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Simon Širca, Ljubljana, simon.sirca@fmf.uni-lj.si

Electronic edition

http://www-f1.ijs.si/BledPub/



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V

Predgovor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII

Meson dynamics in the vector-scalar sector

L. Alvarez-Ruso, J. A. Oller, J. M. Alarcón . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

0++ states in a large-Nc Regge approach

Enrique Ruiz Arriola and Wojciech Broniowski . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Transversity structure of the pion in chiral quark models

W. Broniowski, E. Ruiz Arriola, A. E. Dorokhov . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Spectroscopy of heavy baryons

Joseph P. Day, Ki-Seok Choi, Willibald Plessas . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Baryons’ anomalous magnetic moments in a UL(3) × UR(3) chiral sym-

metric theory
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Preface

With the MiniWorkshop behind us, do we now better understand hadronic spec-

tra? Or rather, will these Proceedings remind you that at our meeting, as many
new problems have been opened as old ones resolved? But it is clear that we

made progress on several fronts, and have learned a lot from each other.

Electroexcitation of baryons continues to be a fruitful source of information about

the structure and spectra of light baryons. It is encouraging that many ideas, es-

pecially about pion clouds, are applicable also at higher energies, in deep inelastic
scattering. The role of relativity has been further documented in understanding

strange baryon spectra. The problem of theoretically underestimated resonance

widths persists, while coupled-channels approaches instill some hope in its ulti-
mate resolution.

Lattice QCD has become a respectable operational theory, and now even quark
modelists can resort to it to obtain some insights, for example, into pion-pion

scattering or transverse structure of the pion. The 1/Nc expansion has also gained
some appreciation by suggesting, among other things, a SU(2Nf) classification of

baryon multiplets (for Nc colours and Nf flavours). This expansion also helps to

understand scalar mesons and their mixing with glueballs.

New resonances in the charmonium spectrum still excite interaction between ex-

perimentalists and theorists (as much as the interaction between dimeson and
tetraquark configurations). Our eyes should thus also be aimed at Heaven: per-

haps new surprises about stability of 3-quark clusters in dense nuclear matter are
hidden in the clues provided by the heavy magnetars?

Therefore, we need you at Bled again, next year.

Ljubljana, November 2011 M. Rosina
B. Golli
S. Širca





Predgovor

Ko se oziramo nazaj na letošnjo Blejsko delavnico iz fizike, ali se nam zdi, da sedaj

bolje razumemo hadronske spektre? Ali pa nas bo ta Zbornik opomnil, da smo na
našem srečanju odprli vsaj toliko novih problemov, kot smo rešili starih? Jasno pa

nam je, da smo napredovali na mnogih frontah in da smo se veliko naučili drug

od drugega. Ta predgovor v slovenščini naj služi tudi kot kratek povzetek naših
aktivnosti in dosežkov.

Vzbujanje barionov s trki elektronov je še vedno ploden vir informacij o zgradbi
in spektrih lahkih barionov. Vzpodbudno je, da veljajo mnoge ideje, zlasti o pion-

skih oblakih, tudi pri visokih energijah pri globoko neelastičnem sipanju. Vedno

močneje se zavedamo vloge relativnosti, ki se je izkazala kot neizogibni sestavni
del pristopov k razumevanju spektrov čudnih barionov. Vseeno nas še vedno skr-

bijo problemi s širinami resonanc, saj enostavni teoretični modeli napovedujejo
premajhne širine; rešitev pričakujemo šele od računov s sklopljenimi razpadnimi

kanali.

Kromodinamika na mreži si je pridobila ugled, da vsaj kvalitativno uspešno si-

mulira lastnosti marsikaterih količin. Celo mojstri kvarkovskih modelov lahko iz

nje dobijo koristne vpoglede, recimo v sipanje piona na pionu ali v transverzalno
zgradbo piona. Razvoj po recipročnem številu barv je bil tudi odmeven. Med

drugim je sugeriral klasifikacijo barionskih multipletov z grupo SU(2Nf) v zvezi
z okusi kvarkov, pomagal pa je tudi razumeti mešanje skalarnih mezonov med

seboj in z gluonijem.

Nove resonance v spektru čarmonija še vzpodbujajo sodelovanje med eksperi-

mentalci in teoretiki (kakor tudi med dimezonskimi in tetrakvarkovskimi konfig-

uracijami). Ozirati pa se moramo tudi v nebo: morda nas čakajo presenečenja o
stabilnosti trokvarkovskih gruč znotraj goste jedrske snovi, ki jih skrivajo težke

magnetne zvezde, magnetarji.

Torej vas drugo leto spet potrebujemo na Bledu!

Ljubljana, novembra 2011 M. Rosina
B. Golli
S. Širca
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Meson dynamics in the vector-scalar sector⋆

L. Alvarez-Rusoa, J. A. Ollerb, J. M. Alarcónb

a Instituto de Fı́sica Corpuscular, UVEG-CSIC, Valencia, Spain
b Departamento de Fı́sica, Universidad de Murcia, Murcia, Spain

Abstract. We have studied the φ(1020)f0(980) and φ(1020)a0(980) S-wave scattering at

threshold energies employing chiral Lagrangians coupled to vector mesons by minimal

coupling. Theφ f0 (φa0) interaction kernel is obtained by treating the f0(980) [a0(980)] as

bound (dynamically generated) state and resuming unitarity loops.We are able to describe

the e+e− → φ(1020)f0(980) recent scattering data concluding that the Y(2175) resonance

has a large φ(1020)f0(980) component. We also predict a strong φ(1020)a0(980) interac-

tion that can be studied in e+e− → φπ0η. For some sets of parameters a clear resonant

peak indicates the presence of an isovector companion of the Y(2175).

1 Introduction

A new hadronic spectroscopy has emerged in the last decade thanks to the ex-

perimental activity carried out meanly at e+e− facilities (BES at IHEP, CLEO

at LEPP, BABAR in SLAC, Belle at KEK) but also at pp̄ colliders (CDF,D0 at
FNAL) and in fixed target experiments such as HERA-B at DESY. Indeed, our

understanding of meson spectroscopy has been challenged by the observation of
several exotic states (extensive reviews can be found, for example, in Ref. [1]).

These can be neutral mesons with quantum numbers that are not allowed for

qq̄ pairs (JPC = 0−−, 0+−, 1−+, 2+−, . . .) but also states with conventional quan-
tum numbers that cannot be easily accommodated into the constituent quark

model. One such a state is the resonance φ(2170) (or Y(2175), as we will refer
to it from now on), a light unflavored meson with quantum numbers JPC = 1−−,

IG = 0−, mass of 2175±15MeV andwidth ΓY = 61±18MeV (PDG estimates [2]).

It was first observed by the BABAR Collaboration [3, 4] in the initial-state ra-
diation process e+e− → φf0(980)γ → K+K− ππγ and also found by BES in

J/Ψ→ ηφ f0(980) decay [5]. The Belle Collaboration has performed the most pre-
cise measurements so far of the reactions e+e− → φπ+π− and e+e− → φf0(980)

finding MY = 2079 ± 13+79
−28 MeV and ΓY = 192 ± 23+25

−61 MeV [6]. The obtained

width is larger than in previous measurements but the error is also large.

These experimental findings have triggered a considerable theoretical activ-
ity aimed at unraveling the nature and properties of the Y(2175). It has been inter-

preted as a tetraquark [7–9], with a mass of 2.21±0.09 GeV [7] or 2.3±0.4GeV [8]
calculated using QCD sum rules with meson-meson (ss̄)(ss̄) currents [7] and

⋆ Talk delivered by L. Alvarez-Ruso



2 L. Alvarez-Ruso, J. A. Oller, J. M. Alarcón

adding diquark-antidiquark (ss)(s̄s̄) ones [8]. In the diquark-antidiquark picture

a prominent Y(2175) → ΛΛ̄ decay mode appears [9]. The Y(2175) has also been

identified with the lightest hybrid ss̄g state [10] with K1(1400)K and K1(1270)K

as dominant decay channels. Conventional ss̄ states in 23D1 or 33S1 configura-

tions have been considered as their masses are expected to be compatible with the
Y(2175) [11] although the estimated widths are too large. Reference [12] studies

the three-body KK̄φ(1020) scattering with two-body pseudoscalar-pseudoscalar

and vector-pseudoscalar interactions taken from unitarized chiral perturbation
theory [13,14]. A resonance with 2170 MeVmass is generated albeit with a width

of only 20 MeV.

2 φ(1020) f0(980) scattering

In Ref. [15] we have studied the S-wave scattering of the vector meson φ(1020)

with the scalar f0(980), the channel with the same quantum numbers as the Y(2175).

This is feasible because both the φ(1020) and the f0(980) are rather narrow reso-

nances.

First we derive the kernel of the φf0 interaction. For this we take advantage

of the fact that the f0(980) scalar meson is successfully described as a KK̄ bound
state [13, 16]. This means that in the second Riemann sheet, in the vicinity of the

f0(980) pole

−iTKK̄ =
γ2

0

k2 −M2
f0

+γ1+γ2(M2
f0

−k2)+. . . , and lim
k2→M2

f0

(M2
f0

−k2)(−iTKK̄) = γ2
0 .

(1)

Therefore, the φ(1020)f0(980) interaction can be obtained from the φ(1020)KK̄

one by extracting the residue at the f0(980) double pole position that arises from
the initial and final KK̄ rescatterings.

4 5 6

8 9 11 127

14 16 1715

1 2 3

13

10

Fig. 1. Feynman diagrams for φKK̄ scattering. Dashed lines denote kaons and solid ones,

vector mesons.

The contributions to the φ(KK̄)I=0 → φ(KK̄)I=0 amplitude, determined with
chiral Lagrangians coupled to vector mesons are depicted in Fig. 1. It can be

shown [15] that close to the φKK̄ threshold and taking into account that the
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f0(980) is also close to the KK̄ threshold, the dominant term is given by diagram

2.

The rescattering of initial and finalKK̄ pairs in this dominant amplitude gives
rise to the diagram on the left hand side of Fig. 2. For the (KK̄)2 vertices we take

...
... +

f0(980)

f0(980)

f0(980)

f0(980)

Fig. 2. Dominant contribution to the φ(KK̄)I=0 amplitude with KK̄ initial and final state

interactions that contain f0(980) poles.

only on-shell amplitudes. The off-shell parts are proportional to the inverse of

kaon propagators and cancel with them in the calculation of the loop, resulting
in amplitudes that do not correspond anymore to the dominant triangular kaon-

loop but to other topologies. After projecting into S-waves

MS
I=0 = −tφK TKK̄(k2) TKK̄(k ′2)LS (2)

where tφK and TKK̄ are the full scattering amplitudes, k2(k ′2) is the initial (final)
KK̄ invariant mass and

LS =
1

4π2

∫+1

−1

d cos ρ

Q2

∫1/2

0

dx
1

c
[log (1− 2x/c) − log (1+ 2x/c)] , (3)

with

c2 =
4

Q2

[

x2Q2 + 2k2x(1− 2x) −m2
K + iǫ

]

. (4)

HereQ2 = −2p2(1− cos ρ) in terms of the relative angle ρ between the incoming

p and outgoing p ′ φ three-momenta in the φf0 CM frame.

The residue at the f0(980) double pole is the f0(980)φ(1020) potential

Vφf0
=
1

γ2
0

lim
k2,k ′2→M2

f0

(k2 −M2
f0

)(k ′2 −M2
f0

)MS
I=0 = −tφK γ

2
0 LS , (5)

which is unitarized as schematically shown in Fig. 3 leading to the full φf0 am-

plitude

Tφf0
=

Vφf0

1+ Vφf0
Gφf0

. (6)

The loop function Gφf0
is expressed in terms of a renormalization scale fixed to

the ρ meson mass µ = 770 MeV and a subtraction constant a1 to be fitted to
data [15].

We have performed fits to the e+e− → φf0(980) BABAR and Belle data [4,

6]. The φ(1020) f0(980) strong scattering amplitude is employed to correct the
production process by final state interactions (FSI)

σ(s) =
σBG(s)

|1+ Vφf0
Gφf0

|
2
. (7)
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f0 f0 f0 f0 f0 f0 f0

= +
φ φ φ φ φ φ φ

+ ...

(1) (2)

Fig. 3. Diagrammatic representation of the full φf0(980) amplitude.

For the nonresonant background production cross section the Belle fit (Fig. 6(b)

of Ref. [6]) has been adopted. In our fits the f0(980) properties, pole positionMf0

and residue γ2
0 are taken from two different studies [17, 18]; tφK and a1 are free

parameters. The results are presented in Table 1 and Fig. 4

Mf0
[MeV] (fixed) γ2

0 [GeV2] (fixed) tφf0
a1

Fit 1 980 16 −54 ± 4 −2.41 ± 0.14

Fit 2 988 13.2 −27 ± 1 −2.61 ± 0.14

Table 1. Fits to the e+e− → φ(1020)f0(980) BABAR [4] and Belle [6] data.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1.9  2  2.1  2.2  2.3  2.4  2.5  2.6  2.7  2.8

σ
[n
b
]

√
s [GeV]

Fig. 4. Cross section for e+e− → φ(1020) f0(980). The experimental data are from Ref. [4]

(diamonds and crosses) and Ref. [6] (empty boxes). The solid and dash-dotted lines corre-

spond to the first and second fits of Table 1. The dashed line shows the background.

The description of the data is satisfactory, particularly the peak position and
width. Worse is the agreement at

√
s < 2 GeV: the suppression of the theoretical

curves happens because the Vφf0
potential is large due to the 1/Q2 factor. We ob-

tain negative values for a1 as it should be for a dynamically generated resonance.
Moreover, the resulting scale Λ = (4πf)/

√

|a1| ≃ 0.75 GeV, preserves a natural

size aroundMρ. The interpretation of the tφK values is more difficult due to the
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lack of information about the φK interaction close to threshold. Nevertheless one

should recall that the K1(1400) resonance is only 100 MeV below this threshold.

Therefore, the assumption thatφK scattering is dominated by the K1(1400) would
explain the negative sign of tφK because

tφK ∼
γ2

K1φK

M2
K1

− (Mφ +mK)2
< 0 . (8)

Our fitted tφK values are very different from those used in Ref. [12], taken from
Ref. [14] which does not contain the K1(1400). With a tφK ∼ 12− 7 i as in Ref. [14]

we would not describe the e+e− → φ(1020) f0(980) data. This means that even if

the results of both Refs. [12, 15] support the interpretation of the Y(2175) as a dy-
namically generated resonance, the two descriptions are quantitatively different.

3 φ(1020) a0(980) scattering

In the present contest, it is relevant to establish whether there is an isovector com-

panion of the isoscalar Y(2175). It will help constraining theoretical models. In
particular, the calculation of Ref. [12] does not find any resonance in the isovector

φ(1020)a0(980) S-wave channel. Experimentally, this resonance could show up in
e+e− → φ(1020)a0(980) → φ(1020)π0η, as suggested in Ref. [19] or in e+e− →

φ(1020)a0(980) → φ(1020)K+K− [20]. Our study of the φ(1020)a0(980) [21] in-

teraction proceeds as described in the previous section but replacing the scalar-
isoscalar f0(980) by the scalar-isovector a0(980). The latter is treated as a dynam-

ical resonance in coupled channels (mainly KK̄ and π0η) whose properties de-

pend on the adopted approach (see Table 2). No new free parameters need to
be introduced if one demands that the e+e− → φ(1020) f0(980) cross section is

reproduced and takes tφK, a1 from Table 1.

Ma0
[GeV] γ2

KK̄ [GeV2]

BS 1.009 + i 0.056 24.73 − i 10.82

N/D 1.055 + i 0.025 17.37 − i 24.77

Table 2. a0(980) properties, pole position Ma0
and residue γ2

KK̄ , as obtained with the

Bethe-Salpeter (BS) equation [13] and the N/D method [18].

We have investigated the corrections to the e+e− → φ(1020)a0(980) →

φ(1020)π0η reaction that arise from φ(1020)a0(980) FSI finding strong modifi-
cations (see Fig. 5). If the a0(980) properties from the N/D method are taken, a

strong peak around 2.03 GeV is observed, signaling the presence of the dynam-
ically generated isovector 1−− resonance. For the BS pole no peak is generated

but a strong reduction of the cross-section takes place. This result further sup-

ports the idea that a study of the e+e− → φ(1020)a0(980) reaction, which should
be accessible at present e+e− factories, may provide novel relevant information

about hadronic structure and interactions in the 2 GeV region.
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Fig. 5. e+e− → φ(1020)a0(980) → φ(1020)π0η cross section. The dotted lines in both

plots is the result of Ref. [19] where final state φ(1020)a0(980) rescattering was not con-

sidered. The rest of the lines include FSI for the sets of parameters given in Tables 1, 2.
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Abstract. Scalar-isoscalar states (JPC = 0++ ) are discussed within the large-Nc Regge ap-

proach. We find that the lightest f0(600) scalar-isoscalar state fits very well into the pattern

of the radial Regge trajectory where the resonance nature of the states is advantageously

used. We confirm the obtained mass values from an analysis of the pion and nucleon spin-

0 gravitational form factors, recently measured on the lattice. We provide arguments sug-

gesting an alternating meson-glueball pattern of the 0++ states, which is supported by

the pseudoscalar-isovector 0+− excited spectrum and asymptotic chiral symmetry. Finally,

matching to the OPE requires a fine-tuned mass condition of the vanishing dimension-2

condensate in the Regge approach with infinitely many scalar-isoscalar states.

1 Introduction

The goal of this talk is to discuss various intriguing aspects of the spectrum of

scalar-isoscalar states. Approaches developed in recent years may shed new light
on this long-elaborated problem in hadronic physics.

Subsequent hadron resonances listed in the Particle Data Group (PDG) tables

increase their mass up to the upper experimental limit of 2.5 GeV, while their
width remains bound within 500 MeV. In Fig. 1 we show separately the widths

of all baryons and mesons listed in the PDG tables [1] as functions of the mass
of the state. One naturally expects that broad resonances, i.e., with Γ ∼ m, escape

phenomenological analysis; even if they existed, they might be missing from the

PDG as difficult to assess experimentally. Note, however, that with the exception
of the notorious f0(600) resonance and a few baryon and meson states, the ratio

is bound by the line Γ/m ∼ 1/3 (the dashed line in Fig. 2).

A natural and model-independent framework to understand this feature is
provided by the limit of large number of colors in QCD. Indeed, in this large-

Nc limit, with g2Nc fixed, baryons are heavy with mass m = O(Nc) and width
Γ = O(N0

c) [2,3],while mesons and glueballs are stable, withmass independent of

Nc, namelym = O(N0
c), and width Γ suppressed as 1/Nc and 1/N2

c, respectively.

This means that Γ/m is suppressed (see, e.g., [4] for a review). In particular, one
has Γ/m ∼ N−1

c for mesons and baryons, while Γ/m ∼ N−2
c for glueballs.1

⋆ Talk delivered by Enrique Ruiz Arriola
1 Fig. 1 suggests that it is reasonable to assume that excited states in the spectrum follow

a more accurate large-Nc pattern than the ground state.
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Fig. 1.Width of all baryons (left panel) and mesons (right panel) listed in the PDG tables [1]

as a function of the hadron mass (in GeV). The surface of each point is proportional to the

(2J + 1) spin degeneracy, while the intensity is proportional to the isospin degeneracy

(2I + 1).

Fig. 2. Same as Fig. 1 for the width/mass ratio. The large-Nc limit predicts Γ/m ∼ O(N−1
c ).

The dashed horizontal line corresponds to 1/3. The gray bands reflect the uncertainties of

the fit Γ/m = 0.12(8).

On the other hand, at high excitationsmesons are expected to resemble strings

of length l ∼ m/σ, with σ denoting the string tension (see, e.g., Ref. [5] and ref-

erences therein). Actually, the decay rate of a string per unit time, Γ , is estimated
to be proportional to the length [6, 7], which immediately yields constant Γ/m.2

In Fig. 2 we show the ratio of widths to masses of all baryons and mesons listed

in the PDG tables [1], plotted as functions of the mass of the state. If we compute
the average weighted with the (2J + 1) spin degeneracy and its spread, we find

(α are the remaining quantum numbers, including isospin)

Γ

m
≡
∑

J,α

(2J + 1)
ΓJ,α

mJ,α

= 0.12(8) (1)

for both baryons and mesons! This rather small ratio, complying to the large-Nc

and string-model arguments, suggests that this is a generic feature of the hadronic
spectrum rather than a lack of experimental ability to resolve too broad states.

One may thus assert in this regard that the PDG spectrum is fairly complete.

2 The argument directly carries over to baryons, treated as a quark-diquark string.
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2 Masses of resonances

A resonancemay be interpreted as a superposition of stateswith a givenmass dis-
tribution, approximately spanning them±Γ/2 interval. Of course, the shape of the

distribution depends on the particular process where the resonance is produced,
and thus on the background. The rigorous quantum-mechanical definition of the

resonance corresponds to a pole in the second Riemann sheet in the partial-wave

amplitude of the corresponding decay channel, which becomes independent of
the background. However, although quoting the pole is highly desirable, with a

few exceptions this is not what one typically finds in the PDG.

As a matter of fact, several definitions are used: pole in the second Riemann

sheet, pole in the K-matrix, Breit-Wigner resonance, maximum in the speed plot,
time delay, etc. (see, e.g., [8, 9]). Clearly, while all these definitions converge for

narrow resonances, even for broad states we expect the masses to be compatible

within their corresponding m ± Γ/2 intervals. As mentioned, the values listed in
the PDG for a given resonance correspond to different choices and/or processes,

but mostly the results are compatible within the estimated width differences.

