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Simon Širca, Ljubljana, simon.sirca@fmf.uni-lj.si
Masashi Wakamatsu, Osaka, wakamatu@kern.phys.sci.osaka-u.ac.jp
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S. Širca . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Hadronic spectroscopy at Belle
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Preface

Repetitio est mater studiorum, said the ancient Romans. It is now time to repeat
the lessons, ideas and criticisms encountered at Bled 2009.We would like to thank
you for the neat presentations summarized in these Proceedings which try to
represent some flesh and spirit of our coming-together.

One of the red threads was the Nambu–Jona-Lasinio model. To what extent can
it be derived from QCD? The Bogolyubov compensation method does provide a
link. Work was done on pion polarizabilities and inclusion of four-body forces,
which not only stabilizes the vacuum but also influences the behaviour in certain
phase transitions. The simpified NJL gives some insights into the large-Nc limit
and in the deduction of pion scattering lengths.

Low-lying baryon resonances are experiencing steady progress. The peculiar shape
of the electro-production amplitudes in the Roper region can be explained by an
interplay of intermediate ∆ or σ states. Classification of resonances can be facil-
itated by looking at the density as a function of inter-quark distance. The renor-
malization of singular potentials with one-meson exchange still pose problems.
The electromagnetic form-factors of baryons, the “gravitational” form-factor of
the pion, the restoration of chiral symetry and the spin structure of baryons con-
tinue to attract our attention.

New resonances in the charmonium spectrum present many puzzles and model
descriptions of their decay channels are not yet consistent. However, admixtures
of higher configurations in baryons gain more and more credit; the excess of d̄
over ū, for example, seems to require that. The four resonances studied at Belle
were presented from the tetraquark point of view.

What topics should we tackle next year?We have not yet decided. There aremany
puzzles and secret wishes hidden in your and our minds. We are exploring the
“market” and we are also awaiting your suggestions.

Ljubljana, November 2009 M. Rosina
B. Golli
S. Širca
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Nambu–Jona-Lasinio model from QCD

B. A. Arbuzov

Skobeltsyn Institute of Nuclear Physics of MSU, 119992 Moscow, Russia

The NJL model [1–3] proves to be effective in description of low-energy hadron
physics. The model starts with effective chiral invariant Lagrangian

G1

2

(
ψ̄τbγ5ψ ψ̄τ

bγ5ψ − ψ̄ ψ ψ̄ψ

)
, (1)

where ψ is the light quark doublet (u, d). This interaction is non-renormalizable,
so one is forced to introduce an ultraviolet cut-off Λ. Thus we have at least two
arbitrary parameters

G1 ; Λ1 ;

to be adjusted by comparison with real physics. It comes out that after such ad-
justment (and similar procedure for the vector sector and for the s-quark terms)
we obtain satisfactory description of light mesons and their low-energy interac-
tions.

However, the problem how to calculate the parameters Gi and Λi from the
fundamental QCD was not solved for a long time. The main problem here is to
find a method to obtain effective interactions from fundamental gauge interac-
tions, e.g. QCD.

There are also non-local variants of the NJL model, in which one introduces
a form-factor F(qi) into the effective interaction of the type (1) instead of a cut-off
Λ. In this case again there was no regular method to obtain this function F and
one has to make an arbitrary assumption for the choice.

Our goal is to formulate a regular approach, which allows to obtain a unique
solution for the form-factors and other necessary quantities of the effective inter-
actions. In particular we apply this approach to the NJL effective interaction.

The approach is based on the Bogoliubov compensation principle [4,5].

Themain principle of the approach is to check if an effective interaction could
be generated in a chosen variant of a renormalizable theory.

In previous works [6–12] the Bogoliubov compensation principle was ap-
plied to studies of spontaneous generation of effective non-local interactions in
renormalizable gauge theories. In view of this one performs an “add and sub-
tract” procedure for the effective interaction with a form-factor. Then one as-
sumes the presence of the effective interaction in the interaction Lagrangian and
the same term with the opposite sign is assigned to the newly defined free La-
grangian.



2 B. A. Arbuzov

The QCD Lagrangian with two light quarks is (u and d)

L =

2∑

k=1

(
ı

2

(
ψ̄kγµ∂µψk − ∂µψ̄kγµψk

)
−m0ψ̄kψk + gsψ̄kγµt

aAa
µψk

)

−
1

4

(
Fa

µνF
a
µν

)
. (2)

Let us assume that a non-local NJL interaction is spontaneously generated
in this theory. We use the Bogoliubov “add and subtract” procedure to check the
assumption. We have

L = L0 + Lint ,

L0 =
ı

2

(
ψ̄γµ∂µψ − ∂µψ̄γµψ

)
−m0ψ̄ψ+

G1

2

(
ψ̄τbγ5ψ ψ̄τ

bγ5ψ − ψ̄ ψ ψ̄ψ

)

+
G2

2

(
ψ̄τbγµψ ψ̄τ

bγµψ+ ψ̄τbγ5γµψψ̄τ
bγ5γµψ

)
−
1

4
Fa

0 µνF
a
0 µν , (3)

Lint = gs ψ̄γµt
aAa

µψ −
G1

2

(
ψ̄τbγ5ψ ψ̄τ

bγ5ψ− ψ̄ψ ψ̄ψ

)

−
G2

2

(
ψ̄τbγµψ ψ̄τ

bγµψ+ ψ̄τbγ5γµψψ̄τ
bγ5γµψ

)

−
1

4

(
Fa

µνF
a
µν − Fa

0 µνF
a
0 µν

)
. (4)

Here the notation e.g. G1

2
ψ̄ ψ ψ̄ψmeans the corresponding non-local vertex in the

momentum space

ı(2π)4G1 ū
a(p)ua(q) ūb(k)ub(t) F(p, q, k, t) δ(p+ q+ k+ t) , (5)

where F(p, q, k, t) is a form-factor, p, q, k, t are respectively incoming momenta
and a, b are isotopic indices of corresponding quarks.

Let us consider expression (3) as the new free Lagrangian L0, whereas ex-
pression (4) is the new interaction Lagrangian Lint. The compensation equation
demands fully connected four-fermion vertices, following from Lagrangian L0, to
be zero. The equation has evidently

1. a perturbative trivial solution Gi = 0;
2. but it might also have a non-perturbative non-trivial solution, which we shall

look for.

In the first approximation we use the following assumptions.

1. Loop numbers 0, 1, 2. For one-loop case only a trivial solution exists.
2. Procedure of linearizing over form-factor, which leads to linear integral equa-

tions.
3. Intermediate UV cut-off Λ, results not depending on the value of this cut-off.
4. IR cut-off at the lower limit of integration by momentum squared q2 at value
m2.
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5. Only the first two terms of the 1/N expansion (N = 3).
6. We look for a solution with the following simple dependence on all four vari-

ables:

F(p1, p2, p3, p4) = F

(
p2

1 + p2
2 + p2

3 + p2
4

2

)
. (6)

Then we come to the following integral equation (see [8])

F1(x) = A +
3G2

8π2

(
2Λ2 + x log

x

Λ2
−
3

2
x−

µ2

2x

)
−

(G2
1 + 6G1G2)N

32π4
×

(
1

6 x

∫x

µ

(y2 − 3µ2)F1(y)dy +
3

2

∫x

µ

yF1(y)dy+
x2 − 3µ2

6

∫∞

x

F1(y)

y
dy+

log x

∫x

µ

yF1(y)dy+ x log x

∫x

µ

F1(y)dy+

∫∞

x

y log y F1(y)dy+

x

∫∞

x

(
log y+

3

2

)
F1(y)dy +

(
2Λ2 −

3

2
x
) ∫∞

µ

F1(y)dy−
3

2

∫∞

µ

yF1(y)dy −

log Λ2
(∫∞

µ

yF1(y)dy + x

∫∞

µ

F1(y)dy
))

; µ = m2
0 ; x = p2 ; y = q2 ; (7)

A =
G1NΛ

2

2π2

(
1+

1

4N
−
G1N

2π2

(
1+

1

2N

) ∫∞

µ

F1(y)dy

)
.

The equation has the following solution decreasing at infinity

F1(z) = C1G
40
06

(
z |1,

1

2
,
1

2
, 0, a, b

)
+ C2G

40
06

(
z |1,

1

2
, b, a,

1

2
, 0,

)

+ C3G
40
06

(
z |1, 0, b, a,

1

2
,
1

2

)
, (8)

a = −
1−

√
1− 64u0

4
, b = −

1+
√
1− 64u0

4
,

where x = p2, y = q2 are respectively external momentum squared and inegra-
tion momentum squared,

Gmn
pq

(
z |

a1, ... , ap

b1, ... , bq

)

is a Meijer G-function [13],

β =
(G2

1 + 6G1G2)N

16π4
, z =

βx2

26
, u0 =

βµ2

64
, F1(u0) = 1 .

The constants Ci are defined by the boundary conditions

3G2

8π2
−
β

2

∫∞

m2
0

F1(y)dy = 0 ,

∫∞

m2
0

y F1(y)dy = 0 ,

∫∞

m2
0

y2 F1(y)dy = 0 . (9)

These conditions and the condition A = 0 lead to the cancellation of all terms in
equation (7) being proportional toΛ2 and log Λ2. Sowe have the unique solution.
The values of the parameter u0 and the ratio of two constants Gi are also fixed

u0 = 1.92 · 10−8 ≃ 2 · 10−8 , G1 =
6

13
G2 . (10)
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We would draw attention to a natural appearance of a small quantity u0. So G1

and G2 are both defined in terms ofm0.

Thus we have the unique non-trivial solution of the compensation equa-

tion, which contains no additional parameters. It is important that the solution
exists only for positive G2 and due to (10) for positive G1 as well.

Now we have the non-trivial solution, which lead to the following effective
Lagrangian

L =
ı

2

(
ψ̄γµ∂µψ− ∂µψ̄γµψ

)
−
1

4
Fa

µνF
a
µν − m0ψ̄ ψ

+ gs ψ̄γµt
aAa

µψ −
1

4
Fa

µνF
a
µν

−
G1

2

(
ψ̄τbγ5ψψ̄τ

bγ5ψ− ψ̄ψψ̄ψ

)

−
G2

2

(
ψ̄τbγµψψ̄τ

bγµψ+ ψ̄τbγ5γµψψ̄τ
bγ5γµψ

)
. (11)

Here g2
s/4π = αs(q

2) is the running constant depending on the momentum vari-
able. We need this constant in the low-momenta region. We assume that in this
region αs(q

2) may be approximated by its average value αs. The possible range
of values of αs is from 0.40 up to 0.75.

Thus we come to the effective non-local NJL interaction which we use to ob-
tain the description of low-energy hadron physics [7,8,11]. In this way we obtain
expressions for all quantities under study.

Analysis shows that the optimal set of low-energy parameters corresponds
to αs = 0.67 and m0 = 20.3MeV . We present a set of calculated parameters for
these conditions including the quark condensate,the parameters of the σ-meson
as well as the parameters of ρ and a1-mesons:

αs = 0.673 ; m0 = 20.3MeV ;

mπ = 135MeV ; mσ = 492MeV ; Γσ = 574MeV

fπ = 93MeV ; m = 295MeV ; < q̄ q >= − (222MeV)3 ;

G1 =
1

(244MeV)2
; g = 3.16 .

Mρ = 926.3MeV(771.1 ± 0.9); Γρ = 159.5MeV(149.2 ± 0.7);
Ma1

= 1174.8MeV(1230 ± 40); Γa1
= 350MeV(250 − 600);

Γ(a1 → σπ)/Γa1
= 0.23 (0.188 ± 0.043).

The upper line here is our input, while all other quantities are calculated
from these two fundamental parameters. The overall accuracy may be estimated
to be on the order of 10 – 15%. The worst accuracy occurs in the value of Mρ

(20%). It seems that the vectors and the axials need further study.

Important result: average value of αs ≃ 0.67 agrees with calculated low-

energy αs [9]. So we have consistent description of low-energy hadron physics

with only one dimensional parameter, e.g.m0 or fπ.
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Renormalization and universality of NN interactions

in Chiral Quark and Soliton Models ⋆

E. Ruiz Arriola and A. Calle Cordón

Departamento de Fı́sica Atómica, Molecular y Nuclear, Universidad de Granada, E-18071

Granada, Spain

Abstract. We use renormalization as a tool to extract universal features of the NN inter-

action in quark and soliton nucleon models, having the same long distance behaviour but

different short distance components. While fine tuning conditions in the models make dif-

ficult to fit NN data, the introduction of suitable renormalization conditions supresses the

short distance sensitivity. Departures from universality are equivalent to extracting infor-

mation on the model nucleon structure.

1 Introduction

The meson exchange picture has played a key role in the development of Nuclear
Physics [1,2]. However, the traditional difficulty has been a practical need to rely
on short distance information which is hardly accessible directly but becomes
relevant when nucleons are placed off-shell. From a theoretical point of view this
is unsatisfactory since one must face uncertainties not necessarily linked to our
deficient knowledge at long distances and which are difficult to quantify. On the
other hand, the purely field theoretical derivation yields potentials which present
short distance singularities, thereby generating ambiguities even in the case of
the widely used One Boson Exchange (OBE) potential. Consider, for instance, the
venerable One Pion Exchange (OPE)NN → NN potential which for r 6= 0 reads

V1π
NN,NN(r) = τ1 · τ2σ1 · σ2W

1π
S (r) + τ1 · τ2S12W

1π
T (r) , (1)

where the tensor operator S12 = 3σ1 · x̂σ2 · x̂− σ1 · σ2 has been introduced and

W1π
S (r) =

mπ

3

f2πNN

4π
Y0(mπr) , W1π

T (r) =
mπ

3

f2πNN

4π
Y2(mπr) . (2)

Here Y0(x) = e−x/x and Y2(x) = e−x/x(1 + 3/x + 3/x2) and fπNN = mπgπNN/

(2MN); f2πNN/(4π) = 0.07388 for gπNN = 13.08. As we see, the OPE potential
presents a 1/r3 singularity, but it can be handled unambiguously mathematically
andwith successful deuteron phenomenology [3]. Nonetheless, the standardway
out to avoid the singularities in this and the more general OBE case is to imple-
ment vertex functions for the meson-baryon-baryon coupling (mAB) in the OBE

⋆ Talk delivered by E. Ruiz Arriola
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potentials. This correspondins to a folding in coordinate space which in momen-
tum space becomes the multiplicative replacement

VmAB(q) → VmAB(q)
[
ΓmAB(q2)

]2
. (3)

where q2 = q2
0 −q2 is the 4-momentum. Standard choices are to take form factors

of the mono-pole [1] and exponential [2] parameterizations

Γmon
mNN(q2) =

Λ2 −m2

Λ2 − q2
, Γ

exp
mNN(q2) = exp

[
q2 −m2

Λ2

]
, (4)

fulfilling the normalization condition ΓmNN(m2) = 1. Due to an extreme fine-
tuning of the interaction, mainly in the 1S0 channel, OBE potential models have
traditionally needed a too large gωNN to overcome the mid range attraction im-
plying one of the largest (∼ 40%) SU(3) violations known to date. In our recent
works [4–9] we discuss how this problem may be circumvented with the help of
renormalization ideas which upon imposing short distance insensitivity sidestep
the fine tuning problem and allow natural SU(3) values to be adopted in such a
way that form factors and heavy mesons play a more marginal role. Contrarily to
what one might naively think, renormalization reduces the short distance depen-
dence provided, of course, removing the cut-off and the imposed renormalization
conditions are mutually compatible operations.

Of course, the extended character of the nucleon as a composite and bound
state of three quarks has motivated the use of microscopic models of the nucleon
to provide an understanding of the short range interaction besides describing
hadronic spectroscopy; quark or soliton models endow the nucleon with its fi-
nite size and incorporate basic requirements from the Pauli principle at the quark
level or as dictated by the equivalent topology [10–13]. While much effort has
been invested into determining the short range interactions, there is a plethora of
models and related approximations; it is not obvious what features of the model
are being actually tested. In fact, NN studies set the most stringent nucleon size
oscillator constant value bN = 0.518fm [13] from S-waves and deuteron proper-
ties which otherwise could be in a wider range bN = 0.4 − 0.6fm. This shows
that quark models also suffer from a fine tuning problem. In this contribution we
wish to focus on the common and universal patterns of the various approaches
and to show how these fine tunings can be reduced to a set of renormalization
conditions.

2 The relevant scales

From a fundamental point of view theNN interaction should be obtained as a nat-
ural solution of the 6-q system. However, in order to describe the NN interaction
it is far more convenient to study two 3-q clusters with nucleon quantum num-
bers, a procedure also applied in recent lattice QCD investigations of the nuclear
force [14,15]. NN scattering in the elastic region corresponds to resolve distances
about the minimal de Broglie wavelength associated to the first inelastic pion
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production threshold, NN → NNπ, and corresponds to take 2ECM = 2MN +mπ

yielding pCM =
√
mπMN = 360MeV which means λmin ∼ 1/

√
mπMN = 0.5fm.

This scale is smaller than 1π and 2π exchange (TPE) with Compton wavelengths
1.4 and 0.7fm respectively. Other length scales in the problem are comparable
and even shorter namely 1) Nucleon size, 2) Correlated meson exchanges and 3)
Quark exchange effects. All these effects are of similar range and, to some ex-
tent, redundant. In a quark model the constituent quark mass is related to the
Nucleon and vector meson masses through Mq = MN/Nc = MV/2 which for
Nc = 3 colours gives the estimateMq = 310 − 375MeV. Exchange effects due to
e.g. One-Gluon-Exchange are ∼ e−2Mqr since they correspond to the probability
of finding a quark in the opposite baryon. This follows from complete Vector Me-
son Dominance (for a review see e.g. [16]), which for the isoscalar baryon density,
ρB(r), and assuming independent particle motion yields

∫
d3xeiq·x〈N|ρB(x)|N〉 = 4π

∫∞

0

dr r2|φ(r)|2j0(qr) ∼
M2

V

M2
V + q2

(5)

suggesting a spectroscopic factor φ(r) ∼ e−MV r/2MV/
√
4πr at large distances.

As we have said and we will discuss below these effects are somewhat marginal
but if they ought to become visible they should reflect the correct asymptotic be-
haviour. In the constituent quark model the CM motion can be easily extracted

assuming harmonic oscillator wave functions, φ(r) ∼ e−b2r2/2 [10,11,13] which
yield Gaussian form factors falling off much faster than the experimental ones.
Skyrme models without vector mesons yield instead topological Baryon densi-
ties ρB(r) ∼ e−3mπr/r7[12] corresponding to the outer pion cloud contributions
which are longest range but pressumably yield only a fraction of the radius. In
any case quark-exchange looks very much like direct vector meson exchange po-
tential which is ∼ e−MV r.

3 Chiral quark soliton model

Most high precision NN potentials providing χ2/DOF < 1 need to incorporate
universally the One-Pion-Exchange (OPE) potential (including charge symme-
try breaking effects) while the shorter range is described by many and not so
similarly looking interactions [17]. This is probably a confirmation that chiral
symmetry is spontaneously broken at longer distances than confinement, since
hadronization has already taken place. It also suggests that in a quark model
aiming at describing NN interactions the pion must be effectively included. Chi-
ral quark models accomplish this explicitly under the assumption that confine-
ment is not crucial for the binding of π, N and ∆. Pure quark models including
confinement or not have to face in addition the problem of recovering the pion
from quark-gluon dynamics. In between, hybrid models have become practical
and popular [10,11,13]. As mentioned, all these scales around the confinement
scale are mixed up. Because these effects are least understood and trigger side
effects such as spurious colour Van der Waals forces arising from Hidden color
singlet states [88]A states [18,19] in the (presumably doubtful) adiabatic approxi-
mation, we will cavalierly ignore the difficulties by remaining in a regime where
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confinement is not expected to play a role and stay with standard chiral quark
models.

While both the constituent chiral quark model and the Skyrme soliton model
look very disparate the Chiral Quark Soliton Model embeds both models in the
small and the large soliton limit respectively 1. We analyze the intuitive non-
relativistic chiral quark model (NRCQM) explicitly and comment on the soliton
case where similar patterns emerge. The comparison stresses common aspects
of the quark soliton model pictures which could be true features of QCD. While
the long distance universality between both NRCQM and Skyrme soliton model
NN calculations may appear somewhat surprising this is actually so because in a
large Nc framework both models are just different realizations of the contracted
spin-flavour symmetry [23].

