest way to do this is to truncate the Fock space to a three quark plus
three quark and meson space, in which the vertex is a quark-quark-meson vertex
which connects the two spaces.
Consider a mass operator on the direct sum space of the form

M =

[
M3Q K†

K M3Q−M

]
(25)

where M3Q = M(fr) +M(conf), the sum of free and confinement mass opera-
tors, but does not include a hyperfine interaction. Again K is the mass operator
generated by the meson-quark vertex,

K = < v,ki, µi|V(0)|v,k
′

i
, µ

′

i > f(∆m)

where ∆m is mf −m
′

f and mf (respectively m
′

f) is the mass of the velocity state
and f(∆m) is a form factor.
The GBE mass operator can be written as MGBE = M3Q +MHY where the last

term is the hyperfine mass operator andM3Q−M =
√
M2

GBE + k2 +
√
m2

π + k2.
Again the coupled channel equation is reduced to one involving only the 3Q
space, such thatMGBE has another term added to it which accounts for the decays
of the excited states:

M|Ψ > = m|Ψ >

M3Q|Ψ3Q > +K†|Ψ3Q−M > = m|Ψ3Q >

K|Ψ3Q > +M3Q−M|Ψ3Q−M > = m|Ψ3Q−M >

|Ψ3Q−M > =
1

m −M3Q−M

V |Ψ3Q >

(M3Q + K† 1

m −M3Q−M

K)|Ψ3Q > = m|Ψ3Q >

MGBE|Ψ3Q >

+(K†(
1

m−M3Q−M

)K−MHY)|Ψ3Q > = m|Ψ3Q > (26)

In addition to MGBE, Eq.(26) has an additional mass operator which gives the
coupled channel contribution. With this additional term it should be possible to
use perturbation theory to compute widths and level shifts.
These and other applications [9] show the utility of a coupled channel approach
to few-body systems, in which the interactions are generated by vertices arising
from quantum field theory.
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Abstract. A Poincaré-invariant description of mesonic baryon resonance decays is pre-
sented following the point form of relativistic quantum mechanics. In this contribution
we focus on pionic decay modes. It is found that the theoretical results in general un-
derestimate the experimental ones considerably. Furthermore, the problem of a nontrivial
normalization factor appearing in the definition of the decay operator is investigated. The
present results for decay widths suggest a normalization factor that is consistent with the
choice adopted for the current operator in the studies of electroweak nucleon form factors.

1 Introduction

Constituent quark models (CQMs) provide an effective tool to describe the es-
sential hadronic properties of low-energy quantum chromodynamics. Recently,
in addition to the traditional CQM, whose hyperfine interaction derives from
one-gluon exchange (OGE) [1], alternative types of CQMs have been suggested
such as the ones based on instanton-induced (II) forces [2,3] or Goldstone-boson-
exchange (GBE) dynamics [4]. In particular, the GBE CQM aims to include the
effective degrees of freedom of low-energy QCD, as they are suggested by the
spontaneous breaking of chiral symmetry (SBχS).
Over the years, a number of valuable insights in strong decays of baryon reso-
nances have been gained by various groups, e.g., in refs. [5–9]. Nonetheless, one
has still not yet arrived at a satisfactory explanation especially of the N and ∆
resonance decays. This situation is rather disappointing from the theoretical side,
especially in view of the large amount of experimental data accumulated over the
past years [10].
Here, we study the mesonic decays of baryon resonances along relativistic, i.e.
Poincaré-invariant, quantum mechanics [11]. This approach is a-priori distinct
from a field-theoretic treatment. It assumes a finite number of degrees of freedom
(particles) and relies on a relativistically invariant mass operator with the inter-
actions included according to the Bakamjian-Thomas construction [12] thereby
fulfilling all the required symmetries of special relativity. We assume a decay op-
erator in the point-form spectator approximation (PFSA) with a pseudovector
coupling. The PFSA has already been applied to the calculation of electromag-
netic and axial form factors of the nucleons [13–15] and electric radii as well as
? Talk delivered by T. Melde



Strong Decays of Baryons 45

magnetic moments of all octet and decuplet baryon ground states [16]. In all cases
the experimental data are described suprisingly well within this approach.
Covariant results for the strong decays ofN and ∆ resonances have already been
presented in ref. [17] for the relativistic GBE and OGE CQMs. They show a dra-
matically different behaviour as compared to previous non-relativistic calcula-
tions [18,19]. Specifically, it turns out that the theoretical results, in general, un-
derestimate the experimental ones considerably. This behaviour has also been
observed in the relativistic calculation based on the Bethe-Salpeter equation us-
ing instanton-induced dynamics [20]. Up till now all relativistic approaches face
the problem of defining appropriate decay operators. Usually one has resorted to
simplified versions such as the spectator model.

2 Theory

Generally, the decay width Γ of a resonance is defined by the expression

Γ = 2πρf |F (i → f)|
2
, (1)

where F (i → f) is the transition amplitude and ρf is the phase-space factor. In
eq. (1) one has to average over the initial and to sum over the final spin-isospin
projections. Previous calculations, based on nonrelativistic approximations of the
transition amplitude encountered an ambiguity in the proper definition of the
phase-space factor [7,21,22]. Here, we present a Poincaré-invariant definition of
the transition amplitude, thereby resolving this ambiguity. In particular, we ad-
here to the point-form of relativistic quantum mechanics [11], because in this case
the generators of the Lorentz transformations remain purely kinematic and the
theory is manifestly covariant [23]. The interactions are introduced into the (in-
variant) mass operator following the Bakamjian-Thomas construction [12]. The
transition amplitude for the decays is defined in a covariant manner, under over-
all momentum conservation (P ′

µ − Pµ = Qπ,µ), by

F (i → f) = 〈P, J, Σ| D̂α |P ′, J ′, Σ ′〉 . (2)

Here 〈P, J, Σ| and |P ′, J ′, Σ ′〉 are the eigenstates of the decaying resonance and the
nucleon ground state, respectively. Inserting the appropriate identities leads to
the reduced matrix element

F (i → f) ∼
∑

σi,σ ′

i

∑

µi,µ ′

i

∫
d3k2d

3k3d
3k ′

2d
3k ′

3

Ψ?

MJΣ (k1,k2,k3;µ1, µ2, µ3)ΨM ′J ′Σ ′ (k ′
1,k

′
2,k

′
3;µ ′

1, µ
′
2, µ

′
3)

∏

σi

D
1
2

?

σiµi
[RW (ki, B (vin))]

〈p1, p2, p3;σ1, σ2, σ3| D̂α |p ′
1, p

′
2, p

′
3;σ ′

1, σ
′
2, σ

′
3〉

∏

σ ′

i

D
1
2

σ ′

i
µ ′

i

[RW (k ′
i, B (vf))] , (3)
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where the rest-frame baryon wave functions Ψ?

MJΣ and ΨM ′J ′Σ ′ stem from the
velocity-state representations of the baryon states 〈P, J, Σ| and |P ′, J ′, Σ ′〉, respec-
tively. These wave functions depend on the quark momenta ki for which

∑
i ki =

0. They are related to the individual quark momenta by the Lorentz boost rela-
tions pi = B (v)ki. The main challenge lies in the definition of a consistent and
reasonable momentum-space representation of the decay operator D̂α. Here, we
adopt the PFSA and proceed in analogy to previous studies of the electroweak
nucleon structure [13–15] but use a pseudovector coupling at the quark-pion ver-
tex:

〈p1, p2, p3;σ1, σ2, σ3| D̂α |p ′
1, p

′
2, p

′
3;σ ′

1, σ
′
2, σ

′
3〉

=

√
M3M ′3

(
∑
ωi)

3
(
∑
ω ′

i)
3
3igqqπū (p1, σ1)γ5γµλFu (p ′

1, σ
′
1)

2p ′0
2 δ (p2 − p2

′) 2p ′0
3 δ (p3 − p3

′) δσ2σ ′

2
δσ3σ ′

3
Qπ,µ. (4)

The overall momentum conservation, P ′
µ−Pµ = Qπ,µ, together with the two spec-

tator conditions define the relation between all incoming and outgoing quark mo-
menta. In particular, the momenta of the active quark are related by p1 −p1

′ = Q̃,
where Q̃ is completely determined. Thus the momentum transferred to the active
quark is different from the momentum transfer to the baryon as a whole. This
is a consequence of translational invariance which thereby introduces effective
many-body contributions into the above definition of the spectator-model decay
operator. Furthermore, in eq. (4) there appears an overall normalization factor

N =

√
M3M ′3

(
∑
ωi)

3
(
∑
ω ′

i)
3
. (5)

Through the ωi and the on-mass-shell condition of the quarks it depends on the
individual quark momenta. This choice of N is consistent with the one used in
the definition of the electromagnetic and axial currents in the PFSA calculations
of the nucleon electroweak form factors by the Graz-Pavia collaboration [13–15].
It guarantees for the correct proton charge. However, it is not a unique choice.
Any other normalization factor of the asymmetric form

N (y) =

(
M3

(
∑
ωi)

3

)y(
M ′3

(
∑
ω ′

i)
3

)1−y

(6)

would do the same. In order to study the effects of these further choices we in-
vestigate the dependence of the decay widths on the parameter range 0 ≤ y ≤ 1.

3 Results

The decay widths of the PFSA calculation with the decay operator given in eq. (4),
with the symmetric normalization factor, are shown in table 1 for the GBE and
OGE CQMs. It is immediately seen that only theN∗

1535 andN∗
1710 predictions are



Strong Decays of Baryons 47

Table 1. PFSA predictions for π decay widths of the relativistic GBE [4] and OGE [9] CQMs
in comparison to the Bethe-Salpeter results of the II CQM [20] and experimental data [24].
In the last three columns the theoretical results are expressed as percentage fractions of the
(best-estimate) experimental values in order to be compared to the measured ∆π branch-
ing ratios.