The lowest resonance in QCD is the 0++ state f0(600) or the σ−meson. It

appears as a complex pole in the second Riemann sheet of the ππ scattering am-
plitude at

√
sσ = mσ − iΓσ/2 with mσ = 441+16

−8 and Γσ = 544+18
−24 MeV [10] (see

also Ref. [11]). While these are remarkably accurate, it is unclear whether these

numbers can be directly used in hadronic physics. An analysis of the role played
by the σ as a correlated 2π exchange in the central component to the NN force

shows that the complex-pole exchange does not accurately describe this effect in
the range 1 fm < r < 5 fm, but prefers a value in between the pole and the Breit-

Wigner approximation, mσ = 600(50) MeV [12]. The Breit-Wigner parameters

are (mσ, Γσ) = (841(5), 820(20)) MeV [13]. For the time delay method we obtain
(mσ, Γσ) ∼ (475, 630) MeV. As we see, the different determinations agree within

the widemσ ± Γσ/2 interval.

3 Scalar Regge spectrum

Higher 0++ states listed in the PDG [1] follow roughly the general pattern of
increasing mass but not their width. Radial and rotational Regge trajectories were

analyzed in Ref. [14]. For scalar states [15] two parallel radial trajectories could
then be identified, including three states per trajectory. In a recent work [16, 17]

(see also [18]) we have analyzed all the 0++ states which appear in the PDG tables

(see Fig. 3) and found that all fit into a single radial Regge trajectory of the form

MS(n)2 =
a

2
n +m2

σ. (2)

The mass of the σ state can be deduced from this trajectory as the mass of the low-
est state. The resonance nature of these states suggests to use the corresponding

half-width as the mass uncertainty in the χ2 fit:

χ2 =
∑

n

(

Mf,n −MS(n)

Γf,n/2

)2

. (3)
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Fig. 3. Radial Regge trajectory corresponding to the squared mass of all JPC = 0++ scalar-

isoscalar and JPC = 0−+ pseudoscalar-isovector states listed in the PDG tables [1]. The

four heaviest 0++ and two 0−+ states are not yet well established and are omitted from

the PDG summary tables. The error bars correspond to the errors in the determination of

the square of mass as ∆m2 = mΓ with Γ from [1]. The straight line is the result of our

joined fit. Labels of 0++ states are above their mark whereas labels of 0+− states are below

their mark.

Minimization yields χ2/DOF = 0.12, with

a = 1.31(12) GeV2, mσ = 556(127) MeV. (4)

Formula (2) is actually equivalent to two parallel radial Regge trajectories with
the standard slope,

MS,−(n)2 = an+m2
σ, (5)

MS,+(n)2 = an+m2
σ +

a

2
, (6)

where a = 2πσ, and σ is the string tension associated to the potential V(r) = σr

between heavy colored sources. The value
√
σ = 456(21)MeV obtained from our

fit agrees well with lattice determinations of
√
σ = 420 MeV [19]. Of course, one

expects some of these states to correspond eventually to glueballs. However, there

seems to be no obvious difference between mesons and glueballs, as far as the
radial Regge spectrum is concerned. Note that Casimir scaling suggests that the

string tension is σglueball = 9
4
σmeson, but this holds in the case of fixed and heavy

sources. The fact that we have light quarks might explain why we cannot allocate
easily the Casimir scaling pattern in the light-quark scalar-isoscalar spectrum.

4 Interpolating fields

For scalar states a measure of the spectrum is given in terms of the (gauge and

renorm invariant) trace of the energy momentum tensor [20]

Θµ
µ ≡ Θ =

β(α)

2α
GµνaGa

µν +
∑

q

mq [1+ γm(α)] q̄q. (7)
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Here β(α) = µ2dα/dµ2 denotes the beta function, α = g2/(4π) is the running

coupling constant, γm(α) = d logm/d logµ2 is the anomalous dimension of the

current quark massmq, and G
a
µν is the field strength tensor of the gluon field.

It is interesting to consider the situation of massless quarks, where things
become somewhat simpler. Then, we have in principle two scalar operators with

smallest canonical dimensions, the gluon G2 and the quark q̄q. While these two

operators are both scalars, they are chirally even and odd, respectively, i.e., un-
der the q → γ5q transformation. Because the chiral symmetry is spontaneously

broken, there is some mixing between G2 and q̄q. These operators connect scalar

states to the vacuum through the matrix element

〈0|Θ|n〉 = m2
nfn , 〈0|q̄q|n〉 = mncn . (8)

The two-point correlators read

ΠΘΘ(q) = i

∫

d4xeiq·x〈0|T {Θ(x)Θ(0)} |0〉 =
∑

n

f2nm
4
n

m2
n − q2

+ c.t. , (9)

ΠΘS(q) = i

∫

d4xeiq·x〈0|T {Θ(x)q̄q(0)} |0〉 =
∑

n

f2nm
2
ncnmn

m2
n − q2

+ c.t. , (10)

ΠSS(q) = i

∫

d4xeiq·x〈0|T {q̄q(x)q̄q(0)} |0〉 =
∑

n

c2
nm

2
n

m2
n − q2

+ c.t. , (11)

where in the r.h.s. we saturate with scalar states and c.t. stands for subtraction

constants which can chosen as to replace m2
n → q2 in the numerator. In that

scheme, in the large −q2 ≫ ΛQCD limit, a comparison with the Operator Product
Expansion (OPE) [21–23] leads to the matching conditions

ΠΘΘ(q2) = q4 C0 log(−q2) + . . . ,

ΠSS(q2) = q2 C ′
0 log(−q2) + . . . ,

ΠΘS(q2) = C ′′
0 〈q̄q〉 log(−q2) + . . . , (12)

where C0 = −(2β(α)/απ)2, C ′
0 = −3/(8π2) and C ′′

0 = −2β(α)/απ. As we see, q̄q

and G2 do not mix at high q2 values, a consequence of asymptotic chiral symme-

try [20]. In these limits the sums over n can be replaced by integrals, whence the
following asymptotic conditions are found:

f2n/(dm
2
n/dn)→ C0 , c2

n/(dm
2
n/dn)→ C ′

0 , cnfnm
3
n/(dm

2
n/dn)→ C ′′

0 〈q̄q〉 .(13)

We see that the first two conditions are incompatible with the third one if mn

increases for large n, as is the case of the data. However, if we group the states in

two families, as suggested by Eqs. (6) and Fig. 3, we get a compatible solution

cn,−, fn,+ → const cn,+, fn,− → const/m3
n. (14)

This is equivalent to assuming an asymptotically alternating pattern of mesons
and glueballs, coupling to chirally odd and even operators, q̄q and G2, respec-

tively. Since asymptotically m2
n ∼ an/2, we find cn,−/cn,+ and fn,+/fn,− ∼ n

3
2 .

Of course, this is not the only solution.
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The situation described above suggests the existence of a hidden symmetry

in the 0++ sector. In our case we could think of the γ5-parity (which becomes a

good quantum number for excited states) as the relevant symmetry which makes
the difference between the chirally even and odd states. This, however, only ex-

plains the fact that asymptotically the slopes of the + and − branches are the
same, but not why the intercepts accurately differ by half the slope.

5 The holographic connection

To further elaborate on this intriguing point of the accidental degeneracy, let us

consider the one-dimensional harmonic oscillator with frequencyω, as an exam-
ple; all states ψn(z) with the energy En = ~ω(n + 1/2) can be separated into

parity even and parity odd states, satisfying the conditions ψn,±(z) = ψ2n(z) and
ψ±,n(−z) = ±ψ±,n(z), respectively, and having the energies E+,n = 2~ω(n+1/4)

and E−,n = 2~ω(n + 3/4). These formulas display twice the slope of En. Thus,

given the states with energies E+,n and E−,n, we might infer that parity was a
hidden symmetry of a Hamiltonian explaining the correlation between the slope

and intercepts.

In the relativistic case the argument can also be made in a suggestive man-
ner. Let us consider the Klein-Gordon action for infinitely many bosons in four

dimensions, described with fields φn(x) of massesmn:

S =
1

2

∫

d4x
∑

n

[

∂µφn∂µφn −m2
nφ

2
n

]

. (15)

We assume the spectrum of the form m2
n = an + m2

0. Next, we can introduce

the five-dimensional field φ(x, z) =
∑

nφn(x)ψn(z), with ψn(z) fulfilling the
auxiliary Sturm-Liouville problem in the variable 0 ≤ z <∞,

−∂z [p(z)∂zψn(z)] + q(z)ψn(z) = m2
nρ(z)ψn(z), (16)

where the functions are orthogonal with respect to the weight function ρ(z), pro-
vided suitable boundary conditions

p(z) (ψ ′
n(z)ψm(z) − ψn(z)ψ ′

m(z)) |z=0 = 0 (17)

and ψn(∞)→ 0 are fulfilled. The action can then be written as

S =
1

2

∫

d4x

∫∞

0

dz
[

ρ(z)∂µφ∂µφ− p(z)(∂zφ)2 − q(z)φ2
]

(18)

after some integration by parts in the variable z. This action can be written as

a five-dimensional action with a non-trivial metric [24], featuring the AdS/CFT
(soft-wall) approach (see [25] and references therein), with the extra dimension

z playing the role of a holographic variable and the orthogonal set of functions

ψn(z) denoting the corresponding Kaluza-Klein modes. Clearly, z has the dimen-
sion of length, suggesting that z→ 0 corresponds to the ultraviolet and z→∞ to

the infrared regime.
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Turning to Eq. (16),wemay take the standardHarmonic oscillator Schrödinger-

like equation (p(z) = ρ(z) = 1, q(z) ≡ U(z) = a2z2/16)

−ψ ′′
n(z) +

1

16
a2z2ψn(z) =m2

nψn(z) (19)

and obtain for the regular solutions at infinity the result

ψ ′
n(0)

ψn(0)
= −

√
a
Γ

(

3
4

−
m2

n

a

)

Γ
(

1
4

−
m2

n

a

) , (20)

where Γ(x) is the Euler Gamma function, which is meromorphic and have simple

poles at x = 0,−1,−2, . . . . The solutions fulfilling the Dirichlet, ψn(0) = 0, and
Neumann, ψ ′

n(0) = 0, boundary conditions, respectively, have the masses

m2
−,n = an +

a

4
, m2

+,n = an+
3a

4
, (21)

which can be merged into one single formula

m2
n =

a

4
(2n + 1) . (22)

This yieldsmσ = mf0
/
√
3 = 566MeVand, for the string tension, σ = mf0

√

2/3π =

450MeV withmf0
= 980MeV, quite reasonable values.

In this approach the symmetry in the scalar spectrum corresponds to a parity

symmetry in the holographic z variable ψn(−z) = ±ψn(z). Note that usually the
holographic variable z is taken to be positive3, but if we extend it to −∞ < z <∞,

we may define a holographic superfield containing two different and orthogonal
modes. Otherwise, in the interval 0 < z < ∞ the Dirichlet and Neumann modes

are not orthogonal to each other.

6 Pseudoscalar mesons and chiral symmetry

Discerning the nature of the σ state has been a recurrent pastime for many years.

As is well known, glueballs are more weakly coupled to mesons, O(1/NC), than

other mesons, O(1/
√
NC). The minimum number of states, allowed by certain

sum rules and low energy theorems, is just two. In Ref. [16] we undertake such an

analysis which suggests that f0(600) (denoted as σ) is a q̄qmeson, while f0(980)

(denoted as f0) is a glueball. This is supported by the rather small width ratio,

3 This is supported by the light-front interpretation of Brodsky and de Teramond [26],

where the holographic variable is the polar coordinate of a two dimensional vector, z =

|ζ| and ζ = b
p

x(1 − x), with b denoting the impact parameter and x the momentum

fraction of the quark. This interpretation yields a two dimensional potential U(ζ) =

κ2ζ2 + 2κ2(L + S − 1) with J = L + S which, when passing to the polar variable z,

generates the usual centrifugal term (L2−1/4)/z2 not present in our discussion, yielding

M2
n,L,S = 4κ2(n + L + S/2) which for J = 0 and L = 1 resembles Eq. (22).
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which yields Γf/Γσ ∼ (g2
fππm

3
f)/(g2

σππm
3
σ) ∼ 1/NC, thus for mσ ∼ 0.8MeV ∼ mf

the ratio gσππ/gfππ ∼
√
NC is obtained.

A further piece of evidence for the alternating meson-glueball pattern is pro-

vided by looking at the excited pion spectrum, which we show in Fig. 3. The

alternating pattern was unveiled by Glozman [27], suggesting that states degen-
erate with the pion might not be identified with glueballs. Remarkably, the states

generating doublets with pion states are f0(600)↔ π0(140), f0(1370) ↔ π0(1300),

f0(1710) ↔ π0(1800), f0(2100) ↔ π0(2070), and f0(2330) ↔ π0(2360), whereas
the other scalar states f0(980), f0(1500), f0(2020) and f0(2200) are not degenerate

with other mesons with light u and d quarks. Our analysis is reinforced by this
observation.

As a matter of fact, fitting the pion π(140) as the n = 0 state of the Regge
spectrum requires strong departure from a simple linear trajectory, m2

n = an +
m2

0. One may improve on this by using the holographic connection and a mixed
boundary condition at z = 0 determined by fixing themass of the ground statem0

using Eq. (17) together with Eq. (20) for the harmonic oscillator case, Eq. (19). This
procedure ensures the orthogonality between all states and implements linearity
for large n. This can be done for the ground statesm0 = mπ,mσ,mf0

. The fit to

all states yields a = 1.37GeV2 and the mass spectra (in GeV)

π (Regge) (0.140, 1.260, 1.730, 2.092, 2.400, . . . ) π (PDG) (0.140, 1.300, 1.812, 2.070, 2.360)

σ (Regge) (0.527, 1.297, 1.750, 2.106, 2.411, . . . ) σ (PDG) (0.600, 1.350, 1.724, 2.103, 2.321)

f0(Regge) (0.977, 1.513, 1.906, 2.232, 2.517, . . . ) f0(PDG) (0.980, 1.505, 1.992, 2.189)

yielding 1/
√
aψ ′

0(0)/ψ0(0) = −3.1, −14.9, and 0.2, respectively. Note the large

and small values for the σ and f0 cases, which suggests that these boundary

conditions are very close to the Dirichlet and Neumann cases. Chiral symmetry
breaking corresponds to the different π and σ values.

7 Scalar dominance and heavy pions

Hadronic matrix elements of the energy-momentum tensor, the so-called gravita-

tional form factors (GFF) of the pion and nucleon, correspond to a dominance of
scalar states in the large-Nc picture, as (u(p) is a Dirac spinor)

〈π(p ′)|Θ|π(p)〉 =
∑

n

gnππfnq
2m2

n

m2
n − q2

, (23)

〈N(p ′)|Θ|N(p)〉 = ū(p ′)u(p)
∑

n

gnNNfnm
2
n

m2
n − q2

, (24)

where the sum rules
∑

n gnππfn = 1 [28] andMN =
∑

n gnNNfn [29] hold. Un-

fortunately, the lattice QCD data for the pion [30] and nucleon (LHPC [31] and
QCDSF [32] collaborations), picking the valence quark contribution, are too noisy

as to pin down the coupling of the excited scalar-isoscalar states to the energy-

momentum tensor. Nevertheless, useful information confirming the (Regge) mass
estimates for the σ-meson can be extracted [16] through the use of the multiplica-

tive QCD evolution of the GFF in the valence quark momentum fraction, 〈x〉u+d,
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mπ [MeV] mσ [MeV] mσ [MeV] mσ [MeV] mσ [MeV]

GFF GFF (q̄q)2-dynam. (q̄q)2-quench.

230 580(190) 620(100) – 400(30)

342 630(190) 660(90) – 720(20)

478 710(200) 730(90) – 1000(20)

318 620(190) 650(90) 468(50) –

469 700(190) 720(90) 936(13) –

526 739(200) 750(90) 1066(13) –

Table 1. Scalar monopole mass obtained from the nucleon gravitational form factors, ex-

tracted from the (q̄q) components obtained by LHPC [31] and QCDSF [32] and compared

to the lattice calculation using the tetraquark (q̄q)2 probing fields, both for the dynamical

and quenched fermions [33] .

as seen in deep inelastic scattering or on the lattice at the scale µ = 2 GeV. For the

pion and nucleon GFFs we obtain the fits

〈x〉πu+d = 0.52(2), mσ = 445(32) MeV , (25)

〈x〉Nu+d = 0.447(14), mσ = 550+180
−200MeV. (26)

Assuming a simple dependence ofmσ onmπ,

m2
σ(mπ) = m2

σ + c
(

m2
π −m2

π,phys

)

, (27)

yields mσ = 550+180
−200MeV and c = 0.95+0.80

−0.75, or mσ = 600+80
−100MeV and c =

0.8(2), depending on the choice of the lattice data [31] or [32], respectively. Note
that c is close to unity. Higher quark masses might possibly clarify whether or

not the state evolves into a glueball or a meson. For a (q̄q)n system one expects
mσ → 2nmq + const at large current quark massmq. The data from [31] or [32]

are too noisy to see the difference, although for the largest pion masses we see

that mσ ∼ mπ, as it simply corresponds to the q̄q-component of Θ. We observe,
however, that formπ ∼ 500MeV our results are not far away from the recent lattice

calculation using the tetraquark probes, (q̄q)2 [33], which providemσ ∼ 2mπ for
the largest pion masses as they should (see Table 1). From this viewpoint, and

unless operator mixing is implemented, the nature of the state is predetermined

by the probing operator.

8 Dimension-2 condensates

One of the problems of the large-Nc Regge models [35] and their holographic

relatives [36, 37] is that they may contradict expectations from the OPE, as they
involve dimension-2 condensates. For instance, the OPE for the ΠΘΘ(q2) corre-

lator in Eq.(12) gives corrections O(q0), while the O(q2) terms are missing [21].
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This yields a one to one comparison:

C0 = − lim
n→∞

f2n
dm2

n/dn
= −

N2
c − 1

2π2

(

β(α)

α

)2

, (28)

C2 =
∑

n

f2n = 0 , (29)

C4 =
∑

n

f2nm
2
n =

(

β(α)

α

)2

〈G2〉 . (30)

Equation (28) requires infinitely many states, while Eq. (29) suggests a positive

and non-vanishing gauge-invariant dimension-2 object, C2 = i
∫
d4xx2〈Θ(x)Θ〉,

which is generally non-local, as it should not appear in the OPE. Note thatC2 > 0,

hence is non-vanishing for a finite number of states. The infinite Regge spectrum

of Eq. (2) with Eq. (28) may be modeled with a constant ff0
= fn,+ = O(Nc)

whereas fn,− = O(
√
Nc) goes as Eq. (14) and yields a convergent and hence posi-

tive contribution. Naively, we get C2 =∞. However, C2 may vanish, as required
by standard OPE, when infinitely many states are considered after regularization.

The use of the ζ-function regularization [16, 34] gives

C2 ≡ lim
s→0

∑
f2nMS(n)2s =

∑

n

f2n,−
+ f2f0

(

1/2−m2
f0
/a

)

. (31)

Then C2 = 0 for mf0
>

√

a/2 = 810(40) MeV, a reasonable value to O(1/Nc) In
any case, the important remark is that while at the OPE level C2 = 0 vanishes for

trivial reasons, at the Regge spectrum level some fine tuning must be at work.

Acknowledgments This work is partially supported by the Polish Ministry of

Science and Higher Education (grants N N202 263438 and NN202 249235), Span-

ish DGI and FEDER funds (grant FIS2008-01143/FIS), Junta de Andalucı́a (grant
FQM225-05).

References

1. C. Amsler, et al., Phys. Lett. B667, 1 (2008).

2. E. Witten, Nucl. Phys. B160, 57 (1979).

3. W. Broniowski, Nucl. Phys. A580, 429 (1994), hep-ph/9402206.

4. A. Pich (2002), hep-ph/0205030.

5. A. Andrianov, D. Espriu, and A. Prats, Int.J.Mod.Phys. A21, 3337 (2006), hep-

th/0507212.

6. E. Gurvich, Phys.Lett. B87, 386 (1979).

7. A. Casher, H. Neuberger, and S. Nussinov, Phys.Rev. D20, 179 (1979).

8. N. Suzuki, T. Sato, and T.-S. Lee, Phys.Rev. C79, 025205 (2009), 0806.2043.

9. R. Workman, R. Arndt, and M. Paris, Phys.Rev. C79, 038201 (2009), 0808.2176.

10. I. Caprini, G. Colangelo, and H. Leutwyler, Phys. Rev. Lett. 96, 132001 (2006), hep-

ph/0512364.

11. R. Garcia-Martin, R. Kaminski, J. R. Pelaez, and J. Ruiz de Elvira, Phys. Rev. Lett. 107,

072001 (2011), 1107.1635.



0++ states in a large-Nc Regge approach 17

12. A. Calle Cordon, and E. Ruiz Arriola, Phys. Rev. C80, 014002 (2009), nucl-th/0904.0421.

13. J. Nieves, A. Pich, and E. Ruiz ArriolaPhys. Rev.D (2011) (in press), hep-ph/1107.3247.

14. A. V. Anisovich, V. V. Anisovich, and A. V. Sarantsev, Phys. Rev. D62, 051502 (2000),

hep-ph/0003113.