4 The non-relativistic chiral quark model

To fix ideas it is instructive to consider the chiral-quark model which corresponds
to the Gell-Mann–Levy sigma model Lagrangean at the quark level [24] (the non-
linear version suggested in Ref. [25] will be discussed below),

L = q̄ (i∂/− gπqq(σ+ iγ5τ · π))q+
1

2

[
(∂µσ)2 + (∂µπ)2

]
−U(σ, π) , (6)

where U(σ,π) = λ2(σ2 + π2 − ν2)2/8 − fπm
2
πσ is the standard Mexican hat po-

tential implementing both spontaneous breaking of chiral symmetry as well as
PCAC yielding the Goldberger-Treiman relationMq = gπqqfπ = gσqqfπ at the
constituent quark level. When this model is interpreted from a gradient expan-
sion of the NJL model quarks are regarded as valence quarks whereas kinetic
meson terms arise from the polarization of the Dirac sea and m2

σ = 4M2
q +m2

π,
which forMq = MN/3 = MV/2 yields mσ = 650 − 770MeV. In the heavy con-
stituent quarks limit the model implies 1π and 1σ exchange potentials,

V1π
qq ′(r) = −

g2
πqq

4M2
q

τq · τ ′q
∫
d3p

(2π)3
eip·r (σq · p)(σq ′ · p)

p2 +m2
π

,

V1σ
qq ′(r) = g2

πqq

∫
d3p

(2π)3
eip·r 1

p2 +m2
σ

= −
g2

πqq

4π

e−mσr

r
, (7)

whence baryon properties can be obtained by solving the Hamiltonian

H =

Nc∑

i=1

[
p2

i

2Mq

+Mq

]
+

∑

i<j

V(xi − xj) =
P2

2M
+NcMq +Hint , (8)

1 Within the large Nc framework the difference corresponds to a saddle point approx-

imation around a trivial or non-trivial background. The question which regime is the

appropriate one is a dynamical issue [20,21]. Likewise, when the soliton is large, quarks

are deeply bound and the topological soliton picture of Skyrme sets in, giving the ap-

pearance of a confined state (where colour Van der Waals forces cannot take place). The

soliton of the Spectral Quark model does not allow this interpretation as baryon charge

is never topological [22].
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where the total momentum P =
∑Nc

i=1 pi/Nc and the intrinsic Hamiltonian have
been introduced. Due to Galilean invariance thewave function of amoving baryon
can be factorized

ΨB(x1, . . . , xNc
) = φ(ξ1, . . . , ξNc−1)eiP·R , (9)

with R =
∑Nc

i=1 xi/Nc the CM of the cluster and ξi = xi − R/Nc intrinsic coordi-
nates,

∑
i ξi = 0. We will assume that this complicated problem has been solved

already Ref. [26]. For large Nc the Hartree mean field approximation

ΨB(x1, . . . , xNc
) =

∏Nc

i=1 φαi
(xi)χc might be used [27]). For separated hadrons

the interaction between quark clusters A and B can be written as sum of pairwise
interactions which, for elementary πqq and σqq vertices, reads

Vint(x1, . . . , xNc
; y1, . . . ,yNc

) =
∑

i,j

Vσ+π
ij (xi − yj)

=

∫
d3q

(2π)3

∑

i,j

Vσ+π
ij (q)eiq·(xi−yj) . (10)

Switching to intrinsic coordinates variables xi = ξi +R/2 and yj = ηj −R/2with∑
i ξi =

∑
j ηj = 0 where R is the distance between the CM of each cluster, we

have

V1π(R) =
g2

πqq

M2
q

∫
d3q

(2π)3
eiq·R qkqk

q2 +m2
π

Gka
A (q)Gka

B (q)∗ , (11)

V1σ(R) = g2
πqq

∫
d3q

(2π)3
eiq·R 1

q2 +m2
σ

ρA(q)ρB(q)∗ , (12)

where the spin-isospin density and scalar densities are given by (e.g. cluster A)

Gka
A (q) =

1

2

Nc∑

i=1

σk
i τ

a
i e

iξi·q , ρA(q) =
1

Nc

Nc∑

i=1

eiξi·q , (13)

respectively. Note that the scalar and Baryon densities as well as the pseudoscalar
and axial densities coincide unlike the relativistic case. That means that within
the approximations one should have MS = MV . Thus, the total Hamiltonian is
written as

H = HA,int +HB,int + Vint(R) +
P2

2MT

+
p2

2µ
. (14)

Galilean invariance implies that inertial masses are MT = 2NcMq and
µ = NcMq/2. Introducing the two independent cluster complete states
HA,intφA,n = MA,nφA,n and HB,intφB,m = MB,mφB,m the two-clusters CM
frame unperturbed wave function is just a product

Ψ
(0)

An,Bm
(1, 2, 3; 4, 5, 6) = φA,n(1, 2, 3;R/2)φB,m(4, 5, 6; −R/2)eiQ·R , (15)

where Q is the relative momentum between the two clusters. The above prob-
lem is usually handled by Resonating Group Methods [10,11,13,28]. We analyze
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this coupled channel scattering problem perturbatively where the transition po-
tentials, defined as VAnBm;AkBl

(R) = 〈φA,nφB,m|Vint|φA,kφB,l〉, have a familiar
folding structure which in the case of the pion reads

V1π
AnBm;AkBl

(R) =
g2

πqq

M2
q

∫
d3q

(2π)3

qiqj

q2 +m2
π

eiq·R〈An|Gia(q)|Ak〉〈Bm|Gja(−q)|Bl〉 .

(16)

5 Long distance limit and the need for renormalization

At long distances the leading singularities q = imπ and q = imσ dominate [29,30].
Using that |〈N|ρ(q)|N〉|2 is an even function of q we get the structure for the
NN → NN potentials

Vσ(R) = g2
πqqN

2
c

∫
d3q

(2π)3
eiq·R |〈N|ρ(imσ)|N〉|2

q2 +m2
σ

+ C0 δ
(3)(R)

+C2(−∇2 +m2
σ)δ(3)(R) + . . .

= −
g2

σNN

4π

e−mσr

r
+ distributions (17)

and Eq. (1) for the OPE contribution. Here, the couplings are given by gσNN =

Ncgσqq|ρ(imσ)| and gπNN = NcgAgπqq|ρ(imπ)| where gA = (Nc+2)/3 [31]. As-
suming |ρ(imπ)| ∼ |ρ(0)| = 1 one has the Goldberger-Treiman relation gAMN =

gπNNfπ at the nucleon level. Thus, at long distances finite size effects are rep-
resented as an infinite sum of delta functions and derivatives thereof. However,
any finite truncation will produce a negligible contribution at any non-vanishing
distance. In a sense, this result is reminiscent of the Gauss theorem for charged
objects with a sharp non-overlapping boundary; the interaction is mainly due to
the total charge and regardless on the density profiles of the system. Only an in-
finite number of terms may yield a finite size effect. Note that the coefficients of
the contact interactions are fixed numbers having a meaning perturbatively. How-
ever, if one tries to play with them to characterize finite resolution effects (nucleon
size and potential range) in a model independent way non-perturbatively (solv-
ing e.g. the Schrödinger equation) important restrictions arise. Unlike the δ ′s,
the OPE short distance 1/r3 singularity is not located in a compact region, i.e.
is not killed by taking a finite support test function, and contributes to all arbi-
trarily small distances. Thus, one can effectively drop the derivatives of distri-
butions. This simple-minded argument was advanced in Ref. [32] and explicitly
verified in momentum space by taking C0 and C2 as real counterterms in the
Lippmann-Schwinger equation in Ref. [29]; either C2 becomes irrelevant or the
scattering amplitude does not converge. Therefore, we represent C0 as an energy
independent boundary condition. The renormalization procedure in coordinate
space generally corresponds to 1) fix some low energy constants such as e.g. the
scattering length for s-waves, α0, at zero energy as an independent variable of the
potential, 2) integrate in down to an arbitrarily small cut-off radius rc, 3) con-
struct an orthogonal finite energy state by matching log-derivatives at rc and 4)
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integrating out generating a phase-shift δ0(p) with a prescribed scattering length
α0. This prescription is the renormalization condition and the procedure of integrat-
ing in and out corresponds to evolving along the renormalization trajectory. The
crucial aspect is that short distance insensitivity is implemented. The π+σmodel
and OBE extensions are analyzed in detail in Refs. [4,5,9] where form factors after
renormalization are found to be marginal.

6 Renormalization of Spin-flavour Van der Waals forces

The non-linear chiral quark model [25] corresponds to take mσ → ∞, reducing
to just OPE. The results for the phase shifts in the lowest partial waves are pre-
sented in Fig. 1. Note the bad 1S0 phase. To improve on this the long distance
OPE transition potential is taken

VAB;CD(R) = (τAB · τCD)
{
σAB · σCD[W1π

S ]AB;CD(R)

+[S12]AB;CD[W1π
T ]AB;CD(R)

}
, (18)

where the tensor term is defined as S12 = 3(σAB · R̂)(σCD · R̂) − σAB · σCD and

[W1π
S,T ]AB;CD(R) =

mπ

3

fπACfπBD

4π
Y0,2(mπR) (19)

Note that also here there is a 1/r3 singularity. In this particular form the result-
ing potential is model independent [33] 2. In general, this requires solving a cou-
pled channel problem [34,35] but if we are interested in the elastic channel with
TCM = mπ < ∆ ≡ M∆ − MN = 293MeV we may take into account the effect
of the closed channels as sub-threshold effects in perturbation theory. We neglect
the exponentially ∼ e−2Mqr suppressed quark exchange contribution. In obvious
operator-matrix notation and restricting to the two particle ground |0〉 = |NN〉
and excited |n〉 = |N∆〉, |∆N〉, |∆∆〉 in-going and out-going channels and resol-
vent G0,k(E) = (E−H0,k)−1 with H0,k = P2/(2µk) + Ek, we get for the T-matrix

(T)nm = (V)nm +
∑

k

(V)nkG0,k(V)k,m + O(V3) , (20)

with E0 = 2MN,E1,2 = MN + M∆ and E3 = 2M∆ the corresponding thresh-
olds. Thus, separating the elastic term k = 0 explicitly from the sum we get the
effective potential in the elastic scattering channel corresponding to higher pion
exchanges, wich, when iterated to second order yields the elastic scattering am-
plitude T00. Specifically, defining the momentum space potential Vnm(k ′ − k) ≡
2 The corresponding couplings are fπAB = |FπAB(imπ)| where the transition form fac-

tors are defined as FπAB(q2)χ
†
AT

aSiχB = 〈A|Gia(q)|B〉. In the SU(4) ⊗ SUc(Nc) quark

model [31] and in the chiral limit they fulfill fπ∆∆/fπNN = 1/5 and fπN∆/fπNN =

3[(Nc − 1)(Nc + 5)/2]
1
2 /(Nc + 2). The ∆ → Nπwidth in the Born approximation yields

f2πN∆/(4π) = 0.324.
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〈k ′, n|V |k,m〉 =
∫
d3RVnm(R)ei(k−k ′)·R we get

V̄00(k ′ − k, E) = V00(k ′ − k) +
∑

n6=0

∫
d3q

(2π)3

V0n(k ′ − q)Vn0(q− k)

E− q2/2µn − En

+ O(V3) (21)
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Fig. 1. Renormalized (eigen) phase shifts for the OPE and ∆-Born-Oppenheimer potentials

as a function of the CM np momentum p in the spin singlet 1S0 (one counterterm) and

triplet 3S1 −3 D1 (three counterterms) channels compared to averaged Nijmegen poten-

tials [17]. We take f2πNN/4π = 0.07388[17] and fπN∆/fπNN = 6
√
2/5.

which, expectedly, depends on the energy. Evaluating on-shell atE = E0+p2/2µ0,
assuming a large splitting p ≪

√
∆M∆ = 600MeV and neglecting the kinetic

energy piece in theN∆ cannel, we get the perturbative and local optical potential
in coordinate space

V̄1π+2π+...
NN;NN (R) = V1π

NN,NN(R) +
2|V1π

NN,N∆(R)|2

MN −M∆

+ O(V3) (22)

which is the Born-Oppenheimer approximation to second order which generates
more complicated spin-isospin structures than just OPE including a central force,
all of them ∼ e−2mπR and resembling TPE. Note that only the intermediate N∆
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state contributes. The above result implies an attractive and short distance sin-
gular potential since V1π

NN,N∆(R) ∼ g2
A/(f

2
πR

3) and hence the potential becomes
singular V̄NN,NN ∼ −g4

A/(∆f
4
πR

6). Actually, Eq. (22) was evaluated in the Skyrme
soliton model within the Heitler-London approximation, i.e. the product ansatz
in the coupled channel space [36,37] providing the long sought mid range attrac-
tion [12]. 3 We reproduce the same results in the quark model calculation. The
potential found using Feynman graph techniques [39] looks very similar with
identical short distance singular behaviour identifying hA/gA = fπN∆/2fπNN.
Note that we leave out background πN scattering which correspond to triangle
and box TPE diagrams at the quark level. The renormalization procedure as well
as the necessary counterterms in the general coupled channel singular potentials
has been explained in much detail in Ref. [32,40]. The results for the phase shifts
using Eq. (22) in the lowest partial waves are depicted in Fig. 1. In any case the de-
scription looks extremely similar (including deuteron properties) to the renormal-
ization [41] of more sophisticated field theoretical potentials [39]. Convergence is
achieved already at rc ∼ 0.5fm.

The multiplicative structures of Eq. (22) reflect spin-flavour excitations and
remind of the analogous Van der Waals forces in atomic systems. They hold liter-
ally even after inclusion of form factors with folded potentials (although ΛπNN,
ΛπN∆ and Λπ∆∆ are not necessarily identical) which remove the singularity. This
is not equivalent to regularize the effective potential as a whole through subtrac-
tions. We have checked that form factors after renormalization become marginal in
agreement with the OBE analysis [9].

7 Wigner SU(4) as a long distance symmetry

If the tensor force component of the qq potential, Eq. (7), is neglected one has in-
variance under the spin-isospin SU(4) group with the quarks in the fundamental
4-dimensional representation, q = (u ↑, u ↓, d ↑, d ↓). In the three quark sys-
tem we have the spin-flavour states 4 ⊗ 4 ⊗ 4 = 4A ⊕ 20S ⊕ 20M1

⊕ 20M2
. Due

to colour antisymmetry only the symmetric state survives which spin-isospin,
(S, T), decomposition is 20S = (1

2
, 1

2
)⊕ (3

2
, 3

2
) = N⊕∆ yieldingN−∆ degeneracy.

SinceM∆−MN is large at nuclear scales, one might still treat the Nucleon quartet
N = (p ↑, p ↓, n ↑, n ↓) as the fundamental rep. of the old Wigner-Hund SU(4)

symmetry which implies spin independence, in particular that V1S0
(r) = V3S1

(r)

at all distances suggesting that phases δ1S0
(p) = δ3S1

(p) in contradiction to data
(see e.g. Fig. 1). The amazing finding of Ref. [6] was that assuming identical po-
tentials V1S0

(r) = V3S1
(r) for r > rc → 0 one has

p cot δ1S0
(p) =

α1S0
A(p) + B(p)

α1S0
C(p) + D(p)

, p cot δ3S1
(p) =

α3S1
A(p) + B(p)

α3S1
C(p) + D(p)

, (23)

where the functions A(p), B(p), C(p) and D(p) are identical in both channels, but
the experimentally different scattering lengths α1S0

= −23.74fm and α3S1
=

3 Molecular methods used in the Skyrme model [36,37,12] are replaced by evaluating

model form factor yielding regularized Meson Exchange potentials [38] where the only

remnant of the model is in the meson-form factors.
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5.42fm yield quite different phase shifts with a fairly good agreement. Thus,
Wigner symmetry is broken by very short distance effects and hence corresponds
to a long distance symmetry (a symmetry broken only by counterterms). Moreover,
largeNc [23] suggests that Wigner symmetry holds only for even L, a fact verified
by phase shift sum rules [6]. In Refs. [7,8] we analyze further the relation to the
old Serber symmetry which follows from vanishing P-waves in S = 1 channels,
showing how old nuclear symmetries are unveiled by coarse graining the NN in-
teraction via the Vlowk framework [42] and with testable implications for Skyrme
forces in mean field calculations [43].

The chiral quark model is supposedly an approximate non-perturbative de-
scription, but perturbative gluons may be introduced by standard minimal cou-
pling [13], i∂/ → i∂/ + g/Aa · λc

a/2 with λc
a the N2

c − 1 Gell-Mann colour matrices.
A source of SU(4) breaking is the contact one gluon exchange which yields spin-
colour chromo-magnetic interactions (Sij is the tensor operator),

VOGE =
1

4
αs

∑

i<j

(λc
i · λc

j )

{
1

rij
−

π

4mimj

[
1+

2

3
σi · σj

]
δ(3)(rij) −

3

4mimjrij
Sij

}

(24)

breaking the ∆ −N degeneracy. This short distance terms break also the 1S0 and
3S1 degeneracy of the NN system providing an understanding of the long dis-
tance character of Wigner symmetry. Taking the Wigner symmetric zero energy
state and perturbing around it, the previous argument suggests that 1/α3S1

−

1/α1S0
= O(M∆ −MN) with a computable coefficient.

8 Conclusions

Chiral Quark and Soliton models while quite different in appearance provide
some universal behaviour regardingNN interactions. If the asymptotic potentials
coincide, the main differences in describing the scattering data are due to a few
low energy constants which in some cases are subjected to extreme fine tuning of
the model parameters. The success of the model at finite energy is mainly reduced
to reproducing these low energy parameters.
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506078.

References

1. R. Machleidt, K. Holinde and C. Elster, Phys. Rept. 149 (1987) 1.



16 E. Ruiz Arriola and A. Calle Cordón

2. M.M. Nagels, T.A. Rijken and J.J. de Swart, Phys. Rev. D17 (1978) 768.

3. M. Pavon Valderrama and E. Ruiz Arriola, Phys. Rev. C72 (2005) 054002.

4. E. Ruiz Arriola, A. Calle Cordon and M. Pavon Valderrama, (2007), 0710.2770.

5. A. Calle Cordon and E. Ruiz Arriola, AIP Conf. Proc. 1030 (2008) 334.

6. A. Calle Cordon and E. Ruiz Arriola, Phys. Rev. C78 (2008) 054002.

7. A. Calle Cordon and E. Ruiz Arriola, Phys. Rev. C80 (2009) 014002.

8. E. Ruiz Arriola and A. Calle Cordon, (2009), 0904.4132.

9. A. Calle Cordon and E. Ruiz Arriola, (2009), 0905.4933.

10. M. Oka and K. Yazaki, Int. Rev. Nucl. Phys. 1 (1984) 489.

11. R.F. Alvarez-Estrada, F. Fernandez, J. L. Sanchez-Gomez and V. Vento, Lect. Notes

Phys. 259 (1986) 1.

12. T.S. Walhout and J. Wambach, Int. J. Mod. Phys. E1 (1992) 665.

13. A. Valcarce, H. Garzilazo, F. Fernandez and P. Gonzalez, Rept. Prog. Phys. 68 (2005)

965.

14. N. Ishii, S. Aoki and T. Hatsuda, Phys. Rev. Lett. 99 (2007) 022001.

15. S. Aoki, T. Hatsuda and N. Ishii, (2009), 0909.5585.

16. H.B. O’Connell et al., Prog. Part. Nucl. Phys. 39 (1997) 201.

17. V.G.J. Stoks et al., Phys. Rev. C49 (1994) 2950.

18. M.B. Gavela et al., Phys. Lett. B82 (1979) 431.

19. O.W. Greenberg and H.J. Lipkin, Nucl. Phys. A370 (1981) 349.

20. C.V. Christov et al., Prog. Part. Nucl. Phys. 37 (1996) 91.

21. H. Weigel, Lect. Notes Phys. 743 (2008) 1.

22. E. Ruiz Arriola, W. Broniowski and B. Golli, Phys. Rev. D76 (2007) 014008.

23. D.B. Kaplan and A.V. Manohar, Phys. Rev. C56 (1997) 76.

24. M.C. Birse and M.K. Banerjee, Phys. Lett. B136 (1984) 284.

25. A. Manohar and H. Georgi, Nucl. Phys. B234 (1984) 189.

26. L.Y. Glozman and D.O. Riska, Phys. Rept. 268 (1996) 263.

27. J.L. Goity, Phys. Atom. Nucl. 68 (2005) 624.

28. D. Bartz and F. Stancu, Phys. Rev. C63 (2001) 034001.

29. D. R. Entem, E. Ruiz Arriola, M. Pavon Valderrama and R. Machleidt, Phys. Rev. C77

(2008) 044006.

30. M.T. Fernandez-Carames, P. Gonzalez and A. Valcarce, Phys. Rev. C77 (2008) 054003.

31. G. Karl and J.E. Paton, Phys. Rev. D30 (1984) 238.

32. M. Pavon Valderrama and E. Ruiz Arriola, Phys. Rev. C74 (2006) 054001.

33. A.M. Green, Rept. Prog. Phys. 39 (1976) 1109.

34. G.H. Niephaus, M. Gari and B. Sommer, Phys. Rev. C20 (1979) 1096.

35. R.B. Wiringa, R.A. Smith and T.L. Ainsworth, Phys. Rev. C29 (1984) 1207.

36. N.R. Walet, R.D. Amado and A. Hosaka, Phys. Rev. Lett. 68 (1992) 3849.

37. N.R. Walet and R.D. Amado, Phys. Rev. C47 (1993) 498.

38. G. Holzwarth and R. Machleidt, Phys. Rev. C55 (1997) 1088.

39. N. Kaiser, S. Gerstendorfer and W. Weise, Nucl. Phys. A637 (1998) 395.

40. M. Pavon Valderrama and E. Ruiz Arriola, Annals Phys. 323 (2008) 1037.

41. M. Pavon Valderrama and E. Ruiz Arriola, Phys. Rev. C79 (2009) 044001.

42. S. K. Bogner, T. T. S. Kuo and A. Schwenk, Phys. Rept. 386 (2003) 1

43. M. Zalewski, J. Dobaczewski, W. Satula and T. R. Werner, Phys. Rev. C77 (2008) 024316



BLED WORKSHOPS

IN PHYSICS

VOL. 10, NO. 1
p. 17

Proceedings of the Mini-Workshop
Problems in Multi-Quark States

Bled, Slovenia, June 29 - July 6, 2009

Electro-magnetic meson form-factor from a relativistic

coupled-channels approach⋆

E. P. Biernata, W. Schweigerb, K. Fuchsbergerb, and W. H. Klinkc

aInstitut für Physik, Universität Graz, A-8010 Graz, Austria
bBE-OP Division, CERN, CH-1211 Geneve 23, Switzerland
cDepartment of Physics and Astronomy, University of Iowa, Iowa City, Iowa, USA

We calculate the electromagnetic form factor of a confined quark-antiquark pair
within the framework of relativistic point-form quantum mechanics. The idea is
to treat elastic electromagnetic scattering of an electron by ameson as a relativistic
two-channels problem for a Bakamjian-Thomas type mass operator [1] such that
the dynamics of the exchanged photon is taken explicitly into account.

On the hadronic level the structure of the meson is encoded in a phenomeno-
logical form factor which is not known a priori. Similarly, on the constituents
level we can consider electromagnetic scattering of an electron by a confined
quark-antiquark pair as a two-channels problem. The quark and the antiquark
are assumed to interact via a spontaneous confining potential. Elimination of the
channel containing the photon gives in both cases an eigenvalue equation for the
eM and eqq̄ channels on the hadronic and constituent levels, respectively, which
contains the one-photon-exchange optical potential. In order to work within the
Bakamjian-Thomas framework one has to resort to the approximation that the
total four-velocity of the system is conserved at electromagnetic vertices [2]. By
comparison of matrix elements of the optical potential on the hadronic and the
constituent levels the electromagnetic meson form factor can be read off [3,4].