Decays Experiment Rel. CQM ∆π % of Exp. Width

→ Nπ GBE OGE II branching ratio GBE OGE II

N?

1440 (227 ± 18)+70
−59 33 53 38 20 − 30% 14 24 17

N?

1520 (66 ± 6)+ 9
− 5 17 16 38 15 − 25% 26 24 58

N?

1535 (67 ± 15)+28

−17
90 119 33 < 1% 134 178 49

N?

1650 (109 ± 26)+36
− 3 29 41 3 1 − 7% 27 38 3

N?

1675 (68 ± 8)+14
− 4 5.4 6.6 4 50 − 60% 8 10 6

N?

1700 (10 ± 5)+ 3

− 3
0.8 1.2 0.1 > 50% 8 12 1

N?

1710 (15 ± 5)+30
− 5 5.5 7.7 n/a 15 − 40% 37 51 n/a

∆1232 (119 ± 1)+ 5
− 5 37 32 62 − 31 27 52

∆1600 (61 ± 26)+26

−10
0.07 1.8 n/a 40 − 70% ≈ 0 3 n/a

∆1620 (38 ± 8)+ 8
− 6 11 15 4 30 − 60% 29 39 11

∆1700 (45 ± 15)+20
−10 2.3 2.3 2 30 − 60% 5 5 4

within the experimental range. All other decay widths are underestimated, some
of them considerably. In this regard, it is noteworthy that in the case of theN∗

1535

the ∆π branching ratio is exceptionally small (< 1%). Therefore we found it inter-
esting to look at the results with a view to the measured ∆π branching ratios. In
fact, one can observe a striking relation between these branching ratios and the
sizes of the theoretical decay widths, expressed as percentage fractions of the ex-
perimental values in the last three columns of table 1: The larger the∆π branching
ratio of a resonance, the bigger the underestimation of the (best-estimate) exper-
imental value. This observation hints to a possible systematic problem in the de-
scription of mesonic decay widths within (relativistic) CQMs. It calls for a more
complete treatment of baryon resonances with a more realistic coupling to decay
channels. In fig. 1 we demonstrate the dependence of the PFSA predictions (for
the case of the GBE CQM) on the possible asymmetric choice of the normalization
factor N (see eq. (6)). In the range 0 ≤ y ≤ 1 all decay widths grow rapidly with
increasing y. In this way one could enhance the theoretical predictions consider-
ably. However, if one wants neither one of the decay widths to exceed its exper-
imental range, one is limited to a value of y ≤ 0.5. Any y lower than 0.5 would
lead to decay widths much too small in most cases. Consequently, a symmetric
normalization factor as in eq. (4) seems to be the preferred and most reasonable
choice also in the context of hadronic decay widths.
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Fig. 1. Dependence of some resonance decay widths on the choice of the normalization
factor after eq. (6).

4 Summary

We have presented a Poincaré-invariant description of strong baryon resonance
decays in point form within relativistic CQMs. Covariant predictions have been
given for π decay widths. They are considerably different from previous nonrel-
ativistic results or results with relativistic corrections included. The covariant re-
sults calculated with a spectator-model decay operator show a uniform trend. In
almost all cases the corresponding theoretical predictions underestimate the ex-
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perimental data considerably. This is true in the framework of Poincaré-invariant
quantum mechanics (here in point form) as well as in the Bethe-Salpeter approach
[20]. Indications have been given that for a particular resonance the size of the un-
derestimation is related to the magnitude of the ∆π branching ratio. This hints to
a systematic defect in the description of the decay widths.
The investigation of different possible choices for a normalization factor in the
spectator-model decay operator has led to the suggestion that the symmetric
choice is the most natural one. It is also consistent with the same (symmetric)
choice that had been adopted before for the spectator-model current in the study
of the electroweak nucleon form factors.

This work was supported by the Austrian Science Fund (Project P16945). T.M. would like
to thank the INFN and the Physics Department of the University of Padova for their

hospitality, and MIUR-PRIN for financial support
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Abstract. We give a survey of the performance of modern relativistic constituent quark
models in the description of baryon properties and reactions. In particular, we address
baryon spectroscopy, elastic electromagnetic and axial nucleon form factors, electric radii
and magnetic moments of the octet and decuplet baryon ground states, electromagnetic
transitions, as well as mesonic baryon resonance decays. Directions for further improve-
ments of constituent quark models are indicated.

1 Relativistic Constituent Quark Models

Constituent quark models (CQMs) represent a powerful tool in modern hadronic
physics. They serve as an effective description of hadron properties at low and
intermediate energies. CQMs have undergone a vivid development over the past
few years. Notably, one has found that CQMs must take into account the relevant
properties of quantum chromodynamics (QCD) in the nonperturbative regime
and have to fulfill the requirements of a relativistic theory. In order to arrive at a
reasonable description of hadron phenomena, CQMs should meet the symmetry
requirements of both (low-energy) QCD and special relativity.
From the outset, CQMs rely on a finite number of degrees of freedom. One as-
sumes a few-quark system, {QQ̄} or {QQQ} etc., with certain internal interactions
and solves the corresponding dynamical equations. The theory should be covari-
ant. Thus, it is most natural to resort to a Poincaré-invariant relativistic quan-
tum theory. Such an approach is well defined and it can be solved rigorously,
at least for confined two- and three-quark systems. In particular, one solves the
eigenvalue problem of the invariant mass operator for a given CQM, obtains the
eigenenergies and eigenstates, and can go ahead to calculate reactions involving
the corresponding hadron states. If one uses relativistic operators and carries out
the necessary Lorentz transformations exactly, one will arrive at covariant predic-
tions for the observables in question. The latter task is most efficiently achieved
in the point-form version of relativistic quantum mechanics (RQM), since in this
case the generators of Lorentz boosts remain purely kinematical.
It should be noted that for a CQM to be considered as ‘relativistic’ it is not nec-
essary that the inherent dynamics is derived in a relativistic manner, e.g., from
a quantum field theory. It suffices that the mutual interactions between the con-
stituents of a given system meet the requirements of Poincaré invariance. One
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could even introduce phenomenologically motivated interactions into the Hamil-
tonian (or equivalently into the mass operator). Once such an interacting Hamil-
tonian fulfills the commutator relations of the Poincaré algebra, all the symme-
tries of a Lorentz-covariant theory can be implemented.
Recently, we have seen interesting new results for baryons especially from the rel-
ativistic CQMs that rely on one-gluon-exchange (OGE), Goldstone-boson-exchange
(GBE), and instanton-induced (II) effective interactions between confined con-
stituent quarks. In this paper, we concentrate on the GBE CQM by the Graz group
[1], a relativistic version [2] of the Bhaduri-Cohler-Nogami (BCN) OGE CQM [3],
and the II CQM by the Bonn group [4]. The first two are constructed in the frame-
work of RQM, while the last one is formulated in the Bethe-Salpeter approach.
Incidentally, the main differences lie in the hyperfine interactions, while the (lin-
ear) confinement potential is very similar in all cases; its strength is practically
compatible with the string tension of QCD. As a result, the local extensions of the
corresponding {QQQ} states are also commensurable. They are much narrower
than in nonrelativistic CQMs, which use a confinement potential with an unrea-
sonably weak strength.

2 Baryon Spectroscopy

The detailed light and strange baryon spectra of the GBE, OGE, and II CQMs
can be found in the original papers [1,9,2]. A critical discussion of the qualitative
differences between the GBE and OGE hyperfine interactions is presented in ref.
[5]. For a critique of some erroneous and misleading results in the literature see
also ref. [6]. In the comparison of the GBE, OGE, and II CQMs some relevant
observations are to be made specifically with regard to the N and Λ spectra as
exemplified in Figure 1.
Only the GBE CQM can provide for the correct level orderings of positive- and
negative-parity excitations in the N spectrum. The 1

2

+
N(1440) Roper resonance

cannot be brought down below the 1
2

−
N(1535) resonance by the OGE and II

CQMs (as long as the correctN-∆ splitting is maintained). The success of the GBE
CQM is due to its particular spin-flavor dependence in the hyperfine interaction.
It is also favourable for reproducing simultaneously the right level ordering in
the Λ spectrum (which is opposite to the nucleon case). However, all CQMs fail
to describe the lowest excitation in the Λ spectrum, the 1

2

−
Λ(1405) resonance, at

the right energy. Most probably this is due to the limitation to {QQQ} configura-
tions only. Here, an intriguing shortcoming of the present CQMs becomes evident
with respect to a realistic description of baryon resonances, namely, the missing
coupling to decay channels. The same conclusion can be drawn from studies of
inelastic electromagnetic reactions and mesonic resonance decays (cf. also the dis-
cussion below).