15. V. V. Anisovich, Int. J. Mod. Phys. A21, 3615 (2006), hep-ph/0510409.

16. E. Ruiz Arriola, and W. Broniowski, Phys. Rev.D81, 054009 (2010), 1001.1636.

17. E. R. Arriola, W. Broniowski, AIP Conf. Proc. 1343, 361 (2011), 1011.5176.

18. W. de Paula, and T. Frederico, Phys.Lett. B693, 287 (2010), 0908.4282.

19. O. Kaczmarek, and F. Zantow, Phys. Rev. D71, 114510 (2005), hep-lat/0503017.

20. J. F. Donoghue, and H. Leutwyler, Z. Phys. C52, 343 (1991).

21. S. Narison, Nucl. Phys. B509, 312 (1998), hep-ph/9612457.

22. S. Narison, N. Pak, N. Paver, Phys. Lett. B147 (1984) 162.

23. D. Harnett, R. T. Kleiv, K. Moats, T. G. Steele, Nucl. Phys. A850, 110-135 (2011).

24. S. S. Afonin, Int. J. Mod. Phys. A25, 5683 (2010), 1001.3105.

25. J. Erdmenger, N. Evans, I. Kirsch, E. Threlfall, Eur. Phys. J. A35, 81 (2008), 0711.4467.

26. G. F. de Teramond, S. J. Brodsky, Phys. Rev. Lett. 102 (2009) 081601. [arXiv:0809.4899

[hep-ph]].

27. L. Glozman, Eur.Phys.J. A19, 153 (2004), hep-ph/0301012.

28. S. Narison, and G. Veneziano, Int. J. Mod. Phys. A4, 2751 (1989).

29. P. Carruthers, Phys. Rept. 1, 1 (1971).

30. D. Brommel, et al. (2007), 0708.2249.

31. P. Hagler, et al., Phys. Rev.D77, 094502 (2008), 0705.4295.

32. M. Gockeler, et al., Phys. Rev. Lett. 92, 042002 (2004), hep-ph/0304249.

33. S. Prelovsek, T. Draper, C. B. Lang, M. Limmer, K.-F. Liu, et al., Phys.Rev. D82, 094507

(2010), 1005.0948.

34. E. R. Arriola, and W. Broniowski, Eur. Phys. J. A31, 739–741 (2007), hep-ph/0609266.

35. E. Ruiz Arriola, W. Broniowski, Phys. Rev.D73 (2006) 097502.

36. O. Andreev, Phys. Rev.D73 (2006) 107901.

37. F. Zuo, T. Huang, [arXiv:0801.1172 [hep-ph]].



BLED WORKSHOPS

IN PHYSICS

VOL. 12, NO. 1
p. 18

Proceedings of the Mini-Workshop
Understanding hadronic spectra
Bled, Slovenia, July 3 - 10, 2011

Transversity structure of the pion in chiral quark

models⋆

W. Broniowskia,b, E. Ruiz Arriolac,d, A. E. Dorokhove,f

aInstitute of Nuclear Physics PAN, PL-31342 Cracow, Poland
bInstitute of Physics, Jan Kochanowski University PL-25406 Kielce, Poland
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Abstract. We describe the chiral quark model evaluation of the transversity Generalized

Parton Distributions (tGPDs) and related transversity form factors (tFFs) of the pion. The

obtained tGPDs satisfy all necessary formal requirements, such as the proper support, nor-

malization, and polynomiality. The lowest tFFs, after the necessary QCD evolution, com-

pare favorably to the recent lattice QCD determination. Thus the transversity observables

of the pion support once again the fact that the spontaneously broken chiral symmetry

governs the structure of the Goldstone pion. The proper QCD evolution is crucial in these

studies.

This talk is based on our two recent works [1, 2], where more details and a com-
plete list of references may be found. Its topic concerns the transversity Gen-

eralized Parton Distribution (tGPD) of the pion, the least-known of the Gen-
eralized Parton Distributions (see [3–5] and references therein for an extensive

review). The definition involves aligned parton-helicity operators (maximum-

helicity case). For the case of spin-0 hadrons, tGPDs arise because of the nonzero
orbital angular momentum between the initial and final state, thus allowing to

study the spin structure without the inherent complications of the explicit spin

degrees of freedom, as in the case of the nucleon. In that situation the analysis of
the spin structure of the pion is particularly appealing, however, the quantity will

be very difficult to access experimentally.

A few years ago, however, lattice simulations [6] provided the lowest-order
pion quark transversity form factors (tFFs), defined as Mellin moments of tGPDs

⋆ Talk delivered by W. Broniowski
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Fig. 1. The quark part of the spin-2 gravitational form factor in Spectral QuarkModel (solid

line) and NJL model with the Pauli-Villars regularization (dashed line), compared to the

lattice data fromRef. [7,8]. The band around the Spectral QuarkModel results corresponds

to the model parameter uncertainty.

in the Bjorken x variable. That way lattices supply valuable information on the

nontrivial spin structure of hadrons. In general, lattice calculations are capable to
determine quantities that may only be dreamed off to be measured experimen-

tally and, in that regard, are extremely useful. The results can be used to verify
various theoretical approaches and models in their rich spectrum of predictions.

An example is the gravitational form factor of the pion. Its lattice determina-

tion [7, 8] agrees remarkably well with the evaluation in chiral quark models [9],
as can be seen from Fig. 1.

Our study consist of two distinct parts: 1) the chiral quark model determina-

tion of tFFs and tGPDs of the pion and 2) the QCD evolution. For the first part
we apply the standard local NJL model with the Pauli-Villars regularization [10]

and two versions of the nonlocal models, where the quark mass depends on the

momentum of the quark, namely, the instanton model [11] and the Holdom-
Terning-Verbeek (HTV) model [12]. We stress that chiral quark models have been

successfully used for the evaluation of soft matrix elements entering numerous
high-energy processes [9, 13–40]. They also agree with the Euclidean lattice de-

termination of moments (see, e.g., [41, 42]) and direct results from the transverse

lattices [43–46].

The second element, crucial in obtaining proper results, is the QCD evolu-
tion, where renorm-improved radiative gluonic corrections are appended. The

method is schematically depicted in Fig. 2. One-loop (large-Nc) quark diagram,
with external gauge bosons andGoldstonemesons, is evaluated. Then the renorm-

improved gluon exchanges are incorporated in terms of the LO DGLAP evolu-

tion. The scale where the quark model calculation is carried out can be identified
with the help of the momentum fraction carried by the quarks. According to phe-

nomenology [47, 48] or lattice calculations [49], the valence quark contribution is
47% of the total at the scale µ = 2GeV. Since the quark models possess no ex-

plicit gluons, the valence quarks carry 100% of the momentum. This determines

the quark model scale, denoted as µ0, as the scale determined in such a way, that
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Fig. 2. One-loop (large-Nc) quark diagram, with external gauge bosons (wavy lines) and

Goldstone mesons (dashed lines). The renorm-improved gluon exchanges are incorpo-

rated in terms of the LO DGLAP evolution.

when the evolution is carried out from µ0 up to µ = 2 GeV, the fraction drops to

47 ± 2%. The result of the LO DGLAP evolution is

µ0 = 313+20
−10 MeV. (1)

Despite the low value of this scale, the prescription has been successfully con-

firmed by a variety of high-energy data and lattice calculations (see [26] and ref-

erences therein). Moreover, the NLO DGLAP modifications yield moderate cor-
rections [14], supporting our somewhat strained use of perturbative QCD at low

scales. To summarize, our approach = chiral quark model + QCD evolution.

We now come to definitions. The pion u-quark tFFs, denoted as Bπ,u
ni (t), are

defined via [50]

〈π+(p′)|u(0)iσµνaµbν

(

i
←→
Da

)n−1

u(0)|π+(p)〉 = (a · P)n−1 [a · pb · p′]
mπ

×
n−1∑

i=0,
even

(2ξ)
i
Bπ,u

ni (t) , (2)

where the auxiliary vectors a and b satisfy the conditions a2 = (ab) = 0 and
b2 6= 0. The skewness parameter is defined as ξ = −a · q/(2a · P), the symbol
←→
D β =

←→
∂ β − igAβ is the covariant derivative, and

←→
∂ β = 1

2

(−→
∂ β −

←−
∂ β

)

. Next,

p′ and p are the initial and final pion momenta, P = 1
2
(p′ + p), q = p′ − p, and

t = −q2. The bracket denotes antisymmetrization in the vectors a and b. The

corresponding definition of the tGPD is [3]

〈π+(p′) | ū(−a)iσµνaµbνu(a) | π+(p)〉 =
[a · pb · p′]

mπ

∫1

−1

dx e−ix P·aEπ,u
T (x, ξ, t),

(3)

where the presence of the gauge link operator are understood. The tFFs for the d-
quarks follow from the isospin symmetry, namely Bπ,d

ni (t) = (−1)
n
Bπ,u

ni (t). The

tFFs are the moments of the tGPD in the x-variable,

∫1

−1

dx xn−1Eπ,u
T (x, ξ, t) =

n−1∑

i=0,
even

(2ξ)
i
Bπ,u

ni (t) . (4)
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Fig. 3. The form factors Bπ,u
10 (t) and Bπ,u

20 (t), evaluated at mπ = 600MeV in the local NJL

model (left panel) and in nonlocal models (right panel, solid line – HTV model, dashed

line – instanton model). The lattice data from [6]. The local NJL and HTV models agree

very well with the data.

This formula explicitly displays the desired polynomiality property. We remark

that the full information carried by tGPDs is contained in the collection of the

infinitely many tFFs.

The full details of the quark-model calculation as well as the QCD evolution
can be found in [1, 2]. The two lowest tFFs available from the lattice data, Bπ,u

10

and Bπ,u
20 , evolve multiplicatively in a simple way:

Bπ,u
n0 (t;µ) = Bπ,u

n0 (t;µ0)

(

α(µ)

α(µ0)

)γT
n/(2β0)

, (5)

where γT
n are the appropriate anomalous dimensions [1, 2]. In the local model, in

the chiral limit at t = 0 we find the very simple result:

Bπ,u
10 (t = 0;µ0)/mπ =

NcM

4π2f2π
,
Bπ,u

20 (t = 0;µ)

Bπ,u
10 (t = 0;µ)

=
1

3

(

α(µ)

α(µ0)

)8/27

, (6)

whereM is the constituent quark mass. The results of the model calculation fol-
lowed by evolution are shown in Fig. 3. We note a striking agreement with the

lattice data [6] for the local NJL model, as well as for the non-local HTV model.

Finally, we present the results for the full tGPD for t = 0 and ξ = 1/3 or

ξ = 0. The evolution is different for the symmetric and antisymmetric parts of
tGPDs, hence we define the isovector and isoscalar combinations:

Eπ,I=1
T

(

x, ξ,Q2
)

≡ Eπ,S
T

(

x, ξ,Q2
)

= Eπ
T

(

x, ξ,Q2
)

+ Eπ
T

(

−x, ξ,Q2
)

,

Eπ,I=0
T

(

x, ξ,Q2
)

≡ Eπ,A
T

(

x, ξ,Q2
)

= Eπ
T

(

x, ξ,Q2
)

− Eπ
T

(

−x, ξ,Q2
)

.

The QCD evolution has been carried out with the method of [51–54]. The results
for ξ = 1/3 in the NJL model are shown in Fig. 4, while in Fig. 5 we compare the

result for ξ = 0 in the NJL model (left panel) and the nonlocal instanton model

(right panel). Except for different end-point behavior, discussed in [2], the results
are similar.

In conclusion we wish to stress that the absolute predictions for the multi-

plicatively evolved B10 and B20 agree remarkably well with the lattice results,
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Fig. 4. The symmetric (left panel) and antisymmetric (right panel) tGPDs of the pion at

t = 0 and ξ = 1/3, evaluated in the NJL model in the chiral limit at the quark-model scale

µ0 = 313 MeV (solid lines) and evolved to the scales µ = 2 GeV (dashed lines) and 1 TeV

(dotted lines).
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Fig. 5. The tGPD of the pion at t = 0 and ξ = 0, evaluated in the chiral limit in the local

NJL model (left panel) and in the instanton model (right panel). The solid lines correspond

to the quark-model scale µ0 = 313 MeV, the dashed lines to µ = 2 GeV, and the dotted

lines to µ = 1 TeV.

supporting the assumptions of numerous other calculations following the same

“chiral quark model + QCD evolution” scheme. Our study of the transversity
observables of the pion support once again the feature that the spontaneously

broken chiral symmetry determines the structure of the Goldstone pion.
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Abstract. We report first results from a study of heavy-baryon spectroscopy within a

relativistic constituent-quark model whose hyperfine interaction is based on Goldstone-

boson-exchange dynamics.

1 Introduction

The relativistic constituent-quark model (RCQM) has become quite successful for

the description of hadron properties at low energies. This is especially true for
the RCQM based on Goldstone-boson-exchange (GBE) dynamics [1] with regard

to baryons (for a short review see ref. [2]). So far the GBE RCQM has been re-
stricted to baryons consisting of constituent quarks Q with flavors u, d, and s

only, as it has been argued that their hyperfine interaction should be governed

by GBE dynamics due to the spontaneous breaking of chiral symmetry (SBχS)
of low-energy quantum chromodynamics (QCD) [3]. Regarding the other known

baryons, i.e. the ones with flavors c and b, we still face the interesting questions
after the light-heavy and heavy-heavyQ-Q interactions. It remains to be clarified,

which kind of dynamics, gluon exchange and/or Goldstone-boson exchange, is

dominant.

We have looked into these problems within the framework of the RCQM.
Accepting the GBE RCQM in the SU(3)F sector, there are in principle three ways

to add interactions for the light-heavy and heavy-heavyQ-Q interactions:

• employ GBE dynamics throughout,

• extend the SU(3)F GBE RCQM with one-gluon exchange (OGE) for the c and
b flavors, and

• use a superposition of both the GBE and OGE hyperfine interactions beyond

SU(3)F.

According to our present experience the best performance of a universal RCQM

for all SU(5)F baryons is achieved by the first way [4]. Here, we thus report results
of a SU(5)F RCQM that is based on GBE dynamics for baryons of all five quark

flavors.

⋆ Talk delivered by J. Day
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2 Theory

Our theoretical framework is relativistic quantum mechanics (RQM), which as-

sumes a fixed number of relevant degrees of freedom and relies on an invari-
ant mass operator M̂ = M̂free + M̂int fulfilling all symmetry requirements of the

Poincaré group. Here, the free and interaction parts of the mass operator are ex-

pressed in the rest frame of the baryon (i.e. for P =
∑3

i k2
i = 0) by

M̂free =

3∑

i=1

√

m̂2
i + k̂

2

i , M̂int =

3∑

i<j

V̂ij =

3∑

i<j

(

V̂conf
ij + V̂hf

ij

)

, (1)

where ki represent the three-momenta of the individual quarks with rest masses

mi and the Q-Q potentials V̂ij are composed of confinement and hyperfine in-

teractions. By employing such a mass operator M̂2 = P̂µP̂µ, with baryon four-
momentum P̂µ = (Ĥ, P̂), the Poincaré algebra of all ten generators {Ĥ, P̂i, Ĵi, K̂i},

for i = 1, 2, 3,

[P̂i, P̂j] = 0, [̂Ji, Ĥ] = 0, [P̂i, Ĥ] = 0,

[K̂i, Ĥ] = iP̂i, [̂Ji, Ĵj] = iǫijkĴk, [̂Ji, K̂j] = iǫijkK̂k,

[̂Ji, P̂j] = iǫijkP̂k, [K̂i, K̂j] = −iǫijkĴk, [K̂i, P̂j] = iδijĤ.

is guaranteed.

3 The GBE RCQM

3.1 The SU(3)F Sector

The hyperfine interaction of the GBE RCQM for constituent quarks with flavors
u, d, and s, confined by a linear potential Vconf

ij (r) = Cr, reads

Vhf(r) =

[

Vπ(r)

3∑

a=1

λa
i λ

a
j + VK(r)

7∑

a=4

λa
i λ

a
j + Vη(r)λ8

i λ
8
j + Vη ′(r)λ0

iλ
0
j

]

σi · σj ,

(2)

where r is the relative vector between constituent quarks i and j. The λa
i represent

the SU(3)F Gell-Mann matrices of flavor a and the σi the SU(2) Pauli spin matri-

ces of the individual constituent quarks. The GBE is described by the exchange of

the octet of pseudoscalar mesons π, K, and η, where due to theU(1) anomaly also
the singlet exchange η ′ is added. The corresponding regularizedmeson-exchange

potentials, derived in instantaneous approximation, are expressed by

Vγ(r) =
g2

γ

2π

1

12mimj

[

µ2
γ

e−µγr

r
−Λ2

γ

e−Λγr

r

]

, γ = π, K, η, η ′ , (3)

with gγ the quark-meson coupling constant, µγ the exchanged meson mass, and

Λγ a cut-off parameter. The complete parameterization of the GBE RCQM can be

found in ref. [1]. An extended version of it, including beyond spin-spin forces also
all other interaction components stemming from GBE dynamics, was published

in ref. [5].
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3.2 Generalization to SU(5)F

In the spirit of the ansatz (3) we have generalized the GBE RCQM to SU(5)F in
order to cover also heavy baryons, containing the flavors c and b, in a univer-

sal model. Keeping the confinement potential unaltered, the extended hyperfine

interaction is proposed to be

Vhf(r) =

[

Vπ(r)

3∑

a=1

λa
i λ

a
j + VK(r)

7∑

a=4

λa
i λ

a
j + Vη8

(r)λ8
i λ

8
j +

2

5
Vη0

(r) +

VD(r)

12∑

a=9

λa
i λ

a
j + VDs

(r)

14∑

a=13

λa
i λ

a
j + Vη15

(r)λ15
i λ

15
j +

VB(r)

19∑

a=16

λa
i λ

a
j + VBs

(r)

21∑

a=20

λa
i λ

a
j + VBc

(r)

23∑

a=22

λa
i λ

a
j +

Vη24
(r)λ24

i λ
24
j

]

σi · σj .

It contains the GBE in SU(5)F, which is represented by the exchange of the 24-
plet of pseudoscalar mesons plus the singlet η0. The various regularized meson-

exchange potentials have the same functional dependence as in Eq. (3). The de-
tailed parameterization is given in a forthcoming paper [6].

3.3 Consistency of the Universal GBE RCQM

Since SU(3) ⊂ SU(4) ⊂ SU(5), the generalized GBE RCQM should perform with

similar or even better success as the corresponding SU(3)F model specifically
for u-, d-, and s-flavor baryons. This is not immediately obvious, as the light-

and strange-baryon sectors are now influenced by an altered singlet exchange,

namely, η0 that corresponds to SU(5)F rather than to SU(3)F. In addition the ex-
changes of η15 and η24 come into play.

We thus present in Figs. 1 and 2 first a comparison of the spectroscopy of

light and strange baryons, as yielded by the original SU(3)F and the extended
SU(5)F GBE RCQMs. As becomes clearly evident, the SU(5)F GBE RCQM per-

forms equally well, in some instances even better, than the original SU(3)F one.

In particular, the new model also produces the right level orderings in the N and
Λ excitation spectra due to the specific flavor dependence in the hyperfine inter-

action in Eq. (4).

3.4 Results for Heavy-Baryon Spectra

Next we present the predictions of the SU(5)F GBE RCQM for the spectra of c-

and b-flavor baryons in comparison to experimental data available for states with

at least 4- or 3-star status according to the PDG (see Fig. 3). It appears that all
experimental results, for which also a definite JP is known, are reproduced quite

well.
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Fig. 1. N and ∆ spectra of definite spin and parity JP produced by the extended SU(5)F

GBE RCQM (left/red levels) in comparison to the ones of the original SU(3)F GBE

RCQM [1, 3] (right/blue levels) and to experimental data with their uncertainties (green

boxes) from the PDG [7].
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Fig. 2. Same as in Fig. 1 but for strange baryons.

In Fig. 4 we also present the predictions of the SU(5)F GBERCQM for double-
charm baryons. Here, there is only onemeasurement reported by the PDG, namely,

the ground state of Ξcc. As can be seen from Fig. 4 and also the Table below, the

theoretical level produced by the GBE RCQM remains at variance with the ex-
perimental data. For this comparison, however, one should bear in mind that the
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Fig. 3. Heavy-baryon spectra of definite JP as produced by the extended SU(5)F GBE

RCQM (solid/red levels) in comparison to experimental data with their uncertainties (dot-

ted/green levels resp. boxes) reported by the PDG [7].

lowest Ξcc state with JP = 1
2

+
is only rated by 1 star by the PDG. Its measurement

was only made once in 2002 by the SELEX collaboration [8], and since then has

never been reproduced independently. In view of other theoretical works having
investigated double-charm baryons, one may have some doubt about the mea-

sured mass of Ξcc. As is evident from the comparison in the Table below, for in-

stance, the theoretical results from the RCQM of the Bonn group [11] and also the
ones from the Bhaduri-Cohler-Nogami one-gluon-exchange model [9], reported

in 2005 by Stancu and Richard [10] at the Bled Workshop, give mass values for
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the Ξcc ground state quite similar to the one we have achieved. Further measure-

ments of double-charm baryons would thus be highly welcome.

3500

3600

3700

3800

3900

4000

4100

4200

4300

4400

M
[MeV]

1

2

+ 1

2

− 3

2

+ 3

2

−

Ξcc

M
[MeV]

1

2

+ 1

2

− 3

2

+ 3

2

−

Ωcc

Fig. 4. Ξcc and Ωcc spectra as produced by the extended SU(5)F GBE RCQM (solid/red

levels) in comparison to experimental data reported only for the Ξcc ground state (dot-

ted/green level/box) [7, 8].