The form factor obtained in this way depends on all Lorentz invariants of the
electron-meson system, i.e. on the momentum-transfer and on the total invariant
mass of the electron-meson system. The dependence on the invariant mass is re-
lated to the violation of cluster separability. If, however, the invariant mass is cho-
sen large enough this dependence becomes negligible. In the limit of an infinitely
large invariant mass the optical potential separates into an electron and a meson
current which are connected via the usual photon propagator. The expression for
the form factor becomes then [5]

F
(
Q2
)

=

∫
d3k̃ ′

q

√
mqq̄

m ′
qq̄

S Ψ∗
(
k̃ ′

q

)
Ψ
(
k̃q

)
. (1)

Here Q2 = q2 is the momentum transfer squared with q = k ′
q − kq = k ′

M − kM

and m2
qq̄ = (Eq + Eq̄)2 − k2

M is the invariant mass of the quark-antiquark pair.

⋆ Talk delivered by E. P. Biernat
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Quantities without a tilde refer to the electron-meson center-of-mass and quanti-
ties with a tilde refer to the meson rest system. S is a spin-rotation factor which
takes into account the substantial effect of the quark spin on the form factor. By
an appropriate change of variables the integral for the form factor Eq. (1) takes
the same form as the integral for the pion form factor from front form calculations
[6,7]. This remarkable result means that relativity is treated in an equivalent way
and the physical ingredients are the same in both approaches.

For a simple two-parameter harmonic-oscillator wave function with the pa-
rameterization taken from [6,7] our result for the pion electromagnetic form factor
provides a reasonable fit to the data as shown in Fig. 1.

The generalization of this multichannel approach to electroweak form factors
for an arbitrary bound few-body system is quite obvious. By an appropriate ex-
tension of the Hilbert space this approach is also able to accommodate exchange-
current effects.
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Fig. 1. Q2-dependence of the pion form factor with (solid) and without (dashed) spin-

rotation factor S . Values for the quark mass mq and the oscillator parameter a are taken

from [6,7] and data are taken from [8–13].
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Abstract. Results of the Spectral Quark Model for the gravitational, electromagnetic, and

transition form factors of the pion are discussed. In this model both the parton distribution

amplitude and the parton distribution function are flat, in agreement with the transverse

lattice calculations at low renormalization scales. The model predictions for the gravita-

tional form factor are compared to the lattice data, with good agreement. We also find a

remarkable relation between the three form factors, holding within our model, which be-

sides reproducing the anomaly, provides a relation between radii which is reasonably well

fulfilled. Comparison with the CELLO, CLEO, and BaBar data for the transition form fac-

tor is also considered. While asymptotically the model goes above the perturbative QCD

limit, in qualitative agreement with the BaBar data, it fails to accurately reproduce the data

at intermediate momenta.

The low-energy behavior of the pion is determined by the spontaneous break-
down of the chiral symmetry. This fact allows for modeling the soft matrix ele-
ments in a genuinely dynamical way [1–25]. This talk is based on Refs. [26,27]
and employs the Spectral Quark Model (SQM) [28] in the analysis of several
high-energy processes and their partonic interpretation. This model satisfies a

priori consistency conditions [28] between open quark lines and closed quark
lines, which becomes crucial in the analysis of high-energy processes and enables
an unambiguous identification of parton distribution functions and amplitudes.
This is not necessarily the feature of other versions of chiral quark models, such
as the Nambu–Jona–Lasinio (NJL) model, as was spelled out already in Ref. [1].
For these reasons SQM is particularly well suited for the presented study.

The general theoretical framework is set by the Generalized Parton Distribu-
tions (GPDs) [29–37]. These objects arise formally, e.g., from deeply virtual Comp-
ton scattering (DVCS) on a hadronic target, effectively opening up the quark
lines joining the currents. In local quark models usually the one-loop divergences
appear and a regularization is needed. One may either compute the regularized

DVCS and take the high-energy limit, or compute directly the regularized GPD.

⋆ Talk delivered by W. Broniowski
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Besides the requirements of gauge invariance and energy-momentum conserva-
tion, this apparently innocuous issue sets a non-trivial consistency condition on
admissible regularizations which SQM fulfills satisfactorily.

For the case of the pion, the GPD for the non-singlet channel is defined as

ǫ3ab Hq,NS(x, ζ, t)=

∫
dz−

4π
eixp+z−〈πb(p ′)|ψ̄(0)γ+ψ(z) τ3|πa(p)〉

∣∣
z+=0,z⊥=0

,

with similar expressions for the singlet quarks and gluons. We omit the gauge
link operators [0, z], absent in the light-cone gauge. The kinematics is set by p ′ =

p + q, p2 = p ′2 = m2
π, q

2 = −2p · q = t. The variable ζ = q+/p+ denotes
the momentum fraction transferred along the light cone. Formal properties of
GPDs can be elegantly written in the symmetric notation involving the variables

ξ = ζ
2−ζ

, X =
x−ζ/2

1−ζ/2
:

HI=0(X, ξ, t) = −HI=0(−X, ξ, t), HI=1(X, ξ, t) = HI=1(−X, ξ, t).

For X ≥ 0 one has HI=0,1(X, 0, 0) = qS,NS(X), where q(x)i are the standard
parton distribution functions (PDFs). In QCD all these objects are subjected to
radiative corrections, as they carry anomalous dimensions, and become scale-
dependent, i.e. they undergo a suitable QCD evolution. This raises an important
question: what is the scale Q0 of the quark model when matching to QCD is
performed? The momentum-fraction sum rule fixes this scale to be admittedly
very low, Q0 = 313+20

−10 MeV, for ΛQCD = 226MeV. Remarkably, but also perhaps
unexpectedly, this choice, followed by the leading-order evolution, provides a
rather impressive agreement with the high energy data, as well as the Euclidean
and transverse-lattice simulations (see Ref. [26] for a detailed summary).

The following sum rules hold for the moments of the GPDs:

∫1

−1

dXHI=1(X, ξ, t) = 2FV (t),

∫1

−1

dXXHI=0(X, ξ, t) = 2θ2(t) − 2ξ2θ1(t),

where FV (t) denotes the vector form factor, while θ1(t) and θ2(t) stand for the
gravitational form factors [38]. Other important features are the polynomiality con-
ditions [29], the positivity bounds [39,40], and a low-energy theorem [41].We stress
that all these properties required on formal grounds are satisfied in our quark-
model calculation [26]. Unlike GPDs, the form factors of conserved currents do
not undergo the QCD evolution.

In the chiral limit we have the following identity in SQM relating the gravi-
tational and electromagnetic form factor,

d

dt
[t θi(t)] = FV (t) , (i = 1, 2) , (1)

fromwhich the identity between the two gravitational form factors θ1(t) = θ2(t) ≡
Θ(t) follows.

Since there is no data for the full kinematic range for the GPDs of the pion,
we present here the results for the generalized form factors only, in particular for
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Fig. 1. Form factors of the pion vs. lattice data. Left: the electromagnetic form factor. Right:

the quark part of the gravitational form factor, θ1(t)/2, computed in the Spectral Quark

Model and compared to the lattice data from Ref. [42]. The band around the model curves

indicates the uncertainty in the model parameters.

the gravitational ones. It is well known that the data for the electromagnetic form
factor are well parameterized with the monopole form, which by construction is
reproduced in SQM, where the vector meson dominance is built in. The gravita-
tional form factors are available from the lattice QCD simulations [42,43]. In Fig. 1
the electromagnetic form factor and the quark part of the gravitational form fac-
tor are compared to the lattice data. We note a very good agreement. In SQM one
has the relation

m2
ρ = 24π2f2/Nc, (2)

where f is the pion weak decay constant in the chiral limit. This relation works
within a few percent phenomenologically. The expressions for the form factors in
SQM are very simple,

FV (t) =
m2

ρ

m2
ρ − t

, θ1,2(t)/θ1,2(0) =
m2

ρ

t
log

(
m2

ρ

m2
ρ − t

)
. (3)

We note the longer tail of the gravitational form factor in the momentum space,
meaning a more compact distribution of energy-momentum in the coordinate
space. Explicitly, we find a quark-model formula

2〈r2〉θ = 〈r2〉V . (4)

The two previous processes regard two pions and either one photon or one
graviton in the corresponding three-point vertex function. An apparently dis-
parate object is given by the pion-photon transition distribution amplitude (TDA)
[44,45]
∫
dz−

2π
eixp+z−〈γ(p ′, ε)|ψ̄(0)γµ τ

a

2
ψ(z)|πb(p)〉

∣∣∣z+=0

zT =0

=
ie

p+f
ǫµναβενpαqβV

ab(x, ζ, t),

(5)

Here the photon carries momentum p ′ = p+q and has polarization ε. As before,
the presence of the gauge link operators is understood in Eq. (5) to guarantee the
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gauge invariance of the bilocal operators. We consider here the isovector quark
bilinears. Since the photon couples to the quark through a combination of the
isoscalar and isovector couplings, i.e. the quark charge is Q = 1/(2Nc) + τ3/2,
one has the isospin decomposition

Vab(x, ζ, t) = δabVI=0(x, ζ, t) + iǫabcVI=1(x, ζ, t). (6)

The isoscalar form factor is related to the pion-photon transition form factor by the
sum rule

Fπγγ∗(t) =
2

f

∫
dxVI=0(x, ζ, t), (7)

where the factor of 2 comes fom the fact, that either of the photons can be isoscalar.
The form factor in SQM was obtained directly in Ref. [28] and later on from the
integration of the pion-photon isoscalar transition distribution amplitude (TDA)
yielding [21] a ζ-independent function (as required by polynomiality),

Fπγγ(t, A) =
2f

Nc

[
2m2

ρ

m4
ρ − tm2

ρ + (1− A2)t2
+
1

At
log

(
2m2

ρ − (1 −A)t

2m2
ρ − (1 +A)t

)]
, (8)

where A = (q2
1 − q2

2)/(q2
1 + q2

2) is the photon asymmetry parameter. For A = 1

we have

Fπγγ∗(t) =
1

12π2f

[
2m2

ρ

m2
ρ − t

+
m2

ρ

t
log

(
m2

ρ

m2
ρ − t

)]
, (9)

where relation (2) has been used. We read out from this formula the correspond-

ing rms radius to be 〈r2〉1/2
πγγ∗ =

√
5/mρ = 0.57 fm for mρ = 770MeV. Equiva-

lently, one may use the slope parameter bπ = d
dt
Fπ0γγ∗(t)/Fπ0γγ∗(t)

∣∣∣
t=0

. SQM

gives bπ = 5/(6m2
ρ) = 1.4GeV−2, in a very reasonable agreement with the exper-

imental value bπ = (1.79 ± 0.14 ± 14)GeV−2, originally reported by CELLO [46].
A comparison of Eq. (8,9) to the CLEO [47] and BaBar [48] data is presented
in the right panel of Fig. 2. The solid line corresponds to the model calculation
with A = 1, while the dashed line is for A = 0.95. We note that the experiment
does not produce strictly real photons, thus the observed sensitivity to the value
of A is a relevant effect. We note that while at |A| = 1 the model asymptotics
for the transition form factor is (2f/Nc) log(−t/m2

ρ)/(−t), at |A| 6= 1 it becomes
(2f/Nc) log[(1+A)/(1−A)]/(−At). The behavior is clearly seen in Fig. 2. As we
notice, in the intermediate range of Q SQM overshoots the data.

The recent BaBar measurements [48] have predated the long-standing per-
turbative QCD prediction [49,50] that −tFπγγ∗(t) goes asymptotically to a con-
stant value of 2f. Some authors [51,52] have pointed out that the key to this
unexpected behavior hints for a flat pion PDA and the end-point singularities
and switched-off QCD evolution. The flatness of the PDA at low renormalization
scales has been originally found in the Nambu–Jona-Lasinio model [10] and in
SQM [28].
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Fig. 2. Left: chiral quark model prediction for the pion DA evolved to the scale of 0.5GeV

(band) and compared to the transverse lattice data [54]. Right: the pion trantition form

factor compared to the CLEO [47] and BaBar [48] data. Solid (dashed) lines are the SQM

prediction at A = 1 (A = 0.95). The dotted line is the perturbative QCD prediction.

We note in passing that a constant PDA is also found in the Regge model
[53].

Remarkably, an almost flat PDA is also found non-perturbatively on the
transverse lattice [54] (see the left panel of Fig. 2). Actually, the non-vanishing
of the PDA at the end points (at the quark-model scale) is not only a consequence
of local quark models. Nonlocal models correctly implementing the chiral Ward-
Takahashi identity also get such a feature [18]. A trend to flatness is observed in
contrast to calculations violating the chiral symmetry constraints. However, the
corresponding transition form factor in non-local models does not show a steep
rise [55] as suggested by the BaBar data. The calculation in Ref. [56,57], which
reproduces the CLEO and BaBar data, requires, unfortunately, a much too small
constituent quark mass, which is incompatible with other sectors of the pion phe-
nomenology. The apparent inconsistency of the BaBar data with the QCD convo-
lution scheme is also addressed in Ref. [58,59].

Let us remind the reader that according to the conventional perturbative
QCD approach, the radiative corrections are computed order by order in the
twist expansion. Most often this is in practice possible only for the leading-twist
contribution. Actually, this is the only way to identify the PDA within a non-
perturbative scenario or quark model calculations. In fact, the chiral quark mod-
els require a low scale not only by fixing the second Gegenbauer coefficient a2 of
the PDA. As already mentioned, the same conclusion is reached independently
by fixing the momentum fraction of the valence quarks to its natural 100% value
at the quark-model scale, where the quarks constitute the only degrees of free-
dom.

On amoremethodological level, it is worth mentioning that the conventional
NJL model does not share some of the virtues of SQM, particularly the interplay
between chiral anomaly and factorization, a subtle point which was discussed at
length in Ref. [11] for the NJL case. The πγγ triangle graph is linearly divergent,
and thus a regularization must generally be introduced. If one insists on preserv-
ing the vector gauge invariance, the regulator must preserve that symmetry, but
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then the axial current is not conserved, generating the standard chiral anomaly.
The obvious question arises whether the limit Q2 → ∞ must be taken before or
after removing the cut-off. If one takes the sequence Q2 > Λ2, a constant PDA
is obtained in agreement with our low energy calculation. For the opposite se-
quence factorization does not hold in NJL. The good feature of SQM is that the
spectral regularization does not make any difference between the two ways. This
illustrates in a particular case the above-mentioned general consistency require-
ment between regularized open and closed quark lines (see e.g. [60]).

Finally, by combining Eq. (3) and Eq. (9) we get the remarkable relation
among the electromagnetic, gravitational and transition form factors, holding in
SQM:

Fπγγ∗(t) =
1

12π2f
[2FV (t) +Θ(t)] , (10)

whence

3〈r2〉πγγ∗ = 2〈r2〉V + 〈r2〉Θ . (11)

The previous relation is not fulfilled in the conventional NJL model. Of course, it
would be interesting to test the relation Eq. (10) against the future data or lattice
QCD.

In conclusion, we note that while the description of the pion transition form
factor in a genuinely dynamical way remains a challenge, the Spectral Quark
Model offers many attractive features which are required from theoretical con-
sistency. It satisfies the chiral anomaly and the factorization property. The vector
and gravitational form factors describe experimental and/or lattice-QCD data
satisfactorily. A remarkable model relation among the gravitational, electromag-
netic and transition form factors has also been deduced. Finally, for the latter, we
have also displayed a hitherto unnoticed sensitivity to the photon momentum
asymmetry parameter Awhich might be relevant for other studies.
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Recently, first results have become available from lattice quantum chromodynam-
ics (QCD) for two of the nucleon excitations, namely, the negative-parityN∗(1535)
and N∗(1650) resonances [1]. The axial charge of the nucleon ground state had
been studied before by different lattice-QCDgroups in quenched calculations and
with dynamical quarks [2–7]. In some of these works one has used chiral extrap-
olations (for a recent discussion of the associated problems see Ref. [8]), and the
bulk of results obtained for gA of the nucleon varies between about 1.10 ∼ 1.40.

Lately, the issue of axial constants of N∗ resonances has become debated a
lot due to the suggestion of chiral-symmetry restoration in the higher hadron
spectra [9,10]. According to this scenario there should appear chiral doublets
of positive- and negative-parity states and as a further consequence their axial
charges should became small or almost vanishing. The first parity partners above
the nucleon ground state are supposed to be the N∗(1440)−N∗(1535), the next
ones the N∗(1710)−N∗(1650). The axial charges of the negative-parity partners
in these pairs have been calculated in lattice QCD to be ∼0.00 and ∼0.55, respec-
tively [1]; for the positive-parity states no results are yet available.

We have performed a study of the axial charges of N∗ resonances in the
framework of the relativistic constituent quark model (RCQM). Specifically we
have extended a previous investigation of the nucleon axial form factors [11,12]

to the first JP = 1
2

±
nucleon excitations. Our approach relies on solving the eigen-

value problem of the Poincaré-invariant mass operator in the framework of rela-
tivistic quantummechanics. The axial current operator is chosen according to the
spectator model (SM) [13]. For the RCQM we employed in the first instance the
extended Goldstone-boson exchange (EGBE) RCQM [14], as it produces the most
elaborate nucleon and N∗ wave functions.

In Table 1 we present a selection of results for the axial charges gA of the
nucleon and the N∗(1440),N∗(1710),N∗(1535), as well as N∗(1650) resonances in
case of the EGBE RCQM. It is immediately evident that the EGBE RCQM pro-
duces reasonable values for the axial charges in all instances without any further
fittings. In the cases where a comparison is possible it produces the same pattern
as lattice QCD. The gA of the nucleon and ofN∗(1440) are practically of the same
size, with the theoretical result for the nucleon being quite close to the experi-

⋆ Talk delivered by Ki-Seok Choi
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mental value of gA=1.2695±0.0029 [15]. The nonrelativistic calculations cannot
produce this value, neither in the simplistic SU(6)×O(3) quark model nor in the
nonrelativistic limit of the RCQM. For the negative-parityN∗(1535) resonance the
gA is predicted to be compatible with 0, while for the negative-parity N∗(1650)
resonance it is 0.51; both cases agree with the lattice-QCD results of Ref. [1]. Acci-
dentally, the gA value of the nonrelativistic SU(6) ×O(3) quark model is similar
in the N∗(1650) case but the nonrelativistic limit of the EGBE RCQM shows devi-
ations for both of the 1

2

−
resonances. At this time nothing is known from lattice

QCD for the 1
2

+
resonances. For the latter, it would also be most interesting to

check our results against lattice QCD, and we look forward to corresponding cal-
culations.

Table 1. Predictions for axial charges gA of the EGBE in comparison to available lattice

QCD results [1-7], the values calculated by Glozman and Nefediev [9] within the SU(6) ×
O(3) nonrelativistic quark model, and the nonrelativistic limit from the EGBE RCQM.

State JP EGBE Lattice QCD SU(6) ×O(3) QM EGBE nonrel

N(939) 1
2

+
1.15 1.10∼1.40 1.66 1.65

N(1440) 1
2

+
1.16 – 1.66 1.61

N(1535) 1
2

−
0.02 ∼0.00 -0.11 -0.20

N(1710) 1
2

+
0.35 – 0.33 0.42

N(1650) 1
2

−
0.51 ∼0.55 0.55 0.64

It is particularly satisfying to find the RCQMpredictions for the axial charges
of the N∗(1535) and N∗(1650) resonances in agreement with the lattice-QCD re-
sults. We may thus be confident that at least for zero momentum-transfer pro-
cesses the mass eigenstates of these nucleon excitations as produced especially
with EGBE RCQM are quite reasonable. The latter is supposed to model the SBχS
property of low-energy QCD. This type of hyperfine interaction, which also intro-
duces an explicit flavor dependence, has been remarkably successful in describ-
ing a number of phenomena in low-energy baryon physics. Most prominently, it
produces the correct level orderings of the positive- and negative-parity N∗ res-
onances and simultaneously the ones in the other hyperon spectra, notably the
Λ spectrum. The RCQM with GBE dynamics does not have any mechanism for
chiral-symmetry restoration built in. As such it cannot be expected to produce
parity doublets due to this reason. Nevertheless the EGBE RCQM describes the
N∗ resonance masses with good accuracy (mostly within the experimental error
bars or at most exceeding them by 4%).

Acknowledgments K-S. C. is grateful to the organizers of the Mini-Workshop
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Abstract. Three-quark nucleon interpolating fields in QCD have well-defined,UA(1) and

SUL(2) × SUR(2) chiral transformation properties: mixing of the [(1, 1
2
) ⊕ ( 1

2
, 1)] chiral

multiplet with one (of four available) [( 1
2
, 0) ⊕ (0, 1

2
)], or [(0, 1

2
) ⊕ ( 1

2
, 0)] fields can be

used to fit the isovector axial coupling g
(1)

A and thus predict the isoscalar axial coupling

g
(0)

A of the nucleon, in reasonable agreement with experiment. We also use a chiral meson-

baryon interaction to calculate themasses and one-pion-interaction terms of J = 1
2
baryons

belonging to the [(0, 1
2
) ⊕ ( 1

2
, 0)] and [(1, 1

2
) ⊕ ( 1

2
, 1)] chiral multiplets and fit two of the

diagonalized masses to the lowest-lying nucleon resonances thus predicting the third J =
1
2
resonance at 2030 MeV, not far from the (one-star PDG) state ∆(2150).

1 Introduction

Almost 40 years ago Weinberg [1] considered mixing of chiral multiplets in the
broken symmetry phase. In general such representation mixing may be compli-
cated, but if only a few states are mixed, it may have predictive power. For in-
stance, Weinberg used the mixing of [(1

2
, 0)⊕ (0, 1

2
)] and [(1, 1

2
)⊕ (1

2
, 1)] to explain

the nucleon’s isovector axial coupling constant g
(1)

A = 1.23, its value at the time
(the present value being 1.267). Weinberg’s idea predated QCD and did not even
invoke the existence of quarks, but it may still be viable in QCD. Indeed, this idea
was revived in the early 1990’s, since when it has been known by the name of
mended symmetry [2].