3 Elastic Electroweak Nucleon and Baryon Structure

An immediate application of any CQM for baryons is the calculation of elastic
electromagnetic and axial nucleon form factors. It provides a stringent test of the
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quality of the nucleon wave functions. All of the relativistic CQMs considered
here have been studied in this respect. A (partial) comparison is presented in Fig-
ure 2. The covariant predictions of the GBE CQM for electromagnetic and weak
nucleon form factors calculated in point-form spectator approximation (PFSA)
are published in refs. [8,14,15]. The electric radii and magnetic moments of the
octet and decuplet ground states are presented in ref. [11]. In all cases a remark-
able good agreement of the direct predictions of the GBE CQM with the existing
experimental data is found. The PFSA calculation is most favourable for reaching
a consistent explanation of the electroweak nucleon structure at low momentum
transfers. The good quality of the results, being covariant and practically current-
conserving, is not yet fully understood in detail. Large differences of the theoreti-
cal predictions are found with the nonrelativistic impulse approximation (NRIA)
[8,14–16]; see also Figure 3 below. It has become evident that a nonrelativistic the-
ory does not work for the nucleon form factors. This is even true with regard to
the electric radii and magnetic moments, i.e. with observables in the limit of zero
momentum transfer.
The comparison of the GBE and OGE CQMs, both calculated in PFSA, tells us
that there is no big influence from the type of the nucleon wave function [12]. As
soon as the nucleon wave function is realistic, especially with the right spatial ex-
tension and the correct (mixed symmetry) spatial components contained, the nu-
cleon form factors will be predicted quite reasonably if the relativistic effects are
properly taken into account. At least the influences of different dynamics in the
CQM are much smaller than relativistic effects. Only if an oversimplified wave
function is employed, such as a completely symmetric SU(6) one, like in the case
confinement only, the description evidently falls short (cf., e.g., the correspond-
ing results for the neutron electric form factor shown in Figure 2). In general, the
PFSA predictions are also rather similar to the results obtained for the II CQM fol-
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Fig. 1. Nucleon (left) and Λ (right) excitation spectra of three different types of relativistic
CQMs. In each column the left horizontal line represents the results of the BCN OGE CQM,
as parametrised in [2], the middle one of the II CQM (version A) [4], and the right one of
the GBE CQM [1]. The shadowed boxes give the experimental data with their uncertainties
after the latest compilation of the PDG [7].
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Fig. 2. Predictions of different CQMs for the nucleon electromagnetic and axial form fac-
tors. The solid and dashed lines represent the PFSA results for the GBE CQM [1] and the
BCN OGE CQM [2], respectively; the dash-dotted lines refer to the case with confinement
only. The dotted lines show the results of the II CQM [4] within the Bethe-Salpeter ap-
proach after ref. [13].
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lowing the Bethe-Salpeter approach [13]. This observation is remarkable in view
of the differences in the dynamics of the CQMs and the distinct frameworks of
the calculations. One may interpret these findings in such a way that for the nu-
cleon ground states any degrees of freedom other than {QQQ} are presumably
unimportant (at least in the low-momentum-transfer range considered here) and
the relativistic current in the spectator approximation is working quite well. If
the relativistic boost effects are properly included in the calculation of the matrix
elements of elastic form factors and covariant results are thus obtained, a rather
consistent explanation of all experimental data becomes possible. The boost ef-
fects are taken into account accurately in the point-form calculations; the same is
claimed for the Bethe-Salpeter approach [13].
In order to elucidate the peculiarities of the PFSA further, the Graz group has
recently undertaken analogous calculations of the nucleon electromagnetic form
factors in instant-form spectator approximation (IFSA). The comparison is given
in Figure 3 for the case of the GBE CQM. It is seen that the IFSA predictions ob-
tained with the same wave functions as in the case of the PFSA, without introduc-
ing any additional parameters, can by no means explain the experimental data.
In some way the IFSA results even resemble the ones from the NRIA. In addition
to this obvious shortcomings in the comparison with phenomenology, the IFSA
must be rejected because it does not account for the correct boost effects and it is
not covariant (frame-independent). In instant form the generators of the boosts
are a-priori interaction-dependent. Instead, in all IFSA calculations so far, like
in the one of Figure 3, free boost transformations have been employed. We con-
sider this as a notorious problem of approximative instant-form approaches. The
IFSA results shown in Figure 3 were calculated in the Breit frame. They would be
different in another reference system, such as the laboratory frame. Clearly, one
cannot rely on such results. Contrary to that the PFSA is manifestly covariant and
the corresponding predictions are frame-independent.
The point-form approach works remarkably well in the case of elastic nucleon
form factors; the same is true with regard to electric radii and magnetic moments
of all octet and decuplet baryon ground states (as far as we can compare to ex-
isting experiments) [11]. Still, one has to bear in mind that the PFSA calculation
is approximative and incomplete. In particular, explicit many-body currents are
still missing. On the other hand, one meets Lorentz covariance and seemingly
also the continuity equation is fulfilled to a good extent. The latter property has
been tested by calculating the matrix element of the third component of the cur-
rent operator ĵ3(q). This matrix element must vanish exactly in the Breit frame if
the current is conserved. Indeed, the numerical values we obtain are extremely
small. In the range of momentum transfers considered here, the magnitude of the
matrix element of ĵ3(q) remains lesser than 1 % of the zeroth component ĵ0(q)

(from which the electric form factor is deduced).

4 Electromagnetic Transition Form Factors

The next step is testing the relativistic CQMs in γN → N∗ reactions. First re-
sults in this regard have been gained recently for the GBE CQM in PFSA [14]. In
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Fig. 3. Comparison of proton and neutron electromagnetic form factors of the GBE CQM
[1] calculated in PFSA and IFSA as well as in NRIA.

Figure 4 covariant predictions for helicity amplitudes of γ-induced transitions to
several N∗ resonances are shown. They were calculated in a manner completely
analogous to the elastic nucleon form factors. Data are still scarce and have rel-
atively large uncertainties. In case of the neutron there are only data at Q2 = 0.
The theoretical predictions appear reasonable even though one finds deviations
from the experimental data that are bigger than in the elastic case. We do not yet
know the definite reasons for the discrepancies. One may suspect that the descrip-
tion of the resonances in a CQM with {QQQ} configurations only is not realistic
enough, as soon as resonances are involved. Further investigations in this field
are urgently needed.

5 Mesonic Decays of Baryon Resonances

Another wide field for applications of CQMs are the decays of baryon resonances.
Preliminary relativistic predictions for widths of pionic decays ofN∗ and∆∗ reso-
nances were already presented in ref. [16]. In that work one produced first covari-
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Fig. 4. PFSA predictions of the GBE CQM [1] for helicity amplitudes of γN → N∗ tran-
sitions. The data at Q2 = 0 are from the PDG [7] for the proton (solid circles) and the
neutron (open circles). The proton data at Q2 > 0 are taken from the review [15] and
references cited therein.
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ant results with the GBE and OGE CQMs using a spectator model decay operator
in point form (PFSA). The relativistic PFSA results were found to be quite distinct
from previous results of nonrelativistic calculations or calculations with relativis-
tic corrections. Almost all decay widths turned out to be (much) too small. Only
in two cases, namely inN(1535) andN(1710), the magnitude of the experimental
value for the π-decay width is reached.
In the meantime the calculations have been improved and further investigations
have been undertaken, such as the calculation of η-decay modes [17]. Also the
Bonn group has calculated decay widths with the II CQM in the Bethe-Salpeter
approach [18]. They found results that are again quite similar to the ones obtained
for the GBE CQM in PFSA. In particular, they confirmed the general trend of the
decay widths resulting too small. Obviously an important ingredient is missing
in the present description. Once more we are hinted to the necessity of taking
into account the coupling to the decay channels and including explicit mesonic
degrees of freedom. For a further and more detailed discussion of these aspects
see T. Melde’s contribution to this Workshop [19].
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Abstract. The main interaction of the ground states of the double-charm hyperons form
is due to their light quarks and can be derived from the corresponding nucleon-nucleon
interaction by rescaling of the interaction to take into account the difference between inter-
action strengths for pairs of light flavor quarks and pairs of triplets of light flavor quarks.
Nucleons and double-charm (and double-beauty hyperons) are very likely to form bound
states in the triplet state.

1 The double-charm hyperons

Several double-charm hyperons, the lowest one of which is the ground state mul-
tiplet with the Ξcc at 3.46 GeV have been found[1]. The corresponding (probably)
spin 3/2 multiplet has been found at 3.52 GeV. The ground state multiplet Ξ+

cc,
Ξ++

cc of the double-charm hyperons forms a spin 1/2 isospin 1/2 multiplet, with
the valence quark configuration dcc and ucc [2].

2 Models for the double-charm hyperons

The energy of the ground state multiplet is in the range ∼ 3.5 GeV, suggested
by early model calculations [2,3]. The Skyrme model slightly underpredicted (40
MeV) the value of the empirically found splitting 60 MeV between the spin 1/2
ground state and the spin 3/2 excited state while the extant lattice value of this
splitting is somewhat large value (90 MeV) [4].

3 Hyperfine splitting structure

The discovery of the ground state multiplets of the doubly charmed hyperons
allows an overall view of the mass and flavor dependence of the ground state
baryon splittings (Table 1). These do not vary smoothly with baryon mass, as
heavy quark symmetry would suggest. As an example the splitting in the Ξ spec-
trum is larger than that in the Σ spectrum, and the ground state splitting is similar
in the single and double-charm hyperons.
The splittings may be described by the schematic phenomenological flavor and
spin dependent hyperfine interaction model [5]:

V = −
∑

i<j

[
C

3∑

a=1

+CS

8∑

a=4

+CC

12∑

a=9

+CSC

14∑

a=13

]
λa

i λ
a
j σi · σj . (1)
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quark content baryons model splitting

uud ∆(1232) −N 12C− 2CS 293

uds Σ(1385) − Σ 10CS 190

uss Ξ(1530) − Ξ 10CS 210

uus Σc(2520) − Σc 6C 65

usc Ξc(2645) − Ξc
′ 3CC + 3CS 71

ucc Ξcc(3520) − Ξcc 6CC 60

Table 1. The ground state splittings in MeV of the baryons

This interaction provides a fair description of the known baryon spectrum. It may
be interpreted as an “effective” description of the pion and two-pion (C = 28
MeV), K, K∗, η (CS = 19 MeV), D and D∗ (CC = 10 MeV and Ds and D∗

s (CCS

= 10 MeV) exchange interactions between the quarks of appropriate flavor. With
this interaction the empirical splitting 60 MeV between the Ξcc(3520) and the Ξcc

obtains.