Baryon JP Theory Experiment [8]

Ref. [10] Ref. [11] GBE RCQM

Ξcc
1
2

+
3643 3642 3673 3518.9 ± 0.9

Ξcc
3
2

+
3724 3723 3711 -

Ξcc
1
2

−
3920 3919 -

Ξcc
3
2

−
3920 3919 -

Table 1. Comparison of the predictions by the GBE RCQM and other theoretical models

for double-charm Ξcc ground and excited states vis-à-vis the experimental measurement

reported by the SELEX collaboration.

4 Conclusion

We have constructed a universal RCQM for all baryons with flavors u, d, s, c,

and b. It is based on a relativistically invariant mass operator describing systems
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of three constituent quarks, confined by a linear potential according to QCD and

interacting through hyperfine forces derived from GBE. This RCQM extends the

previous GBE RCQM beyond SU(3)F and reproduces the phenomenologically
known spectra with reasonable accuracy. For definitely pinning down the type

of hyperfine interaction especially for light-heavy and heavy-heavyQ-Q subsys-
temsmore data in the sector of c- and b-flavor baryons would be highly desirable.

In future it will be very interesting, if the universal GBE RCQM discussed

here will be able to describe also reactions involving heavy baryons with a similar

good performance as has previously been found for the SU(3) GBE RCQM in the
cases of light and strange baryons.
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Three-quark nucleon interpolating fields in QCD have well-defined SUL(3) ×
SUR(3) and UA(1) chiral transformation properties, viz. [(6, 3) ⊕ (3, 6)], [(3, 3) ⊕
(3, 3)], [(8, 1) ⊕ (1, 8)] and their “mirror” images, Ref. [13]. It is known, Ref. [3]

that chiral mixing of the [(6, 3) ⊕ (3, 6)] multiplet with one ordinary (“naive”)

and one “mirror” field belonging to the [(3, 3) ⊕ (3, 3)] and [(1, 8) ⊕ (8, 1)] mul-

tiplets allows fitting of the isovector (g
(3)

A ) and the flavor-singlet (isoscalar) axial

coupling (g
(0)

A ) of the nucleon. The magnetic moments of baryons are, however,

difficult to incorporate into such a chiral mixing scheme. In order to reproduce
the anomalous magnetic moments of baryons, we construct all SUL(3) × SUR(3)

chirally invariant one-derivative Pauli tensor one-[(8, 1) ⊕ (1, 8)]-meson-baryon
interactions subject to chiral mixing. It turns out that there are (strong) selection

rules: for example, there is only one one-derivative chirally symmetric interac-

tion between J = 1
2
fields belonging to the [(6, 3) ⊕ (3, 6)] and the [(3, 3) ⊕ (3, 3)]

chiral multiplets. We also study the chiral anomalous magnetic interactions of the

[(3, 3)⊕(3, 3)] and [(8, 1)⊕(1, 8)] baryon fields. Again, there are selection rules that
allow only off-diagonal and no diagonal one-derivative chiral SUL(3) × SUR(3)

interactions of this type, that also conserve the UA(1) symmetry. We use these

interactions to calculate the F/D ratio for the anomalous magnetic moments of
baryons as F/D=1/3, in close proximity to the experiment.

In this talk we report some as yet unpublished results [1] of our studies of

the anomalous magnetic moments of the baryons in the chiral mixing approach.
Recent studies [2, 3] point towards baryon chiral mixing (of [(6, 3) ⊕ (3, 6)] with

the [(3, 3)⊕ (3, 3)], [(8, 1)⊕ (1, 8)] chiral multiplets 1) as a possible mechanism un-

derlying the baryons’ axial couplings. This finding is in line with the old current
algebra results of Gerstein and Lee [4, 5] and of Harari [6, 7], updated to include

⋆ Talk delivered by V. Dmitrašinović
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recently measured values of F andD couplings, Ref. [8], and extended to include

the flavor-singlet coupling g
(0)

A of the nucleon [9,10],which was not considered in
the mid-1960’s at all, presumably due to the lack of data. Our own starting point

was the QCD interpolating fields’ UA(1) chiral properties [11–13].

Even though the chiral mixing has been known for more than 40 years [14–

17], the SUL(3) × SUR(3) chiral interactions necessary to describe the anomalous
magnetic moments have not been discussed in print, only the problems associ-

ated with them [18]. It ought to be noted, however, that Gerstein and Lee [5]
found a phenomenological chiral mixing scheme that led to acceptable anoma-

lous magnetic moments of the nucleons. These authors did not try to construct a

chiral Lagrangian that would reproduce such chiral mixing, however.

The present paper serves to provide a dynamical model of chiral mixing that

is the “best” approximation to the phenomenological solution of both the (F,D)

and the flavor-singlet axial coupling, and the anomalous magnetic moment prob-
lems, assuming only three-quark baryon interpolating fields.

In our previous publication [19] we found two solutions that fit the axial

coupling data 2: one that conserves the UA(1) symmetry (the Harari scenario)
and another one that does not (the Gerstein-Lee scenario). Here we have shown

that only the former scenario leads to nucleon anomalous magnetic moments that

are in agreement with experiment.

Having made the first step, which was to reproduce the phenomenologi-
cal mixing starting from a chiral effective model interaction, we turn to the next

step, which is to look for a chiral dynamical source of the anomalous magnetic
moments. One such mechanism is the simplest chirally symmetric one-derivative

one-(ρ, a)-meson interaction Lagrangian; one-derivative because only thus one

can couple the baryon magnetic moment (the Pauli current) to the ρ-field. Here
we study vector meson couplings because photon couplings follow them under

the vector meson dominance hypothesis which has been shown to work in the
low energy region.

We have constructed all SUL(3) × SUR(3) chirally invariant one-derivative

one-vector-meson-baryon interactions and then use them to calculate the baryons’

magnetic moments as well as the non-derivative Dirac terms. There are severe
chiral symmetry induced selection rules, see Table 1.

We used these interactions to relate the anomalous magnetic moments to the

“physical” mixing angles determined from the axial couplings and the baryons’
masses. In this way we found a unique solution that unequivocally points to-

wards the Harari scenario as the phenomenologically correct one. Of course, the

absolute values of the anomalous magnetic moments cannot be determined by
mere use of the chiral symmetry, without dynamical caculations, but their F/D

ratio can. The magnetic moment F/D ratio is predicted to be 1/3 by the chiral
mixing interaction, the same value as in the non-relativistic quark model, or as

in the SU(6) symmetry limit. This last fact is very curious and seems to require

further thought.

2 this does not preclude the existence of more complicated solutions.
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Table 1.Allowed chiral invariant Pauli type interaction termswith one (8, 1)⊕(1, 8) vector

meson field N̄σµν∂νMµN. In the first columnwe show the chiral representation ofN, and

the first row the chiral representation of N̄. We use “[mir]” to denote the relevant mirror

fields.

(8, 1) ⊕ (1, 8) (3, 3̄) ⊕ (3̄, 3) (6, 3) ⊕ (3, 6) (10, 1) ⊕ (1, 10)

(1, 8) ⊕ (8, 1)[mir] 2 ×Mµ Mµ

(3, 3̄) ⊕ (3̄, 3)[mir] Mµ ,M
†
µ

(3̄, 6̄) ⊕ (6̄, 3̄)[mir] Mµ ,M
†
µ

(1, 10) ⊕ (10, 1)[mir] Mµ Mµ

(3, 3̄) ⊕ (3̄, 3) (6, 3) ⊕ (3, 6)

(3̄, 3) ⊕ (3, 3̄) Mµ

(6̄, 3̄) ⊕ (3̄, 6̄) M
†
µ

The “Gerstein-Lee” scenario requires vanishing nucleon anomalous mag-

netic moments, in serious disagreement with experiment (here we ignore any

and all chiral mixing in the vector meson sector, which also violates the UA(1)-
symmetry [20]). This goes to show that the “QCD UA(1) anomaly” probably

does not play a role in the “nucleon spin problem” [9, 10], as was once widely
thought [21]. In all likelihood the UA(1) anomaly provides only a (relatively)

small part of the solution, associated with the higher Fock space components,

whereas the largest part comes from the UA(1)-symmetric chiral structure (“mix-
ing”) of the three-quark components of the nucleon.

The next step, left for the future, is to investigate the SU(3) × SU(3) →

SU(2)×SU(2) symmetry breaking and the study of the chiral SU(2)×SU(2) prop-
erties of hyperons. Then one may consider explicit chiral symmetry breaking cor-

rections to the axial and the vector currents, which are related to the SU(3)×SU(3)

symmetry breaking meson-nucleon derivative interactions, not just the explicit
SU(3) symmetry breaking ones that have been considered thus far (see Ref. [8]

and the previous subsection, above).
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We are in the course of developing a coupled-channel relativistic constituent-
quark model (CC RCQM). Thereby it should become possible to describe hadron

reactions more realistically. In particular, we focus on strong hadron resonance
decays, where we want to include the coupling to the mesonic decay channels

explicitly.

In this regard, promising results have already been obtained before in a toy
model for quark-antiquark systems with a scalar interaction neglecting spin and

flavor degrees of freedom [1, 2]. There we calculated the decay of a meson reso-
nance into the ground state by emitting a pion in a fully relativistic manner. The

RCQMwas constructed in a coupled-channel formalism along Poincaré-invariant

quantum mechanics in the point-form. It leads to the interacting mass operator
in matrix form comprising the two channels

1. the confined quark-antiquark system, depending on the valence-quark de-
grees of freedom, described by the mass operator M̂val and

2. the decay channel, containing in addition the π as the decay product, de-

scribed by the mass operator M̂val,π :

M̂ =

(

M̂val K̂
†

K̂ M̂val,π

)

. (1)

Here, the operator K̂ provides the coupling to the decay channel by producing the
π at an elementary quark/antiquark-π vertex. For simplicity, the mass operator

in the first channel is assumed to be the free mass operator plus a confinement

interaction of harmonic oscillator type. The mass operator M̂val,π in the second
channel contains in addition the kinetic energy of the π.

We solved the eigenvalue problem of the matrixmass operator in Eq. (1) after
a Feshbach reduction leading to the complex eigenvalue problem

[

M̂val + K̂
† (

M − M̂val,π + i0
)−1

K̂
]

|ψval〉 = M |ψval〉 . (2)

The results for the mass eigenvalues are shown in Fig. 1 as a function of the cou-
pling strength to the decay channel. For the definite value of g2/4π=1.19, marked

⋆ Talk delivered by R. Kleinhappel
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by the vertical line, we obtained the ground state corresponding to a model ρme-

son with real mass eigenvaluem and the first excitation as a true resonance with

complex mass eigenvalue M. The decay width of the latter is Γ = 2 ImM=26
MeV.
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Fig. 1. Dependence of the mass-operator eigenvalues of the ground state (lower solid

curve) and the first excited state (upper solid curve) on the coupling constant between

the constituent (anti)quarks and the meson. For the resonant state it is also shown, how

the decay width Γ – whose value is multiplied by a factor of 4 for better visibility – de-

velops (shaded area). The vertical line indicates the particular coupling strength, where

the mass eigenvalues of a model ρ ground state and anω∗ resonance are reproduced. The

horizontal line marks the energy, where the decay width Γ vanishes; it is just the energy of

the QQ̄ ground state with only confinement plus the πmass.

Beyond describing the spectrum more realistically, our model also allows to

deduce meson vertex form factors from a microscopic approach. This has been

done in ref. [3].

Currently, we are applying our approach to mesons, including spin and fla-
vor degrees of freedom. At the same time we are improving the dynamics en-

tering the valence and decay channels. Subsequently, the whole formalism will
be extended to baryons. We expect that the notorious shortcomings of single-

channel models, producing hadronic decay widths generally too small [4], will

thereby be remedied.

AcknowledgmentsThis workwas supported by the Austrian Science Fund, FWF,

through the Doctoral Program on Hadrons in Vacuum, Nuclei, and Stars (FWF DK
W1203-N16).
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Abstract. We attempt to solve the Schwinger model, i.e. massless QED in 1+1 dimensions,

by quantizing it on a space-time hyperboloid xµx
µ = τ2 . The Fock-space representation

of the 2-momentum operator is derived and its algebraic structure is analyzed. We briefly

outline a solution strategy.

1 Introduction

The Schwinger model is quantum electrodynamics of massless fermions in 1

space and 1 time dimension [1] and serves as a popular testing ground for non-
perturbative methods in quantum field theory (QFT). It is an exactly solvable,

super-renormalizable gauge theory that exhibits various interesting phenome-

na [2], such as confinement, which one would like to understand better in 1+3-
dimensional QFTs. Originally it was solved by means of functional methods [1].

Later on also operator solutions were found [3] and spectrum and eigenstates of
the theory were calculated by quantizing it at equal time x0 = const. [4, 5] or at

equal light-cone time x+ = x0 + x1 = const. [6]. We rather attempt to solve the

Schwinger model by means of canonical quantization on the space-time hyper-
boloid x2

0 −x2
1 = τ2. Each of these quantization hypersurfaces is associated with a

particular form of relativistic Hamiltonian dynamics [7], namely the instant form,
the front form and the point form, respectively.

The quantization surface in point form is a space-time hyperboloid which is

invariant under the action of the Lorentz group. The kinematic (interaction in-
dependent) generators of the Poincaré group are therefore those of the Lorentz

subgroup. All the interactions go into the components of the 2-momentum Pµ,

i.e. the generators of space-time translations, which provide the dynamics of the
system. One of the main virtues of point-form dynamics is obviously a simple be-

havior of wave functions and operators under Lorentz transformations. This has
already been exploited in applications to relativistic few-body systems [8], but

corresponding studies of interacting quantum field theories are still very sparse.

The best-known paper is that of Fubini et al. [9], who deal with point-form QFT
in 2-dimensional Euclidean space-time. We rather want to extend equal-τ quan-

tization in Minkowski space-time, as it was worked out in Ref. [10] for free field
theories, to the interacting case. The solution being known, the Schwinger model

⋆ Talk delivered by D. Kupelwieser
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would be an interesting example to test the point-form approach against other

methods. The hope is then that point-form quantum field theory will eventually

represent a useful alternative in the study of 4-dimensional quantum field theo-
ries.

The Lagrangian of the Schwinger model is

L = Lγ + Le + Lint = −
1

4
FµνFµν

︸ ︷︷ ︸
photon part

+
i

2
ψ̄
↔

/∂ ψ
︸ ︷︷ ︸
fermion part

+
1

2
e ψ̄ /Aψ
︸ ︷︷ ︸
interaction part

(1)

with the 2 × 2 Dirac matrices being represented, as usual, in the Weyl basis, i.e.
γ0 = σ1 , γ1 = iσ2 and γ5 = γ0γ1 = −σ3 .

2 The 2-Momentum Operator

2.1 The free part

This exposition follows closely Ref. [10] to which we refer for further details.

Fermions: In order to obtain the Fock-space representation of the free fermion
2-momentum operator, we Fourier-expand the Dirac field ψ(x) in terms of plane

waves using the fermion and antifermion annihilation (creation) operators c(†)(p)

and d(†)(p) and the spinor basis {u(p), v(p)}. In the massless case, the spinors are
(p0 = |p1|):

u(p) =
1

√

2p0

(

p0 − p1

p0 + p1

)

and v(p) =
1

√

2p0

(

p1 − p0

p1 + p0

)

. (2)

The free fermion 2-momentum operator in point-form is then obtained from the
stress-energy tensor Θµν

e by integrating over the space-time hyperboloid xµx
µ =

τ2:

Pµ
e =

∫

R2

2d2x δ
(

x2 − τ2
)

θ(x0) xν
︸ ︷︷ ︸

point-form “surface” element

Θνµ
e , with Θνµ

e =
i

2
ψ̄ γν

↔

∂
µψ . (3)

Inserting now the plain-wave expansion for the fields and interchanging momen-

tum and x integrations we are left with the covariant distribution

Wν(q) = 2

∫

R2

d2x δ(x2 − τ2) θ(x0) xν e
−iqx

= 2πδ(q2)ǫ(q0)qν + 2πθ(q2)δ(q0)J0(τ
√

q2)gν0

−
πτ

√

q2
θ(q2)

[

iY1(τ
√

q2) + ǫ(q0)J1(τ
√

q2)
]

qν

−
2iτ

√

−q2
θ(−q2)K1(τ

√

−q2)qν . (4)

When evaluating equation (3) for the free parts of the Lagrangian (1),Wν is con-

tracted with spinor products of the form ūγνu, ūγνv, etc. All the contractions
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with qν vanish and only the term ∝ θ(q2)δ(q0)gν0 survives. The result, as al-

ready shown by Biernat et al. [10] using a different trick to evaluateWν, is (after

normal ordering)

Pµ
e =

∫
dp1

2p0
pµ

(

c†(p) c(p) + d†(p)d(p)
)

, (5)

i.e. the same as in instant form.

Photons: For the free photon 2-momentum operator we proceed in an analogous
way. 1 The Fourier expansion of the vector potential Aµ(x) in terms of plane

waves gives rise to the photon creation- and annihilation operators a†κ(k) and

aκ(k) and to polarization vectors ǫµ
κ(k), with κ = 0, 1 labeling the polarization.

The polarization vectors are orthonormalized according to ǫµ
κ′(k)ǫκµ(k) = gκ′κ.

In order to preserve the nice covariance properties of the point form, we work
within the Lorenz gauge and use the Gupta-Bleuler quantization procedure. As

a consequence there are no physical photons left. The 0- and the 1-component

of the photon field are pure gauge degrees of freedom. Proceeding in analogy
to the fermion part we find for the Fock-space representation of the free photon

2-momentum operator again the same result as for equal-time quantization, i.e.

Pµ
γ =

1∑

κ=0

∫
dk1

2k0
kµ gκκa†κ(k)aκ(k) . (6)

2.2 The interaction part

Since there is no derivative in the interaction part of the Lagrangian (1), the inter-

action part of the stress-energy tensor is simply given by Θ
µν
int = −gµν Lint . The

interaction part of the 2-momentum operator is then

P
µ
int = −

∫

R2

2d2x δ(x2 − τ2)θ(x0) xµ Lint(x) . (7)

One can check explicitly that the corresponding integral for the interaction part

of the boost generator vanishes as expected [10].

To obtain the Fock-space representation of Pµ
int we proceed as before. The

only difference is now that Wν(q) does not provide a momentum conserving δ
function. But this is not surprising. Both components of the momentum operator

are interaction dependent so that one cannot expect momentum conservation at
interaction vertices. But what one can do is to analyze the algebraic structure of

P
µ
int. By appropriately collecting terms it can be cast into the form

P
µ
int = −e

1∑

κ=0

∫
dk1

2k0

(

A(Xµ
κ )(k)aκ(k) + A†(Xµ

κ)(k)a†κ(k)
)

(8)

1 See also Ref. [11] for a detailed derivation of the gluon 2-momentum operator.
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with

A(Xµ
κ)(k) =

∫
dp1

2p0

∫
dp′1

2p′0
(

c†(p ′), d(p)
)

X
µ

(κ)
(k, p ′, p)

(

c(p)

d†(p)

)

(9)

The distribution Wµ for different combinations of the momenta p, p′ and k to-
gether with the different spinor products determines essentially the elements of

the 2× 2matrix Xµ

(κ)
(k, p ′, p).

3 The Eigenvalue Problem

Putting all the pieces together we finally end up with the eigenvalue problem

(

Pµ
e + Pµ

γ + P
µ
int

)
∣

∣Ψ
〉

= A(Eµ)
∣

∣Ψ
〉

+

1∑

κ=0

∫
dk1

2k0

(

kµgκκa†κ(k)aκ(k)

−eA(Xµ
κ)(k)aκ(k) − eA†(Xµ

κ)(k)a†κ(k)
)

∣

∣Ψ
〉

= pµ
∣

∣Ψ
〉

(10)

which we want to solve non-perturbatively. Here we have also expressed the

fermion kinetic energy in terms of the As to emphasize that the fermion creation

and annihilation operators occur only in bilinear combinations. The argument Eµ

is essentially a diagonal matrix containing ±δ(p1′ − p1).

A possible strategy to solve this eigenvalue problemwas proposed in Ref. [12].

The first step is to keep the number of modes finite. This could, e.g., be done with-
out spoiling Lorentz-transformation properties by compactifying the x1 direction

such that one ends up with a deSitter space. A finite number of modes means also
that only a finite number of fermion-antifermion pairs can be created. In order to

keep the number of bosons finite the boson algebra is then considered as a con-

traction limit of another unitary algebra that restricts the number of bosons in any
mode. In this way one ends up with a solvable algebraic problem that involves

only a finite number of modes and a finite number of particles. The interesting
question will be whether the well known results for Schwinger model are recov-

ered upon performing the necessary contractions that restore the original theory.

AcknowledgmentsD. Kupelwieser acknowledges the support of the “Fonds zur

Förderung der wissenschaftlichen Forschung in Österreich” (FWF DK W1203-

N16).
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We have recently completed a study of the electromagnetic and axial form

factors of all light and strange baryons in the framework of the relativistic con-
stituent-quark model (RCQM). We have employed in the first instance the Gold-

stone-boson-exchange (GBE) RCQM [1, 2], but have also made analogous calcu-

lations with a typical one-gluon-exchange (OGE) RCQM, namely, the relativized
model of Bhaduri, Cohler, and Nogami, as parameterized in ref. [3]. We have

worked in the point form of Poincaré-invariant quantum mechanics.