The nucleon also has an isoscalar axial coupling g
(0)

A , which has been esti-

mated from spin-polarized lepton-nucleon DIS data as g
(0)

A = 0.28 ± 0.16 [3], or
the more recent value 0.33 ± 0.03 ± 0.05 [4]. The question is if the same chiral
mixing angle can also explain the anomalously low value of this coupling? The
answer manifestly depends on the UA(1) chiral transformation properties of the
two admixed nucleon fields.

⋆ Talk delivered by V. Dmitrašinović
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In this paper we address this question using the UA(1) chiral transformation
properties of nucleon fields [6,7] as derived from the three-quark nucleon inter-
polating fields in QCD. If the answer to our question turns out in the positive,
we may speak about Weinberg’s idea being viable in QCD. To test the present
idea, besides the phenomenological study, we also investigate an extended linear
sigma model containing baryon resonances, where we evaluate the axial cou-
plings using baryon masses as input.

2 Three-quark nucleon interpolating fields

We start by summarizing the transformation properties of various quark trilinear
forms with quantum numbers of the nucleon as shown in Refs. [6,7]. It turns
out that every nucleon, i.e., spin- and isospin 1/2 field, besides having same non-
Abelian transformation properties, comes in two varieties: one with “mirror” and
another with “triple-naive” Abelian chiral properties.

In Table 1 we show the Abelian and non-Abelian chiral properties of the
nucleon interpolating fields in QCD, Ref. [6,7]. Here we shall use those results as
the theoretical input into our calculations. This constitutes aminimal assumption,
as one has no other guide to the chiral representations of the nucleon. In Refs. [5–
7] the local (non-derivative) spin 1

2
baryon operators

N1 = ǫabc(q̃aqb)qc, (1)

N2 = ǫabc(q̃aγ
5qb)γ5qc, (2)

were classified according to their Lorentz, chiral SUL(2)×SUR(2) (so-called “nai-
ve” chiral multiplet, whose axial charge is positive) and UA(1) group represen-
tations. Here we have introduced the “tilde-transposed” quark field q̃ as q̃ =

qTCγ5(iτ2), where C = iγ2γ0 is the Dirac field charge conjugation operator, τ2 is
the second isospin Pauli matrix. Once one allows for the presence of one deriva-
tive, such as the so-called “mirror” (0, 1

2
)⊕ (1

2
, 0), whose axial charge is negative,

Ref.[8],

N′
1 = ǫabc(q̃aqb)i∂µγ

µqc, (3)

N′
2 = ǫabc(q̃aγ

5qb)i∂µγ
µγ5qc. (4)

and the (1, 1
2
) ⊕ (1

2
, 1) nucleon chiral representation

N′
3 = i∂µ(q̃γνq)Γ

µν
3/2
γ5q, (5)

N′
4 = i∂µ(q̃γνγ5τ

iq)Γ
µν

3/2
τiq, (6)

also become Pauli allowed, see Table 1. Here Γµν

3/2
= gµν − 1

4
γµγν. We found

that indeed, as Gell-Mann and Levy [9] had postulated, the lowest-twist (non-
derivative) J= 1

2
nucleon field(s) form a (1

2
, 0) chiral multiplet, albeit there are

two such independent fields. There is only one set of J= 1
2
Pauli-allowed sub-

leading-twist (one-derivative) interpolating fields that form a (1, 1
2
) chiral multi-

plet, however.
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Table 1. The Abelian and the non-Abelian axial charges (+ sign indicates “naive”, −

sign “mirror” transformation properties) and the non-Abelian chiral mutiplets of JP =
1
2
, Lorentz representation ( 1

2
, 0) nucleon fields. The field denoted by 0 belongs to the

(1, 1
2
) ⊕ ( 1

2
, 1) chiral multiplet and is the basic nucleon field that is mixed with various

( 1
2
, 0) nucleon fields in Eq. (7).

case field g
(0)

A g
(1)

A SUL(2) × SUR(2)

I N1 −N2 −1 +1 ( 1
2
, 0) ⊕ (0, 1

2
)

II N1 +N2 +3 +1 ( 1
2
, 0) ⊕ (0, 1

2
)

III N
′

1 −N
′

2 +1 −1 (0, 1
2
) ⊕ ( 1

2
, 0)

IV N
′

1 +N
′

2 −3 −1 (0, 1
2
) ⊕ ( 1

2
, 0)

0 N
′

3 + 1
3
N

′

4 +1 + 5
3

(1, 1
2
) ⊕ ( 1

2
, 1)

3 Mixing of two chiral representations

Next consider the mixing of one of the fundamental chiral representations, as
shown in Table 1 and the “higher” representation (1, 1

2
) for the nucleon,

g
(1)

A mix. = g
(1)

A, α cos2 θ + g
(1)

A (1, 1
2

)
sin2 θ,

= g
(1)

A, α cos2 θ +
5

3
sin2 θ = 1.267. (7)

Here the suffixα corresponds to one of I-IV and the corresponding values of g
(1)

A, α

are given in Table 1. We have also used the fact that g
(1)

A (1, 1
2

)
= 5

3
, see Ref. [1,7].

This provides a possible solution to the nucleon’s axial coupling problem in
QCD. Three-quark nucleon interpolating fields in QCD have well-defined two-
fold UA(1) chiral transformation properties, see Table 1, that can be used to (nai-

vely) predict the isoscalar axial coupling g
(0)

A mix. as follows

g
(0)

A mix. = g
(0)

A, α cos2 θ+ g
(0)

A (1, 1
2

)
sin2 θ, (8)

together with the mixing angle θ extracted from Eq. (7). Note, however, that due

to the different (bare) non-Abelian g
(1)

A andAbelian g
(0)

A axial couplings, see Table
1, the mixing formulae Eq. (8) give substantially different predictions from one
case to another, see Table 2. We can see in Table 2 that the two candidates are
cases I and IV, with g

(0)

A = −0.2 and g
(0)

A = 0.4, respectively, the latter being

within 1-σ of the measured value g
(0)

A = 0.33 ± 0.08. The nucleon field in case I
is the well-known “Ioffe current”, which reproduces the nucleon’s properties in
QCD lattice and sum rules calculations. The nucleon field in case IV is a “mirror”
opposite of the orthogonal complement to the Ioffe current, an interpolating field
that, to our knowledge, has not been used in QCD thus far.

3.1 A SimpleModel

The next step is to try and reproduce this phenomenological mixing starting from
a model interaction, rather than per fiat. As the first step in that direction we
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Table 2. The values of the baryon isoscalar axial coupling constant predicted from the

naive mixing and g
(1)

A expt. = 1.267; compare with g
(0)

A expt. = 0.33 ± 0.03 ± 0.05.

case (g
(1)

A ,g
(0)

A ) g
(1)

A mix. θ g
(0)

A mix. g
(0)

A mix.

I (+1,−1) 1
3
(4 − cos 2θ) ±39.3o − cos 2θ -0.20

II (+1,+3) 1
3
(4 − cos 2θ) ±39.3o 2 + cos 2θ 2.20

III (−1,+1) 1
3
(1 − 4 cos 2θ) ±67.2o 1 1.00

IV (−1,−3) 1
3
(1 − 4 cos 2θ) ±67.2o −(1 + 2 cos 2θ) 0.40

must look for a dynamical source of mixing. One such mechanism is the sim-
plest chirally symmetric non-derivative one-(σ, π)-meson interaction Lagrangian,
which induces baryon masses via its σ-meson coupling. We shall show that only
the mirror fields couple to the (1, 1

2
) baryon chiral multiplet by non-derivative

terms; the naive ones require one (or odd number of) derivative. This is interest-
ing, as we have already pointed out that the mixing case IV seems a preferable
one from the phenomenological consideration of axial couplings.

We use the projection method of Ref. [10] to construct the chirally invariant
diagonal and off-diagonalmeson-baryon-baryon interactions involving the “mir-
ror” baryon B1 ∈ (0, 1

2
), the (B2, ∆) ∈ (1, 1

2
) baryon and one (σ, π) ∈ (1

2
, 1

2
) meson

chiral multiplets. Here all baryons have spin 1/2, while the isospin of B1 andB2 is
1/2 and that of ∆ is 3/2. The ∆ field is then represented by an isovector-isospinor
field ∆i, (i = 1, 2, 3). We found that for non-derivative mixing interaction the
following chirally invariant combination

L3 = −g3

[
B̄1(σ+

i

3
γ5τ · π)B2 + 4B̄1iγ5π

i∆i + h.c.

]
, (9)

with the coupling constant g3 induces an off-diagonal term in the baryon mass
matrix after spontaneous symmetry breaking 〈σ〉0 → fπ via its σ-meson coupling.
Of course this is in addition to the conventional diagonal interactions:

L1 = −g1B̄1 (σ− iγ5τ · π)B1, (10)

L2 = −
2

3
g2

[
B̄2(σ+

5

3
iγ5τ · π)B2 − 2∆̄i(σ+ iγ5τ · π)∆i

−
1√
3
B̄2τ

i(σ+ iγ5τ · π)∆i + h.c.
]
, (11)

In writing down the Lagrangians (9,10,11), we have implicitly assumed that the
parities of B1, B2 and ∆ are the same. In principle, their parities are arbitrary, ex-
cept for the parity of the ground state nucleon, which must be even. For instance,
if B2 has odd parity, the first term in the interaction Lagrangian Eq. (9) must in-
clude another γ5 matrix. Here we consider all possible cases for the parities of B2

and ∆.

Having established the mixing interaction Eq. (9), as well as the diagonal
terms Eqs. (10),(11), we calculate the masses of the baryon states, as functions
of the pion decay constant/chiral order parameter and (as yet undetermined)
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Born approximation coupling constants. We diagonalize the mass matrix and ex-
press the mixing angle in terms of diagonalized masses. We find the following
double-angle formulas for the mixing angles θ1,...,4, in the four different parities
scenarios

tan 2θ1 =

√
(2N + ∆)(2N∗− − ∆)

(∆−N +N∗−)
, (12)

tan 2θ2 =

√
(∆− 2N)(2N∗+ − ∆)

(N +N∗+ − ∆)
(13)

tan 2θ3 =

√
(2N − ∆)(2N∗− + ∆)

(∆−N +N∗−)
, (14)

tan 2θ4 =

√
−(∆+ 2N)(2N∗+ + ∆)

(N+N∗+ + ∆)
, (15)

where N is the nucleon ground state mass (940 MeV) and N∗±, ∆ are the masses
of the nucleon excited state, where ± indicates the parity of the N∗ state. These
angles correspond to the two (variable) parities as follows θ1 ↔ (N∗−, ∆+), θ2 ↔
(N∗+, ∆−), θ3 ↔ (N∗−, ∆−), θ4 ↔ (N∗+, ∆+), where ± indicates the parity of
the state. Note that the angle θ4 is necessarily imaginary so long as the ∆,N∗

masses are physical (positive), and that the reality of the mixing angle(s) imposes
stringent limits on the ∆,N∗ resonance masses in other three cases, as well. Next,
we use (some of) the observed resonancemasses to determine the mixing angle(s)
and thence calculate the axial couplings.

3.2 Results

Direct prediction

The four lowest-lying (besides the N(940)) candidate states in the PDG ta-
bles are: R(1440), N(1535), ∆(1620), ∆(1910), we use them to fit the free coupling
constants. Of the two “mass allowed” scenarios, however, none survive the ax-
ial coupling test. Perhaps our choice of input resonances is inadequate. Note that
one may “invert” this procedure, however, and use the isovector axial coupling
to predict one of the baryon masses, say the ∆’s, having fixed the other two, in
this case the nucleon’s N(940) and N∗(1440) or N∗(1535).

Inverse prediction

Next, we use the double-angle formulas Eqs. (12)-(15) for the mixing angles
θ1,...,4 together with the two observed nucleon masses to predict the ∆ masses
shown in the Table 3. We see that only the (N∗+, ∆−) parity case leads to a real-
istic prediction: The difference between the observed (one-star) S31(2150) [11] ∆
resonance mass and the predicted 2030 MeV may be neglected in view of the un-
certainties and typical widths of states at such (high) energies. We shall not attach
undue significance to this proximity in view of the rather uncertain status of this
resonance, at least not until it is confirmed by another experiment. This choice of
resonances leads to a reasonable πNN coupling constant (14.2 vs. 13.6 expt.) and
predicts a set of as yet not measured π-baryon couplings.
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Table 3. The values of the ∆ baryon masses predicted from the isovector axial coupling

g
(1)

A mix. = g
(1)

A expt. = 1.267 and g
(0)

A mix. = 0.4 vs. g
(0)

A expt. = 0.33 ± 0.08.

(N∗P , ∆P
′

) (N, N∗) ∆ (MeV) expt.

(−,+) N(940), R(1535) 2330 1910

(+,−) N(940), R(1440) 2030,2730 1620,2150

(−,−) N(940), R(1535) 1140 1620,2150

A comment about the comparatively high value of the ∆ mass seems to be
in order now: In the mid-1960-s Hara [12] noticed that the chiral transformation
rules for a (1, 1

2
) multiplet impose a strict and seemingly improbable mass rela-

tion among its two members: m∆ = 2mN. The mixing with the (1
2
, 0) multiplet

modifies this mass relation for the worse, i.e. it makes the ∆ even heavier. For this
reason, the lowest-lying ∆’s of either parity cannot be the chiral partners of the
nucleon ground state, as we initially assumed in our “direct prediction”.

4 Three-field mixing

A linear superposition of yet another field (except for the mixture of cases II and
III above) ought to give a perfect fit to both experimental values. Such an admix-
ture introduces new free parameters (besides the two already introduced mixing
angles, e.g. θ1 and θ4, we have the relative/mutual mixing angle θ14, as the two
nucleon fields I and IV may also mix). One may subsume/redefine the sum and
the difference of the two angles θ1 and θ4 into the new angle θ, whereas one may
define θ14

.
= ϕ (this relationship depends on the precise definition of the mixing

angles θ1, θ4 and θ14); thus we find two equations with two unknowns of the
general form:

5

3
sin2θ+ cos2θ

(
g

(1)

A cos2ϕ+ g
(1)′

A sin2ϕ
)

= 1.267 (16)

sin2θ + cos2θ
(
g

(0)

A cos2ϕ+ g
(0)′

A sin2ϕ
)

= 0.33 (17)

The values of the mixing angles obtained from this simple fit to the two baryon
axial coupling constants are shown in Table 4. This, however, is not just a mere fit:
when extending to the SUL(3)× SUR(3) symmetry, chiral transformation proper-
ties of the nucleon fields differ:N1−N2 ∈ [(3̄, 3)⊕(3, 3̄)],N1+N2 ∈ [(8, 1)⊕(1, 8)]

and (N
′

3 + 1
3
N

′

4) ∈ [(6, 3)⊕ (3, 6)], see Ref. [13]. From these chiral SUL(3)×SUR(3)

symmetry assignment we can also predict the F andD couplings (un-corrected for
the explicit SUF(3) symmetry breaking) in Table 4, which can be compared with
the experimental numbers. We have not calculated the SUF(3) symmetry break-
ing corrections, as yet, so we have not taken into account the “error bars” on the
mixing angle(s), which remains a task for the future. At any rate, it should be
clear that the predicted values are “in the right ball park” for most of the scenar-
ios considered here. Thus, the chiral multiplet mixing remains a viable theoretical
scenario for the explanation of the nucleon isoscalar axial couplings.
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Table 4. The values of the mixing angles obtained from the fit to the baryon axial coupling

constants and the predicted values of axial F and D couplings. Experimental values have

evolved from F=0.459 ± 0.008 and D=0.798 ± 0.008 in Ref. [14] to F=0.477 ± 0.001 and

D=0.835 ± 0.001 in Ref. [15]. Note that the new values are more than 2-σ away from the

old ones, and that the new F,D add up to F+D = 1.312 6= 1.269 ± 0.002.

case g
(0)

A expt. g
(1)

A expt. θ ϕ F D

I-II 1.267 0.33 39.3o 26.6o 0.399 0.868

I-III 1.267 0.33 49.6o 23.9o 0.333 0.934

I-IV 1.267 0.33 63.2o 53.9o 0.399 0.868

5 Summary and Discussion

We have shown that one can reproduce, within 1-σ uncertainty, the (unexpect-
edly small) isoscalar axial coupling of the nucleon by mixing (only) two (out of
five independent) nucleon interpolating fields 1 by fitting the isovector- axial cou-
pling. This solution to the nucleon spin problem does not invoke exotica such as
a) hidden strangeness; or b) polarized gluon components in the nucleon wave
function, in agreement with recent results of the COMPASS experiment [16],[17].
This scenario is quantitatively reproduced in a simple dynamical model which
then predicts the existence of the S31 resonance at 2160 MeV, in agreement with
the PDG tables [11]. By mixing three nucleon interpolating field chiral multiplets
one may simultaneously fit both the isovector and the isoscalar axial couplings
and predict the SU(3) F and D couplings, which have the correct size within the
expected O(20%) SU(3) symmetry breaking corrections.
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Abstract. We present the results for the pion electromagnetic quadrupole polarizabilities,

calculated within the Nambu–Jona-Lasinio model. We obtain the sign and magnitude in

agreement with the respective experimental analysis based on the Dispersion Sum Rules.

At the same time the dipole polarizabilities are well reproduced. Comparison is also made

with the results from the Chiral Perturbation Theory.

The neutral and charged pion dipole and quadrupole polarizabilities have been
recently analyzed using the Dispersion Relations (DR) and the Dispersion Sum
Rules (DSR) [1,2], as displayed in Tables 2 and 3, together with the results of the
Chiral Perturbation Theory (χPT) [3–5]. The first row shows our results based
on the Nambu–Jona-Lasinio model (NJL) [6] model; for that purpose we have
extended [7] the study of Ref. [8], where the dipole polarizabilities have been
calculated, to the quadrupole case. We refer to these papers for details.

Our leading-Nc calculations are done according to the Feynman diagrams
of Fig. 1. The amplitude is a function of the Mandelstam variables related to the
γ(p1, ǫ1) + γ(p2, ǫ2) → πa(p3) + πb(p4) reaction for the on-shell pions and pho-
tons,

T(p1, p2, p3) = e2ǫ
µ
1ǫ

ν
2Tµν, Tµν = A(s, t, u)Lµν

1 + B(s, t, u)Lµν
2 ,

with the Lorentz tensors

Lµν
1 = p

µ
2p

ν
1 −

1

2
sgµν, Lµν

2 = −

(
1

2
u1t1g

µν + t1p
µ
2p

ν
3 + u1p

µ
3p

ν
1 + sp

µ
3p

ν
3

)
.

Terms that vanish upon the conditions ǫ1 · p1 = ǫ2 · p2 = 0 are omitted and
the notation ξ1 = ξ − m2

π, ξ = s, t, u is used. The scalar quantities A and B
enter the amplitudes H++ = −(A + m2

πB) and H+− = (u1t1/s − m2
π)B for the

equal-helicity and helicity-flipped photons. The dipole, αi
1, β

i
1, and quadrupole,

⋆ Talk delivered by Brigitte Hiller
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αi
2, β

i
2, polarizabilities are obtained in the t-channel and extracted from the first

two coefficients of the Taylor expansion of the amplitudes αAi(s, t, u)/(2mπ) and
−αmπB

i(s, t, u) around s = 0with u = t = m2
π [9],

α

2mπ

(
Ai(0,m2

π,m
2
π) + s

d

ds
Ai(0,m2

π,m
2
π)

)
= βi

1 +
s

12
βi

2,

−αmπ

(
Bi(0,m2

π,m
2
π) + s

d

ds
Bi(0,m2

π,m
2
π)

)
= (α1 + β1)i +

s

12
(α2 + β2)i,

where the superscripts i = N,C denote the neutral and charged pions, respec-
tively, and α ≃ 1/137 is the fine structure constant. The Born term, arising in the
case of the charged pion, is removed from the amplitudes.

The NJL Lagrangian used in this work contains pseudoscalar isovector and
scalar isoscalar four-quark interactions and is minimally coupled to the electro-
magnetic field.

p1

p2

p3

p4

σ π

Fig. 1. Leading-Nc quark-loop diagrams for the γγ → ππ amplitude. The crossed terms

are not displayed.

The diagrams of Fig. 1 provide polarizabilities which scale asN0
c. Besides the

quark one-loop diagrams, it is expected that the pion loops yield important con-
tributions, mainly in the case where the tree-level results are absent (in the NJL
model the chiral counting of meson tree-level results are classified in Refs. [8,10]).
We include the lowest model-independent pion-loop diagram at the p4 order,
calculated within χPT in Refs. [11–13], and known to be the only non-vanishing
contribution to the amplitude A at this order in the neutral channel. The pion
loop in the charged mode contributes only to the quadrupole polarizabilities,
with half the strength of the neutral quadrupole case. The pion loop as well as
the σ-exchange diagram of Fig. 1 enter only the amplitude A.

The amplitudeB for the neutral (charged)mode is completely determined by
the quark box (quark box + pion exchange) diagrams, starting from the p6 order
for the dipole and from the p8 order for the quadrupole polarizabilities. Thus the
combinations (αj + βj)

i, (j = 1, 2), to which the B amplitude leads, provide a
genuine test of the dynamical predictions of the NJL model at the leading order
in 1/Nc, as they are insensitive to the lowest-order χPT corrections.

All quark one-loop integrals are regularized using the Pauli-Villars prescrip-
tion with one regulator Λ and two subtractions, which is consistent with the re-
quirements of gauge invariance.
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Table 1. The NJL model parameters for the charged and neutral channels, with the input

marked by * and f∗π = 93.1MeV.