4 The interactions of the double-charm hyperons

The main color-neutral strong interaction between double-charm hyperons is that
between their light flavor quark components. This may be inferred from the nucleon-
nucleon interaction, by multiplication of the components of the nucleon-nucleon
interaction by appropriate coefficients, which relate the interaction strength be-
tween pairs of light flavor quarks to that between such triplets. The interaction
between the charm quark pairs in different hadrons is weaker than that between
light flavor quarks in different hadrons, as the latter either arises from the short
range interaction that is mediated by the exchange of charmonia or the color van
der Waals interaction. The weaker strong interaction between double-charm hy-
perons is partially compensated by their larger mass in comparison to nucleons.
The nucleon-nucleon interaction may be expressed in terms of rotational invari-
ants of spin and isospin as well as momenta and angular momenta. The quark
model scaling factors between the matrix elements of the spin-isospin invariants
for Ξcc and nucleon states may be derived from the quark model matrix elements
of light flavor quark operators [6]:

〈Ξcc|1|Ξcc〉 =
1

3
〈N|1|N〉 , 〈Ξcc |

∑

q

σq
a|Ξcc〉 = −

1

3
〈N|

∑

q

σq
a|N〉 ,

〈Ξcc|
∑

q

τq
a|Ξcc〉 = 〈N|

∑

q

τq
a|N〉 , 〈Ξcc |

∑

q

σq
aτ

a
b|Ξcc〉 = −

1

5
〈N|

∑

q

σq
aτ

q
b|N〉 .

(2)

The interaction between two double-charm hyperons that arises from the inter-
action between the light flavor quarks may be determined from realistic nucleon-
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nucleon interaction models as eg. the models in refs. [7–9]. From these the cor-
responding interactions between double-charm hyperons may be derived by ap-
plication of the appropriate downscaling of the strengths of the corresponding
interaction components.
With the quark model scaling factors two of the three rescaled nucleon-nucleon
interactions models yield that deuteron-like bound states of double-charm hy-
perons, with binding energies in the range 87− 457MeV.
In Table 2 contains the calculated binding energies obtained for the deuteron-like
states of double-charm hyperons. The difference between these values gives an
estimate of the theoretical uncertainty that derives from the different short range
behavior of the nucleon-nucleon interaction models.
Two-baryon states formed of double-charm hyperons can couple to states with
a single charm and a triple-charm ΩCCC by quark rearrangement. If the latter
states have lower energy the former are metastable rather than bound. This de-
pends on the size of the binding energy as compared to the mass difference:
∆c ≡Mccc+Mcll−2Mccl, where l represents a light quark. For some quark mod-
els the inequality ∆c < 0 holds and for those ∆ ≈ [130− 158] MeV [10]. Adoption
of those values imply that the double charm hyperons form bound states with
the AV18 potential, but only metastable states with the Nijm II potential.

Double-Charm hyperons

Potential Binding Energy (MeV)

AV18 −457 (−28)

Paris −

Nijm II −87

Double-Beauty double-charm hyperons

AV18 −603 (−183)

Paris −0

Nijm II −102

Double-Beauty hyperons

AV18 −782 (−439)

Paris −2

Nijm II −123 (−20)

Table 2. Binding energies for the Ξ++
cc −Ξ+

cc and Ξ0
bb −Ξ−

bb systems obtained with Argonne
V18 [7], AV18, Nijmegen II [8] and Paris [9] potentials. The value in brackets corresponds
to a second bound state (from [6]).

The origin of the large binding energy given by the AV18 interaction model is
its large squared spin-orbit interaction, which acts in theD−state. In the largeNc
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limit the angular momentum dependent interaction components are proportional
to one power of 1/Nc for each power of the angular momentum L. As the baryon
mass scales asNc that would suggest that an additional factor ofmN/mH, where
mN is the nucleon andmH the heavy hyperon mass respectively, should be asso-
ciated with the each power of L in the scaling relations [11,12]. Inclusion of such a
factor would suppress the role of the angular momentum dependent interaction
operators, and would reduce the calculated binding energies obtained with the
AV18 interaction.
The interaction between the ground state multiplets of double-beauty should be
similar to that of the double charm hyperons, as the main interaction is that be-
tween their light flavor quarks. Their binding energy will however be larger than
that of double-charm hyperons in view of their larger mass. This is shown in Ta-
ble 2 where the binding energy of two double-beauty hyperons is calculated with
the assumption that their mass is:Mbbu = Mbbd ≈ 2mb ≈ 2× 4500MeV.
Metastability is in this case is determined by a similar inequality, as in the case
of the charmed hyperon case: ∆b ≡ Mbbb + Mbll − 2Mbbl < 0, where its esti-
mated value ranges [348 − 372] MeV [10]. Therefore he result obtained with the
AV18 potential is a bound state, while that obtained with the Nijm II potential is
a metastable state.
Deuteron-like bound states of nucleons and double-heavy hyperons:N−Ξcc and
N− Ξbb are also very likely. The AV18 potential gives bound states at −388MeV
and −494 MeV for the N − Ξcc and N − Ξbb systems respectively. The Nijm II
potential gives bound states at −35MeV and −76MeV for theN−Ξcc andN−Ξbb

systems respectively.
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Abstract. The K-matrix approach is applied to the calculation of the multipole amplitudes
M1+, E1+, and S1+ in the ∆ channel within the Cloudy Bag Model. The separation of the
amplitudes into the resonant part and the background is presented and discussed.

1 Introduction

In our previous work [1] (see also [2]) we presented a method to calculate pion
electroproduction amplitudes in the framework of chiral quark models. We de-
rived the expressions for the transition K-matrix and the T-matrix and showed
how to separate the resonant part from the background. In the present work we
apply this method to the calculation of amplitudes M1+, E1+, and S1+ in the
∆(1232) channel.
We use the Cloudy Bag Model as a simple example of a chiral quark model. In
spite of the known limitations of the model we show that it is possible to repro-
duce these amplitudes sufficiently well in a broad energy range. We explain how
to isolate the resonant parts of the amplitudes and show that these parts are in
good agreement with the results extracted from the experiment.

2 Electro-production amplitudes and cross-sections

In electro-production, the incoming virtual photon with four-momentum (ωγ,kγ),
ω2

γ − k2
γ = −Q2, and polarization µ interacts with the nucleon with the third

components of spin ms and isospin mt; the final state consists of the scattered
pion with four-momentum (ω0,k0) and the third component of isospin t and the
nucleon with good m ′

s and m ′
t. In the c.m. frame the nucleon momentum is op-

posite to that of the photon (pion). If the z-axis is oriented in the direction of the
incoming photon, the K-matrix for this process can be written as

Kγπ = −π〈ΨP(ms,mt;k0, t)|Hγ |N(m ′
s,m

′
t);kγ, µ〉 . (1)
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Here ΨP is a principal-value state (see e.g. [3]) while |N(m ′
s,m

′
t);kγ, µ〉 stands for

the asymptotic (free) states representing the nucleon and the photon. The princi-
pal value state can be written in the form1:

|ΨP〉 =

√
ω0

k0

{
a
†
t(k0)|N(ms,mt)〉 +

∫
dk

χ(k0, k)

ωk −ω0

a
†
t(k)|N(ms,mt)〉 + cR |R〉

}
,

(2)
where a†t(k) is the pion creation operator, |N〉 is the nucleon state, and |R〉 is a
(possible) resonant state with excited internal degrees of freedom (e.g. quarks
and/or mesons). The amplitude describing the scattered pion, χ(k0, k), is related
to the phase shift. The state (2) is normalized as

〈ΨP
α(E)|ΨP

β(E ′)〉 = (1+ K2)αα δ(E− E ′)δαβ , (3)

where E is the total energy of the system K is the K-matrix for pion scattering, and
α, β label different channels. The normalization (3) is not practical in numerical
calculations because the factor in front of the δ function diverges as E approaches
the resonant energy. It is more convenient to work with the state normalized sim-
ply to δ(E − E ′) at the resonance:

|ΨR〉 = K−1
ππ|ΨP〉 . (4)

We now expand ΨP (or equivalently ΨR) in (1) in states with good total angular
momentum J and isospin T :

Kγπ = Kππ

√
ωγkγ

∑

lm

〈ΨRJ, T,MJMT ;k0, l|[Hγ , a
†
µ(kγ)]|N(m ′

s,m
′
t)〉

×Ylm(ϑ,ϕ)C
JMJ

1
2

mslm
CTMT

1
2

mt1t
+ . . . , (5)

where ϑ is the angle between the scattered pion and the incident photon, a†
µ(kγ)

is the creation operator for the photon, the factor
√
ωγkγ ensures the proper

normalization of the photon asymptotic state, and C’s are the Clebsh-Gordan co-
efficients. Since we are usually interested in one particular channel with given J
and T we have denoted by . . . other channels not taken into account.
The T -matrix is obtained as

Tγπ = Kγπ(1+ iTππ) , (6)

yielding a similar expression as (5) in which Kππ is replaced by Tππ. The appear-
ance of Kππ (Tππ) in front of the (real) transition amplitude means that the phase
shift of the transition K or T -matrix is that of the meson scattering – an explicit
manifestation of the Watson theorem. In fact, in the above derivations, we have
tacitly assumed that “switching on” the electro-magnetic interaction Hγ does not
change the strong scattering amplitudes, i.e. the principal-value state (2) remains
unchanged.

1 Here the normalization of the principal value state (see (3)) and consequently the defi-
nition of the K-matrix is changed slightly with respect to the ones used in [1].
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To obtain the electro-production amplitudes in the∆-channel, we keep only the p-
wave pions and the J = T = 3

2
component of the final state in (5); we furthermore

neglect nucleon recoil and the effect of the two-pion decay channel. The pertinent
electro-production amplitudes are related to the matrix elements of the T -matrix,
by

M
(3/2)

1+ = Tππ

√
3

16k0kγ

1

π

[
−

1

2
√
3

(3K3/2 +
√
3K1/2)

]
(7)

and

E
(3/2)

1+ = Tππ

√
3

16k0kγ

1

π

1

2
√
3

(K3/2 −
√
3K1/2) . (8)

Here we have introduced the analogues of the familiar helicity amplitudes:

Kλ =
√
ωγkγ 〈ΨR(MJ = λ)|

e0√
2ωγ

∫
dr εµ · j(r)eikγ·r|N(m ′

s = λ − µ)〉 , (9)

where j(r) is the vector part of the electro-magnetic current. The differential cross
section then reads

dσT

dΩ
=
k0

kγ

{
1

2
|M1+|2(5− 3 cos2 ϑ) +

9

2
|E1+|2(1 + cos2 ϑ)

+ 3ReM∗
1+E1+(1 − 3 cos2 ϑ)

}
.