Covariant predictions for the nucleon electromagnetic and axial as well as

induced pseudoscalar form factors especially of the GBE RCQM had already
been obtained about a decade ago [4–6]. They have been followed by detailed

studies of the electric radii as well as magnetic moments of all light and strange

baryons [7]. Also, our group has made comparative studies of point-form and
instant-form calculations of the nucleon electromagnetic form factors [8], in or-

der to find out the essential differences between the spectator-model construc-
tions in either the instant and point forms [9]. More recently one has performed

detailed investigations of the axial charges of the nucleon andN∗ resonances [10];

this kind of studies have then also been extended to the axial charges of the
whole octet and decuplet of light and strange baryons [11]. The axial charges are

connected with the πNN coupling constant via the Goldberger-Treiman relation.
Therefore it has been very interesting to study also the πNN as well as πN∆ in-

teraction vertices [12]. With these investigations we have reached a microscopic

description of the Q2 dependences of the πNN and πN∆ form factors together
with predictions for the corresponding coupling constants fπNN and fπN∆, which

were found in agreement with phenomenology.

In the spirit of the previous studies along the point-form construction of cur-

rent operators we have recently extended our investigations to electromagnetic
and axial form factors of the ∆ and the hyperon ground states. This was the cen-

tral focus of the dissertation of K.-S. C. [13]. Publications reporting these results

are forthcoming [14]. Here we shortly summarize the main results as presented
at the Workshop.

For the ∆ and hyperon elastic electromagnetic and axial form factors there
are no experimental data available. Such data exist only for some magnetic mo-

ments and electric radii. However, more and more results from lattice quantum

⋆ Talk delivered by W. Plessas
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chromodynamics (QCD) are appearing over the times. So, it has become possible

to compare with lattice-QCD data and in some instances also with results from

other theoretical approaches, such as, for example, chiral perturbation theory. Al-
ready in ref. [7] it was found that the predictions of the GBE RCQM for electric

radii and magnetic moments of the ∆’s and hyperons are in good agreement with
existing experimental data for these observables. Now, it has turned out that the

electromagnetic form factors produced by the GBE RCQM are quite congruent

with insights gained from lattice QCD. This applies specifically to the ∆, Σ, Ξ,
and Ω electromagnetic form factors; for Σ∗ and Ξ∗ no lattice-QCD results are yet

available. For the axial form factors, we can compare to lattice-QCD data only for
the ∆. Here too, the covariant predictions of the GBE RCQM agree or fall close to

slightly scattered results from different lattice-QCD calculations.

Here, we should also like to add a note regarding the elastic electromagnetic

form factors of the nucleons. While the corresponding predictions by the GBE
RCQM have long been known [4,5], a deeper analysis of their behaviours regard-

ing their flavor contents has recently come into the focus of interest. This is due to
phenomenological data that have been extracted from a flavor decomposition of

the world data on electromagnetic nucleon form factors [15]. A theoretical anal-

ysis of the individual flavor contributions to the form-factor predictions by the
GBE RCQM has revealed that here again the theoretical results for the separate

flavor parts are in good agreement with phenomenology in all respects [16] (see
also the contribution by M. Rohrmoser et al. in these proceedings).

It is certainly remarkable that the parameter-free predictions of the GBE

RCQM turn out to reproduce either experimental data or lattice-QCD results so

closely. This is the more so, since the RCQM relies only on valence-quark de-
grees of freedom and does not include any explicit mesonic effects (specifically

meson-dressing effects) or even contributions from configurations of more than
three quarks. Judging from the present results one must conclude that such in-

gredients can only play a minor role. In all instances it has become evident that

relativistic (boost) effects are most important. A fully relativistic treatment is thus
mandatory in dealing with hadron reactions.
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Abstract. In view of a recently published flavor decomposition of the world experimental

data on elastic electromagnetic form factors of the nucleons, we have performed a theoret-

ical study of the individual flavor contributions to these observables in the framework of

a relativistic constituent-quark model. We have found a surprisingly good agreement of

our theory with all details of the experimental data in the range of momentum transfers

0 ≤ Q2 .3.5 GeV2 .

1 Introduction

Quite recently it has become possible to identify the various u- and d-flavor con-

tributions to the elastic proton and neutron electromagnetic form factorsGp
E,G

p
M,

Gn
E , and G

n
M from experiment [1]. The corresponding flavor separation of the ex-

perimental data covers the range of momentum transfers 0.30 ≤ Q2 ≤ 3.41GeV2.

Interesting observations have been made on the behaviour of the flavor contribu-
tions and the total results for either the Sachs or Dirac and Pauli form factors.

It appears as a challenge for theory to reproduce the very detailed proper-

ties of the nucleon electromagnetic form factors as revealed by the experimental

flavor decomposition of ref. [1]. We have put the relativistic constituent-quark
model (RCQM) whose quark-quark hyperfine interaction is based on Goldstone-

boson exchange (GBE) [2,3] to a test with the new experimental data base. The co-
variant predictions of the GBE RCQM for the elastic electromagnetic form factors

have already been obtained over the past decade and were found in remarkably

good agreement with experimental data in all instances for momentum transfers
up to Q2 ∼ 5 GeV2 [4–6].

The covariant form factors aremost conveniently calculated in the point form

of Poincaré-invariant quantum mechanics [7]. In our approach we have done
so by applying a spectator model for the electromagnetic current operator [8].

Contrary to the case with other forms of relativistic quantum mechanics, the

spectator-model character of the current operator in point form is preserved in
all reference frames [9]. These features of the point-form spectator model (PFSM)

⋆ Talk delivered by M. Rohrmoser
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guarantee in particular the electromagnetic form factors to be manifestly covari-

ant.

Some first results of our theoretical analysis of flavor contributions to the
nucleon electromagnetic form factors can be found already in ref. [10]. Here, we

give some more information about the formalism and present further detailed

results.

2 Formalism

Our theoretical framework is relativistic quantum mechanics (RQM), which as-

sumes a fixed number of relevant degrees of freedom. The nucleons N are thus
considered as bound states of three constituent quarks Q. The RCQM is based

on an invariant mass operator M̂ = M̂free + M̂int fulfilling all symmetry require-

ments of the Poincaré group. The free and interaction parts of the mass operator

are expressed in the rest frame of the nucleon (i.e. for P =
∑3

i k2
i = 0) by

M̂free =

3∑

i=1

√

m̂2
i + k̂

2

i , M̂int =

3∑

i<j

V̂ij =

3∑

i<j

(

V̂conf
ij + V̂hf

ij

)

, (1)

where ki represent the three-momenta of the individual quarks with rest masses
mi and the Q-Q potentials V̂ij are composed of confinement and hyperfine in-

teractions. By employing such a mass operator M̂2 = P̂µP̂µ, with baryon four-

momentum P̂µ = (Ĥ, P̂), the Poincaré algebra of all ten generators {Ĥ, P̂i, Ĵi, K̂i},
for i = 1, 2, 3, is guaranteed.

For the GBE RCQM [2] one has assumed a linear confinement of a strength

corresponding to the string tension of quantum chromodynamics (QCD) and a
hyperfine interaction derived from GBE; the latter should account for the sponta-

neous breaking of chiral symmetry of low-energy QCD. Its specific feature is an

explicit flavor dependence that allows to reproduce the baryon excitation spec-
tra with an unprecedented accuracy [3]. The GBE RCQM has already been suc-

cessfully applied to a number of different processes (for a short review see, e.g.,
ref. [11]).

Stepping out from the mass-operator eigenstates of the nucleons |P, J, Σ〉 =

|M,V, J, Σ〉, which are simultaneous eigenstates of the mass operator M̂, the four-
momentum operator P̂µ (where P̂µ = M̂V̂µ, with the four-velocity operator V̂µ),

the total angular-momentum operator Ĵ and its z-component Σ̂, one can define the

invariant form factors Fµ
Σ ′Σ by the matrix elements of the electromagnetic current

operator between incoming and outgoing nucleon states

F
µ
Σ ′Σ(Q2) =

1

2M
〈V ′,M ′, J ′, Σ ′| Ĵµ |V,M, J, Σ〉 , (2)

whereQ2 is the square of the space-like momentum transferQµ = P ′µ − Pµ. The

elastic Sachs form factors are hereby obtained (forM = M ′ and J = J ′ = 1
2
) in the

following way:

GE(Q2) = F0
1
2

1
2

(Q2) (3)

GM(Q2) =
2M

Q
F1

1
2

− 1
2

(Q2) . (4)
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The Dirac and Pauli form factors are then obtained as

F1(Q2) =
1

1+ τ

[

GE(Q2) + τGM(Q2)
]

(5)

F2(Q2) =
1

1+ τ

[

GM(Q2) −GE(Q2)
]

, (6)

where τ = ( Q
2M

)2. Details of the calculation of the current matrix elements of

Eq. (2) can, e.g., be found in refs. [4–6, 9].

Following Eqs. (2)-(4), we can also write for the Sachs form factors

GE(Q2) =
1

2M

〈

V ′,M,
1

2
,
1

2

∣

∣

∣

∣

Ĵ0
∣

∣

∣

∣

V,M,
1

2
,
1

2

〉

(7)

GM(Q2) =
1

Q

〈

V ′,M,
1

2
,
1

2

∣

∣

∣

∣

Ĵ1
∣

∣

∣

∣

V,M,
1

2
,−
1

2

〉

. (8)

Next we define the contributions of flavors u and d to the Sachs form factors in a

nucleon N as

Gu,N
E (Q2) =

3

nu,N

1

2M

〈

V ′,M,
1

2
,
1

2

∣

∣

∣

∣

Ĵ0u

∣

∣

∣

∣

V,M,
1

2
,
1

2

〉

(9)

Gd,N
E (Q2) =

−3

nd,N

1

2M

〈

V ′,M,
1

2
,
1

2

∣

∣

∣

∣

Ĵ0d

∣

∣

∣

∣

V,M,
1

2
,
1

2

〉

(10)

Gu,N
M (Q2) =

3

nu,N

1

Q

〈

V ′,M,
1

2
,
1

2

∣

∣

∣

∣

Ĵ1u

∣

∣

∣

∣

V,M,
1

2
,−
1

2

〉

(11)

G
d,p
M (Q2) =

−3

nd,N

1

Q

〈

V ′,M,
1

2
,
1

2

∣

∣

∣

∣

Ĵ1d

∣

∣

∣

∣

V,M,
1

2
,−
1

2

〉

, (12)

where Ĵ0,1
f are the projections of the current-operator components Ĵ0,1 on flavors

f = u, d and nf,N are the numbers of quarks with flavors u and d in the proton

or the neutron, respectively. A priori we thus have eight separate contributions
to the full results of nucleon Sachs form factors. Under charge symmetry they

are reduced to only four independent contributions, since we have the restricting

relations for both the electric and magnetic form factors

G
u,p
E,M(Q2) = 2Gd,n

E,M(Q2) := Gu
E,M(Q2) (13)

2G
d,p
E,M(Q2) = Gu,n

E,M(Q2) := Gd
E,M(Q2) . (14)

This means that the Sachs form factors of the proton and neutron are constituted

from their flavor parts as

G
p
E =

2

3
Gu

E −
1

3
Gd

E , Gn
E =

2

3
Gd

E −
1

3
Gu

E (15)

G
p
M =

2

3
Gu

M −
1

3
Gd

M , Gn
M =

2

3
Gd

M −
1

3
Gu

M . (16)

The inverse formulae read

Gu
E = 2G

p
E +Gn

E , Gd
E = G

p
E + 2Gn

E (17)

Gu
M = 2G

p
M +Gn

M , Gd
M = G

p
M + 2Gn

M . (18)
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The corresponding flavor contributions to the nucleon Dirac and Pauli form fac-

tors are then given by

Ff
1(Q2) =

1

1+ τ

[

Gf
E(Q2) + τGf

M(Q2)
]

(19)

Ff
2(Q2) =

1

1+ τ

[

Gf
M(Q2) − Gf

E(Q2)
]

, (20)

for f=u, d. The latter can also be expressed directly through the proton and neu-

tron Dirac and Pauli form factors in the following way

Fu
i = 2F

p
i + Fn

i , Fd
i = 2Fn

i + F
p
i , i = 1, 2 . (21)

3 Results

Here we present results for the flavor contributions to the nucleon Sachs as well

as Dirac and Pauli form factors obtained from the GBE RCQM in the PFSM ap-
proach, i.e. through calculations in complete analogy to the previous studies of

the nucleon electromagnetic structures [4–6, 9].

The individual flavor contributions to the proton and neutron electric as well

as magnetic form factors, as published in the original refs. [4, 5], are shown in

Fig. 1. As is nicely seen, not only the global results for all four form factors Gp
E,

G
p
M, Gn

E , and G
n
M agree well with the world experimental data but also the sep-

arate flavor parts match the data extracted in ref. [1]. Slight differences to these
data are only visible for the anyway very small d-flavor contribution to the mag-

netic form factor of the neutron.

In addition to the electromagnetic Sachs form factors as depicted in Fig. 1
we may also examine the flavor compositions of the nucleon electric radii rE and

magnetic moments µ. We recall that these quantities are defined through the be-
haviours of the electric and magnetic form factors at Q2=0 in the following way

r2E = −6
dGE(Q2)

dQ2
Q2=0

, µ = GM(Q2 = 0) . (22)

In Tables 1 and 2 we present the individual flavor contributions to the nu-

cleon electric radii andmagnetic moments. It is interesting how the different parts
contribute to build up the full results, which are again in quite reasonable agree-

ment with experimental data.

The ratios of the Pauli to the Dirac form factors F2/F1 for the proton and neu-

tron have been in the focus of many theoretical investigations because of scaling

considerations. In ref. [1] the particular Q2 dependences have been highlighted
in comparison to the corresponding ratios for the separate flavor parts, i.e. Ff

2/F
f
1,

for f=u, d. From the flavor decomposition of the experimental data it was found
that both Fu

2 /F
u
1 and Fd

2/F
d
1 become practically constant for momentum transfers

Q2 &1.5 GeV2, much in contrast to F2/F1 for both the proton and the neutron. We

depict the behaviour of the theoretical results obtained with the GBE RCQM in
Figs. 2 and 3. Again it is found that the theoretical predictions are in reasonable

agreement with the experimental data not only for the total results (Fig. 2) but
also for the flavor-separated ratios (Fig. 3).



Analysis of flavor contributions to electromagnetic nucleon form factors 51

 0

 0.5

 1

 1.5

 0  1  2  3

Q2 [(GeV2)/c2]

GE
p (Q2)

 2/3 GE
u (Q2)

-1/3GE
d (Q2)

GE
p (Q2)

Bartel

Hoehler

Christy

Sill

Walker

Andivahis

Quattan

CJRW:  2/3 GE
u (Q2)

CJRW: -1/3 GE
d (Q2)

-0.5

 0

 0.5

 0  1  2  3

Q2 [(GeV2)/c2]

GE
n (Q2)

 2/3 GE
d(Q2)

-1/3 GE
u(Q2)

GE
n (Q2)

Herberg

Becker

Glazier

Meyerhoff

Bermuth

Eden

Schiavilla

Lung

Bruins

Passchier

Ostrick

Rohe

Zhu

Madey

CJRW: 2/3 GE
d(Q2)

CJRW: -1/3 GE
u(Q2)

 0

 0.5

 1

 1.5

 2

 2.5

 0  1  2  3

Q2 [(GeV2)/c2]

GM
p (Q2)

2/3 GM
u (Q2)

-1/3 GM
d (Q2)

GM
p (Q2)

Bartel
Hoehler
Christy
Sill
Walker
Andivahis
Quattan
CJRW:  2/3 GM

p,u(Q2)
CJRW: -1/3 GM

p,d(Q2)

-1.5

-1

-0.5

 0

 0  1  2  3

Q2 [(GeV2)/c2]

GM
n (Q2)

 2/3 GM
d (Q2)

-1/3 GM
u (Q2)

GM
n (Q2)

Bartel
Anklin 94
Anklin 98
Kubon
Markowitz

Gao
Xu 2003
Xu 2000
Lung
Bruins
CJRW:  2/3 GM

d (Q2)
CJRW: -1/3 GM

u (Q2)

Fig. 1. u- and d-flavor contributions to the proton (upper panels) and neutron (lower pan-

els) electric and magnetic form factors as predicted by the GBE RCQM in comparison to

experimental data from ref. [1] (CJRW) and other experiments as indicated.

Table 1. u- and d-flavor contributions to the proton and neutron electric radii squared r2E
[fm2].

GBE RCQM

Flavor Contributions Total Experiment

u d

p 1.0089 −0.1848 0.8241 0.769(28) [12]

0.70869(113) [13]

n 0.3696 −0.5045 −0.1349 −0.1161(22) [12]

Table 2. u- and d-flavor contributions to the proton and neutron magnetic moments µ

[n.m.].

GBE RCQM

Flavor Contributions Total Experiment

u d

p 2.4641 0.2343 2.6984 2.792847356(23) [12]

n −0.4686 −1.2321 -1.7006 −1.9130427(5) [12]
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Fig. 2. Ratios of Pauli to Dirac form factors for the proton (left) and neutron (right) as

predicted by the GBE RCQM in comparison to experimental data from ref. [1] and other

experiments as indicated.
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Fig. 3. Ratios of the u- and d-flavor contributions to the Pauli to Dirac form factors as

predicted by the GBE RCQM in comparison to experimental data from ref. [1].
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4 Conclusions

From the flavor analysis of elastic electromagnetic nucleon form factors we have

learned that the RCQM, especially the one with GBE hyperfine forces, provides
rather reasonable results in practically all instances. We attribute the successes

mainly to:

• appropriate dynamics in the GBE RCQM,

• very precise nucleon wave functions from the GBE RCQM,
• mixed-symmetry spatial components in the nucleon wave functions,

• manifest covariance of the observables due to point-form Lorentz boosts,
• strict frame independence of the construction of the current operator,

• fulfillment of current conservation.

It is interesting to note that the GBE RCQM relies on three-quark configurations

only. The underlying dynamics are just based on coupling valence-quark fields

with Goldstone bosons. No explicit mesonic effects (e.g., so-called meson-cloud
effects) or more-quark components are introduced beyond. From our previous

studies we do know that relativistic (boost) effects are most important in the re-
production of the nucleon electromagnetic form factors [4, 5]. This is even true

for the quantities extracted at or near zero momentum transfers, i.e. the mag-

netic moments and electric radii [6]. For the good performance of the GBE RCQM
we identify as most important two special symmetry ingredients in our theory,

namely, the spontaneous breaking of chiral symmetry of low-energy QCD and

strict Lorentz invariance.
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from a Magnetar model of magnetised cores⋆
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Abstract. We have used the Magnetar model to identify some stars, in a sampling of a few

high magnetic field pulsars, as magnetars. Thus this model throws up a lot of unexplored

physics from the strongly interacting core to the plasma physics and the crustal solid state

physics of huge magnetic fields.

Our understanding of neutron stars is at a crossroad. We have to understand many

families of neutron stars, for example pulsars and magnetars, in one framework. This is

what we have tried to do in this work.

Neutron stars are also the laboratory to understand the high density phase diagram

for strong interactions. This work gives us a new understanding of the strong interactions

that is linked intimately to astrophysical data.

Our Model Conclusions

In conclusion we enumerate some of the consequences of the model presented

above:

i) Magnetars belong exclusively to the higher than pulsar mass population
of neutron stars that are born with a high density magnetic core.

ii) The high density core is created by a strong interaction phase transition

that aligns magnetic moments to create large dynamical 1016(17) G magnetic

fields at the surface of the core. Dynamical fields are ’permanent’ unlike fields
derived from currents.

iii) The core field is shielded by Lenz currents generated in the high con-

ductivity plasma in and around it, but is gradually transported to the crust by

ambipolar diffusion over a timescale of ≃ 105−6 years with interior temperatures
of more than ≃ 108.5 K, - this results in a time delay before the field comes out to

the surface. In old spun up binary neutron stars created by slow accretion ( for ex-
ample the large mass ( almost 2 solar mass ) binary neutron star, PSR J1614-2230),

the lower interior temperatures inhibit transport of the core field to the crust.

iv) The strong magnetic field breaks through the crust as the shielding cur-

rents dissipate giving out a steady X-ray flux and several energetic flares.

v) This further implies that the surface field keeps increasing in magnitude
till all shielding currents dissipate and the permanent dipolar core field is estab-

lished.
⋆ Talk delivered by V. Soni
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vi) Neutron stars are also the laboratory to understand the high density

phase diagram for strong interactions. The existence of the large mass ( almost

2 solar mass ) binary neutron star, PSR J1614-2230, very probably rules out soft
equations of state, associatedwith quarkmatter ( with/without condensate) cores.

We have found that all these phenomena are supported by extensive data

and observations.
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Abstract. We show that the two complementary pictures of largeNc baryons - the single-

quark orbital excitation about a symmetric core and the meson-nucleon resonance – are

compatible for ℓ = 3 SU(4) baryons. The proof is based on a simple Hamiltonian including

operators up to orderO(N0
c) used previously in the literature for ℓ = 1.

1 The status of the 1/Nc expansion method

The large Nc QCD, or alternatively the 1/Nc expansion method, proposed by
’t Hooft [1] and implemented by Witten [2] became a valuable tool to study

baryon properties in terms of the parameter 1/Nc where Nc is the number of
colors. According to Witten’s intuitive picture, a baryon containing Nc quarks is

seen as a bound state in an average self-consistent potential of a Hartree type and

the corrections to the Hartree approximation are of order 1/Nc.

Ten years after ’t Hooft’s work, Gervais and Sakita [3] and independently
Dashen and Manohar in 1993 [4] derived a set of consistency conditions for the

pion-baryon coupling constants which imply that the large Nc limit of QCD has
an exact contracted SU(2Nf)c symmetry when Nc →∞,Nf being the number of

flavors. For ground state baryons the SU(2Nf) symmetry is broken by corrections

proportional to 1/Nc [5, 6].