M∗ [MeV] m∗
π [MeV] m [MeV] G [GeV−2] Λ [MeV]

300 139 7.5 13.1 827

300 136 7.2 13.1 827

Table 2. The dipole (in units of 10−4fm3) and quadrupole (in units of 10−4fm5) neutral

pion polarizabilities. The first row shows our model prediction atM = 300MeV.

(α1 + β1)π0 (α1 − β1)π0 (α2 + β2)π0 (α2 − β2)π0

M = 300MeV 0.73 -1.56 -0.14 36.1

DR fit [1] 0.98 ± 0.03 −1.6 ± 2.2 −0.181 ± 0.004 39.70 ± 0.02
DSR [1] 0.802 ± 0.035 −3.49 ± 2.13 −0.171 ± 0.067 39.72 ± 8.01
χPT [5,3] 1.1 ± 0.3 −1.9 ± 0.2 0.037 ± 0.003 37.6 ± 3.3

Table 3. Same as in Table 2 for the dipole and quadrupole charged pion polarizabilities.

(α1 + β1)π± (α1 − β1)π± (α2 + β2)π± (α2 − β2)π±

M = 300MeV 0.19 9.4 0.20 17.5

DR fit [2] 0.18+0.11
−0.02 13.0+2.6

−1.9 0.133 ± 0.015 25.0+0.8
−0.3

DSR [2] 0.166 ± 0.024 13.60 ± 2.15 0.121 ± 0.064 25.75 ± 7.03
χPT [5,4] 0.16 5.7 ± 1.0 −0.001 16.2

In Table 1 we collect the model parameters, obtained by fitting the physi-
cal pion mass and the weak decay constant. The parameters of the model are
the four-quark coupling constant G, the cutoff Λ, and the current quark massm.
These are determined by the choice of fπ = 93.1 MeV, mπ = 139 MeV (charged
mode) or mπ = 136 MeV (neutral mode), and the constituent quark mass, M.
In Table 4 we present the anatomy of our result for the caseM = 300 MeV. We
display separately all the gauge invariant contributions to the polarizabilities: the
box (for neutral polarizabilities), box + pion exchange diagram (for the charged
polarizabilities), the σ exchange, and the pion loop. The pion exchange diagram
arises only for the charged channel and builds together with the box a gauge in-
variant amplitude. Let us first comment on the channels involving the difference
of the electric and magnetic polarizabilities:

• (α1 − β1)π0 : here the box contribution is largely canceled by the scalar ex-
change. At the p4-order of the chiral counting they cancel exactly [8]. The higher-
order contributions have a slow convergence rate, at p8-order one reaches only
about 50% of the full sum.

• (α1 − β1)π± : contrary to the neutral channel, the size of the σ-exchange
diagram for this combination is about an order of magnitude larger than the box
+ pion exchange diagram, and it becomes the most important contribution. The
pion loops are absent.
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Table 4. Contribution of various diagrams forM = 300MeV. Units as in Table 2.

box + π-exchange σ-exchange pion-loop total

(α1 + β1)π0 0.73 0 0 0.73

(α1 − β1)π0 -11.13 10.57 -1.0 -1.56

(α2 + β2)π0 -0.144 0 0 -0.144

(α2 − β2)π0 5.09 9.07 21.97 36.13

(α1 + β1)π± 0.189 0 0 0.189

(α1 − β1)π± -0.977 10.36 0 9.39

(α2 + β2)π± 0.198 0 0 0.198

(α2 − β2)π± -1.63 8.87 10.29 17.54

• (α2 −β2)π± : the pattern observed for the charged dipole difference repeats
itself for the quadrupole polarizabilities. However in this case the subleading in
the 1/Nc counting pion-loop diagram has the same magnitude as the σ-exchange
term.

• (α2 − β2)π0 : the pion loop dominates, ∼ 2× σ-exchange.
• Finally, regarding the sums of polarizabilities, we stress that the values (in-

cluding the overall signs) of (α2 + β2)π0,π± are totally determined by the gauge-
invariant quark box or the box + pion exchange contribution. This is a key re-
sult of the presented calculation. The sign is stable when the model parameters
are changed. The magnitude depends on the value chosen for the constituent
quark mass, but the best overall fit to the other empirical data, typically yielding
M ∼ 300 MeV, also yields the optimum values for the polarizabilities [7]. More-
over, the main part of the box contribution comes from the first non-vanishing
p8-order term in the chiral expansion. Based on this fact we expect that the con-
tact term of the p8 3-loop calculation in χPT may also play an important role in
reversing the signs of the 2-loop order results for these quantities.
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Abstract. We present the results obtained in the three-flavour (Nf = 3) Nambu–Jona-

Lasinio model which is extended by the UA(1) breaking six-quark ’t Hooft interaction and

eight-quark interactions. We address the problem of stability, and some phenomenological

consequences of the models with multi-quark interactions.

A number of instructive models in low-energy QCD assume the existence of un-
derlyingmulti-quark interactions and their importance for the physics of hadrons.
They are efficient in the description of spontaneous chiral symmetry breaking
(χSB), and in the study of the quark structure of light mesons. The Nambu–Jona-
Lasinio (NJL) model [1] is a well-known example, where the local chiral sym-
metric four-fermion interactions under some conditions lead to the formation of
fermion-antifermion bound states and as a result describe the χSB phenomenon.
A modified form of these interactions has been widely considered to derive the
QCD effective action at large distances [2]-[5].

One might ask if higher order multi-quark interactions are of importance.
Indeed, along the lines suggested by an instanton-gas model, it can be argued
[6] that there exists an infinite set of multi-quark terms in the effective quark
Lagrangian starting from the NJL four-quark piece. In particular, the famous ’t
Hooft determinantal interaction [7] automatically appears if one keeps only the
zero mode contribution in the mode expansion of the effective Lagrangian. This
2Nf multi-quark term manifestly violates the UA(1) axial symmetry of the QCD
Lagrangian, offering a way out of the UA(1) problem.

The structure of QCD-motivatedmodels at low energieswith effectivemany-
fermion interaction and a finite cutoff in the symmetry-breaking regime has been
also considered in [8], where the authors, using the 1/Nc arguments and the fine-
tuning condition in providing the scale invariance, classified the set of quasilo-
cal vertices relevant for dynamical χSB. It has been found this way that in such
effective models the vertices with four, six and eight fermions only should be
retained in four-dimensional space-time.

Thus, it is tempting to consider the intuitive picture that describes the QCD
vacuum based on a series of multi-quark interactions reflecting several tractable

⋆ Talk delivered by A. A. Osipov



Extended NJL model with eight-quark interactions 45

features of QCD, which include aspects of chiral symmetry and of the 1/Nc ex-
pansion. The bosonization of quark degrees of freedom leads then to the desirable
effective Lagrangian with matter fields and a stable chiral asymmetric vacuum.

The NJL-typemodel with theUA(1) axial symmetry breaking by the ’t Hooft
determinant has been studied in the mean field approximation [9]-[14] for a long
time. Numerous phenomenological applications show that the results of such an
approach meet the expectations. Nevertheless, in this picture there is an apparent
problem: the mean field potential is unbounded from below, and the ’t Hooft
term is the direct source of such an instability. A consistent approach requires
obviously a stable hadronic vacuum.

To cure this disease of the model we consider the system of light quarks
u, d, s with multi-fermion interactions described by the Lagrangian

Leff = q̄(iγµ∂µ −m)q+ L4q + L6q + L8q. (1)

Here, the quark fields q have colour (Nc = 3) and flavour indices which are
suppressed. We suppose that four-, six-, and eight-quark interactions L4q, L6q,
L8q are effectively local, for it is known that meson physics in the large Nc limit
is described by a local Lagrangian of this type [15]. The interaction Lagrangians
L4q and L6q of the model in the scalar and pseudoscalar channels is given by two
terms

L4q=
G

2

[
(q̄λaq)

2 + (q̄iγ5λaq)
2
]
, (2)

L6q=κ(det q̄PLq+ det q̄PRq). (3)

The first one is theUL(3)×UR(3) chiral symmetric interaction specifying the local
part of the effective four-quark Lagrangian in channels with quantum numbers
JP = 0+, 0−. The Gell-Mann flavour matrices λa, a = 0, 1, . . . , 8, are normalized
such that tr(λaλb) = 2δab. The second term represents the ’t Hooft determinantal
interactions [7]. The matrices PL,R = (1 ∓ γ5)/2 are projectors and the determi-
nant is over flavour indices. The determinantal interaction breaks explicitly the
axialUA(1) symmetry and Zweig’s rule. The global chiral SU(3)L × SU(3)R sym-
metry of the Lagrangian (1) atm = 0 is spontaneously broken to the SU(3) group,
showing the dynamical instability of the fully symmetric solutions of the theory.
In addition, the current quark mass m, being a diagonal matrix in flavour space
with elements diag(mu,md,ms), explicitly breaks this symmetry down, retain-
ing only the reduced SU(2)I ×U(1)Y symmetries of isospin and hypercharge con-
servation, ifmu = md 6= ms.

The eight-quark Lagrangian which describes the spin zero interactions con-

tains two terms: L8q = L(1)

8q + L(2)

8q [16], where

L(1)

8q=8g1 [(q̄iPRqm)(q̄mPLqi)]
2
, (4)

L(2)

8q=16g2 [(q̄iPRqm)(q̄mPLqj)(q̄jPRqk)(q̄kPLqi)] . (5)

Here the sum is taken over flavour indices i, j,m = 1, 2, 3; L8q is a UL(3)×UR(3)

symmetric interaction with OZI-violating effects in L(1)

8q . The first term L(1)

8q co-
incides with the OZI-violating eight-quark interactions considered in [17]. The
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second term L(2)

8q represents interactions without violation of Zweig’s rule. L8q

is the most general Lagrangian which describes the spin zero eight-quark inter-
actions without derivatives. It is the lowest order term in number of quark fields
which is relevant to the case.We restrict our consideration to these forces, because
in the long wavelength limit the higher dimensional operators are suppressed.

We view the main role of eight-quark forces considered as folows:

(i) They are of vital importance for the stability of the ground state built from four
and six-quark interactions: the quark model considered follows the general trend
of spontaneous breakdown of chiral symmetry and possesses a globally stable
ground state, when relevant inequalities in terms of the coupling constants hold,
g1 > 0, g1 + 3g2 > 0,Gg1 > (κ/16)2 [16].

(ii) The low lying scalar and pseudoscalar mesonic spectra are almost insensitive
to the eight-quark forces [18].

(iii) The 8q-interactions play an important role in determining the critical temper-
ature, Tc, at which transitions occur from the dynamically broken chiral phase to
the symmetric phase, lowering the value of Tc with growing strength of the 8q
couplings [19].

(iv) The multi-quark interactions introduce new additional features to the catal-
ysis of dynamical symmetry breaking by a constant magnetic field H in 3 + 1

dimensions: the first minimum catalyzed by a constant magnetic field (that is, a
slowly varying field) is then smoothed out with increasingH at the characteristic
scale H ∼ 1019G. The reason is that multi-quark forces generate independently
another local minimum associated with a larger dynamical fermion mass. This
state may exist even for multi-quark interactions with a subcritical set of cou-
plings and is globally stable with respect to a further increase of the magnetic
field [20].

(v) The OZI-violating terms with coupling strength g1 affect the mechanism of
χSB: starting from some critical value of the coupling g1 = (g1)crit the χSB is
induced by the 6q ’tH̃ooft interactions, as opposed to the 4q NJL forces at g1 <

(g1)crit [18].

(vi) It turns out that the mesonic spectra built on the spontaneously broken vac-
uum induced by the ’t Hooft interaction strength, as opposed to the commonly
considered case driven by the four-quark coupling, undergo a rapid crossover
to the unbroken phase with a slope and at a temperature which is regulated by
the strength of the OZI violating eight-quark interactions. This strength g1 can be
adjusted in consonance with the four-quark coupling G (keeping the remaining
model parameters fixed) and leaves the spectra unchanged, except for the sigma
meson mass which decreases. A first order transition behavior is also a possible
solution within the present approach at large g1 [21].

(vii) They may be also of importance in decays and scattering, not considered so
far.
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We discuss predictions of the relativistic constituent-quark model (RCQM) for
the structure of πNN as well as πN∆ strong interaction vertices. The results are
put into perspective with strongmeson-baryon form factors from lattice quantum
chromodynamics (QCD) and phenomenological models.

Notions on the structure of meson-baryon interaction vertices are important
in many areas of particle and nuclear physics. Often the corresponding strong
form factors have been parametrized phenomenologically, especially in meson-
baryon and baryon-baryon interaction models. Certainly, it is desirable to under-
stand the structure of the hadronic interaction vertices on a microscopic level.

(a) (b)

Fig. 1. Graphical representation of the meson-baryon vertex (a) and the corresponding

amplitude in the RCQM (b).

We have recently performed a covariant study of the πNN and πN∆ interac-
tion vertices within a relativistic constituent-quark model (RCQM) by consider-
ing the process of Fig. 1(a) resolved in the way as shown in Fig. 1(b) [1]. Predic-
tions of the form factor dependences on the relativistic four-momentum transfer
Q2 have been obtained directly from the RCQM without introducing any fit pa-
rameters. The transition amplitudes from initial |i〉 to final 〈f| states

Fi→f = (2π)
4 〈f|LI (0) |i〉 (1)

⋆ Talk delivered by W. Plessas
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with the πNN and πN∆ interaction Lagrangian densities

LN
I = −

fπNN

mπ

Ψ̄ (x)γ5γ
µTΨ (x)∂µΦ (x) , (2)

L∆
I = −

fπN∆

mπ

Ψ̄ (x) TΨµ (x)∂µΦ (x) + h.c. , (3)

where in obvious notation T represents the transition operator for the emission
of the pion Φ from a nucleon Ψ or a delta Ψµ with couplings fπNN and fπN∆,
respectively, are thus identified with the matrix elements

F
RCQM
i→f = 〈V ′,M ′, J ′, Σ ′| D̂π

rd |V,M, J, Σ〉 , (4)

where the baryon states |V,M, J, Σ〉 are eigenstates of the RCQM invariant mass
operator characterized by the four-velocity V , the invariant-mass eigenvalueM,
and the intrinsic spin J with z-component Σ, and analogously for 〈V ′,M ′, J ′, Σ ′|.
These matrix elements are calculated within point-form (PF) relativistic quantum
mechanics

〈V ′,M ′, J ′, Σ ′|D̂m
rd|V,M, J, Σ〉 =

2

MM ′

∑

σiσ ′
i

∑

µiµ ′
i

∫
d3k2d

3k3d
3k ′

2d
3k ′

3

×
√

(
∑

iω
′
i)

3

∏
i 2ω

′
i

Ψ⋆

M ′J ′MJ ′T ′MT ′

(
k ′

1,k
′
2,k

′
3;µ ′

1, µ
′
2, µ

′
3

)∏

σ ′
i

D
⋆

1
2

σ ′
i
µ ′

i
{RW [k ′

i;B (V ′)]}

×〈p ′
1, p

′
2, p

′
3;σ ′

1, σ
′
2, σ

′
3| D̂m

rd |p1, p2, p3;σ1, σ2, σ3〉

×
∏

σi

D
1
2
σiµi

{RW [ki;B (V)]}

√
(
∑

iωi)
3

∏
i 2ωi

ΨMJMJTMT
(k1,k2,k3;µ1, µ2, µ3) , (5)

where the matrix element of the reduced transition operator D̂π
rd between free

three-quark states |p1, p2, p3;σ1, σ2, σ3〉 is taken according to the point-form spec-
tator model (PFSM) [2]

〈p ′
1, p

′
2, p

′
3;σ ′

1, σ
′
2, σ

′
3| D̂π

rd |p1, p2, p3;σ1, σ2, σ3〉 =

3NS
igqqm

2m1 (2π)
3
2

ū (p ′
1, σ

′
1)γ5γµλmu (p1, σ1) q̃µ

× 2p20δ (p2 − p ′
2) 2p30δ (p3 − p ′

3) δσ2σ ′
2
δσ3σ ′

3
. (6)

Here, the individual quark four-momenta ki (k ′
i) and pi (p ′

i) are connected through
the boost transformations of the incoming and (outgoing) states, namely, pi =

B(V)ki (and analogously p ′
i = B(V ′)k ′

i). The normalization factor NS as well as
the momentum transfer q̃µ = p

µ
1 − p

′µ
1 are specific for the PFSM and explic-

itly given in ref. [2], where also other details of the formalism/notation can be
found. While there is a freedom in the choice of the normalization factor, which
can cause minor influences on the results (cf. ref. [2]), it should be emphasized
that q̃µ is uniquely defined through the overall momentum conservation and the
two spectator conditions. The off-shell extrapolation of the transition amplitude
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is made by keeping all hadrons and quarks on their respective mass shells. Ob-
viously it implies energy non-conservation in the transition process. By virtue of
the pseudovector-pseudoscalar equivalence the above construction also guaran-
tees that the pseudovector and pseudoscalar quark-meson couplings lead to the
same transition amplitude.

0 0.5 1 1.5 2 2.5

Q
2

0

0.5

1

RCQM
Sato-Lee
Polinder-Rijken
Liu et al.
Alexandrou et al. A
Alexandrou et al. B
Erkol et al.

Fig. 2. Prediction of the strong form factor GπNN , normalized to 1 at Q2 = 0, by the GBE

RCQM (solid/red line) in comparison to parametrizations from the dynamical meson-

baryon models of Sato-Lee [5] and Polinder-Rijken [6,7] as well as results from three lattice

QCD calculations [8–11] (cf. the legend); the shaded area around the result by Erkol et al.

gives their theoretical error band.

The strong πNN and πN∆ form factors as dependent on the space-like mo-
mentum transferQ2 = −q2 > 0 are then given by

GπNN

(
Q2
)

=
1

fπNN

mπ

√
2π√

2MN

√
E ′

N +M ′
N

E ′
N +M ′

N +ω

F
RCQM
i→f

Qz

, (7)

GπN∆

(
Q2
)

= −
1

fπN∆

3
√
2π

2

mπ√
E ′

N +M ′
N

√
2M∆

F
RCQM
i→f

Qz

, (8)

where the momentum transfer is taken into the z-direction. The results for the
Goldstone-boson-exhange (GBE) RCQM [3,4] are shown in Figs. 2 and 3, where
also a comparison is given to corresponding results fromdynamical meson-baryon
models and various lattice-QCD calculations. It is interesting to observe that the
Q2 dependence of both theGπNN andGπN∆ form factors resulting directly and in
a parameter-freemanner from the RCQMqualitatively agreeswith the parametriza-
tions of the meson-baryon vertices in the Sato-Lee model [5]. In the case of GπN∆

the RCQM result is also close to the Polinder-Rijken meson-baryon model [6,7].
On the other hand, the strong form factors from the lattice calculations show a
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(sometimes much) slower fall off with increasing Q2. Even for the smaller differ-
ences between our results (as well as the form factors of Sato-Lee) and the data
sets by Liu et al. and Erkol et al. it remains to be seen if dressing effects can ac-
count for these differences. Regarding all of the lattice data by Alexandrou et al.

one has also to keep in mind that they correspond to relatively large pion masses
with no extrapolations applied.

0 0.5 1 1.5 2 2.5

Q
2

0

0.5

1

RCQM
Sato-Lee
Polinder-Rijken
Alexandrou et al. A
Alexandrou et al. B
Alexandrou et al. C

Fig. 3. Same as Fig. 2 but for the strong form factor GπN∆ .

As the vertex form factors represent an important input into a number of ap-
plications, we have also provided parametrizations in analytical forms as a func-
tion of the three-momentum transfer q 2. It has turned out that an intermediate
form between the usual monopole and dipole forms is most appropriate

G
(
q 2
)

=
1

1+
(

q

Λ1

)2

+
(

q

Λ2

)4
. (9)

Our results in Figs. 2 and 3 are best reproduced with the parameter values given
in Table 1.

Table 1. Coupling constants and cut-off parameters of the RCQM vertex form factors as

parametrized according to the representation (9).

f2
N

4π
0.0691

f2
∆

4π
0.188

N Λ1 0.451 ∆ Λ1 0.594

Λ2 0.931 Λ2 0.998
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By this work we have obtained a parameter-free microscopic description of
the strong πNN and πN∆ vertex form factorswithin a fully relativistic constituent
quark model. Our study reveals that the structure of the πN∆ vertex is quite dif-
ferent from the πNN one, with cut-off parameters of up to 25% larger, contrary to
what is often used in phenomenological models, where the πNN and πN∆ cut-
offs are assumed of similar size [5–7] or even decreasing in the transition from
πNN to πN∆. Regarding the comparison with lattice-QCD results it will be most
interesting, if the spread among them will be reduced by future calculations and
how the final answer will turn out.
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Abstract. Several experiments have revealed the presence of antiquarks in the proton [1].

Extensive phenomenological studies of meson photoproduction on nucleons with unitary

hadronic modelswith andwithout form factors have also revealed that the well known un-

derproduction of the N∆ transition strengths by the conventional three quark model may

be attributed to the missing ”meson cloud” contributions [2]. The question thus arises of

to what extent multi-quark configurations of the type qqqqq̄, qqqqqq̄q̄, ... explicitly con-

tribute to the observable of baryons. Here the contribution of the 5-quark configurations

qqqqq̄ to the magnetic moments and the axial form factors of the nucleon and the lowest

resonances are considered. The two conclusions that emerge are that (a) a combination of

at least three different qqqqq̄ configurations are required for a satisfactory description of

the nucleon properties and (b) that the vanishing of the axial form factor of the N(1535)

resonance is a natural consequence of the cancelation of the contributions of the qqq and

qqqqq̄ configurations [3].

1 The qqqqq̄ configurations in the nucleon

The qqqq subsystem of a qqqqq̄ configuration has to be completely antisymmet-
ric. As there are only 3 colors, the most ”antisymmetric” qqqq color configuration
is the mixed symmetry configuration [211]C .