The longitudinal amplitude is

L
(3/2)

1+ = Tππ

√
3ωγ

32π2k0

〈Ψ̃(MJ = 1
2
)|

e0√
2ωγ

∫
dr ε0 · j(r)eikγ·r|N(m ′

s = 1
2
)〉 , (10)

with
dσL

dΩ
=
k0

kγ

|L1+|2
{
4+ 12 cos2 ϑ

}
. (11)

3 Calculation of the K-matrix in chiral quark models

We consider quark models in which the p-wave pions couple to the three-quark
core. Assuming a pseudo-scalar interaction, the pion part of the Hamiltonian is

Hπ =

∫
dk

∑

mt

{
ωk a

†
mt(k)amt(k) +

[
Vmt(k)amt(k) + Vmt(k)

† a
†
mt(k)

]}
, (12)

where a†mt(k) is the creation operator for a p-wave pion with the third compo-
nents of spin m and isospin t, and Vmt(k) = −V(k)

∑3
i=1 σm

iτt
i represents the

general form of the pion source in which the function V(k) depends on the par-
ticular model. In the Cloudy Bag Model, V(k) reads

V(k) =
k2

√
12π2ωk

ω0
MIT

ω0
MIT − 1

j1(kR)

2fπkR
, (13)
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where ω0
MIT = 2.0428. The free parameters are the bag radius R and the energy

splitting between the bare nucleon and the bare delta which is adjusted such that
the experimental position of the resonance is reproduced.
Neglecting recoil, ωγ = ω0 = E− EN, the trial state takes the form

|Ψ〉 =

√
ω0

k0

{[
a
†
mt(k0)|ΦN〉

]3
2

3
2

+

∫
dk

χ(k, k0)

ωk −ω0

[
a
†
mt(k)|Φ

E
N〉
]3

2
3
2

+ cE
∆ |Φ∆〉

}
.

(14)
Here Φ∆ denotes the resonant state representing the bare delta (i.e. three quarks
in s-state coupled to J = T = 3

2
) and a cloud of up to two pions around the bare

nucleon and delta.
The pion profiles inΦN andΦ∆ can be most easily determined from the following
relations that hold for Hamiltonians of the type (12):

amt(k)|A〉 = −
V

†
mt(k)

ωk +H − EA
|A〉 (15)

and

amt(k)am ′t ′(k ′)|A〉 =
V

†
mt(k)

ωk +ω ′
k +H − EA

V
†
m ′t ′(k ′)

ω ′
k +H− EA

|A〉 + [k ↔ k ′] , (16)

where |A〉 is an eigenstate ofH; in our case either |ΦN〉 or |Ψ〉.
From (14) we have calculated the P33 phase shift as well as the multipole am-
plitudes for the electroproduction. In order to reproduce the experimental phase
shift (see Fig. 1) we had to reduce the value of the pion decay constant appear-
ing in (13) from the experimental value 93MeV to 83MeV > fπ > 78MeV for
0.9 fm < R < 1.1 fm, respectively.
As seen from Figs. 2 the experimental values for the electroproduction ampli-
tudes are underestimated. The reason lies in a too weak γN∆ vertex, which is a
known feature of the Cloudy Bag Model. Taking a smaller R and reducing further
the value of fπ [4] enhances the contribution of the pion cloud, and thus increases
the strength of the γN∆ vertex. Yet this mechanism does not help to improve the
agreement: increasing the strength of the quark-pion interaction leads to a larger
width of the resonance, and since

√
Γ appears (implicitly) in the denominator

of the amplitudes (9) and (10), the net effect is such that the magnitude of the
ImM1+ in the vicinity of the resonance decreases.

4 Extracting the resonance

In some models, the delta resonance is described as a particle with a finite life-
time and an energy corresponding to the pole of the T -matrix in the complex
energy plane. The properties of such a particle can not be directly related to the
measured amplitudes since the amplitude include also non-resonant processes. In
this section we show how to relate the results obtained in the K-matrix approach
to those of the above mentioned models.
The resonant part of the amplitudes is usually assumed to have a Breit-Wigner
shape with a constant width (see Eq. (18)) below). In order to identify the part
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in the total amplitude that possesses this type of behavior we write the pertinent
K-matrix in the form proposed in [5]:

Kππ =
C

E∆ − E
+D, (17)

with two constant coefficients C and D. Using these two parameters and the ex-
perimental value for E∆ we obtain an excellent fit to the calculated phase shift
(see Fig. 1). The corresponding T -matrix can be cast in the form, suggested by
Wilbois et al. in the speed-plot analysis (Eqs. (71)-(76) of [6]):

Tππ =
Kππ

1 − iKππ

= e2iδb
ΓT
∆/2

M∆ − E − iΓT
∆/2

+ sin δbeiδb . (18)

The parameters of the T -matrix can be easily deduced from (17) and are given in
Table 1. Since we started from a real K-matrix, the resulting T -matrix automati-
cally obeys unitarity, which is an important merit of our approach.

Fig. 1. The phase shift in the P33
channel as a function of the invari-
ant mass. The data points are the
single-energy values of the SM02K
(2GeV) solution of the SAID πN
partial-wave analysis [7]. The thick
line represents the calculated phase
shift, while the thin line is the two-
parameter fit to the calculated val-
ues. The agreement is worse only
above 1300 MeV where the two-
pion channel becomes relevant and
our approach is not valid anymore.

In a similar way we can split the K-matrix for the electroproduction in the reso-
nant and the background part:

Kγπ =
A

E∆ − E
+ B . (19)

The parameters A and B for each multipole can be determined by fitting the cal-
culated amplitudes using the form implied by (7) and (8):

M =
1√
k0kγ

Kγπ

1 − iKππ

, (20)

where M is etherM(3/2)

1+ or E(3/2)

1+ . Alternatively, one can use a simplified form:

M =
Kγπ

1− iKππ

, (21)
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which is more frequently used in the experimental analysis, e.g. in [8] and in
the SP-analysis of [6]; the form (20) being used in the MSP analysis of [6]. The
resulting parameters are listed in Table 1.

Table 1. Resonance pole parameters extracted from the computed phase shifts and electro-
production amplitudes using the form (21). Parameter C is the resonance width divided
by 2,D is the tangent of the background phase shift, andM∆ and ΓT

∆ are parameters of the
T-matrix (see (18)). Experimental values are the recent PDG values [9] and from [6].

R fπ C D M∆ ΓT
∆ A(M1) B(M1) A(E2) B(E2)

fm [MeV] [MeV] [MeV] [MeV] 10−3/mπ 10−3/mπ

1.1 78 57 −0.39 1213 49 0.0123 −2.57 −0.000235 −1.19

1.0 81 56 −0.40 1213 48 0.0117 −3.53 −0.000236 −1.09

0.9 83 56 −0.41 1212 48 0.0115 −4.00 −0.000221 −1.00

Experiment 60 −0.435 1210 50

Fig. 2. The M(3/2)

1+ and the E(3/2)

1+ electro-production amplitude in the CBM by using R =

1.0 fm and fπ = 81MeV. The data points in the figures are the single-energy values of the
SM02K (2GeV) solution of the SAID πN partial-wave analysis [7]. The thick lines represent
the calculated amplitudes for R = 1.0 fm and fπ = 81 MeV, while the thin lines are the fits
to the calculated values using the parameters from Table 1.

From our results it is possible to extract the resonance parameters at the pole
of the T -matrix, based on the separation of the amplitude into the resonant and
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background parts, using the parameterization [6,8]

T = TR + TB , TR =
rΓT

∆eiφ

M∆ − E− iΓT
∆/2

. (22)

Using (20), the parameters r, φ, and TB can be expressed in terms of A, B, C, and
D. The moduli and phases for the transverse multipoles are shown in Table 2
together with the EMR ratio. While the magnitudes are underestimated, the ratio
as well as the phases are much better reproduced.

Table 2. Resonance pole parameters extracted from the computed E(3/2)

1+ andM(3/2)

1+ mul-
tipoles using the form (21) and parameters in Table 1, compared to various determinations
from data. The moduli r are in units of 10−3/mπ. R∆ is the EMR ratio at the pole of the
T -matrix.

R [fm]/fπ [MeV] rE φE rM φM R∆

1.1 / 78 0.75 −154◦ 16 −25◦ −0.031 − 0.037 i

1.0 / 81 0.72 −158◦ 15 −28◦ −0.030 − 0.037 i

0.9 / 83 0.67 −159◦ 14 −31◦ −0.029 − 0.037 i

Ref. [8] 1.23 −154.7◦ 21.2 −27.5◦ −0.035 − 0.046 i

Ref. [6] (SP) 1.23 −156◦ 19.9 −26.0◦ −0.040 − 0.047 i

Ref. [10], Fit 1 1.22 −149.7◦ 22.2 −27.4◦ −0.029 − 0.046 i

Ref. [11], Fit A 1.38 −158◦ 20.9 −31◦ −0.040 − 0.053 i

Table 3. Same as Table 2 except that the parameterization (20) is used.