Analogous to s-wave baryons, consistency conditions which constrain the

strong couplings of excited baryons to pions were derived in Ref. [7]. These con-

sistency conditions predict the equality between pion couplings to excited states
and pion couplings to s-wave baryons. These predictions are consistent with the

nonrelativistic quark model.

A few years later, in the spirit of the Hartree approximation a procedure
for constructing large Nc baryon wave functions with mixed symmetric spin-

flavor parts has been proposed [8] and an operator analysis was performed for ℓ

= 1 baryons [9]. It was proven that, for such states, the SU(2Nf) breaking occurs
at order N0

c, instead of 1/Nc, as it is the case for ground and also symmetric

excited states [56, ℓ+] (for the latter see Refs. [10, 11]). This procedure has been

⋆ Talk delivered by I. Stancu
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extended to positive parity nonstrange baryons belonging to the [70, ℓ+] with ℓ =

0 and 2 [12]. In addition, in Ref. [12], the dependence of the contribution of the

linear term inNc, of the spin-orbit and of the spin-spin terms in the mass formula
was presented as a function of the excitation energy or alternatively in terms of

the band number N. Based on this analysis an impressive global compatibility
between the 1/Nc expansion and the quark model results forN = 0, 1, 2 and 4 [13]

was found (for a review see Ref. [14]). More recently the [70, 1−] multiplet was

reanalyzed by using an exact wave function, instead of the Hartree-type wave
function, which allowed to keep control of the Pauli principle at any stage of

the calculations [15]. The novelty was that the isospin-isospin term, neglected
previously [9] becomes as dominant in ∆ resonances as the spin-spin term in N∗

resonances.

The purpose of this work is to analyze the compatibility between the 1/Nc

expansion method in the so-called quark-shell picture and the resonance or scattering

picture defined in the framework of chiral soliton models. Details can be found in
Ref. [16].

2 Negative parity baryons

If an excited baryon belongs to a symmetric [56]-plet the three-quark system can
be treated similarly to the ground state in the flavour-spin degrees of freedom, but

one has to take into account the presence of an orbital excitation in the space part

of thewave function [10,11]. If the baryon state is described by amixed symmetric
representation, [70] in SU(6) notation, the treatment becomes more complicated.

In particular, the resonances up to 2 GeV belong to [70, 1−], [70, 0+] or [70, 2+]

multiplets and beyond to 2 GeV to [70, 3−], [70, 5−], etc.

In the following we adopt the standard way to study the [70]-plets which, as
alreadymentioned, is related to the Hartree approximation [8]. An excited baryon

is described by a symmetric core plus an excited quark coupled to this core, see
e.g. [9, 12, 17, 18]. The core is treated in a way similar to that of the ground state.

In this method each SU(2Nf) × O(3) generator is separated into two parts

Si = si + Si
c; Ta = ta + Ta

c ; Gia = gia +Gia
c ; ℓi = ℓiq + ℓic, (1)

where si, ta, gia and ℓiq are the excited quark operators and Si
c, T

a
c , Gia

c and ℓic
the corresponding core operators.

2.1 The quark-shell picture

In the quark-shell picture we use the procedure of Ref. [19], equivalent to that of

Ref. [20], later extended in Ref. [21]. We start from the leading-order Hamiltonian
including operators up to order O(N0

c) which has the following form

H = c1 l1 + c2ℓ · s+ c3

1

Nc

ℓ(2) · g ·Gc (2)

This operator is defined in the spirit of a Hartree picture (mean field) where the

matrix elements of the first term are proportional to Nc on all baryons [2]. The
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spin-orbit term ℓ · s which is a one-body operator and the third term - a two-

body operator containing the tensor ℓ(2)ij of O(3) - have matrix elements of order

O(N0
c). The neglect of 1/Nc corrections in the 1/Nc expansion makes sense for

the comparison with the scattering picture in the large Nc limit, described in the

following section.

One can see that the Hamiltonian (2) reproduces the characteristicNc scaling

for the excitation energy of baryons which is N0
c [2].

The nucleon case In largeNc the color part of the wave function is antisymmetric
so that the orbital-spin-flavor part must be symmetric to satisfy the Pauli princi-

ple. A quanta of orbital excitation requires the orbital part to be mixed symmetric,

the lowest state having the partition [Nc − 1, 1]. We have the following [Nc − 1, 1]

spin-flavor (SF) states which form a symmetric state with the orbital ℓ = 3 state of

partition [Nc − 1, 1]

1. [Nc − 1, 1]SF =
[

Nc+1
2
, Nc−1

2

]

S
×

[

Nc+1
2
, Nc−1

2

]

F
, Nc ≥ 3

with S = 1/2 and J = 5/2, 7/2

2. [Nc − 1, 1]SF =
[

Nc+3
2
, Nc−3

2

]

S
×

[

Nc+1
2
, Nc−1

2

]

F
, Nc ≥ 3

with S = 3/2 and J = 3/2, 5/2, 7/2, 9/2.

They give rise to matrices of a given J either 2 × 2 or 1 × 1 depending on the

multiplicity of J. States of symmetry [Nc − 1, 1]SF with S = 5/2, like for ∆ (see
below), which together with ℓ = 3 could give rise to J = 11/2, are not allowed for

N, by inner products of the permutation group [22]. Therefore the experimentally
observed resonance N(2600)I11/2 should belong to the N = 5 band (ℓ = 5). For

Nc = 3 the above states correspond to the 28 and 48 multiplets of SU(2) × SU(3)

respectively.

The ∆ case In this case the Pauli principle allows the following states

1. [Nc − 1, 1]SF =
[

Nc+1
2
, Nc−1

2

]

S
×

[

Nc+3
2
, Nc−3

2

]

F
, Nc ≥ 3

with S = 1/2 and J = 5/2, 7/2,
2. [Nc − 1, 1]SF =

[

Nc+3
2
, Nc−3

2

]

S
×

[

Nc+3
2
, Nc−3

2

]

F
, Nc ≥ 5

with S = 3/2 and J = 3/2, 5/2, 7/2, 9/2,
3. [Nc − 1, 1]SF =

[

Nc+5
2
, Nc−5

2

]

S
×

[

Nc+3
2
, Nc−3

2

]

F
, Nc ≥ 7

with S = 5/2 and J = 1/2, 3/2, 5/2, 7/2, 9/2, 11/2.

As above, they indicate the size of a matrix of fixed J for the Hamiltonian (2). For

example, the matrix of ∆5/2 is 3×3, because all three states can have J = 5/2. For
Nc = 3 the first state belongs to the 210multiplet. The other two types of states do

not appear in the real world with Nc = 3. Note that both forNJ and ∆J states the
size of a given matrix equals the multiplicity of the corresponding state indicated

in Table 1 of Ref. [21] for ℓ = 3.

The Hamiltonian (2) is diagonalized in the bases defined above. Let us de-

note the eigenvalues either bym
(i)

NJ
orm

(i)

∆J
with i = 1, 2 or 3, depending on how
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many eigenvalues are at a fixed J. The Hamiltonian has analytical solutions, all

eigenvalues being linear functions in the coefficients c1, c2 and c3. It is remarkable

that the 18 available eigenstates with ℓ = 3 fall into three degenerate multiplets,
like for ℓ = 1. If the degenerate masses are denoted bym ′

2,m3 andm4 we have

m ′
2 = m

(1)

∆1/2
= m

(1)

N3/2
= m

(1)

∆3/2
= m

(1)

N5/2
= m

(1)

∆5/2
= m

(1)

∆7/2
, (3)

m3 = m
(2)

∆3/2
= m

(2)

N5/2
= m

(2)

∆5/2
= m

(1)

N7/2
= m

(2)

∆7/2
= m

(1)

∆9/2
, (4)

m4 = m
(3)

∆5/2
= m

(2)

N7/2
= m

(3)

∆7/2
= m

(1)

N9/2
= m

(2)

∆9/2
= m

(1)

∆11/2
, (5)

where

m ′
2 = c1Nc − 2c2 −

3

4
c3, (6)

m3 = c1Nc −
1

2
c2 +

15

16
c3, (7)

m4 = c1Nc +
3

2
c2 −

5

16
c3. (8)

The notationm ′
2 is used to distinguish this eigenvalue fromm2 of Ref. [19].

In the following subsection we shall see that the scattering picture gives an
identical pattern of degeneracy in the quantum numbers, but the resonance mass

is not quantitatively defined. Therefore only a qualitative compatibility can be

established.

2.2 The meson-nucleon scattering picture

Here we are concerned with nonstrange baryons, as above, and look for a degen-

eracy pattern in the resonance picture. The starting point in this analysis are the
linear relations of the S matrices Sπ

LL ′RR ′IJ and Sη
LRJ of π and η scattering off a

ground state baryon in terms of K-amplitudes. They are given by the following

equations [19, 21]

Sπ
LL ′RR ′IJ =

∑

K

(−1)R ′−R
√

(2R + 1)(2R ′ + 1)(2K + 1)

{
K I J

R ′ L ′ 1

}{
K I J

R L 1

}

sπKLL ′ ,

(9)
and

S
η
LRJ =

∑

K

δKLδ(LRJ)s
η
K, (10)

where sπKL ′L and sηK are the reduced amplitudes. The notation is as follows. For

π scattering R and R ′ are the spin of the incoming and outgoing baryons respec-
tively (R =1/2 forN and R = 3/2 for ∆), L and L ′ are the partial wave angular mo-

mentum of the incident and final π respectively (the orbital angular momentum

L of η remains unchanged), I and J represent the total isospin and total angular
momentum associated to a given resonance and K is the magnitude of the grand

spin K = I + J. The 6j coefficients imply four triangle rules δ(LRJ), δ(R1I), δ(L1K)

and δ(IJK).
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These equations were first derived in the context of the chiral soliton model

[23,24]where the mean-field breaks the rotational and isospin symmetries, so that

J and I are not conserved but the grand spin K is conserved and excitations can be
labelled by K. These relations are exact in large Nc QCD and are independent of

any model assumption.

The meaning of Eq. (9) is that there are more amplitudes Sπ
LL ′RR ′IJ than there

are sπKLL ′ amplitudes. The reason is that the IJ as well as the RR ′ dependence is

contained only in the geometrical factor containing the two 6j coefficients. Then,
for example, in the πN scattering, in order for a resonance to occur in one channel

there must be a resonance in at least one of the contributing amplitudes sπKLL ′ .

But as sπKLL ′ contributes in more than one channel, all these channels resonate at
the same energy and this implies degeneracy in the excited spectrum. From the

chiral soliton model there is no reason to suspect degeneracy between different K

sectors.

From the meson-baryon scattering relations (9) and (10) three sets of degen-

erate states have been found for ℓ = 1 orbital excitations [19]. There is a clear

correspondence between these sets and the three towers of states [19, 20] of the
excited quark picture provided by the symmetric core + excited quark scheme [9].

They correspond to K = 0, 1 and 2 in the resonance picture. But the resonance pic-
ture also provides a K = 3 due to the amplitude sπ322. As this is different from the

other sπKL ′L , in Ref. [19] it was interpreted as belonging to the N = 3 band.

Here we extend the work of Ref. [19, 21] to ℓ = 3 excited states which belong
to the N = 3 band. The partial wave amplitudes of interest and their expansion

in terms of K-amplitudes from Eqs. (9) and (10) can be found in Tables I-III of

Ref. [16]. They correspond to L = L ′ = 2, L = L ′ = 4 and L = L ′ = 6 respectively.
From those tables one can infer the following degenerate towers of states with

their contributing amplitudes

∆1/2, N3/2, ∆3/2, N5/2, ∆5/2, ∆7/2, (sπ222, s
η
2), (11)

∆3/2, N5/2, ∆5/2, N7/2, ∆7/2, ∆9/2, (sπ322, s
π
344), (12)

∆5/2, N7/2, ∆7/2, N9/2, ∆9/2, ∆11/2, (sπ444, s
η
4), (13)

∆7/2, N9/2, ∆9/2, ∆11/2, (sπ544, s
π
566), (14)

∆9/2, ∆11/2, (sπ666, s
η
6) (15)

associated to K = 2, 3, 4, 5 and 6 respectively.

We can compare the towers (11)-(15) with the quark-shell model results of
(3)-(5). The first observation is that the agreement of (11) (K = 2) with (3), of

(12) (K = 3) with (4) and of (13) (K = 4) with (5) is perfect regarding the quantum
numbers. Second, we note that the resonance picture can have poles with K = 5, 6

which infer the towers (14) and (15). They have no counterpart in the quark-shell

picture for ℓ = 3. But there is no problem because the poles with K = 5, 6 can
belong to a higher band, namelyN = 5 (ℓ = 5) without spoiling the compatibility.

Comparing these results with those of Ref. [21] one can conclude that one can

associate a common K = 2 to ℓ = 1 and ℓ = 3. For this value ofK the triangular rule
δ(Kℓ1) proposed in Ref [21] is satisfied. The quark-shell picture brings however

more information than the resonance picture due to the fact that it implies an
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energy dependence via the ℓ dependence which measures the orbital excitation.

Note that m ′
2 is different from m2 of ℓ = 1 [19, 20]. Because in the resonance

picture they stem from the same amplitude sπ222, one expects that this amplitude
possesses two poles at two distinct energies, in order to have compatibility. Thus

the number of poles of the reduced amplitudes sπKLL remains an open question.

We anticipate that a similar situation will appear for every value of K associ-
ated to two distinct values of ℓ, satisfying the δ(Kℓ1) rule, for example, for K = 4

which is common to ℓ = 3 and ℓ = 5.

3 Conclusions

Wehave compared two alternative pictures for baryon resonances consistent with

large the Nc QCD limit and found that the two pictures are compatible for ℓ = 3
excited states, as it was the case for ℓ = 1. The quark-shell picture is practical

and successful in describing known resonances and in predicting other members

of the excited octets and decuplets. But the extended symmetry SU(2Nf) × O(3)
where O(3), which is essential to include orbital excitations, does not have a direct

link to largeNc. On the other hand the scattering picture is close to experimental

analysis but it is not clear where the pole positions should lie. It is however very
encouraging that the two pictures give sets of degenerate states with identical

quantum numbers when one works at order O(N0
c). It is a qualitative proof that

the spin-flavor picture is valid and useful for baryon phenomenology.

References

1. G. ’t Hooft, Nucl. Phys. 72 (1974) 461.

2. E. Witten, Nucl. Phys. B160 (1979) 57.

3. J. L. Gervais and B. Sakita, Phys. Rev. Lett. 52 (1984) 87; Phys. Rev.D30 (1984) 1795.

4. R. Dashen and A. V. Manohar, Phys. Lett. B315 (1993) 425; ibid B315 (1993) 438.

5. R. F. Dashen, E. Jenkins and A. V. Manohar, Phys. Rev.D51 (1995) 3697.

6. E. Jenkins, Ann. Rev. Nucl. Part. Sci. 48 (1998) 81; AIP Conference Proceedings, Vol. 623

(2002) 36, arXiv:hep-ph/0111338; PoS E FT09 (2009) 044 [arXiv:0905.1061 [hep-ph]].

7. D. Pirjol and T. M. Yan, Phys. Rev. D 57 (1998) 1449.

8. J. L. Goity, Phys. Lett. B414 (1997) 140.

9. C. E. Carlson, C. D. Carone, J. L. Goity and R. F. Lebed, Phys. Rev.D59 (1999) 114008.

10. J. L. Goity, C. Schat and N. N. Scoccola, Phys. Lett. B564 (2003) 83.

11. N. Matagne and F. Stancu, Phys. Rev.D71 (2005) 014010.

12. N. Matagne and F. Stancu, Phys. Lett. B631 (2005) 7.

13. C. Semay, F. Buisseret, N. Matagne and F. Stancu, Phys. Rev. D 75 (2007) 096001.

14. F. Buisseret, C. Semay, F. Stancu and N. Matagne, Proceedings of the Mini-workshop

Bled 2008, Few Quark States and the Continuum”, Bled Workshops in Physics, vol. 9,

no. 1, eds. B. Golli, M. Rosina and S. Sirca. arXiv:0810.2905 [hep-ph].

15. N. Matagne and F. Stancu, Nucl. Phys. A 811 (2008) 291.

16. N. Matagne and F. Stancu, Phys. Rev.D84 (2011) 056013.

17. C. L. Schat, J. L. Goity and N. N. Scoccola, Phys. Rev. Lett. 88 (2002) 102002; J. L. Goity,

C. L. Schat and N. N. Scoccola, Phys. Rev.D66 (2002) 114014.



Negative parity nonstrange baryons in largeNc QCD 63

18. N. Matagne and F. Stancu, Phys. Rev.D74 (2006) 034014; Nucl. Phys. Proc. Suppl. 174

(2007) 155.

19. T. D. Cohen and R. F. Lebed, Phys. Rev. Lett. 91, 012001 (2003); Phys. Rev. D67 (2003)

096008.

20. D. Pirjol and C. Schat, Phys. Rev.D67 (2003) 096009.

21. T. D. Cohen and R. F. Lebed, Phys. Rev.D68 (2003) 056003.

22. F. Stancu, “Group theory in subnuclear physics,” Oxford Stud. Nucl. Phys. 19 (1996) 1.

23. A. Hayashi, G. Eckart, G. Holzwart and H. Walliser, Phys. Lett. 147B (1984) 5.

24. M. P. Mattis and M. E. Peskin, Phys. Rev. D32 (1985) 58; M. P. Mattis, Phys. Rev. Lett.

56 (1986) 1103; Phys. Rev. D39 (1989) 994; Phys. Rev. Lett. 63 (1989) 1455; M. P. Mattis

and M. Mukerjee, Phys. Rev. Lett. 61 (1988) 1344.



BLED WORKSHOPS

IN PHYSICS

VOL. 12, NO. 1
p. 64

Proceedings of the Mini-Workshop
Understanding hadronic spectra
Bled, Slovenia, July 3 - 10, 2011

News from Belle

M. Bračko⋆
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Abstract. This paper reports on some of the latest spectroscopicmeasurements performed

with the experimental data collected by the Belle spectrometer, which has been operating

at the KEKB asymmetric-energy e+e− collider in the KEK laboratory in Tsukuba, Japan.

1 Introduction

The Belle detector [1] at the asymmetric-energy e+e− collider KEKB [2] has ac-

cumulated about 1 ab−1 of data by the end of its operation in June 2010. The
KEKB collider, called a B-factory, most of the time operated near the Υ(4S) res-

onance, while at the end of its operation it was running mainly at the Υ(5S)
resonance. Large amount of collected experimental data and excellent detector

performance enabled many interesting spectroscopic results, including discov-

eries of new hadronic states and studies of their properties. This report covers
most recent and interesting spectroscopic measurements—performedwith either

charmonium(-like) and bottomonium(-like) states.

2 Charmonium and Charmonium-like States

2.1 ηc and ηc(2S) in B meson decays

There has been a renewed interest in charmonium spectroscopy since 2002. The

attention to this field was drawn by the discovery of the two missing cc states

below the open-charm threshold, ηc(2S) and hc(1P) [3,4] with JPC=0−+ and 1+−,
respectively.

Still, many questions about the lightest charmonium states have been unan-

swered. For example, the width of the ηc(1S) has been determinedwith large dis-
crepancies between experiments with different production mechanisms: in J/ψ

andψ(2S) radiative decays Γηc
≃15MeV, while in Bmeson decays or γγ→ηc pro-

cesses, Γηc
≃30 MeV [5]. In a recent Belle analysis [6] a data sample of 535 million

of BB pairs is used for the study of B+→K+ηc(→KSK
±π∓) decays1. The mass and

the width of the ηc were determined by a 2-dimensional fit of the invariant mass

⋆ Representing the Belle Collaboration.
1 In this review, the inclusion of charge-conjugated states is always implied.
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Γηc [MeV] Production Mechanism Measured by

35.1±3.1+1.0
−1.6 B decays Belle [6]

30.5±1.0±0.9 ψ ′→γηc BESIII [7]

28.1±3.2±2.2 γγ→ηc Belle [8]

31.7±1.2±0.8 γγ→ηc BABAR [9]

36.3+3.7
−3.6±4.4 B decays BABAR [10]

Table 1. Recent measurements of the ηc width.

Minv(KSKπ) vs. the angle between KS and K+ from B+ in the ηc centre-of-mass

system. Since ηc is a pseudoscalar meson, the angular distribution should be flat,

but significant P- andD-wave components from non-resonant charmless B back-
ground decays are also observed. By including the above angle into the fit, the in-

terference with the background seems to be correctly taken into account, and as a

result themeasured ηc width, listed in Table 1, is found to be consistent with other
recent measurement. The ηc mass is determined to be (2985.4±1.5+0.2

−2.0) MeV.

The same study [6] is performed also for the ηc(2S) meson. For this first ra-

dially excited 0−+ cc state the width measurement is important, because the po-
tential model predictions are less reliable due to the vicinity of the D0D0 thresh-

old. The analysis shows, that here the interference with the non-resonant back-
ground is even larger as in the case of the ηc. The measured width is Γηc(2S)=

(6.6+8.4
−5.1

+2.6
−0.9) MeV for the fit with interference and (41.1±12.0+6.4

−10.9) MeV, when

the interference is not taken into account, i.e. for the fit of the invariant mass
only. The factor 5 smaller width of the ηc(2S) when compared to the ηc can be

explained only by the wave function differences, since both states decay hadron-
ically via two gluons. With the newmeasurement, the error on the world average

of the ηc(2S) width is decreased for almost a factor of 2.