[211]C : C , [31]XFS : . (1)

The complete antisymmetry of the qqqq system therefore requires that the com-
bined space-flavor-spin configuration has to have the (conjugate) mixed symme-
try combination [31]XFS above. This can be achieved by either (1) choosing the
spatial configuration to be completely symmetric [4]S, with the flavor-spin con-
figuration [31]FS or (2) by choosing the latter to be completely symmetric [4]FS

and the former to have the mixed symmetry [31]X:

(1) : X FS , (2) : X FS . (2)

In the first case positive parity demands that the antiquark q̄ be in the P−state,
while in the latter case, the antiquark has to be in the ground (S−) state. A pion
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Table 1. Magnetic moments for the qqqqq̄ configurations in the nucleon

qqqq symmetry proton neutron

configuration

[31]X [4]FS [22]F [22]S 0 1/3

[31]X [4]FS [31]F [31]S 2/9 -2/9 qqqq : J = 1

[31]X [4]FS [31]F [31]S -1/3 0 qqqq : J = 0

[4]X [31]FS [22]F [31]S 7/27 -23/27 q̄ : J = 3/2

[4]X [31]FS [22]F [31]S -4/27 0 q̄ : J = 1/2

[4]X [31]FS [31]F [22]S -2/9 0

[4]X [31]FS [31]F [31]S -19/27 1/9 q̄ : J = 3/2

[4]X [31]FS [31]F [31]S 508/729 -95/729 q̄ : J = 1/2

loop configuration would correspond to the antiquark in the P−state. The con-
figuration with the q̄ in the S−state is, however, that which is consistent with a
positive strangeness magnetic moment [4,5]. Note that if the antiquark is in the
P−state the required [31]XFS configuration can also be obtained with [31]FS and
[22]FS flavor-spin configurations of higher energy [20].

No qqqqq̄ component alone can achieve the remarkable −3/2 ratio between
the proton and the neutronmagnetic moments, which is characteristic of the basic
qqq configuration in both its nonrelativistic and relativistic versions [6]. This may
be inferred from Table 1, where the nucleon magnetic moments for the 7 possible
qqqqq̄ configurations in the nucleons are listed. This may also inferred from the
comprehensive attempt in ref.[7] to combine only the first of these qqqqq̄ config-
urations with the basic qqq configuration.

The desired -3/2 ratio can however be obtained with a linear combination of
the qqq and the first 3 configurations in the table:

ψ =
√
P3ϕ[3][21][21] +

√
P5

11
9
b1 + 5

3
b2

{√
2

9
b1 +

2

3
b2ϕ[4][22][22]

+
√
b1ϕ

J=1
[4][31][31]

+
√
b2ϕ

J=0
[4][31][31]

}
. (3)

Here P3 and P5 are the probabilities for the qqq and (total) qqqqq̄ components.
The symmetry assignments [FS][F][S] in thewave functions represent flavor×spin,
flavor and spin respectively. The q̄ components in the qqqqq̄wavefunctions is to
be understood. A combination of the form (3) with 68 % qqq and 32 % of these
qqqqq̄ can in fact be arranged to yield the empirical value for gA(n → p), eg by
taking b1 = b2.

The identification of specific multi-quark contributions in the nucleon form
factors is difficult because of their smooth behavior, which may be reproduced
by a large variety of models. The prospective node in the region above Q2 ∼ 6
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GeV2 in Gp
E [8] does for example arise naturally already in the case of the qqq

configuration if calculated with front form kinematics [9], although it also arises
if a qqqqq̄ component is included, the magnitude and form of which are set by
the empirical values forGn

E [10]. The electric form factor of the neutronGn
E , which

vanishes in the nonrelativistic qqq model, can in fact be brought into agreement
with the empirical values by including a mixed symmetry S−state in the nucleon
wave function with a probability of 1− 2% [9].

2 The qqqqq̄ configurations in the nucleon resonances

While it is possible to achieve a qualitative description of the lowest baryon res-
onances with the basic qqq model with spin and flavor dependent interactions
[11], that model does not describe the systematics of the resonance decay widths.
In the case of the ∆(1232) and the N(1440) resonances it has been shown that
the inclusion of a qqqqq̄ component in the wave function makes it possible to
overcome the underpredictions of the electromagnetic and strong decay widths
[12–14]. Such calculations are however only qualitative in that the cross term ma-
trix elements between the qqq and qqqqq̄ components are very sensitive to the
wave function models.

The cross terms between the qqq and the qqqqq̄ configurations are large
when the operator, which connects the annihilating qq̄ pair and the meson or the
γ ray involves the ”large” components of the Dirac spinors. When the operator
involves the small components, which is the case of the axial charge operator, the
cross terms are suppressed.

In this context the recent lattice result that the axial charge of the N(1535) is
very small - if not 0 - is particularly interesting [15]. If the corresponding result
for the (near) parity partnerN(1440) would also be close to 0, that might actually
indicate the onset of restored chiral symmetry [16]. As the configuration mixing
between theN(1535) and the following 1/2− resonanceN(1650) is expected to be
small [17,18], these resonances may be considered separately.

The general expression for the axial charge of the N(1535) is

g∗A ≃
∑

n

AnPn , n = 3, 5, .. (4)

where n is the number of constituents ((n+3)/2 is the number of quarks and (n−

3)/2 the number of antiquarks). Since the qqq model value for g∗A is −1/9 [16],
it follows that if indeed the axial charge of the N(1535) vanishes, the multiquark
configurations with n > 3 have to cancel that value.

Consideration of the qqqqq̄ components indicates that this would be a very
natural result [3]. In Table 2 all the possible qqqqq̄ configurations in the N(1535)

and the corresponding coefficients An in the axial charge expression 4 are listed.
These are listed in order of increasing energy under the assumption that the in-
teraction between the quarks depend on spin and flavor or color.

Inclusion of these qqqqq̄ components in addition to the qqq component
leads to the axial charge expression,

gA(N(1535)) = −
1

9
P3 +

5

6
P

(2)

5 −
1

9
P

(3)

5 −
4

15
P

(4)

5 +
17

18
P

(5)

5 , (5)
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Table 2. The qqqqq̄ configurations in the N(1535) and the corresponding axial charge

coefficient An (4) [19].

configuration qqqq flavor-spin qqqq color-spin An

1 [31]FS [211]F [22]S [31]CS [211]C [22]S 0

2 [31]FS [211]F [31]S [31]CS [211]C [31]S +5/6

3 [31]FS [22]F [31]S [22]CS [211]C [31]S −1/9

4 [31]FS [31]F [22]S [211]CS [211]C [22]S −4/15

5 [31]FS [31]F [31]S [211]CS [211]C [31]S +17/18

where the coefficients P indicate the corresponding probabilities. Because two of
the qqqqq̄ components have large positive coefficients, while the qqq contribu-
tion has a small negative coefficient it is possible to cancel the latter contribution
altogether with only modest probabilities of the qqqqq̄ components [19].

Combination of this result with the lattice calculation result for the axial
charge of theN(1650) resonance [15], which is close to the qqq quarkmodel value
5/9 [16], suggests the conclusion that the smallness of the axial charge of the
N(1535) is a natural consequence of its quark configuration and (possibly also)
the cancelation between the contributions of the qqq and the qqqqq̄ components
[19] rather than an indication of restored chiral symmetry.
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Abstract. The possible production of multiquark systems is very important for our un-

derstanding of hadrons. A considerable interest in such states started with Jaffe’s work

in 1977, demonstrating the role of the chromomagnetic interaction in the stability of light

multiquarks. Since then, heavy quarks have also been included. A brief survey is presented

regarding the evolution of the problem. Some of the recently observed resonances, named

X,Y or Z, are discussed as possible candidates for tetraquarks.

1 Introduction

The multiquark hadrons studied so far are compact objects of type:

• Tetraquarks: q2q̄2, Q2q̄2, QQ̄qq̄
• Pentaquarks: q4Q̄, q4q̄

• Hexaquarks: q6 (the H-particle), q5Q

where q = u, d, s and Q = c, b. They are all color singlet objects described by the
representation [222]c. The possible existence of exotics has been mentioned in the
literature [1,2] before the advent of QCD. Later on, their existence appeared nat-
ural in QCD inspired models. The interest started in 1977 with the work of Jaffe
[3] who explained the stability of tetraquarks and hexaquarks (the H-particle)
as due to the chromomagnetic interaction. Ten years later, independently, Gig-
noux et al. [4] and Lipkin [5] applied the same mechanism to charmed strange
pentaquarks P, with explicit SU(3) breaking, finding more binding than for the
H-particle. The status of the H-dibaryon is reviewed, for example, in Ref. [6]. In a
review of the experimental searches for both H and P, Ashery [7] explained that
the failure in observing the H-particle was the lack of sensitive measurements to
small bindings. He also mentioned that the P search in charm hadroproduction
at the Fermilab E791 experiment did not give a convincing evidence.

The criterion for stability was

∆E = E(qmq̄n) − Ethreshold < 0 , (1)

with q light or heavy.

The above theoretical studies were based on the OGE model which has a
color-spin hyperfine interaction. Later on, the stability was also studied within
the GBE (Goldstone boson exchange) model, which has a flavour-spin hyperfine
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interaction [8]. A comparison of the stability results in the two models was given
in Ref. [9]. In most cases, when the OGE interaction stabilizes a system, the GBE
interaction destabilizes it and vice versa. For example, in Jaffe’s calculations the
H-particle is a bound ΛΛ system, while the GBE interaction induces a strong
short range repulsion in ΛΛ [10], like in the NN system. The GBE model indi-
cates that q5Q is also highly unstable, despite the presence of a heavy quark [11].
Moreover the GBE interaction does not require strangeness in pentaquarks to bet-
ter stabilize the system. The variational calculations of Ref. [12] predict a mass of
about 2900 MeV for the uuddc̄ system in its lowest state and the system is stable,
the threshold energy beingMN +MD̄ = 2970MeV. Moreover the lowest state has
a positive parity in contradistinction to the OGE model. The H1 Collaboration
[13] observed a narrow resonance of mass M = 3099 MeV and width Γ = 12 MeV,
which was interpreted as a uuddc̄ pentaquark. This resonancewas not confirmed
by the CDF Collaboration.

2 Multiquark hadrons after 2002

After Jaffe’s work there were several occasional waves of interest, some of them
mentioned above. An impressive renaissance started in 2002, with the first ob-
servation by the LEPS Collaboration of a narrow baryon-like resonance in the
nK+ invariant mass spectrum produced in γn → K+K−n reactions [14]. This was
interpreted as a uudds̄ pentaquark. These results were supported by several ex-
periments and contradicted by others, leading to a controversial situation. The
LEPS Collaboration did however pursued its search to clarify the situation and
some plausible explanations of the controversy together with new high statistics
measurements can be found in Ref. [15].

Almost simultaneously several open charm Ds mesons with rather small
widths were observed. The existing quark model calculations, based on the OGE
interaction, failed to explain them as cs̄ or sc̄ pairs. For this reason, among others,
a tetraquark interpretation has been proposed for Ds(2317) [16]. The molecular
picture [17] is more popular. Alternative explanations are: chiral partners of the
ground state multiplet [18] or, simply, ordinary mesons with a proper spin-orbit
interaction for unequal quark-antiquark masses [19], or cs̄ states coupled to D∗K

channels (for a review see e.g. [20]).

3 The hidden charm X,Y,Z resonances

The discovery of the charmonium-like resonances X,Y,Z starting with the first ob-
servation of X(3872) by the Belle Collaboration triggered a considerable interest in
their interpretation as exotics, for example, DD̄ molecules, tetraquarks, hybrids,
etc. At the same time conventional options as cc̄ pairs, threshold effects, etc., are
being considered. A partial list of the newly observed hidden charm resonances
is shown in Table 1. (For a more extensive list see [21].)
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Table 1. Charmonium-like resonances

Resonance Mass Width JPC Decay modes Ref.

(MeV) (MeV)

X(3872) 3871.4 ± 0.6 < 2.3 1++ π+π−J/Ψ, γJ/Ψ [22]

X(3940) 3942± 9 37+27
−17 JP+ DD̄∗ [23]

Y(3940) 3915 +4.3
−3.9 34 +13

−9 JP+ ωJ/Ψ [24]

Z(3930) 3929 ± 5 29 ± 10 2++ DD̄ [25]

X(4160) 4156+29
−25 139+113

−65 JP+ D∗D̄∗ [23]

Y(4260) 4259±8 88 ± 23 1−− π+π−J/Ψ [26]

Z+(4430) 4433 ± 5 45+35
−18 ? π+Ψ ′ [27]

Z+
1 (4051) 4051 ±14+20

−41 82+21+47
−17−22 ? π+χc1 [28]

Z+
2 (4248) 4248 +44+180

−29−35 177+54+316
−39−61 ? π+χc1 [28]

Y(4660) 4664 ± 12 48 ± 15 1−− π+π−Ψ ′ [29]

Y(4140) 4143 ± 3.14 11.7+8.3
−5.0 ± 3.7 JP+ φJ/Ψ [30]

After Belle, X(3782) has been confirmed by three other different collaborations
[22]. The status of Y(3940), seen by BaBar [24], with M = 3915 ± 4 MeV, Γ ≈ 34

MeV and that of X(3940), seen by Belle, with M = 3943 ± 17 MeV, Γ = 87MeV ±
34MeV [31], is being clarified. The Belle collaboration recently confirmed BaBar’s
results, as described in the recent overview byOlsen [32]. All the other resonances
need confirmation.

Most of these resonances do not match well any of the unassigned char-
monium levels. They can be candidates for exotics. In particular, a considerable
amount of work has been devoted to the tetraquark or the molecular picture. In
particular the best established and the narrowest resonance, X(3872), has been in-
terpreted as a diquark-antidiquark state in a chromomagnetic model. The width
was explained to be narrow due to its unnatural 1++ spin-parity, which forbids
DD̄ decay and estimated in a rearrangement of quarks and antiquarks process by
Maiani et al. [33]. The mass was finally fitted. The diquark-antidiquark picture is
useful in a relativistic framework [34]. In the tetraquark option, also with a chro-
momagnetic interaction, but without any correlated quark or antiquark pairs, it
was found that the ground state cc̄qq̄ system has a mass of 3910 MeV, close to
experiment and contains a tiny J/Ψ+ ρ or J/Ψ+ω component in the wave func-
tion, which can well explain the narrowness of its width [35]. The full spectrum
of cc̄qq̄was calculated within the same model in Ref. [36]. It contains twice more
states than that of Maiani et al., because a complete color space was taken into
account.

The X(3872) is also naturally interpreted as a loosely bound hadronicmolecule,
since its mass is close to D0D̄∗0 threshold, e. g. [37] or [38]. But this picture con-
tradicts some experimental data. An ambiversion interpretationwas recently pro-
posed [39].

The spectrum of the cc̄ss̄ system was calculated [40] within the model of
Ref. [35]. The structure of the states 1++ and 0++ suggests that they can decay
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into φJ/Ψ with narrow widths. Thus they are good candidates for the resonance
Y(4140), if this exists.

The charged Z+ resonances from Table 1 are natural candidates for exotics
because they have non-zero electric charge. In particular the Z+(4430) was inter-
preted as aD∗(2010)D1(2420) molecule, for example in Ref. [41] or as a tetraquark
[42].

4 Perspectives

Another type of tetraquarks, which have more chance to be bound are QQq̄q̄.
They have only one threshold Qq̄ +Qq̄, while QQ̄ + qq̄, has two: Qq̄ +Qq̄ and
QQ̄ + qq̄. They are free of annihilation effects. Their study amounts to solve a
four-body problem with a specific Hamiltonian. The interest started about two
decades ago. Different variational methods have been proposed along the years
as, for example, in Refs. [43–46]. A more complete list can be found in Ref. [47]
where elaborate calculations are presented, both for S and P states. In the latter
work as well as in Ref. [46], both ccq̄q̄ and bbq̄q̄ turn out to be bound, at least
in the ground state. The possible experimental observation of ccq̄q̄ with present
and future facilities is discussed in [47], complementing earlier studies [48]. There
is hope that future generation experiments can lead to their observation.

5 Conclusion

The basic question is whether or not multiquark hadrons exist. The thoroughly
searched H-particle, has not been seen so far. The evidence for heavy charmed
pentaquarks uudsc̄, uddsc̄ and uuddc̄, is not convincing. The LEPS Collabora-
tion still stubbornly searches for the pentaquark uudds̄ [15].

The number of X,Y,Z resonances is increasing every year and still more ex-
perimental work is necessary to confirm their existence, their quantum num-
bers, charged partners to neutral one, etc. It is plausible to believe that some of
them, at least X(3872) or the Z+ resonances, are exotics, in particular, they could
have a tetraquark component at short range and behave as hadronic molecules at
medium-longer range. Their theoretical interpretation is still a serious challenge.
Less hastily studies are desired.

There is hope that future experiments will give evidence for QQq̄q̄ states,
found to be stable tetraquarks in quark model studies.

Acknowledgments I enjoyed the warm hospitality of the organizers of the Bled
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1 Introduction

What is the CQSM like? To answer this question, it is instructive to ask another
simpler question. What is, or what was, the Skyrme model ? In a word, the fa-
mous Skyrme model is Bohr’s model in baryon physics. The simplest microscpic
basis of Bohr’s collective model of rotational nuclei is provided by the deformed
Hartree-Fock theory supplemented with the subsequent cranking quantization.
Very roughly speaking, the relation between the CQSM and the Skyrme model
is resembling the relation between these two theories in nuclear physics. Let us
start with a brief history of the CQSM.

• The model was first proposed by Diakonov, Petrov and Pobylitsa based on
the instanton picture of the QCD vacuum in 1988 [1].

• In 1991 [2], we have established a basis of numerical calculation, which en-
ables us to make nonperturbative estimate of nucleon observables with full
inclusion of the deformed Dirac-sea quarks, by extending the method of Ka-
hana, Ripka and Soni [3],[4]. Also derived and discussed in this paper is the
nucleon spin sum rule, which reveals the important role of quark orbital an-
gular momentum in the nucleon spin problem.

• In 1993, we noticed the existence of novel 1/Nc correction to some isovector
observables, which is totally missing within the framework of the Skyrme
model, but it certainly exists within the CQSM, so that it resolves the long-
standing gA-problem inherent in the hedgehog soliton model [5] (see also
[6]).

• The next important step is an application of the model to the physics of parton
distribution functions of the nucleon, initiated by Diakonov et al. [7],[8] and
also by Tübingen group [9],[10].

2 Main achivements of the CQSM for low energy observables

Skipping the detailed explanation of the model, I just summarize below several
noteworthy achievements of the CQSM for low energy baryon observables.



Chiral Quark Soliton Model and Nucleon Spin Structure Functions 63

• First of all, it reproduces unexpectedly small quark spin fraction of the nu-
cleon [2],[11] -[13] in conformity with the famous EMS observation [14] :

∆Σ ≃ 0.35. (1)

• Secondly, it reproduces fairly large pion-nucleon sigma-term favored in the
recent phenomenological determination [15] (see also [16]) :

ΣπN ≃ 60MeV. (2)

• Furthermore, it resolves the famous gA-problem of the Skyrme model as
[5],[6]

g
(Skyrme)

A = gA(Ω0) + gA(Ω1) ≃ 0.8 + 0.0 = 0.8, (3)

g
(CQSM)

A = gA(Ω0) + gA(Ω1) ≃ 0.8 + 0.4 = 1.2. (4)

Unfortunately, most baryon observables are quite insensitive to the differ-
ences of low energy models, which results in masking the potential ability of the
CQSM as compared with the others. It turns out, however, that that the superior-
ity of the CQSM as a field theoretical model of baryons manifests most drastically
in its predictions for the internal partonic structure of the nucleon.

3 On the role and achievements of CQSM in DIS physics

The standard approach to the DIS (deep-inelastic-scattering) physics is based on
the so-called factorization theorem, which states that the DIS amplitude is factor-
ized into two part, i.e. the hard part which can be handled by the perturbative
QCD and the soft partwhich contains information on the nonperturbative quark-
gluon structure of the nucleon. The soft part is usually treated as a blackbox,
which should be determined via experiments. This is a reasonable strategy, since
we have no simple device to solve nonperturbative QCD. We however believe
that, even if this part is completely fixed by experiments, one still wants to know
why those parton distribution functions (PDFs) take the form so determined !
Nonstandard but complementary approach to DIS physics is necessary here to
understand hidden chiral dynamics of soft part, based on models or on lattice
QCD.

There are several merits of the CQSM over many other effective model of
baryons. First, it is a relativistic mean-field theory of quarks, consistent with the
large Nc QCD supplemented with the 1/Nc expansion. Secondly, the field theo-
retical nature of the model, i.e. nonperturbative inclusion of polarized Dirac-sea
quarks, enables reasonable estimation not only of quark distributions but also of
antiquark distributions. Finally, only 1 parameter of the model, i.e. the dynamical
quark massM, was already fixed from low energy phenomenology, which means
that we can make parameter-free predictions for parton distribution functions. As
a matter of course, the biggest default of the model is the lack of the explicit gluon
degrees of freedom.
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In Fig.1, we summarize parameter-free predictions of the CQSM for the three
fundamental twist-2 PDFs. They are the unpolarized PDF with isoscalar and
isovector combinations, the longitudinally polarized PDFwith isoscalar and isovec-
tor combinations, and finally the transversities with isoscalar and isovector com-
binations. Noteworthy here is totally different behavior of the Dirac-sea contribu-
tions in different PDFs.

The crucial importance of the Dirac-sea contribution canmost clearly be seen
in the isoscalar unpolarized PDF. First, I recall that the distribution function in
the negative x region should be identified with the antiquark distribution with
the extra minus sign.

q̄(x) = −q(−x), (0 < x < 1). (5)

Then, one can see that the positivity of the antiquark distribution ū(x) +

d̄(x) is satisfied only after including the Dirac-sea contribution. It is also seen to
generate sea-like soft component in the quark distribution in the small x region,
as required in the GRV analysis even at the low energy scale [17].

Turning to the isovector unpolarized PDF, I point out that the u(x) − d(x) is
positive with sizablemagnitude in the negative x region due to the effect of Dirac-
sea contribution. Because of the charge conjugation property of this distribution,
it means that ū(x) − d̄(x) is negative or d̄(x) − ū(x) is positive in consistency
with the famous NMC observation [18]-[20]. One can also confirm that the model
prediction for the d̄(x)/ū(x) ratio is consistent with the Fermi-Lab Drell-Yan data
at least qualitatively [13].