R [fm]/fπ [MeV] rE φE rM φM R∆

1.1 / 78 0.74 −157◦ 16 −34◦ −0.026 − 0.038 i

1.0 / 81 0.68 −160◦ 15 −37◦ −0.025 − 0.037 i

0.9 / 83 0.62 −162◦ 14 −40◦ −0.023 − 0.037 i

Ref. [6] (MSP) 1.12 −162◦ 20.7 −36.5◦ −0.032 − 0.044 i

5 Discussion

We have presented a method to calculate directly the K-matrices of resonant
electro-production processes in the framework of chiral quark models.
The identification of the resonant part and the background is unambiguous in
the K-matrix formalism. In the T -matrix formalism, this separation is based on
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the assumption that the position and the width of the resonance do not depend
on the invariant energy and is intimately connected to our picture of a resonance
as a short-lived particle. While such an assumption cannot be justified in a micro-
scopic model, it is surprising how well it reproduces the experimental results in
a broad range of energies. (The agreement at low and high energies in Fig. 2 can
be improved by assuming that the background part is energy-dependent.)

N

N

N N N

∆

(a) (b)

Fig. 3. Two processes dominating the P33 channel

Neither the resonant part nor the background are related to a specific process,
such as those depicted in Fig 3. Naively, one would expect that graph (b) cor-
responds to the resonant part and graph (a) to the background. Yet they both
contribute to the resonant part as well as to the background; note that the process
(a) alone can lead to the resonance in this channel for sufficiently strong πN cou-
pling and has the opposite sign with respect to the background contribution in
the whole energy range.
Let us conclude by noting that a good microscopic model should be able to re-
produce the total amplitude and not just the resonant part, since, as seen from
Tables 2 and 3, the extracted values from the experiment are too unreliable to
serve as benchmarks.
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Abstract. We present the results of detailed calculations with Bhaduri and AL1 potential
for the Tcc = DD∗ tetraquark. We show that it has a molecular structure, which can trans-
form, under the influence of an additional three-body force, into a Λb-like system where
the role of the b quark is played by the heavy cc diquark.

Nonrelativistic potential models have proven to be quite a successful tool for un-
derstanding the meson and baryon sector. It is challenging to extend them from
one-hadron to two hadron systems, such as the double heavy tetraquarks. Prob-
ably the most intriguing tetraquark in this class is the Tcc = DD∗ tetraquark. The
results obtained with different potential models are very contradictive, from un-
bound [1,2] to deeply bound states [3,4]. If one demands, however, that the model
used in the calculations must reproduce accurately the meson as well as baryon
sector, then we believe that the dependence of the results on the model should
not be so strong. Actually, the results should only be sensitive to the details of the
interaction, which are not of the great importance for the meson or baryon sector,
such as for example the colour dependent three-body force.
We present the results obtained with two one-gluon-exchange potentials, the Bhaduri
[5] and Grenoble AL1 [6] potential. For a long time it was supposed that Tcc is
unbound with these two potentials, according to seemingly accurate calculations
[2,7]. We expanded the tetraquark wavefunction in 140 Gaussians of optimized
widths for three sets of Jacobi coordinates to obtain 0.1 MeV accuracy (Fig.1) and
show [8,9], however, that with both, the Bhaduri and the Grenoble AL1 poten-
tials, Tcc is bound below the DD∗ threshold by 0.6 and 2.7 MeV, respectively.
It is essential to use a large enough model space to accommodate the molecular
structure, in contradistinction to Tbb which has an atomic structure similar to Λb.
Both types of configurations are schematically illustrated in Fig.2. If the basis is
too small the Tcc tetraquark without additional interactions remains unbound.
This had happened in [10], where the same basis functions were used as here,
but the final basis was spanned with only 40 functions, since so extremely weak
binding was not expected. From Fig.1 we see that at least 80 basis function are
needed to obtain the energy of theDD∗ system lower than the threshold.
In Fig.3a we plot the probability densities ρQQ between heavy quarks in Tbb and
Tcc as a function of the interquark distance rQQ:

ρQQ(r) = 〈ψ|δ(r− rQQ)|ψ〉.
? Talk delivered by D. Janc.
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Fig. 1. Energy of the Tcc

tetraquark with Bhaduri poten-
tial as a function of the number
of the basis states for three
different runs. The D + D∗

threshold is also shown. Since
the initial parameters are cho-
sen randomly, the convergence
is similar as with the stochastic
variational approach.

a) b)

Fig. 2. Schematic illustration of the two light antiquarks (empty circles) and two heavy
quarks (dashed circles) in a): atomic configuration as we can find it in the Tbb tetraquark
and in b): molecular configuration characteristic for the Tcc tetraquark.

There are also other mechanisms to help binding: 3-body forces (which are more
effective for 4 particles than for 3 particles – baryons) and pion exchange (pions
are almost real when exchanged between D and D∗ mesons). The form of the
three-body interaction which we introduced into the tetraquark is

V3b
qqq̄(ri, rj, rk) = −

1

8
dabcλa

i λ
b
j λ

c∗
k U0 exp[−(r2ij + r2jk + r2ki)/r

2
0],

V3b
qq̄q̄(ri, rj, rk) =

1

8
dabcλa

i λ
b∗
j λ

c∗
k U0 exp[−(r2ij + r2jk + r2ki)/r

2
0].

Here rij is the distance between i-th and j-th (anti)quark, and similarly for rjk

and rki. λa are the Gell-Mann colour matrices and dabc are the SU(3) structure
constants ({λa, λb} = 2dabcλc).
It should be noted that in the baryon sector such a colour structure is irrelevant
since there is only one colour singlet state and thus the colour factor is just a con-
stant which can be included into the strength of the potential. In tetraquarks the
situation is different since there are two colour singlet states: 3̄12334 and 6126̄34 (or
113124 and 813824 after recoupling). The three-body force operates differently on
these two states [11,12] and one can anticipate that in the case of the weak bind-
ing it can produce large changes in the structure of the tetraquark. This cannot be
otherwise produced simply by reparameterization of the two-body potential, so
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Fig. 3. (a): Tbb shows atomic structure while Tcc is molecular, r = rbb or rcc;
(b): The effect of three-body interaction on the structure of Tcc for 3 different strengths.

the weakly bound tetraquarks are a very important laboratory for studying the
effect of such an interaction.
It is well known that the constituent quark models with the colour λ · λ structure
give rise to the long-range van der Waals forces [13–15], which can have dramatic
effect especially for weakly bound systems with the molecular structure, such as
the Tcc tetraquark. This interaction appears due to the colour polarization of two
mesons in the colour singlet state and is an artefact of the potential approach.
It is not present in the full QCD where quark-anriquark pair creation from the
confining filed energy would produce an exponential cut-off of this residual in-
teraction. The radial dependence has in the case of the linear confining interaction
the structure

V(r)v.d.Waals = O(rd−4) = O(r−3)

We now check the effect of this spurious interaction in the Tcc tetraquark. In Fig.
4 we present useful quantity, which we call effective potential density

vij(r) = 〈ψ|Vij(rij)δ(r − rij)|ψ〉 = Vij(r)ρij(r). (1)

In Fig. 4b one can see that this effect is indeed present at large separations (r >
2 fm) but is extremely small. Integrating this attractive tail of the potential, we
obtain a contribute less than 100 keV to the binding of the system. On the other
hand, more interesting feature of the effective potential shown in Fig. 4 is the
repulsive force between quarks at the medium distance between quarks (1.5 fm>
r > 2 fm). The maximal value of potential barrier is Vij(r ∼ 1.5 fm) = vij/ρij = 1

MeV. This then allows that also resonant states can appear in the model which
are not possible in a simple potential well.
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Abstract. We estimate the rate of double charm production in B-factories Belle and BaBar,
in hadronic machines with fixed targets RHIC and SELEX, and in high energy colliders
Tevatron and LHC. For detection we propose the branching ratio between pionic and
gamma decay.

1 Introduction

We have shown that the molecule-like configuration of the DD∗ dimeson (also
called tetraquark) enables weak binding even in the case of the Bhaduri or Greno-
ble AL1 interaction (-0.7 or -2.6 MeV, respectively) [1,2]. The surprise that the
cc-tetraquark is likely to be bound against the D + D∗ decay strongly motivates
experimental exploration. To encourage future experimental analyses, we esti-
mate the production rate on several present and future machines, and propose
an experimental signature for detection.

2 Production

Regarding the production of Tcc, we consider a three-step process:
(i) production of two cc̄ pairs,
(ii) formation of a diquark c + c → cc,
(iii) dressing of the diquark cc → ccq, q = u, d, s (90 %), or cc→ ccūd̄ (10 %).
Here are some provocative guesses: [3]

• SELEX [4] has seen 50 candidates for ccq =⇒ the corresponding hypothetical
5 Tcc are to few to be recognized at present.

• Belle reported prompt J/ψ production in e+e− annihilation at
√
s = 10.6 GeV

and found that the most of the observed J/ψ production is due to the double
cc̄ production σ(e+e− → J/ψcc̄)/σ(e+e− → J/ψX) = 0.59 which correspond
to 2000 events from their 46.2 fb−1 data sample =⇒ promising for the Tcc

production! Similar rate is also expected for BaBar.
? Talk delivered by M. Rosina.
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• High energy colliders (RHIC (p-p), RHIC (p-Au); Tevatron, LHCb, LHC-ALICE)
might produce sufficient double charm by double two-gluon fusion [5–8,3]
(g+g)+ (g+g) → (c+ c̄)+ (c+ c̄). Our estimate for the Tcc cross section are
4, 750; 21, 27, 58 nb, respectively.

In most machines, the rate seems promising to start the hunt!