2.2 The X(3872) news

The story about new charmonium-like states (so called “XYZ” states) began in
2003, when Belle reported on B+ → K+J/ψπ+π− analysis, where a new state

decaying to J/ψπ+π− was discovered [11]. The new state, called X(3872), was

soon confirmed and also intensively studied by the CDF, DØ and BABAR col-
laborations [12–20]. So far it has been established that this narrow state (Γ =

(3.0+1.9
−1.4 ± 0.9) MeV) has a mass of (3872.2 ± 0.8) MeV, which is very close to

theD0D∗0 threshold [5]. The intensive studies of several X(3872) production and

decay modes suggest two possible JPC assignments, 1++ and 2−+, and establish

the X(3872) as a candidate for a loosely bound D0D∗0 molecular state. However,
results provided substantial evidence that the X(3872) state must contain a sig-

nificant cc component as well.

Recently, Belle performed a study of B→ (ccγ)K using the final data sample
with 772 million of BB pairs collected at the Υ(4S) resonance [21]. Pure D0D∗0
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Experiment [Reference] Measured X(3872) mass [MeV]

CDF [24] 3871.61±0.16±0.19

BaBar (B+ ) [25] 3871.4±0.6±0.1

BaBar (B0) [25] 3868.7±1.5±0.4

DØ [12] 3871.8±3.1±3.0

Belle [23] 3871.84±0.27±0.19

LHCb [26] 3871.96±0.46±0.10

Updated World Average 3871.67±0.17

Table 2. Measurements of the X(3872) mass. First error is due to limited statistics, while

the second corresponds to systematic uncertainties.

molecular model [22] predicts B(X(3872) → ψ′γ) to be less than B(X(3872) →

J/ψγ). Results by the BABAR collaboration [20] show that B(X(3872) → ψ′γ) is
almost three times that of B(X(3872) → J/ψγ), which is inconsistent with the

pure molecular model, and can be interpreted as a large cc −D0D∗0 admixture.

We observe X(3872) → J/ψγ together with an evidence for χc2 → J/ψγ in B± →

J/ψγK± decays, while in our search for X(3872) → ψ′γ no significant signal is

found. We also observe B → χc1K decays in both, charged as well as neutral
B decays. The obtained results suggest that the cc-D0D∗0 admixture in X(3872)

may not be as large as discussed above.

New results for the X(3872) →J/ψπ+π− decay modes in B+→K+X(3872)

and B0→K0 (→π+π−)X(3872) decays are obtained with the complete Belle data
set of 772 million BB pairs collected at the Υ(4S) resonance [23]. The results for

the X(3872) mass and width are obtained by a 3-dimensional fit to distributions
of the three variables: beam-constrained-mass Mbc=

√

(Ecms
beam)2 − (pcms

B )2 (with

the beam energy Ecms
beam and the B-meson momentum pcms

B both measured in the

centre-of-mass system), the invariant mass Minv(J/ψπ
+π−) and the energy dif-

ference ∆E=Ecms
B −Ecms

beam (where Ecms
B is the B-meson energy in the centre-of-mass

system). As a first step, the fit is performed for the reference channelψ ′→J/ψπ+π−,
and the resolution parameters are then fixed for the fit of the X(3872). The mass,

determined by the fit, is listed in Table 2 in comparison to other precise measure-

ments. Including the new Belle result, the updated world-average mass of the

X(3872) ismX=(3871.67±0.17)MeV. If the X(3872) is an S-waveD∗0D
0
molecular

state, the binding energyEb would be given by themass differencem(X)−m(D∗0)-
−m(D0). With the current value of m(D0)+m(D∗0)=(3871.79 ± 0.30) MeV [5], a

binding energy of Eb=(−0.12±0.35)MeV can be calculated, which is surprisingly

small and would indicate a very large radius of the molecular state.

The best upper limit for the X(3872) width was 2.3 MeV (with 90% C.L.), ob-

tained by previous Belle measurement [11]. The 3-dimensional fits aremore sensi-

tive to the naturalwidth, which is smaller than the detector resolution (σ ∼4MeV).
Due to the fit sensitivity and the calibration performed on the reference channel
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ψ ′→J/ψπ+π−, the updated upper limit for the X(3872) width is about 1/2 of the

previous value: Γ(X(3872)) < 1.2MeV at 90% C.L.

Previous studies performed by several experiments suggested two possible

JPC assignments for the X(3872), 1++ and 2−+. In the recent Belle analysis [21],

the X(3872) quantum numbers were also studied with the full available data sam-
ple collected at the Υ(4S) resonance. Although at the current level of statistical

sensitivity it is not possible to distinguish completely between the two possible
quantum number assignments, the study shows that quantum numbers JPC=1++

seem to be slightly preferable for the X(3872) state.

3 Bottomonium and Bottomonium-like States

An interesting question is whether in the bb systems there exist analogous “XYZ”

states, predicted by many of the models proposed to explain the charmonium-

like exotic states. Also, even for regular bottomonium states there are a lot of
unanswered questions. Some of the answers are expected to be given by analyses

of the Belle data sample of 121 fb−1, collected at the energy of theΥ(5S) resonance.

The Belle collaboration used a data sample at the CM energy around the

Υ(5S) mass 10.89 GeV, and found large signals for decays into π+π−Υ(1S),
π+π−Υ(2S) and π+π−Υ(3S) final states [33]. If these transitions are only from

the Υ(5S) resonance, then the corresponding partial widths are between 0.5 and

0.9 MeV. These values are more than two orders of magnitude larger than the
corresponding partial widths for Υ(4S), Υ(3S) and Υ(2S) decays to π+π−Υ(1S).

Recent CLEO-c results for the process e+e− → hc(1P)π
+π− showed that its rate

is comparable to the process e+e− → J/ψπ+π− at
√
s = 4170MeV and found an

indication of even higher transition rate at the Y(4260) energy [34]. Analogously,

these results imply that the hb(mP) production might be enhanced in the region
of the Yb and motivate a search for the hb(mP) in the Υ(5S) data. hb(1P) and

hb(2P) states are observed in the missing mass spectrum of π+π− pairs for the
Υ(5S) decays, with significances of 5.5σ and 11.2σ, respectively [35]. This is the

first observation of the hb(1P) and hb(2P) spin-singlet bottomonium states in the

reaction e+e− → hb(mP)π+π− at the Υ(5S) energy.

Comparable rates of hb(1P) and hb(2P) production indicate a possible ex-

otic process that violates heavy quark spin-flip and this motivates a further study
of the resonant structure in Υ(5S) → hb(mP)π+π− and Υ(5S) → Υ(nS)π+π−

decays [36]. Due to the limited statistics, only the study ofM(hb(mP)π) distribu-
tion is possible for hb(mP)π+π−, while in the case of Υ(nS)π+π− decay modes

the Dalitz plot analysis can be performed. As a result, two charged bottomonium-

like resonances, Zb(10610) and Zb(10650), are observed with signals in five dif-
ferent decay channels, Υ(nS)π± (n = 1, 2, 3) and hb(mP)π± (m = 1, 2). The av-

eraged values for the mass and widths of the two states are calculated to be:
M(Zb(10610)) = (10608.4 ± 2.0) MeV, Γ(Zb(10610)) = (15.6 ± 2.5) MeV and

M(Zb(10650)) = (10653.2 ± 1.5) MeV, Γ(Zb(10650)) = (14.4 ± 3.2) MeV. The

measured masses are only a few MeV above the thresholds for the open beauty
channels B∗B (10604.6 MeV) and B∗B

∗
(10650.2 MeV), which could indicate a

molecular nature of the two observed states. Angular analysis of charged pion
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distributions favors the JP = 1+ spin-parity assignment for both Zb(10610) and

Zb(10650).

4 Summary and Conclusions

The Belle experiment at the KEKB collider provides an excellent environment

for charm and charmonium spectroscopy. As a result, many new particles have

already been discovered during the Belle operation, and some of them are men-
tioned in this report. Some recent Belle results also indicate that analogs to ex-

otic charmonium-like states can be found in bb systems. As the operation of the
experiment has just finished in June 2010, more interesting results on charmoni-

um(-like) and bottomonium(-like) spectroscopy can still be expected from Belle

in the near future.
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Motivation This work is a continuation of a joint project on the description of

baryon resonances performed by the Coimbra group (Manuel Fiolhais, Luis Al-

varez Ruso, Pedro Alberto) and the Ljubljana group (Simon Širca and B. G.)

The pion- and photon-induced meson production on nucleons are important
tools to study the hadron dynamics in the first and second resonance region. One

of the main challenges is to understand the interplay of quark and meson de-
grees of freedom. While several models of nucleon excited states spanning from

the non-relativistic models based solely the quark degrees of freedom to models

involving only mesonic degrees of freedom are able to successfully describe the
pion elastic and non-elastic scattering in the resonance region, electro-production

of mesons represents a much more severe test which may be able to disentan-
gle the properties originating in the (valence, constituent) quark degrees of free-

dom from those of the meson cloud. One of the most widely recognized example

is electro-excitation of the ∆(1232) resonance where the pion cloud contributes
∼ 45% to the magnetic dipole amplitude, and strongly dominates the electric

quadrupole amplitude. Similarly, the behaviour of the pion electro-excitation am-
plitude in the Roper region can be explained by assuming a relatively strong con-

tribution of the pion cloud. However, in the second resonance region, such a con-

clusion is less transparent because of the presence of other channels. To avoid
ambiguities, we need to develop a method in which the strong and the EM pro-

cesses are treated in a unified approach without too many adjustable parameters.

The method In order to study the interplay of quark and meson degrees of free-

dom, we have developed a method that incorporates the nucleon and its excited

states calculated in different chiral quarkmodels into a coupled channel approach
involving different meson-baryon channels as well as the photon-nucleon chan-

nel. The conceptual foundations of our approach in chiral quarkmodels date back
to the paper [1], in which we demonstrated the above mentioned importance of

the pion cloud in electro-production of pions in the region of the ∆(1232).

In [2] we have generalized our approach used in our previous studies of the

resonances (see e.g. [1], [3], [4] and [5]). The generalized method incorporates
excited baryons represented as quasi-bound quark-model states into a coupled

channel framework using the K-matrix formalism. It can be applied to meson
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scattering as well as to electro and weak-production of mesons. Our method

assumes a class of chiral quark models in which mesons couple linearly to the

quark. In such a case it is possible to write down an exact expression for the K
matrix (and, consequently, for the T matrix) in terms of the principal-value states

corresponding to the meson-baryon channels possessing the proper asymptotic
behaviour. The construction respects the symmetry of the K matrix and hence

ensures the unitarity of the Smatrix.

The strong and the weak points The main advantages of our method can be sum-
marized in

• Baryons are treated as composite particles from the very beginning; the strong

and electro-weak form-factors are derived from baryon internal structure

and not inserted a posteriori; as a consequence the method introduces a much
smaller number of free parameters.

• The physical resonances appear as linear superpositions of bare resonances.

• The bare quark-meson and quark-photon vertices are modified through
meson loops as well as through mixing of resonances and coupling to the

background.
• The meson cloud around baryons is included in a consistent way also in the

asymptotic states.

• The method yields a symmetric K matrix and hence respects the unitarity of
the S matrix.

The present limitations of the method are primarily the absence of meson-meson
interaction and the nucleon-meson four-point interaction which can be intro-

duced only in an approximate way. This is a consequence of our assumption
about the meson-quark interaction discussed above. Our method is therefore pri-

marily intended to describe the processes in the region of resonances rather than

in the energy region close to the threshold where other methods are anyway su-
perior.

The Roper resonance In [2] and [6] we have considered the scattering and the
pion electro-production in the region of the N(1440) and of its I = 3

2
partner, the

∆(1600). As the underlying quark model we have taken the Cloudy bag Model,

primarily because of its simplicity. A good agreement with the observed scatter-
ing amplitude and theM1− electro-production amplitude is found provided the

π∆ and the σN channels of comparable strength are included in the multichan-
nel calculation. The results strongly support the hypothesis that the pion cloud

plays an important role in the case of the electro-excitation ofN∗(1440) resonance,

especially in the region of low Q2 (long-range effects). In this region the quark
contribution is small and positive, while the pion contribution and the vertex

corrections due to meson loops are large and negative. At intermediateQ2, these
two effects are responsible for the zero crossing of the amplitude. At higher Q2

(short-range physics) the quark core takes over, rendering the amplitude positive.
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The S11 resonances In recent years there have been substantial efforts to un-

derstand the peculiar nature of the lightest of the S11 resonances, the N(1535),

due to its position just above the ηN threshold and the large branching ratio to
the ηN channel. The extension of the approach to the low-lying negative-parity

resonances requires the inclusion of new channels involving the s- and d-wave
pions, the η and the ρ mesons, and the KΛ channel. In [7–9] we have used an

SU(3) extension of the Cloudy Bag Model taking fη and fK from the meson sec-

tor, while for the other model parameters we have used the same values as in the
case of the positive-parity resonances, adding only themixing parameter between

the two bare-quark states corresponding to N(1535) and N(1650), and their bare
masses. We have obtained a good overall agreement with the available experi-

mental results for the partial widths of the N(1535) and the N(1650) resonances

as well as for the pion, η-meson and kaon electroproduction amplitudes. In par-
ticular, the excellent agreement with the data for η production strongly supports

our conjecture about the dominance of the genuine three-quark configuration in
the N∗(1535) state. While the cross-section for pion-induced production of K+

appears to be over-estimated in our model, the photo-production amplitude is

smaller than predicted by phenomenological analyses. This discrepancy remains
an open question and represents a challenge for further investigation.
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Abstract. We describe the method for extracting the elastic scattering phase shift from a

lattice simulation at an introductory level, for non-lattice practitioners. We consider the

scattering in a resonant channel, where the resulting phase shift δ(s) allows the lattice

determination of the mass and the width of the resonance from a Breit-Wigner type fit. We

present the method for the example of P-wave ππ scattering in the ρ meson channel.

1 Introduction

The determination of the strong decay width of a hadronic resonance in lattice
QCD is a much more demanding task than the determination of its approximate

mass. The only available method (that was applied up to now) was proposed
by Lüscher [1] and is rather indirect. It applies for the case when the resonance

appears in the elastic scattering of two hadrons H1H2 → R→ H1H2.

• First, the energy spectrum En of the system of two interacting hadrons H1H2

enclosed in a few-fermi box has to be determined. The system is illustrated in
Fig. 1. The spectrum in a finite box En is discrete and few (one or two) lowest

energy levels have to be determined by lattice simulation.
• The shift of the energyEn with respect to the non-interacting energyEH1(p1)+

EH2(p2) (EHi(pi) =

√

m2
i + pi

2) gives info on the interaction betweenH1 and

H2. Lüscher derived a rigorous relation between the energy shift En − EH1 −

EH2 and the elastic phase shift δ(s) forH1H2 scattering in continuum [1]. The

measured energies En can be used to extract the phase shift δ(s) evaluated at

s = E2
n − P2, where En is the energy of the system and P its total momen-

tum. In order to extract δ(s) at several different values of s, the simulations

are done for several choices of total momenta P of the H1H2 system, which
leads to different values of s = E2

n − P2.
• The resulting dependence of δ(s) as a function of s can be used to extract the

mass mR and the width ΓR of the resonance R, which appears in the elastic
channel H1H2 → R → H1H2. For this purpose, the δ(s) can be fitted with a

Breit-Wigner form or some other phenomenologically inspired form, which

depend onmR and ΓR.

⋆ Talk delivered by S. Prelovšek
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L= few fm

L >> few fm

p

p p

1

2

p1

2

Fig. 1. The energy of two hadrons in a box of size L. On the left, L ≫ fm and E(L) ≃
EH1(p1) + EH2(p2). On the right, L ≃ few fm and energy gets shifted due to their interac-

tion, i.e. E(L) ≃ EH1(p1) + EH2(p2) + ∆E(L).

The described method, needed for the determination of the resonance width

ΓR, is rather challenging. It requires very accurate determination of a few lowest

energy levels of the system H1H2, since the resulting phase shift depends ulti-
mately on the energy shift. Among all the meson resonances, this method has

been up to now rigorously applied only to ρ resonance. Although Lüscher pro-

posed the method already in late 80’s [1], the first lattice attempt to employ it to
hadronic resonances had to wait until 2007 [2]. Since then, several studies of ρ

have been carried out [3, 4], with the most up to date ones [5–7].

This talk briefly describes the method to extract δ(s),mR and ΓR on an exam-
ple of ππ scattering in the ρ channel. It is based on a recent simulation [6], which

is the statistically most accurate determination of any strong meson width on one
lattice ensemble. The purpose of this talk is to highlight the main physical rea-

soning, which lies behind the lattice extraction of δ(s),mR and ΓR, omitting most

of technical details.

The sections follow the order of steps required, which are listed as items in
the introduction. Section II describes the determination of spectrum En of the

coupled systemH1H2 ↔ R. The Section III described why En allow one to extract

the elastic phase shift δ(s). The extraction of the resonance parametersmR and ΓR
from the phase shift δ(s) is done in Section IV. We end with conclusions.

2 Spectrum of two hadrons in a finite box

The ρmeson is a resonance in ππ scattering in P-wave, and has quantum numbers
IG(JPC) = 1+(1−−). The total momentum P of the coupled ππ − ρ system can

have values 2π
NL

d , d ∈ Z3 due to the periodic boundary condition in the spatial
direction, and we use the following three choices

P = (0, 0, 0) , 2π
NL

(0, 0, 1) , 2π
NL

(1, 1, 0) and permutations . (1)

This enables us to obtain several values of s = E2
n − P2 for the system, thereby

allowing the determination of δ(s) for these values of s without changing the
spatial volume.
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Our simulation is performed on an ensemble of 280 [8] gauge configurations

with dynamical u/d quarks, where the valence and dynamical quarks employ

improvedWilson-Clover action. The corresponding pion mass ismπa = 0.1673±
0.0016 ormπ = 266±4MeV. The lattice spacing is a = 0.1239±0.0013 fm and we

employ a rather small volume N3
L × NT = 163 × 32, which allows us to use the

costly full distillation method [9] for evaluating the quark contractions.

On the lattice, the discrete energies of the system En can be extracted after
computing the dependence of the correlation matrix Cij(tf, ti) on Euclidean time

tf − ti

Cij(tf, ti) = 〈0|Oi(tf) O†
j (ti)|0〉 =

∑

n

〈Oi|n〉〈n|O†
j 〉 e−En(tf−ti) . (2)

The analytical expression on the right is obtained by inserting the complete set
∑

n |n〉〈n| of physical states n with given quantum numbers. The interpolators
Oi have the quantum numbers of the system in question. In our case the inter-

polators have quantum numbers JPC = 1−− and |I, I3〉 = |1, 0〉 and total three-

momentum P. They have to couple well to the ππ state and the quark-antiquark
resonance ρ.

For each choice of P (1), we use 16 interpolators, listed in detail in Eq. (21)

of [6]. We employ fifteen interpolators of quark-antiquark type

Oq̄q
i (t) =

∑

x

eiPx 1√
2
[ūFiu (t, x) + d̄Fid (t, x)] , (3)

where Fi denotes different color-spin-space structures with the same resulting
quantum number JPC = 1−− and |I, I3〉 = |1, 0〉. We use also one π(p1)π(p2)

interpolator, where each pion is projected to a definite momentum

Oππ(t) = 1√
2
[π+(p1)π

−(p2) − π−(p1)π
+(p2)] , p1 + p2 = P ,

π±(pi) =
∑

x

eipix q̄γ5τ
±q (t, x) (4)

In practice, the ππ interpolator is the most important among our 16 interpola-

tors, since it couples to the scattering state much better than the quark-antiquark
interpolators. Let us note that all other lattice studies aimed at Γρ used at most

one quark-antiquark and one ππ interpolator, which may not always allow for
reliable extraction of the first excited energy level E2.

Given the 16 interpolators, we compute the 16×16 correlationmatrixCij(tf, ti)

for all initial and final time-slices ti, tf = 1, ..,NT = 32. The needed Wick con-

tractions that enter the correlation matrix with our q̄q and ππ interpolators are
depicted in Fig. 2. The contributions (a,c,e) in Fig. 2 cannot be evaluated solely

from the quark propagator from one point (ti, xi) to all other points of the lat-
tice (such a propagator allowed most of the spectroscopy studies in the past).

The contributions (a,c,e) require the propagators from all and to all points on the

lattice, which is too costly to evaluate in practice. We use the recently proposed
distillation method for this purpose [9], which enables the exact computation of

the required contractions.
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(a)

(b)

(c)

(e)(d)

Fig. 2. Contractions for I = 1 correlators with q̄q (3) and ππ (4) interpolators.

P level n En a s a2 δ

2π
L

(0, 0, 0) 1 0.5107(40) 0.2608(41) 130.56(1.37)
2π
L

(0, 0, 0) 2 0.9002(101) 0.8103(182) 146.03 (6.58) [*]

2π
L

(0, 0, 1) 1 0.5517(26) 0.1579(29) 3.06 (0.06)
2π
L

(0, 0, 1) 2 0.6845(49) 0.3260(69) 156.41(1.56)

2π
L

(1, 1, 0) 1 0.6933(33) 0.1926(49) 6.87(0.38)
2π
L

(1, 1, 0) 2 0.7868(116) 0.3375(191) 164.25(3.53)

Table 1. The results for two lowest levels n = 1, 2 of the coupled ππ− ρ systemwith three

choices of total momentum P on our lattice withmπa = 0.1673 ± 0.0016, L = 16a and the

lattice spacing a = 0.1239 ± 0.0013 fm. The energy levels En are obtained by multiplying

Ena with a−1 ≃ 1.6 GeV. The invariant mass squared of the system is s = E2
n − P2 , but

the dimensionless value in the table s a2 is obtained using the discretized version of this

relation [6].