Although we do not have enough space to go into the detail, we can also
show that the model also reproduces all the characteristic features of the longi-
tudinally polarized structure functions of the proton, neutron and the deuteron
without introducing any additional parameters [11],[13].

4 Chiral-odd twist-3 distribution function e(x)

The distribution function e(x) is one of the three twist-3 distribution functions
of the nucleon. Why is it interesting ? Firstly, its first moment is proportional
to the famous πN sigma term. Secondly, within the framework of perturbative
QCD, it was noticed that this distribution function may have a delta-function
type singularity at x = 0 [21]. However, the physical origin of this delta-function
type singularity was left unclear within the perturbative consideration.

By utilizing the advantage of the CQSM, in which the effects of Dirac-sea
quarks can be treated nonperturbatively, we have tried to clarify the physical ori-
gin of this delta-function type singularity [22],[15]. We first verified that, because
of the spontaneous chiral symmetry breaking of the QCD vacuum, the scalar
quark density of the nucleon does not damp as the distance from the nucleon
center becomes large, but it approaches a nonzero negative constant, which is
nothing but the vacuum quark condensate. (See. Fig.2.)

It was shown further that this extraordinary nature of the scalar quark den-
sity in the nucleon, i.e. the existence of the infinite range quark-quark correlation
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Fig. 1. The CQSM predictions for the fundamental twist-2 PDFs of the nucleon : isoscalar

and isovector unpolarized PDFs ((a) and (b)), isoscalar and isovector longitudinally po-

larized PDFs ((c) and (d)), and isoscalar and isovector transversity distributions ((e) and

(f)).

of scalar type, is the physical origin of the delta-function singularity in the chiral-
odd twist-3 distribution e(x). This singularity of e(x) will be observed as the vio-
lation of πN sigma-term sum rule. To confirm this interesting possibility, we need
very precise experimental information for e(x) through the semi-inclusive DIS
scatterings.



66 M. Wakamatsu

0.0 1.0 2.0 3.0 4.0
r (fm)

−10.0

−5.0

0.0

5.0

10.0

Scalar quark density

Fig. 2. The scalar quark density predicted by the CQSM.

5 Proton spin problem revisited : current status and resolution

Now, we come back to our biggest concern of study, i.e. the nucleon spin problem.
Recent two remarkable progresses may be worthy of mention. First, the quark
polarization ∆Σ has been fairly precisely determined, through the high-statistics
measurements of deuteron spin structure function by the COMPASS and HER-
MES groups [23],[24]. Second, a lot of evidences have been accumulated, which
indicate that the gluon polarization is likely to be small or at least it cannot be
large enough to resolve the puzzle of the missing nucleon spin based on the
UA(1) anomaly scenario. A general consensus now is therefore as follows. About
1/3 of the nucleon spin is carried by the intrinsic quark spin, while the remaining
2/3 should be carried by LQ, ∆g, and Lg.

Recently, Thomas advocates a viewpoint that the modern spin discrepancy
can well be explained in terms of standard features of the nonperturbative struc-
ture of the nucleon, i.e. relativistic motion of valence quarks, the pion cloud re-
quired by chiral symmetry, and an exchange current contribution associated with
the one-gluon-exchange hyperfine interaction [25]-[27]. His analysis starts from
an estimate of the orbital angular momenta of up and down quarks based on
the improved (or fine-tuned) cloudy bag model taking account of the above-
mentioned effects. Another important factor of his analysis is the observation that
the angular momentum is not a renormalization group invariant quantity, so that
the above predictions of the model should be associated with a very low energy
scale, say, 0.4GeV. Then, after solving the QCD evolution equations for the up
and down quark angular momenta, first derived by Ji, Tang and Hoodbhoy [28],
he was led to a remarkable conclusion that the orbital angular momenta of up
and down quarks cross over around the scale of 1GeV. This crossover of Lu and
Ld seems absolutely necessary for his scenario to hold. Otherwise, the prediction
Lu − Ld > 0 of the improved cloudy bag model given at the low energy scale is
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incompatible with the current empirical information or lattice QCD simulations
at the high energy scale, which gives Lu < 0, Ld > 0.
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Fig. 3. Our semi-phenomenological predictions of the orbital angular momenta of up and

down quarks in the proton are compared with the corresponding results of Thomas’ anal-

ysis [27]. Also shown for comparison are the predictions of the LHPC lattice simulations

for 2 Lu , and 2 Ld given at the scaleQ2 = 4GeV2 [34].

On the other hand, we have recently carried out a semi-empirical analysis
of the nucleon spin contents based on Ji’s angular momentum sum rule, and ex-
tracted the orbital angular momentum of up and down quarks as functions of the
scale [32]. (See also [33].) Remarkably, we find no crossover of Lu and Ld when
Q2 is varied, in sharp contrast to Thomas’ analysis. This difference is remarkable,
since if there is no crossover of Lu and Ld, Thomas’ scenario for resolving the
proton spin puzzle is seriously challenged.

We show in Fig.3 the results of our semi-empirical analysis for Lu and Ld

in comparison with the corresponding predictions by Thomas. As already men-
tioned, Thomas’ results show that the orbital angular momenta of up and down
quarks cross over around the scale of 1GeV. In contrast, no crossover of Lu and
Ld is observed in our analysis : Ld remains to be larger than Lu down to the scale
where the gluon momentum fraction vanishes. Comparing the two, the cause of
this difference seems obvious. Thomas claims that his results are qualitatively
consistent with the empirical information and the lattice QCD data at high en-
ergy scale. (We recall that the sign of Lu−d at the high energy scale is constrained
by the asymptotic condition Lu−d(Q2 → ∞) = −∆Σu−d, which is a necessary
consequence of QCD evolution [32],[25].) However, the discrepancy between his
results and the recent lattice QCD predictions seems more than qualitative.



68 M. Wakamatsu

In any case, our semi-phenomenological analysis, which is consistent with
the empirical information and/or the lattice QCD data for Ju and Jd, indicates
that Lu−Ld remains fairly large and negative even at the low energy scale of non-
perturbative QCD. If this is confirmed, it is a serious challenge to any low energy
models of nucleon, since they must now explain small ∆ΣQ and large and neg-
ative Lu−d simultaneously. The refined cloudy bag model of Thomas and Myhrer
obviously fails to do this job, since it predicts 2 Lu ≃ 0.64 and 2 Ld ≃ − 0.03 at
the model scale. (See Table.1 of [27]. Shown in this table should be 2 Lu and 2 Ld

not Lu and Ld.) Is there any low energy model which can pass this examination
? Interestingly, the CQSM can explain both of these peculiar features of the nu-
cleon observables. It has been long known that it can explain very small ∆ΣQ

(∆ΣQ ≃ 0.35 at the model scale) due to the very nature of the model [2],[35]. Be-
sides, its prediction for Lu−d given in [36], i.e. Lu−d ≃ − 0.327 at the model scale,
perfectly matches the conclusion obtained in the present semi-empirical analysis.

6 Concluding remarks

To conclude, the CQSM is a unique model of baryons, which has an intimate
connection with more popular Skyrme model. Although the former is an effec-
tive quark theory, while the latter is an effective meson theory, they share a lot
of common features. In spite of many strong similarities, a crucial difference be-
tween the two theories was noticed already in the study of ordinary low energy
observables of the nucleon. It is a novel 1/Nc correction, or more concretely, the
1st order rotational correction, which was found to exist within the framework of
the CQSM, while it is totally missing in the Skyrme model. An immediate con-
sequence of this finding is breakdown of the so-called ”Cheshire Car principle”
or the fermion-boson correspondence. We can show that the origin of this break-
down of fermion-boson equivalence can eventually be traced back to the noncom-
mutativity of the two procedures, i.e. the bosonization and the collective quantization
of the rotational motion. Alternatively, we can simply say that an important infor-
mation buried in the original fermion theory is lost in the process of approximate
bosonization. (See [37] for more detail.) After all, the fact is that one is an effective
quark (fermion) theory, while the other is an effective pion (meson) theory in 3+1
dimension.

Superiority or wider applicability of the CQSM over the Skyrme model be-
comes even more transparent if one extends the object of research from low en-
ergy observables to the internal partonic structure of the nucleon (or more gen-
erally of any baryons). Since the parton distribution functions measure non-local
light-cone correlation between quarks (and gluons) inside the nucleon, there is
no way to describe them within the framework of effective meson theories like
the Skyrme model. In contrast, this is just the place where the potential power
of the CQSM manifest most dramatically. In this talk, we have shown, through
several concrete examples, that the CQSM provide us with an excellent tool for
theoretically understanding the nonperturbative aspect of the internal partonic
structure of the nucleon. In particular, we have given a very plausible solution
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to the longstanding “nucleon spin problem”. We strongly believe that the pro-
posed solution to this famous puzzle is already close to the truth, and it will be
confirmed by experiments to be carried out in the near future.
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Abstract. We review a method to calculate the pion electro-production amplitude in a

framework of a coupled channel formalism incorporating quasi-bound quark-model states

and discuss the results for the M1− and the S1− amplitudes in the P11 partial wave ob-

tained in the Cloudy Bag Model.

1 Introduction

The P11 Roper resonance N(1440) is of particular interest among the low-lying
nucleon excitations, not only because of its relatively low mass, but primarily be-
cause of the rather peculiar behavior of the scattering and electro-excitation am-
plitudes. This clearly indicates that the structure of the resonance can not be ex-
plained by a simple excitation of the quark core (like most of the other low-lying
states). The mesons, in particular the pion and the σ-meson, play an important
role, yet the question remains whether it is possible to explain the Roper solely in
terms of the quark and meson degrees of freedom or exotic degrees of freedom
have to be incorporated like the explicit gluons [1–3].

We have developed a general method to incorporate excited baryons rep-
resented as quasi-bound quark-model states into a coupled channel calculation
using the K-matrix approach that can be applied to meson scattering as well as
to electro and weak-production of mesons [4,5]. The method ensures unitarity
through the symmetry of the K-matrix. It can be applied to a class of Hamiltoni-
ans with linear meson-baryon coupling, in which case it is possible to construct
an exact expression for the T -matrix without explicitly specifying the form of the
asymptotic states. The method is particularly suitable to investigate the interplay
of different channels involving the low-lying isobars such as the Delta and the
chiral mesons which we expect to play the dominant role in the dynamics of the
Roper resonance.

⋆ Talk delivered by B. Golli
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In the next section we give a short review of the method and in the follow-
ing section we discuss in more detail the proton and the neutron helicity am-
plitudes calculated in our model and confront them to the predictions of some
phenomenological models.

2 A short overview of the K-matrix approach

We assume that in the energy range of the Roper resonance, the electro-production
processes can be described in terms of the γN, πN, π∆ and σN channels. The latter
two channels correspond to two-pion decay. The electro-production amplitude
MπN is obtained from the Heitler’s equation

MπN = MK
πN + i

[
TπNπNMK

πN + TπNπ∆MK
π∆ + TπNσNMK

σN

]
, (1)

where TπN MB are the T -matrices for theM + B → π +N processes (M is ether π
or σ; B either N or ∆), while the amplitudes

MK
MB = −

Nγ√
k0kγ

〈ΨMB(mJmI; k0, l)|Ṽ
γ
µ (kγ)|ΨN(msmt)〉 (2)

are thematrix elements of the EM interaction Ṽγ
µ (kγ) between the nucleon ground

state ΨN and the principal-value state of theMB system. Here kγ is the photon
3-momentum, k0 is the momentum and l the angular momentum of the outgo-
ing pion, the m stand for the respective third components of the nucleon spin
and isospin and those of theMB system, and Nγ =

√
kγωγMN/W. In (1) the T

matrices and theM amplitudes involving the π∆ and the σN channels have been
already averaged over the invariant masses of the respective hadron.

The principal value states |ΨMB〉 assume the form

|ΨMB〉 = NMB

{
[a†(kM)|Ψ̃B〉] 1

2
1
2 +

∑

R

cMB
R |ΦR〉

+
∑

M ′B ′

∫
dk χM ′B ′ MB(k)

ωk + EB ′(k) −W
[a†(k)|Ψ̃B ′〉] 1

2
1
2

}
. (3)

The first term represents the free meson (π or σ) and the baryon (N or ∆) and de-
fines the channel, the next term is the sum over bare tree-quark statesΦR involv-
ing different excitations of the quark core, the third term introduces meson clouds
around different isobars, E(k) is the energy of the recoiled baryon. The sum in the
latter term includes also inelastic channels in which case the integration over the

mass of the unstable intermediate hadrons (σ or ∆) is implied. The state Ψ̃B ′ rep-
resents either the nucleon or the intermediate ∆; in the latter case it is normalized
as 〈Ψ̃∆(M ′

∆)|Ψ̃∆(M∆)〉 = δ(M∆ −M ′
∆). The meson amplitudes χM ′B ′ MB(k) are

proportional to the (half) off-shell matrix elements of the K-matrix. From the vari-
ational principle for the K-matrix it is possible to derive an integral equation for



Pion electro-production in the Roper region . . . 73

the meson amplitudes which is equivalent to the Lippmann-Schwinger equation
for the K-matrix. The resulting χ amplitude takes the form

χM ′B ′ MB(k) = −
∑

R

c̃MB
R ṼM ′

B ′R(k) + DM ′B ′ MB(k) , (4)

where DM ′B ′ MB(k) originates in the non-resonant background processes while
the first term represents the contribution of various resonances; in the P11 case
these are the nucleon, the N(1440), the N(1710) . . . Here

c̃MB
R =

ṼM
BR

ZR(W)(W −MR)
, (5)

where ṼM
BR is the dressedmatrix element of the quark-meson interaction between

the resonant state and the baryon state in the channelMB, and ZR is the wave-
function normalization. The physical resonant state R is a superposition of the
bare 3-quark states ΦR ′ , hence ṼM

BR =
∑

R ′ uRR ′VM
BR ′ , where VM

BR ′ are the ma-
trix elements with the bare 3-quark states.

In the vicinity of a resonance, e.g. the Roper N(1440), the term in the sum
(4) corresponding to this particular resonance dominates. The amplitudes as well
as the channel state (3) can be split into the resonant contribution, proportional
to the coefficient c̃MB

R corresponding to the chosen resonance, and the background
contribution consisting of the non-resonant processes and the contribution from
the resonances other than the chosen one. The principal-value state (3) can be cast
in the form

|ΨMB〉 = −KπN MB

√
k0W

π2ω0EN

√ZR

Ṽπ
NR

|Ψ̂res〉 + |ΨMB (bkg)〉, (6)

where

|Ψ̂res
R 〉 = Z− 1

2

R

[
∑

R ′

uRR ′(W)|ΦR ′〉 −

∫
dk

Ṽπ
NR(k)[a†(k)|ΨN〉] 1

2
1
2

ωk + EN(k) −W

−
∑

MB

∫
dk

ṼM
BR(k)[a†(k)|Ψ̂B〉] 1

2
1
2

ωk + EB(k) −W

]
, (7)

and KπN MB is the K-matrix element for theM+B → π+N process. The state (7)
has a familiar interpretation of a 3-quark state dressed by a cloud of mesons. The
resonant part of the electro-production amplitudes then reads

M(res)
πN = −

√
ωγE

γ
N

π2ω0EN

√
ZR

VNR

〈Ψ̂(res)
R (W)|Ṽγ|ΨN〉 TπNπN , (8)

while the background part satisfies

M(bkg)

πN = MK (bkg)

πN + i

[
TπNπNMK (bkg)

πN + TπNπ∆M
K (bkg)

π∆ + TπNσNMK (bkg)

σN

]
, (9)

where T and M are the amplitudes averaged over the invariant masses of the
intermediate hadron using the averaging procedure introduced in [4].
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3 The helicity amplitudes

The electro-production amplitudes at the photon point (i.e. at Q2 = 0) have been
extensively discussed in [5]; here we discuss in more detail the helicity ampli-
tudes for the proton and the neutron. In our approach, the transverse and the
scalar helicity amplitude are defined as

A 1
2

= −ξR 〈Ψ̂res
R (m ′

s = 1
2
)|ṼM1|ΨN (ms = −1

2
)〉 , (10)

S1
2

= −ξR 〈Ψ̂res
R (m ′

s = 1
2
)|ṼC0|ΨN (ms = 1

2
)〉 , (11)

with m ′
t = mt = 1

2
for the proton and m ′

t = mt = −1
2
for the neutron, and

ξR = sign(gπNR/gπNN). The relation to the electro-production amplitudes at the
pole of the K-matrix,W = MR, is determined through (8). Using the expression
for the elastic width of the resonance ΓπN = 2πω0ENVπ

NR(k0)2/ZRk0W and the
relation ImTπNπN = ΓπN/Γ (atW = MR) we find

Im p,nM
1
2

1− = −ξR

√
kWMNΓπN

6πk0MRΓ2
A

p,n
1
2

, Im p,nS
1
2

1− = ξR

√
kWMNΓπN

3πk0MRΓ2
S

p,n
1
2

.

(12)

We have performed the calculation of the electro-production amplitudes in
the Cloudy Bag Model (CBM) with the same choice of parameters as in the calcu-
lation of the scattering amplitudes [4]. We use the same bag radius for the excited
states as for the ground state.

Fig. 1. Transverse helicity amplitudes for the proton (left panel) and the neutron (right

panel) at the pole of the K matrix (W = 1530 MeV) for two values of the bag radius (R =

0.83 fm and R = 1 fm). The contribution of the meson cloud includes the γππ ′ interaction

and the pion corrections to the γBB ′ vertex. Empty circle: PDG value [6]; full square and

circles: analyses of newer JLab experiments. Two values at eachQ2 6= 0 correspond to two

different extraction approaches (see [7] for details). The MAID parametrization is given in

[8].

The transverse helicity amplitudes for the proton and the neutron are dis-
played in Fig. 1 at the pole of the K-matrix where the relations (12) are fulfilled,
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and in Fig. 2 at the nominal mass of the Roper resonance. The difference between
the calculated amplitudes in these two cases arises through the W dependence
of the ground state admixture and of the pion amplitudes in (7). We reproduce
the value at the photon point for the proton as well as for the neutron. These val-
ues are dominated by the pion cloud effects while the contribution from the bare
quark core is almost negligible. At higherQ2 the quark core contribution becomes
stronger and positive for the proton (and negative for the neutron) while that
of the pion cloud diminishes. As a result the amplitudes exhibit a zero crossing
which is observed also in the experiment. At the smaller bag radius, the crossing
occurs at somewhat higher Q2 which may signify a too strong pion field.

Since no experimental data are available for the neutron for Q2 6= 0, we
can compare our prediction only to the phenomenological expression of Ref. [8]
where, however, no zero crossing occurs. In our model the zero crossing in the
neutron case originates in the same mechanism as in the proton case; precise
measurements of pion electro-production on the neutron may therefore provide
a serious check for the proposed meson cloud picture.

Fig. 2. Transverse helicity amplitudes at the nominal energy of the resonance (W =

1440 MeV). Notation as in Fig. 1.

The situation is rather controversial in the case of the scalar helicity ampli-
tudes displayed in Fig. 3. Here we give the calculated values only at the pole
of the K-matrix since the dependence on W is weak. The most striking feature
is that the amplitudes cross zero while the experimental points – lacking values
at low Q2 – do not indicate this type of behavior. The zero crossing is again a
consequence of the same mechanism as in the case of the transverse amplitudes.
The MAID phenomenological analysis shows a rather sharp drop at Q2 → 0

though their amplitude does not cross zero. On the other hand, in this limit the
imaginary part of the SAID partial wave analysis [9] does reach a negative value
atW = 1530 MeV, supporting the possibility of a zero crossing also in this case.
From this comparison we can conclude that it is again the pion cloud that governs
the behaviour of the amplitudes at low Q2; this effect is likely to be exaggerated
in the present model.
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The calculated scalar amplitudes for the neutron displayed in the right panel
of Fig. 3 remain close to zero except at low Q2. This result is less reliable be-
cause of a rather strong cancellation of different contributions; yet we do not see
a mechanism in our model that could yield a relatively large amplitude of the
MAID phenomenological analysis.

Fig. 3. Scalar helicity amplitudes at the pole of the K matrix (W = 1530 MeV). Notation as

in Fig. 1.
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Abstract. The Nambu–Jona-Lasinio model has played an important conceptual and ped-

agogical role in hadronic physics to visualize the spontaneous chiral symmetry breaking,

the formation of the massive constituent quark and the behaviour of pion and sigma me-

son as a chiral rotation and vibration. I shall give a brief review of three new developments,

(i) some observables for pion, (ii)more consistent results in three-flavour systems after in-

troducing three-body and four-body interactions, and (iii) additional perspectives offered

by algebraic models, in particular the two-level quasispin model,

1 Introduction

The Nambu–Jona-Lasinio model (NJL) is still inspiring hadronic physicists to
gain a deeper qualitative or even semiquantitative understanding of the sponta-
neous chiral symmetry breaking, the formation of the massive constituent quark
and the properties of light mesons. Further encouragement is coming from the
progress how to derive NJL from QCD in a reasonable approximation, for exam-
ple the Bogolyubov compensation method which is presented by Boris Arbuzov
in these Proceedings.

On one hand, one is interested in further simplifications of NJL in order to
see the role of 1/N expansions, sum rules and the effective pion-pion interaction
(Sect. 4), as well as the bosonization in momentum space (Sect. 2). On the other
hand, the applicability of the model is largely extended by further “complica-
tions” such as the three-body and four-body forces (Sect. 3).

I apologize that the review of our work is much longer than that of our
friends, but you can find their presentation in these Proceedings.