3 Detection

The main problem with detection of the weakly bound Tcc tetraquark is how to
distinguish the pion or photon emitted by the decay of the free D∗ meson from
the one emitted by the D∗ meson bound inside the tetraquark. We can exploit
the fact that the phase space for D∗ → D + π decay is very small. Therefore we
propose as a signature the branching ratio between radiative and pionic decay. In
addition, the analysis using the Dalitz plot can help to distinguish whether the
pion was emitted from a bound state, resonance state of D +D∗ or from free D∗

meson.
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Fig. 1. Left: Dalitz plot for the Tcc → DDπ decay, E is binding energy of Tcc, 3 is pion;
Right: The two graphs contributing in the case of resonance E > 0
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Abstract. Electro-production of mesons on nucleons is the optimal tool to investigate the
dynamics of nucleon resonance excitation. In the past years, tremendous advances have
been made based on new instrumental capabilities of modern electron beam facilities, in
particular by measuring polarization observables. Some of the recent results on ∆ reso-
nance production from three major coincidence electron-scattering collaborations are pre-
sented.

1 The facilities

Modern electron-scattering facilities possess distinct instrumental features which
allow for a mutually complementary kinematic coverage, exploitation of various
polarization degrees of freedom (e.g. through measurement of double-polariza-
tion observables), and different controls of systematic uncertainties.
The MIT-Bates facility has two collaborations: the Out-of-Plane Spectrometer Sys-
tem (OOPS) and the Bates Large-Acceptance Spectrometer Toroid (BLAST). Both
utilize ∼ 1GeV polarized electron beams of the Bates linac, in extraction (quasi-
CW) or storage mode, respectively. OOPS has recently stopped taking data and
is now in the process of data analysis. It operated four relatively light-weight
spectrometer modules that can be positioned almost independently about the
momentum transfer direction, and out of the electron scattering plane, to detect
protons and charged pions [1]; this ensures an excellent control of systematics.
BLAST is a large-acceptance toroidal magnetic spectrometer [2] that has only re-
cently started taking production data, with a capability of simultaneous detection
of charged and neutral particles in large momentum and angular ranges, with a
moderate energy resolution. Its key feature are the gaseous, isotopically pure,
vector-polarized hydrogen, and vector- and tensor-polarized deuterium internal
targets. In a high-luminosity environment of the MIT-Bates storage ring, excellent
figures of merit are achievable, which enable us to access double-polarization ob-
servables in a number of physical channels.
The A1 Collaboration at the MAMI-B accelerator makes use of the high-pola-
rization, ∼ 0.9GeV CW beam in conjunction with either target (high-polariza-
tion 3 ~He) or recoil polarimetry (focal-plane polarimeter), and a setup of three
high-resolution spectrometers [3] (one of them can be positioned out of plane). In
addition, individual dedicated spectrometers or non-magnetic detector systems
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are installed periodically for measurements of specific reaction channels. The ac-
celerator is presently being upgraded to the energy of 1.5GeV, and one of the
spectrometers is being added to the setup to accommodate the higher particle
momenta.
The Hall A Collaboration at Jefferson Lab operates two high-resolution mag-
netic spectrometers and auxiliary detector systems, making use of the high-po-
larization CW beam of energies up to 6GeV. Both target polarization (3 ~He with
similar operational parameters as at A1) and recoil polarimetry (focal-plane po-
larimeter with optimizable secondary-scattering configuration) are possible. The
large kinematic freedom given by the high beam energies allows us to explore
the nucleon resonance production at relatively high Q2, with invariant energies
W extending beyond ∼ 2GeV.

2 Pion-cloud effects at low Q2

One of the key goals of the experiments devoted to the N → ∆ transition is to
determine the electric (E2) and Coulomb (C2) quadrupole transition amplitudes.
These are much smaller than the leading magnetic dipole amplitude (M1), and in-
dicate that the nucleon and/or the∆ deviate from spherical symmetry. In models
involving explicit pion degrees of freedom, large contributions to M1 and domi-
nant contributions to E2 and C2 can be attributed, schematically, to the pion cloud
surrounding the bare quark core (or pion loop effects). The motivation behind the
recent N → ∆ program at MIT-Bates and MAMI is therefore to map out the M1,
E2, and C2 multipoles in the region of low Q2 ' 0.1 (GeV/c)2 where pion-cloud
effects are expected to play the most important role.
The electric quadrupole amplitude E2 is accessible through a particular combina-
tion of the partial cross-sections

σ0π(θ?

π) = σ0(θ?

π) + σTT(θ?

π) − σ0(180◦)

∼ 2 (cosθ?

π + 1) Re [E∗0+M1+] − 12 sin2 θ?

π Re [E∗1+M1+] ,

where θ?

π is the center-of-mass emission angle of the pion and σ0 = σT + εσL. It is
clear that σ0π exhibits a large sensitivity to EMR ∼ Re [E∗1+M1+]. However, back-
grounds like the electric dipole amplitude E0+ in the Re [E∗0+M1+] interference,
as well as higher partial waves (l ≥ 2), need to be obtained from a model in order
to extract the EMR.
Similarly, the quadrupole amplitude C2 is accessed through LT-terms in the cross-
section which contain interferences of the scalar quadrupole S1+ with the domi-
nant magnetic dipole M1+:

σLT(θ?

π) ∼ sinθ?

π Re [S∗0+M1+] − 6 cosθ?

π sinθ?

π Re [S∗1+M1+] ,

σLT ′(θ?

π) ∼ − sin θ?

π Im [(−6 cos θ?

π S1+ + S0+)∗M1+] .

The σLT is primarily sensitive to CMR ∼ Re [S∗1+M1+] while σLT ′ , accessible only
with a polarized beam and out-of-plane detection, probes Im [S∗1+M1+]. (This is
important as the relative phases between the multipoles need to be fixed.)
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The analysis of all existing OOPS data at Q2 = 0.127 (GeV/c)2, including the
latest runs with the CW beam at MIT-Bates [5], yield

EMR = (−2.3± 0.3stat+sys ± 0.6model) % ,

CMR = (−6.1± 0.2stat+sys ± 0.5model) % .

At this moment, these are the most accurately known EMR and CMR values at
any finite value ofQ2. (Note that the E2 multipole and EMR are more difficult to
isolate in electro-production than C2 and CMR because the transverse responses
are dominated by |M1+|2 which is absent in the longitudinal sector.) The ex-
tracted CMR is in agreement with the older OOPS extractions, with the Mainz
determination from recoil polarimetry at Q2 = 0.121 (GeV/c)2 which resulted in
CMR = (−6.4± 0.7stat ± 0.8sys) % [6], as well as with the CLAS data in a broader
Q2-range [7]. (New preliminary results for EMR and CMR from CLAS exist atQ2

up to 6 (GeV/c)2 and have been reported at various meetings in 2004.)
In addition to the extractions of EMR and CMR at low Q2, the present data sets
will be used to try to answer several open questions arising from previous ex-
periments at MIT-Bates and MAMI (see contribution of S. Širca to the 2003 Pro-
ceedings [8]). When final results in σLT, σLT ′ , and other partial cross-sections
from OOPS and MAMI become available, they will help constrain the models of
pion electro-production [9–11]. In particular the observables involving polarized
beams in conjunction with either polarized targets or recoil polarimetry, repre-
sent severe tests of the models. Preliminary results on σLT ′ from the MAMI runs
in 2003 are shown in Fig. 1.
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Fig. 1. Preliminary results on σLT′ ∼ Im [S∗1+M1+] from MAMI, compared to three state-
of-the-art model calculations [9–11].
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3 Multipole decompositions at high Q2

To minimize the model dependence of the extracted multipole amplitudes, a mea-
surement with a sufficient number of independent observables is needed. The
N → ∆ transition cross-section in the case of a polarized beam, unpolarized tar-
get, and recoil polarimetry, can be decomposed into 18 structure functions, each
one of which contains different forms of multipole bilinears. Through a partial-
wave analysis of the measured angular distributions of the structure functions,
all relevant multipoles can be extracted from the data in a model-independent
way. By measuring the angular distributions of 16 independent structure func-
tions in broad angular ranges, the Hall A experiment E91-011 [12] has succeeded
in delivering Re and Im parts of all l = 0, 1 multipoles in the vicinity of Q2 =

1.0 (GeV/c)2 and W = 1232MeV. The residual model-dependence is due to the
higher partial waves (l ≥ 2) which were constrained by MAID.

Fig. 2. Kinematical coverage in the E91-011 experiment, with indicated binning for the po-
larization analysis. Left: angular acceptance in recoil nucleon center-of-mass angles; Right:
acceptance in W and Q2.

Recoil polarimetry in the pπ0 channel is indeed the most powerful and hence
the preferred method to cleanly disentangle individual multipoles; however, this
goal could be achieved because of the strong kinematic focusing of the proton
emission cone into the spectrometer acceptance at relatively highQ2. In this way,
a substantial angular coverage was achieved (see Fig. 2). The measured structure
functions at W = (1.23 ± 0.02) GeV and Q2 = (1.0 ± 0.2) (GeV/c)2 are shown
in Fig. 3 [13]. The final analysis which will result in the individual multipoles, as
well as the EMR and the CMR is almost complete, and will be reported soon.
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Fig. 3. Preliminary E91-011 results for the polarized structure functions in p(~e, e ′
~p)π0 at

W = (1.23 ± 0.02) GeV and Q2 = (1.0 ± 0.2) (GeV/c)2, compared to the pion electro-
production models, and different multipole fits.
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4 Work in progress and outlook

The analysis of the data taken with the OOPS spectrometer system at Q2 =

0.127 (GeV/c)2 is underway both in the pπ0 and the nπ+ channels, at the res-
onance (W = 1232MeV) and below it (W = 1175MeV). Selected unpolarized
responses have measured which allow for a precise extraction of the EMR and
CMR ratios with a relatively small model dependence. By measuring two chan-
nels, a first step towards the isospin decomposition of the amplitudes will have
been made.
Preliminary responses in the pπ0 channel from A1 at MAMI are already avail-
able, while the full analysis is expected to be complete soon. We expect it to
yield five unpolarized responses and the EMR and CMR ratios at Q2 = 0.06 and
0.2 (GeV/c)2, where the effects of the pion cloud appear to be most prominent.
The measurement of σ ′

LT alone, with respect to the older A1 [14] and the latest
CLAS (JLab) [15] data set, will represent an important constraint on the state-of-
the-art models, in particular by constraining the l = 0 background amplitudes.
(In σ ′

LT, the discrepancies between the theories in the l = 0 partial waves arise
predominantly through the Im [M?

1+S0+] interference.)
The data analysis of the N → ∆ experiment in Hall A has been concluded and
is being prepared for publication. The focal-plane polarimetry approach used in
this experiment can be straightforwardly extended to the energy region of the
Roper resonance; an experiment proposal is presently being considered. How-
ever, the cross-sections in the second resonance region are far smaller than in
the ∆ region, and the sensitivities to the resonant Roper multipoles appear to be
largest at small Q2 where the kinematic focusing is too weak to allow for a full
partial-wave decomposition.
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Abstract. A search forΘ+ and Ξ3/2 pentaquarks has been performed in channels pK0
S and

Ξπ in proton - nucleus interactions at mid-rapidity and
√
s = 41.6 GeV/c2 . No evidence

for pentaquarks has been found in analyzed channels. Upper limits have been set on pen-
taquark production cross sections.

Experimental evidence for a new hadron state at 1540 MeV/c2 decaying tonK+ was
presented by experiment LEPS [1] in 2003. The particle was named Θ+ (1540).
Due to a quark picture of neutron and K+, the hadron Θ+ must contain at least
four quarks and one antiquark. After that, several other collaborations reported
evidence for a peak in the invariant mass spectrum ofnK+ or pK0

S . The pK0
S peak

was regarded as evidence for Θ+ → pK0
S on the grounds “no narrow Σ?+ is

known around 1.5 GeV/c2 ”. Currently, there are 12 experiments that have claimed
evidence for decays Θ+ → nK+ or Θ+ → pK0

S . The measured mass lies in the
range 1521 - 1555 MeV/c2 . There is a peculiarity that pK0

S experiments report
smaller value of mass than nK+ ones. The measured widths have all been con-
sistent with the experimental resolution which is typically 20 MeV/c2 . The pre-
sented peaks have statistical significance of about 5 σ. In theoretical modelsΘ+ is
a member of an antidecuplet which also contains isospin 3/2 family Ξ3/2 of dou-
bly strange pentaquarks. Evidence for doubly charged and neutral member of the
family was observed in Ξπdecay channels at mass of 1862 MeV/c2 by NA49 [2].
The statistical significance of Ξ3/2 peak is also about 5 σ. Up to now, this has been
the only evidence for Ξ3/2 . From the other side, the number of high statistics
experiments reporting negative search results for Θ+ and Ξ3/2 is growing. Direct
comparison of positive and negative search results is not possible because the ex-
periments are not of the same type. However, the negative search results reported
much larger yield of common particles like Λ (1520) and Ξ(1530)0 , thus prov-
ing their ability to search for possible pentaquark signals in channels pK0

S and
Ξπ . This short survey of experimental situation suggests that existence of pen-
taquarks is not proven beyond reasonable doubt. The search forΘ+ and Ξ3/2 was
done also at HERA-B. The main features of the analysis are presented here, while
details can be found elsewhere [3].
HERA-B is a fixed target experiment at the 920 GeV proton storage ring of DESY.
It is a forward magnetic spectrometer with a high resolution vertexing and track-
ing system and good particle identification. The detector has good acceptance in



Search for Pentaquarks at HERA-B 85

the mid-rapidity region. The informations from the silicon vertex detector, the
main tracker system, ring imaging Cherenkov (RICH) counter and the electro-
magnetic calorimeter (ECAL) were used in this analysis. The present study was
performed on a sample of about 200 millions of minimum bias events that were
taken at

√
s = 41.6 GeV/c2 using carbon, titanium and tungsten targets. Strange

particles are frequent in proton - nucleus interactions at this energy, and HERA-B
has reconstructed a large number of K0

S → π+π−,Λ → pπ− and Λ̄ → p̄π+ decays.
A clean sample of Ξ hyperons was obtained in decay modes Ξ− → Λπ− and
Ξ̄+ → Λ̄π+. Background in all fore mentioned channels was efficiently reduced
using decay topology, so there was no need for particle identification. Table 1
summarizes the statistics of relevant signals together with the measured mass
resolutions. All measured masses are within 1 MeV/c2 compatible with the table
values.

Signal C target all targets σ [MeV/c2 ]

K0
S 2.2M 4.9M 4.9

Λ [Λ̄] 440k[210k] 1.1M[520k] 1.6

Λ (1520) [Λ̄(1520)] 1.9k[1.1k] 5.1k[2.3k] 2.3

Ξ− [Ξ̄+ ] 4.7k [3.4k] 11.8k [8.2k] 2.6

Ξ(1530)0 [Ξ̄(1530)0 ] 610 [380] 1.4k [940] 2.9

Table 1. Statistics and experimental mass resolution (σ) for relevant particles are given for
carbon target and for all targets.

HERA-B does not have capabilities for the identification of neutrons. Therefore,
the search forΘ+ was performed in the decay channel pK0

S . Protons were identi-
fied requiring the proton likelihood from the RICH to be larger than 0.95. Proba-
bility that a particle which is not proton passes this cut is below 1%. Both particles,
proton and K0

S had to point to the main vertex. K0
S candidates had to lie in ±3σ

mass window around the table mass. A clean K0
S sample remained after removing

particles whose mass was consistent with Λor Λ̄. The invariant mass spectrum
of selected pK0

S pairs is shown for p+C data in Fig. 1a. The shape of background
was obtained by event mixing technique and is represented by a full line. MC
studies show that the mass resolution in the presented mass region is in 2.6 - 6.1
MeV/c2 range. At the Θ+ mass, the resolution is 3.9 MeV/c2 . We determined the
upper limit on the number of signal events in the invariant mass plot as a func-
tion the signal mass. The resulting nuclear cross section as a function of the signal
mass is presented in Fig. 1b (full line).
AssumingA0.7 dependence of the nuclear cross section on the atomic number, we
obtained the upper limit onBr×dσ/dy|y=0 < 3.7µb/nucleon in the mid-rapidity
region for Θ+ mass of 1530 MeV/c2 . The upper limit varies from 3 to 22 µb in the
mass region 1521 - 1555 MeV/c2 . The upper limits obtained using data from all
targets are similar. We also tried with other search strategies, like: a) requiring a



86 Tomi Živko
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Fig. 1. Invariant mass distributions and upper limits on nuclear cross section for chan-
nels pK0

S (left) and Ξπ (right). Arrows denote mass region 1521 - 1555 and mass of 1530
MeV/c2 (left) and mass of 1862 MeV/c2 (right). Data were taken with carbon target. See
text for details.

low track multiplicity in an event (Fig. 1c), b) strangeness tagging, by requiring
a particle with an s quark (Λ , K− ) in an event, c) combination (Fig. 1d) of crite-
ria a) and b), d) relaxation of the proton identification cut. None of the attempts
resulted in a significant narrow peak in the mass spectrum. We checked capa-
bilities of the HERA-B detector by reconstruction of Λ(1520) → pK−. Masses of
Θ+ andΛ (1520) are similar as well as geometrical acceptances forΘ+ → pK0

S and
Λ(1520) → pK−. Using RICH likelihood cut for both proton and K− , we obtained
a clean signal for Λ (1520). Assuming Br(Θ+ → pK0

S )=1/4, we determined the
UL(95%) on the particle ratio Θ+

Λ(1520)
< 0.92% in the mid-rapidity region. This

upper limit is more than one order of magnitude lower than predictions of statis-
tical hadronization models. We also found that Θ+

Λ(1116)
< 0.27%.

We searched for members of Ξ3/2 family in decay channels Ξ−π−, Ξ−π+ and c.c.
Ξ− candidates had to lie in ±3σ mass window around the table mass. Both Ξ−

and π candidates had to point to the main vertex. Weak identification cuts with
RICH and ECAL removed tracks with clear electron, kaon or proton identity from
the π sample. The invariant mass spectra of Ξπpairs obtained from p+C data are
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shown in Fig. 1e for all four charge combinations. The background shape is ob-
tained from event mixing and is normalized to the data. The experimental reso-
lution in the analyzed mass region is in 2.9 - 10.6 MeV/c2 range and has value of
6.6 MeV/c2 at the mass of 1862 MeV/c2 . The only observed structure in the spec-
tra are signals for Ξ(1530)0 and Ξ̄(1530)0 in neutral channels. Fig. 1f gives sum of
invariant mass distributions of all four charge channels after subtraction of back-
ground. Particularly, there is no enhancement in mass region around around 1862
MeV/c2 , where NA49 observed Ξ3/2 candidates. We determined UL(95%) on
Br·dσ/dy|y=0, which at mass of 1862 MeV/c2 are 2.5, 2.3, 0.85 and 3.1 µb/nucleon
in Ξ−π−, Ξ−π+, Ξ̄+π+ and Ξ̄+π− channels, respectively. The corresponding up-
per limits using all targets are 2.7, 3.2, 0.94 and 3.1 µb /nucleon. We also found
the UL(95%) on particle ratio Br · Ξ−−/Ξ0(1530) < 4% and Br · Ξ−−/Ξ− < 3%. As
an illustration, the UL(95%) on nuclear cross section is presented in Fig. 1g (full
line) as function of Ξ−− mass.
To conclude, we searched for pentaquark signals in channels pK0

S and Ξπ. Hav-
ing found no evidence for signals we set upper limits on production cross sec-
tions and particle ratios in mid-rapidity region. If existent, strange pentaquarks
(Θ+ and Ξ3/2 ) also seem to have exotic production mechanisms.
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