2 Electromagnetic polarizabilities of pion

The Coimbra group [1] presented the calculation of pion electromagnetic dipole
and quadrupole polarizabilities. They obtain the sign and magnitude in agree-
ment with the respective experimental analysis based on the dispersion sum
rules. The result are consistent also with the chiral perturbation theory.
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For the neutral pion, the difference of the electric and magnetic dipole po-
larizabilities shows that the box contribution is largely canceled by the scalar
exchange. For the charged pion, however, the pion exchange diagram builds to-
gether with the box a gauge invariant amplitude which is an order of magnitude
smaller than the sigma-exchange diagram, and the pion loops are absent.

In the quadrupole polarizability difference of the neutral pion, the pion loop
is about twice the sigma-exchange and dominates. For the charged pion, the pion-
loop diagram has the same magnitude as the sigma-exchange term.

3 The effect of three-body and four-body interactions

The NJL model has been consistently extended to three-flavour systems, and re-
cently, electromagnetic and weak decays of scalar and vector mesons have been
calculated in leading orders of Feynman graphs [2,3]. For a good description of
vector mesons, a vector-vector and axial vector-axial vector interaction is needed
in addition to the usual scalar-scalar and pseudoscaar-pseudoscalar interaction.

Long ago, a three-body interaction (also called the “six-quark” t’Hooft inter-
action) was introduced in order to split the singlet and octet mesons – the U(1)
symmetry problem. However it destabilizes the vacuum. The introduction of the
four-body force (also called the “eight-quark interaction”) not only stabilizes the
vacuum, but also influences the phase transition in hot dense systems and in
strong magnetic fields [4]. This is a promising research topic for NJL.

4 The two-level quasispin model

In theMini-Workshop Bled 2006, 2007 and 2008 [5–8] Borut Oblak and I presented
a soluble two-level quasispin model of spontaneous chiral symmetry breaking,
inspired by the Nambu–Jona-Lasinio model. It is the hadronic analogue of the
Lipkin model in nuclear physics.

The model is characterized by a finite numberN of quarks occupying a finite
number N = NcNfVΛ3/3π2 of states in the Dirac sea as well as in the valence
space due to a sharp momentum cutoff Λ, and a periodic boundary condition
in a box V . We further simplify the one-flavour Nambu – Jona-Lasinio Hamilto-
nian (Nf = 1,Nc = 3) by taking all quark kinetic energies equal to 3

4
Λ and by

neglecting the interaction terms which change the individual quark momenta:

H =

N∑

k=1

(
γ5(k)h(k) 3

4
Λ+m0β(k)

)

−
2G

V

( N∑

k=1

β(k)

N∑

l=1

β(l) +

N∑

k=1

iβ(k)γ5(k)

N∑

l=1

iβ(l)γ5(l)

)
.

Here h = σ ·p/p is helicity and γ5 and β are Dirac matrices. In terms of quasispin
operators which obey spin commutation relations (α = x, y, z)

Rα =

N∑

k=1

1+ h(k)

2
jα(k) , Lα =

N∑

k=1

1− h(k)

2
jα(k) , Jα = Rα+Lα =

N∑

k=1

jα(k) ,
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the model Hamiltonian can be written as

H = 2P(Rz − Lz) + 2m0Jx − 2g(J2x + J2y) .

It commutes with R2 and L2 but not with Rz and Lz. Nevertheless, it is convenient
to work in the basis |R, L, Rz, Lz 〉 and diagonalize the Hamiltonian for fixed R and
L.

From the quasispin model of the Nambu–Jona-Lasinio type one can learn
several lessons:

(i) We show that the popular model parameters [9,10], Λ = 648 MeV, G = 40.6

MeV fm3, m0 = 4.58MeV, yield the phenomenological values of quark con-
stituent mass, quark condensate and pion mass both in the full Nambu –
Jona-Lasinio model as well as in our quasispin model (using in both cases the
Hartree-Fock + RPA approximations).

(ii) In the large N limit the exact results of our quasispin model approach the
HF+RPA values, thus giving credit to using HF+RPA in usual calculations.

(iii) In the quasispinmodel it is very instructive that the number of coloursNc and
the number of spatial states VΛ3/6π2 appear on equal footing in the product
N = 2NcVΛ3/6π2. The colour and the momentum quantum number together
are just the house number of the particle since the interaction does not depend
on them. Therefore it is the same limit N → ∞ whether we take the large Nc

limit or a large block V . This explains why even with 3 colours the quasispin
model behaves similarly as the theorems regarding large Nc limit suggest
(good HF approximation, suppression of off-diagonal terms and their effects,
etc.).

(iv) Most low-lying states in the excitation spectrum can be interpreted as multi-
pion states and one can deduce the effective pion-pion interaction and scat-
tering length. Also, some intruder states can be recognized as sigma-meson
excitations or their admixtures to multi-pion states.
Since we are working in a finite volume V with periodic boundary conditions
we cannot impose scattering boundary conditions. It is instructive that one
can nevertheless extract information on scattering from a discrete spectrum.
Energy levels of n-pion states can be interpreted to contain the average effec-
tive pion-pion potential V̄ : Enπ = nmπ + 1

2
n(n − 1)V̄.

We calculate the s-state scattering length in the first-order Born approxima-
tion (also derived by M.Lüscher [11] in a much more “sophisticated” way)

a =
mπ/2

2π

∫
V(r)d3r =

mπ

4π
V̄V .

In our example for N = 192 we have V̄ = −7.1MeV and V = π2N/Λ3 =

53 fm3 This gives amπ = (m2
π/4π)V̄V = −0.0836 not far from phenomeno-

logical value (see [5,8]).
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Abstract. This paper describes technical details of the experiment proposal submitted to

the MAMI/ELSA Program Advisory Committe 2009 to study the structure of the Roper

resonance by a measurement of recoil proton polarization components in the p(~e, e ′
~p)π0

reaction. These components exhibit strong sensitivities to the resonant Roper multipoles

M1− and S1− . The measurements will offer a unique insight for extracting information on

the N → R transition through comparison with the state-of-the-art models, and will also

provide severe constraints on these models in the second resonance region.

1 Introduction

The P11(1440) (Roper) resonance [1] is the lowest positive-parity N⋆ state. It is
visible in partial-wave decompositions of πN → πN and πN → ππN scattering
[2,3] as a shoulder around 1440MeV with a width of about 350MeV [4]. Its large
width causes it to merge with the adjacent D13(1520) and S11(1535) resonances,
and therefore it can not be resolved from theW-dependence of the cross-section
alone. A more selective and sensitive experiment has been designed in which the
structure of the Roper will be probed by measuring the recoil proton polarization
components P ′

x, Py, and P ′
z in the p(~e, e ′~p)π0 reaction at a specific value ofQ2,W

and centre-of-mass angle θ. It is for the first time that the Roper resonance is being
approached by means of the recoil-polarization technique, although this strategy
benefits substantially from the experience gained in the well-studied N → ∆ tran-
sition.

2 Relation to other experiments

The region of the Roper resonance has been explored to various extents in the
past both at Jefferson Lab and MAMI. In most of the experiments, only cross-
sections (angular distributions) were measured. Only a handful of single- and
double-polarization measurements have been performed so far.
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2.1 Jefferson Lab: Hall B (CLAS)

Kinematically most extensive data sets on single-pion electro-production in the
nucleon resonance regions come from Hall B at JLab. Angular distributions and
W-dependence of the electron beam asymmetry σLT ′ have been measured for
both charged and neutral channels in the P33(1232) region at Q2 = 0.4 and
0.65 (GeV/c)2 [5,6]. Dispersion-relation (DR) techniques and unitary isobar mo-
dels (UIM) have been applied to analyze the CLAS σLT ′ data in this range of
Q2 and spanning also the second resonance region, in order to extract the con-
tributions of the P33(1232), P11(1440), D13(1520), and S11(1535) resonances to
single-pion production [7].

A complete angular coverage was achieved, and several relevant amplitudes
could be separated in a partial-wave analysis restricted to l ≤ 2. The Legendre
moments D0, D1, andD2 of the expansions

σα = D0 +D1 P1(cosθ⋆

π) +D2 P2(cos θ⋆

π) + · · ·

for different partial cross-sections σα (or corresponding structure functions) were
determined, e.g. for σα ≡ σT+εσL. To achieve a good fit of θ∗π- andW-dependence
of σLT ′ , a simultaneous adjustment of theM1− and S1− amplitudes was needed.
Since both the pπ0 and the nπ+ channel were measured, the transverse helicity

amplitude A
p
1/2

∝p M
1/2

1− as well as the scalar S
p
1/2

∝p S
1/2

1− could be extracted.

The results show a rapid fall-off of A
p
1/2

and indicate its zero-crossing at approx-

imately Q2 = 0.5 (GeV/c)2.

In Hall B, there is also an approved experiment E03-105 [8] to measure single-
pion photo-production in both p(γ, π+)n and p(γ,p)π0 channels, with polarized
beam and longitudinally and transversely polarized target using CLAS. It will
measure two single- (T and P) and three double-polarization observables (G, F,
andH); in addition, the experiment E01-104will measure the double-polarization
observable E. The measurements will span the range 1300 ≤W ≤ 2150MeV and
achieve an angular coverage of −0.9 ≤ cosθ⋆ ≤ 0.9.

It is believed that this data will greatly constrain partial-wave analyses in
photo-production and reduce model-dependent uncertainties in the extraction
of nucleon resonance properties. A similar goal, but in electro-production, and
utilizing the recoil-polarimetry technique, has been put forward by the Hall A
Collaboration at JLab [9]. To some extent this experiment would be complemen-
tary to the effort with CLAS. However, due to Laboratory beam-time constraints,
it has been deferred.

2.2 Jefferson Lab: Hall A

Polarized electron beam and recoil-polarimetry capability of Hall A also allow ac-
cess to double-polarization observables in single-pion electro-production. Recoil-
polarization observables are composed of different combinations of multipole
amplitudes than observables accessible in the case of a polarized target.

The acceptance of CLAS is large enough to achieve a complete angular cov-
erage of the outgoing hadrons. This is not possible in the case of relatively small
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angular openings of the Hall A HRS spectrometers except at high Q2 where the
Lorentz boost from the center-of-mass to lab frame focuses the reaction products
into a cone narrow enough to provide a virtually complete out-of-plane accep-
tance. The E91-011 experiment in Hall A in the p(~e, e ′~p)π0 channel [10] was per-
formed at sufficiently high Q2 = (1.0± 0.2) (GeV/c)2 andW = (1.23± 0.02)GeV
to allow for a measurement of all accessible response functions, even those that
vanish for coplanar kinematics. Two Rosenbluth combinations and 14 structure
functions could be separated, allowing for a restricted partial-wave analysis giv-
ing access to all l ≤ 1 multipole amplitudes relevant to the N → ∆ transition.
Both multipoles indicate a rising trend approaching the W ∼ 1440MeV region,
again pointing towards the Roper.

Unfortunately, the cross-sections atW ∼ 1440MeV (for any Q2) are about an
order of magnitude smaller than in the ∆-peak. For high Q2 ∼ 1 (GeV/c)2, where
a large out-of-plane coverage would allow for a decent partial-wave analysis in
Hall A, the cross-sections are even smaller. Furthermore, due to the zero-crossing
uncertainty of theM1− multipole, it is not clear what value ofQ2 to choose in or-
der to have a prominentM1 signal. Furthermore, models indicate that the crucial
features of the Roper multipoles (or helicity amplitudes) are visible at relatively
small Q2 of a few 0.1 (GeV/c)2, nullifying the boost-advantage of the HRS spec-
trometers.

We note in addition that higher partial waves (l ≥ 2) in all JLab partial-
wave analyses so far needed to be constrained by models (just as in the CLAS
experiments). Thus, evenwith (almost) complete angular coverages, existing data
sets of finite statistical certainty do not allow for a “full” partial-wave analysis to
sufficiently large l.

2.3 MAMI/A2

In photo-production, the double-polarization asymmetryG for linearly polarized
photons (Pγ) and target nucleons polarized longitudinally (Pz) along the photon
momentum, exhibits a very strong sensitivity to the Roper resonance. It is defined
as

G =
dσ(Φ = 45◦, z) − dσ(Φ = −45◦, z)

dσ(Φ = 45◦, z) + dσ(Φ = −45◦, z)
,

where Φ is the angle between the photon polarization plane and the reaction
plane. The cross-section has the form

dσ(θπ, Φ) = dσ(θπ)
(
1− Pγ Σ(θπ) cos 2Φ + PγPzG(θπ) sin 2Φ

)
.

In the ~γ~p → pπ0 reaction, G depends on the interference of the much better-
known M1+ multipole governed by the ∆(1232), and the M1− driven by the
Roper,

G(θπ) ≃ sin2 θπ ImM1+ ReM1− .

The asymmetry G will be measured by virtue of its sin 2Φ-dependence at the A2
Collaboration at MAMI with the Φ-symmetric detector DAPHNE. The expected
sensitivity is shown in Fig. 1. In addition to the pπ0, the nπ+ channel will be
measured, allowing for the isospin decomposition of the partial waves.
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Fig. 1. MAID prediction for G in ~γ~p → pπ0 : angular distribution at W = 1440MeV and

energy dependence at θπ = 90◦. The dotted curves correspond to the Roper switched off.

2.4 MAMI: A1

All three recoil polarization components (P ′
x/Pe, Py, and P

′
z/Pe) in the p(~e, e ′~p)π0

reaction at the ∆ resonance, at Q2 = 0.121 (GeV/c)2 have been measured by the
A1 Collaboration at MAMI [11]. These components, in particular the P ′

x, were
shown to be highly sensitive to the Coulomb quadrupole to magnetic dipole ratio

CMR = ImS
(3/2)

1+ /ImM
(3/2)

1+

in the N → ∆ transition. (For the results of a similar, far more ambitious experi-
ment at higher Q2 at JLab, see [12].)

3 Proposed measurement at MAMI/A1

A straight-forward extension of the N → ∆ program in the ~pπ0 channel into
the Roper region appears to be unfeasible at Mainz/A1 due to instrumental con-
straints. Wishing to cover a reasonably broad kinematic range in the Roper re-
gion, one typically encounters angular and momentum settings and focal-plane
polarimetry conditions which are unfavourable for the A1 spectrometer setup
(assuming the existence of a fully equipped and operational KAOS spectrome-
ter).

However, a good compromise can be found by going to non-parallel (or non-
anti-parallel) kinematics for the proton. By doing this, we sacrifice some of the
high sensitivities to the inclusion/exclusion of the Roper seen in the predicted
polarization components, but we tune the kinematics such that we balance well
between the physics sensitivities and maintaining good figures-of-merit for the
FPP, as well as satisfying all geometry and momentum requirements. We have
proposed the following baseline kinematics:

Ee = 1500MeV , Q2 = 0.1GeV2 , E ′
e = 811MeV/c , θe = 16.5◦
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for the electron (to be detected in Spectrometer B) and corresponding to an in-
variant mass of W = 1440MeV. The hadron kinematics was chosen to be at
θcms = 90◦, which translates into

pp = 668MeV/c , Tp = 214MeV , θp = 54.2◦

to be covered by Spectrometer A. The proton kinetic energy in the center of the
carbon secondary scatterer in the FPP is then about Tcc ≈ 200MeV, which trans-
lates into a favourable figure-of-merit (FOM) of about fFPP ≈ 0.006. The FOM
drops to ≈ 0.003 for θ ≈ 75◦.

Fig. 2. Expected uncertainties on P ′
x , Py and P ′

z for 100 h beamtime;W-dependence.

The following estimates have been done with the dipole approximation for
the precession matrix (χ ≈ 215◦), assuming 100h of 10µA beam with Pe = 75%
polarization on a 5 cm LH2 target, and reasonably conservative cuts in the simu-
lation. One obtains ≈ 7000 counts/hour (before the FPP cuts) and the error esti-
mates (for θ = 90◦)

∆P ′
x =

1

Pe

√
2

N0 f
≈ 0.029

∆Py =
1

cosχ

√
2

N0 f
≈ 0.027

∆P ′
z =

1

Pe

1

sinχ

√
2

N0 f
≈ 0.051

Figure 2 shows the level of accuracy that can be achieved under these assump-
tions for the polarization components P ′

x, Py and P ′
z, shown here as a function of

W. One can see that we are sensitive mostly to transverse helicity amplitudes and
that P ′

x in some sense is useless except for calibration purposes.
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3.1 Relation of polarization components to mutipoles

The cross-section for the p(~e, e ′~p)π0, allowing for both a polarized electron beam
and detection of the recoil proton polarization, is given by

dσ

dE ′
e dΩe dΩ⋆

p

=
σ0

2

{
1+ P · ŝr + h

[
Ae + P ′ · ŝr

]}
,

where σ0 ≡ dσ(ŝr)+dσ(−ŝr) is the unpolarized cross-section, ŝr is the proton spin
vector in its rest frame, h is the helicity of the incident electrons, P is the induced
proton polarization, Ae is the beam analyzing power, and P ′ is the vector of spin-
transfer coefficients. The polarization of the recoiled proton consists of a helicity-
independent (induced) and a helicity-dependent (transferred) part, Π ≡ P +hP ′.
(Alternative notations for the polarization components is P ′

x ↔ −Pt, Pn ↔ Py, and
P ′
z ↔ −Pl.)

The structure functions contain the following combinations of the multipoles
relevant for the Roper (the corresponding polarization component is given in the
bracket before the structure function):

(Pn)R
n
T = −ImE∗0+ (3E1+ +M1+ + 2M1−)

contains the leading M1− amplitude in the imaginary part of the interference
with the E0+ non-resonant amplitude; this is matched with the

(Pl)R
l
TT ′ ∝ ReE∗0+ (3E1+ +M1+ + 2M1−)

response which contains the real part of the same interference. The terms

(Pn)R
n
TL contains Im L∗1−M1− ,

(Pl)R
l
TL ′ contains Re L∗1−M1−

contain (real and imaginary) interferences of both resonant multipoles but these
probably have less relevance because both are very small. In addition, there are
the

(Pn)R
n
L ∝ −2 ImL∗0+ (2L1+ − L1−) ,

(Pt)R
t
TL ′ ∝ Re

{
L∗0+ (2M1+ +M1−) +

(
2L∗1+ − L∗1−

)
E0+ + · · ·

}

terms, as well as the (Pn)R
n
TT that contains sinθ cosθM∗

1+M1−. The latter term is
not accessible at θ = 90◦.

Even with only two angular points (θ = 90◦ and θ = 75◦), a strong physics
case can be made. The experiment will possess enough power to distinguish
between Roper on/off calculations in both MAID2007 and DMT2001 models at
these kinematics. The differences in the models originate in different treatments
of resonances in isobar models (like MAID) versus those of dynamical models
(like DMT), that is, of having “dressed” vs. “bare” resonant vertices.
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9. O. Gayou, S. Gilad, S. Širca, A. Sarty (co-spokespersons), JLab Proposal PR05-010.

10. J. J. Kelly, A. Sarty, S. Frullani (co-spokespersons), JLab Experiment E91-011.

11. Th. Pospischil et al. (A1 Collaboration), Phys. Rev. Lett. 86 (2001) 2959.

12. J. J. Kelly et al. (Hall A Collaboration), Phys. Rev. Lett. 95 (2005) 102001; see also

J. J. Kelly et al. (Hall A Collaboration), Phys. Rev. C 75 (2007) 025201.



BLED WORKSHOPS

IN PHYSICS

VOL. 10, NO. 1
p. 88

Proceedings of the Mini-Workshop
Problems in Multi-Quark States

Bled, Slovenia, June 29 - July 6, 2009

Hadronic spectroscopy at Belle⋆
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Abstract. The Belle experiment continues with study of DsJ particles, as well as charmo-

nium and charmonium-like states. Recent results on these topics are briefly mentioned.

Belle is an experiment at the e+e− collider KEKB [1]. The main goal of the ex-
periment is a precision measurement of CP violation in the system of B mesons.
The asymmetric KEKB collider operates around the center-of-mass energy of the
Y(4S) resonance; the total collected integrated luminosity is about 945 fb−1 in
July 2009. The large amount of data and excellent detector performances enable
successful study of other topics besides properties of Bmesons. In what follows,
news from Belle about charmed strange mesons, charmonium and charmonium-
like states will be brieflymentioned. Details of the reported analyses can be found
in quoted references.

New charmed strange meson, DsJ(2700)
+ , was observed in the decay chan-

nel D0K+ [2]. Angular analysis favours spin-parity assignment 1−. It is possible
that this particle is X(2690), which was previously observed by BABAR [3].

Partial wave analysis of another charmed strange meson,Ds1(2536)+ , in de-
cay channelD∗+K0

S revealed domination of the Swave [4], at variancewith HQET
prediction.

Properties of charmonium-like state, X(3872), were further studied. Positive
charge parity is established [5], while favoured JP is 1+ or 2−. Belle updated the
analysis of the X(3872) in theD0D̄∗0 decay channel [6]. The measuredmass value
is compatible with the new BABAR measurement [7]. According to all measure-
ments, the favoured interpretation is that the X(3872) is a mixture of the D0D̄∗0

molecule and a cc state.

A new state, named Z+(4430) and decaying toψ(2S)π+, is observed in the B
meson decays to Kπ±ψ(2S) final state [8]. An updated measurement, based on a
full Dalitz plot analysis of the Kπ±ψ(2S) final state, was performed recently [9].
Results of this analysis confirm the original discovery of the Z+(4430).

Two new states, Z+(4050) and Z+(4250), decaying to χc1π
+, were observed

in K−χc1π
+ decays of B0 [10]. All three observed charged charmonium-like states

– Z+(4430), Z+(4050) and Z+(4250) – are serious tetraquark candidates.

⋆ Talk delivered by T. Živko
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New particles, X(3940) and X(4160), decaying to D∗D̄ and D∗D̄∗ were ob-
served in events with double cc production [11]. The established experimental
technique was used to measure the cross section for e+e− → J/ψcc̄ in a model
independent way [12].

Several new Y states and peaks in mass plots were observed in initial state
radiation events [13]. These states are regarded as serious charmonium - gluon
hybrid candidates [14].

As new experimental data are still accumulated and many studies are ongo-
ing, more interesting results on these and similar topics are to be expected from
Belle in the near future.
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Publikacijo sofinancira Javna agencija za knjigo Republike Slovenije
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