We average the resulting correlators (i) over all initial time slices ti at fixed

time separation tf − ti, (ii) over all directions of momenta P (1) and (iii) over all

directions of the ρmeson polarization.

The time dependence tf − ti of the correlators Cij(tf, ti) (2) contains the in-
formation on the energies of the system En, and several methods for extracting

En from Cij are available. We extract two lowest energy levels En=1,2 of the sys-
tem from the 16 × 16 correlation matrix Cij(tf, ti) using the so called variational

method [10], which is the most established among the available methods. Table 1

displays the extracted lowest two energies En=1,2 of the coupled ππ − ρ system
for our three choices of total momenta P (1).

The spectrum En in Table 1 for our finite box is the main result of this section.

Each energy level corresponds to a different value of s = E2
n − P2, as calculated

from En and P in the Table 1. In fact, the table lists values of s obtained from the

discrete lattice version of the dispersion relation, which takes into account part of

the corrections to s = E2
n − P2 due to finite lattice spacing [6].
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3 Extraction of the phase shifts from energy levels

Let us consider the case when the resonance R can strongly decay only to two

spinless hadrons H1 and H2, so one has elastic scattering of H1 and H2. We point
out that the non-elastic case, when a resonance can decay strongly to several final

states (i.e. H1H2 and H ′
1H

′
2), is much more challenging for a lattice study.

Suppose one encloses two hadrons H1(p1) H2(p2) with three-momenta p1

and p2 into a large box of size L ≫ fm and measures their energy. In a large

box, they hardly interact and their energy is equal to sum of individual energies

Enon−int = EH1(p1)+EH2(p2) with EH(p) =

√

m2
H + p2. Now, let’s forceH1(p1)

and H2(p2) to interact by decreasing the size of the box to L of a few fm. The en-
ergy of the system E(L) = EH1(p1) + EH2(p2) + ∆E(L) is shifted with respect

to Enon−int: it will increase (∆E(L) > 0) if the interaction is repulsive and de-

crease (∆E(L) < 0) if the interaction is attractive. This simple physical reasoning
indicates that the energy shift ∆E(L) gives info on the interaction.

Fig. 3. The scattering of two interacting particles as series of the interaction vertexM(δL)

and the scattering of non-interacting particles F at finite L [11].

In fact, the energy shift ∆E(L) and the energy itself E(L) do not only give us

”some” info on the interaction. According to the seminal analytic work of Lüscher
[1], E(L) or ∆E(L) rigorously tells us the value of the elastic scattering phase shift

of H1H2 scattering at L→∞, i.e. δ(L =∞):

Luscher method : E(L) −→ δ(s, L =∞) s = E(L)2 − P2 (5)

The derivation and the resulting formulae between E(L) and δ are lengthy and
rather complicated, but let us briefly explain at least why E(L) contains info on

δ(L = ∞). A nice and clear quantum-filed theory derivation is given in [11] and

the main message is illustrated in Fig. 3. The scattering of two interacting spin-
less hadrons H1H2 at finite L (for degenerate case mH1 = mH2 = m) is repre-

sented in QFT by series of:

• scattering of two non-interacting hadrons at finite L, represented by F. The

expression F contains sums over the loop momenta k, which are allowed in a
finite box L with periodic boundary conditions in space. Here f(k0,k) stands

for dependence of the vertices on the left and right on k0 and k.
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• the interaction vertexM with four hadron legs. This vertex depends on the

elastic phase shift δl (at infinite volume) for the case of elastic scattering in

the l-th partial wave.

The physical scattering requires resummation of the bubbles in Fig. 3, with non-
interacting parts F and the interacting partsM, giving AF 1

1−MF
A ′. The positions

of the poles of the sum AF 1
1−MF

A ′ obviously depend onM and therefore on δl.
The positions of the poles dictate the possible energy levels of the system En(L),

so the energy levels En(L) depend onM and therefore on δl.

The purpose of the above illustration was just to indicate why En(L) depend

on δl. In the case of ππ with JP = 1−, the relevant wave has l = 1 and we de-

note the corresponding phase by δ ≡ δ1. The complete analytic relations between
En(L) and δ(s) needed for our case of the ππ scattering with JPC = 1−− and I = 1

are provided in [6] (for every |P| a different form of relation applies). These allow

to extract δ for each of our six energy levels in Table 1 and the resulting phase
shifts are given in the same Table.

The presented Lüscher formalism applies only for the case of elastic scatter-
ing. The ππ state is the only scattering state in this channel for energies when 4π

state cannot be created, i.e., when s = E2
n < (4mπ)2. For ourmπa = 0.1673 this is

valid for all six levels, with the exception of the level E1 at P = 0, which is above

4π inelastic threshold. As the Lüscher analysis is not valid above the inelastic

threshold, we omit this level from further analysis.

The resulting scattering phase shifts for five values of s are shown in Fig.

4. This is the main result of the lattice study; the resonance properties will be
obtained by fitting δ(s) in the next section.

Note that the resulting phases are determined with a relatively good pre-
cision, which is better than in other available lattice studies of ρ at comparable

u/d quark masses. The good precision can be traced back to various advanced

techniques we used: the distillation method for evaluating contractions, usage
of a large interpolator basis and average over all initial time slices, directions of

momenta P and polarizations of ρ.

4 Extracting resonance mass and width from the phase shift

The phase shift δ(s) in Fig. 4, obtained directly from the lattice study, can be used

to extract the properties of the resonance, in our case the ρ. The phase shift has

a typical resonance shape: it passes from δ ≃ 0◦ to δ ≃ 180◦: the point where
it crosses 90◦ gives the position of the resonance (s = m2

ρ), while the steepness

of the rise gives its width Γρ. In particular, δ is related to resonance parameters
by expressing the scattering amplitude al in terms of δ on one hand, and with

Breit-Wigner form in the vicinity of the resonance on the other hand

a1 =
−
√
s Γ(s)

s−m2
ρ + i

√
s Γ(s)

=
e2iδ(s) − 1

2i
. (6)

Relation (6) can be conveniently re-written as
√
s Γ(s) cot δ(s) = m2

ρ − s . (7)
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0.1 0.15 0.2 0.25 0.3 0.35 0.4
s

0

20

40

60

80

100

120

140

160

180

δ 

Fig. 4. The ππ phase shift δ(s) (in degrees) for five different values of dimensionless sa2 =

(Ena)2 − (Pa)2, extracted from our lattice study [6]. The s is obtained by multiplying sa2

with (a−1)2 ≃ (1.6 GeV)2 .

lattice (this work [6]) exp [PDG]

mπ ≃ 266MeV

mρ 792 ± 12MeV 775MeV

gρππ 5.13 ± 0.20 5.97

Table 2.Our lattice results for the resonance parameters [6], compared to the experimental

values.

The decay width significantly depends on the phase space and therefore on mπ,
so the decay width extracted at mπ ≃ 266 MeV could not be directly compared

to the measured width. So, it is customary to extract the ρ → ππ coupling gρππ

instead of the width, where the width

Γ(s) =
p∗3

s

g2
ρππ

6π
, Γρ = Γ(m2

ρ) (8)

depends on the phase space for a P-wave decay and the coupling gρππ. The cou-
pling is expected to be only mildly dependent on mπ, which was explicitly con-

firmed in the lattice studies [5, 7] and analytic study [12]. In (8), p∗ denotes the

pion momentum in the center-of-momentum frame and we extract it from s us-
ing a discretized version of relation

√
s = 2

√

m2
π + p∗2 [6]. Inserting Γ(s) (8) into

(7), one obtains an expression for δ(s) in terms of two unknown parameters:mρ

and gρππ. We fit these two parameters using five values of δ(s) given in Fig. 4

and Table 1, and we get the values of resonance parameters in Table 2 with small

statistical errors.

The resulting ρ-meson mass in Table 2 is slightly higher than in experiment,
as expected due tomπ = 266 MeV > m

exp
π . The coupling gρππ is rather close to

the value gexp
ρππ derived from the experimental width Γexp

ρ .
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Fig. 5. The crosses are the ππ phase shift δ(s) (in degrees) for five different values of di-

mensionless sa2 = (Ena)2 − (Pa)2 , extracted from our lattice study [6]. The line is the

Breit-Wigner fit (7,8) for the resulting mρ and gρππ in Table 2. The physical value of s is

obtained by multiplying sa2 with (a−1)2 ≃ (1.6 GeV)2 .

5 Comparison to other lattice and analytical studies

The comparison of our results for mρ and Γρ to two recent lattice studies [5, 7]

is compiled in Fig. 8 of [7]. Our result has the smallest error on a given ensem-
ble, demonstrating that accurate lattice determination mR and ΓR for (some) res-

onances is possible now. The other two lattice studies are done for two [7] and

four [5] pion masses and explicitly demonstrate mild dependence of gρππ onmπ.
The discussion concerning the (dis)agreement of the three lattice studies is given

in [7] and will be extended in [13].

The comparison of our δ(s) to the prediction of the lowest non-trivial order
of unitarized Chiral Perturbation Theory [14] is given by the solid line in 6, which

has been recalculated for ourmπ = 266MeV in [15]. The lowest1 order prediction

does not depend on unknown LECs and agrees reasonably well with our lattice
result, given by the bullets.

6 Conclusions

We highlighted the main physical reasoning, which lies behind the lattice extrac-
tion of elastic phase shifts δ(s) and the resonance parameters mR and ΓR. The

purpose was to present the general principle of the method and omit the tech-
nical details. The method was presented on the example of ππ → ρ → ππ scat-

tering. This example demonstrates that a proper first-principle treatment of some

hadronic resonances on the lattice is now possible.

1 One cannot make a fair comparison between out lattice result and the next-to-lowest

order prediction, since it depends on a number of LECs, and some of them have been

fixed usingmρ from another lattice study, which gets a significantly highermρ .
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Fig. 6. The ππ phase shift in the ρ channel δ11(p) ≡ δ(p∗) at mπ = 266 MeV: the solid

line (indicated by “Unit O(p4)”) gives prediction of the lowest order of Unitarized Chiral

Perturbation Theory [14, 15], while bullets are our lattice data.
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Abstract. The importance of the pion cloud in the nucleon has been demonstrated in the

study of the magnetic polarizabilities, electroexcitation, spin properties of the nucleon and,

more recently, in deep inelastic scattering. The model in which the pion cloud of the nu-

cleon is generated by the qqq̄ component in the constituent quark has been successful in

explaining the spin properties and the flavor asymmetric sea of the nucleon. We show that

the same parameters yield the pion in p → nπ+ and p → pπ0 fluctuation in agreement

with the observed value in the (e + p→ e+ forward neutron+X) experiment.

1 Introduction

First we review some evidence for the role of the pion cloud in explaining nucleon

observables. As examples of low-energy processes, we quote the magnetic polar-
izabilities [1] and electroexcitation of the nucleon [2–4]. The pion cloud acts as a

coil and gives a diamagnetic contribution while the virtual excitation of theN-like

quark core into the ∆-like quark core acts as a paramagnet. The magnetic polar-
izability of the nucleon results from an approximate cancellation between these

two contributions. Without the pion cloud, the paramagnetic contribution would
dominate and give much too large magnetic polarizability. In the electroexcita-

tion of the nucleon into ∆ and into the Roper resonance, the linear σ-model with

quarks and the cloudy bag model help us understand why (40 - 50)% of the dom-
inant M1 ampliutude and 100% of the E2 amplitude is due to pion cloud.

The question arises, whether the same amplitude of the pion cloud (or equiv-

alently, the same probability of pion fluctuation) can explain also observables

measured at higher energies where the stucture functions of quarks play a role
and pion is seen through its contribution to the corresponding quark and anti-

quark structure function.

2 Pion cloud in quarks can explain nucleon observables

The notion of the constituent quark applies generally to themassive quark dressed
by gluons, the constituent of the nucleon. This non-relativistic model with three

⋆ Talk delivered by M. Rosina
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massive constituent quarks works well for the hadronic masses and the magnetic

moments. It breaks down if the spin properties of the baryons are considered.

The improved version, the chiral constituent quark model is surprisingly suc-
cesful in explaining the spin properties of nucleons and hyperons. In the simplest

form applied to the nucleon the chiral constituent quark is composed of amassive
quark accompanied by a quark-antiquark pair coupled to the spin-parity quan-

tum numbers of the pion Jπ = 0−. In the following we write the pion symbol

as a shortcut to the quark-antiquark pair coupled to the pion quantum numbers.
This simple model has been first applied by Eichten et al. [5] to explain the flavor

asymmetry of the sea quarks and further elaborated by Baumgärtner et al. [6] and
Pirner [7] in the interpretation of the spin properties of the nucleon. It is related

to the three-flavour extension proposed by Cheng and Li [8]. Explicitly written,

the chiral constituent up-quark (u) structure is

|u〉 =

√

(1−
3

2
a) |u〉 −

√
a|dπ+〉 +

√

a

2
|uπ0〉, (1)

and of the down quark (d)

|d〉 =

√

(1−
3

2
a) |d〉 +

√
a |uπ−〉 −

√

a

2
|dπ0〉. (2)

The basis of pure flavour quarks is denoted by boldface u and d.

At Q2 ≈ 0 gluons do not appear as an explicit degree of freedom and the nu-

cleon is composed of quarks and quark-antiquark pairs. Thus in the lowest order
the Fock state of the constituent quark has the form (1 and 2), where in the sec-

ond and third term the quark-antiquark pair is coupled to the Jπ = 0− quantum

nummbers of the pion. This simple structure of the chiral constituent quark (1)
has two attractive features. Firstly, as we will show, the chiral constituent quark

reproduces the experimental results of the deep inelastic scattering and axial-
vector beta decays of the neutron quantitatively; secondly, this model complies

with our picture of the origin of the quark mass by the chiral symmetry breaking

mechanism of Nambu and Jona-Lasino [9]. Dressing the light quark by gluons is
inevitably accompanied by creation of the Goldstone boson, the pion. The Gold-

stone pion is an inherent part of the constituent quark.

The parameter a of (1, 2) is usually determined from the value of the axial
vector coupling constant gA = 1.269 ± 0.003 [11] yielding a = 0.239 ± 0.002.

The parameter a measures the probability of the constituent quark to be in the

state accompanied with a charged pion. Furthermore, with the probability a/2
the constituent quark is in a state component with the neutral pion. Thus the to-

tal probability of finding a pion in the constituent quark amounts thus to slightly
more than one third. The large probability of the pion in the constituent quark is

best manifested in the measurements of the quark polarization in the deep inelas-

tic scattering. Not only that one third of the constituent quark with the pion does
not contribute to the spin polarization, but even more, with the oppositely ori-

ented quarks reduces the total quark polarization to one third of what would be
without the pions. The loss of the angular momentum because of the oppositely
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oriented quark is compensated by the orbital angular momentum of the pion in

the p-state. The comparison of the experimental results of the deep inelastic scat-

tering with the prediction of the chiral constituent-quark model is given in [10]. It
is also worthwhile to mention that the valence-quark distribution does not peak

at Bjorken x = 0.3 but it is softer and peaks at x = 0.2 corresponding to five and
not three constitunts of the proton even before gluons can get excited. Eichten et

al. ( [5]) ascribe these quark-antiquark pairs to an asymmetric sea.

We consider also other observables which depend strongly on the pions in

the nucleon: the Gottfried sum rule IG (with corrections discussed in [10]), the

integrals of the spin structure functions of proton Ip and deuteron Id and the
quark spin polarization ∆Σ [12,13]. They have larger error bars than gA, but they

agree reasonably well eith the model (Table 1.). The new experimental value for
∆Σ supports even more our assumption that the main contribution to the spin

reduction comes from the pion fluctuation.

observable model value

gA = 1.269 ± 0.003 5
3
(1 − a) = input

IG = 0.216 ± 0.033 1
3
(1 − 2a) = 0.174 ± 0.002

Ip = 0.120 ± 0.017 5
18

(1 − 2a) = 0.145 ± 0.002
Id = 0.043 ± 0.006 5

36
(1 − 3a) = 0.039 ± 0.001

∆Σ = 0.330 ± 0.064 (1 − 3a) = 0.283 ± 0.006

Table 1. The π+ probability a = 0.239 ± 0.002 is used to calculate different observables

3 The proton contains a neutron plus pion component

Let us consider the matrix element 〈nπ+|p〉.
Inserting for constituent quarks our chiral quarks it is evident that the 〈nπ+|

has an overlapp with a Fock component of the proton. The result of the explicit
calculation is

|〈nπ+|p〉|2 = |〈dπ+|u〉|2 = (1−
3

2
a)a = 0.15. (3)

The result (3) means that the constituent u quark has a component of the d quark

and a pion. Although the proton has two u quarks there is no factor 2 in the

amplitude, due to the flavor-spin-color structure of the nucleon. The flavor-spin
wavefunction of the proton has a mixed symmetry combined into a symmetric

flavor-spin function:

|p〉 =

√

1

2

1

3

2

f

× 1

3

2

s

+

√

1

2

1

2

3

f

× 1

2

3

s

. (4)

A similar expression stays for the neutron. Since the combined wavefunction is

symmetric under all permutations it is enough to look at the contribution of the
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particles 1 and 2. In the first term of the proton wavefunction the particles 1 and

2 are symmetric and can both be u quarks and contribute constructively to the

matrix element with a factor of two. In the second term the interference is de-
structive and the contribution cancels. Thus only the first term contributes to the

matrix element. Since both in proton and in neutron the first term appears with
a factor

√

1/2, the factor two is canceled out. This qualitative explanation can be

verified by writing down the three-quark wavefunctions explicitly.

This can be seen even easier in the isospin formalism. In the act of produc-

ing a positive pion, the corresponding u quark loses one unit of charge, it be-
comes a d quark. This can be described with the operator

∑
i t−(i) = T− where

T− = Tx − iTy. We conveniently took the sum over all three quarks since the third
quark, d, contributes zero anyway. The expectation value is < TM− 1|T−|TM >=
√

T(T + 1) −M(M− 1) which for proton (T = 1/2,M = 1/2) gives in fact the

factor 1. It is instructive to compare with ∆+ (T = 3/2,M = 1/2) in the process
ep→ e∆X where one gets the factor 2, pointing out that the two u quarks are

always symmetric and interfere constructively. Of course, for the squared ampli-
tude, we get the additional factor a since only the π+-dressed component of the

u-quark contributes, and the factor (1− 3
2
a) for the naked component of the final

d-quark.

4 Experimental test of the pion fluctuation

The pion fluctuation of nucleon is well known in the classical nuclear physics as

anomalously large pion-nucleon coupling constant g2/4π = 13.6. Many of the
nucleon properties are ascribed to the pion cloud of the nucleon [14]. Hovewer,

there is no direct way of determinig experimentally the probability of finding a
pion fluctuation in the proton. The best way is to calculate the pion flow by using

the pion-nucleon coupling constant and the form factor assuming that the pion is

emitted by a proton [15], [16]

fπ+/p(xL, t) =
1

2π

g2
pπn

4π
(1− xL)1−2α(t) −t

(m2
π − t)2

|G(t)|2. (5)

The pion flow is related to the measured cross section by

dσγ∗p→nX = fπ+/p(xL, t) · dσγ∗π+→X (6)

where the (γ∗π+ → X) DIS cross section is assumed to be 2/3 of the (γ∗p → X)

DIS cross section in the cited analysis, with corrections due to absorption [10].

Obviously the pion is not emitted by a proton but by a quark. But as we

showed above the state of the pion is dictated by the proton wave function and
the pion form factor simulated well the assumption that the emission is from the

proton. In the series of experiments [17]- [18], [19] measuring the spectrum of
the forward neutrons in the reaction (e+p→e+forward n+X) has been shown that

the high energy end of the neutron spectrum is consistent with the assumption

that the deep inelastic scattering takes place on the pion. Thus we are justified to
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say that the forward neutron is the signature of the reaction taking place on the

pion and that the total probability of finding a pion in ep→nπ+ fluctuation can

be obtained by integrating over the variables of the pion flow.

The analysis depends to some extent on the estimation of pion flux fπ+/p.
The analysis has been elaborated in [10] and the quoted results are 〈nπ+|p〉2 =

0.165 ± 0.01 and 0.175 ± 0.01, respectively, for the two form factors best fitting to
the experiment in [15] and [16].

5 Conclusion

The pion fluctuation p→n+π+ and p→p+π0 is an artifact of the quark-antiquark
pairs of the constituent quarks. The impressive agreement between the measured

and the calculated ratios between the probability of the pion fluctuation and the
probability of finding a quark-antiquark pair of the constituent quark is a strong

support of the constituent quark model.

In this section we stress the difference between the notion of the quark-

antiquark pairs coupled to the pion quantum numbers being part of the con-
stituent quarks and the pions of the proton. While the quark-antiquark pairs are

implied by the experimental values of gA, the integrated spin structure functions
and the violation of the Gottfried summ rule, the fluctuating pions are identi-

fied by the characteristic energy and pT distribution of the neutron spectra in the

ep→ nπ+ reaction.

Eichten et al. [5] have named the quark-antiquark pairs of the constituent
quark the asymmetric quark sea. This name emphasizes hopefully sufficiently

the difference of their origin as compared to the normal quark sea.

For the value a = 〈dπ+|u〉2 = 0.24 each quark contains 0.36 quark-antiquark
pairs. Summing up the quark-antiquark pairs one obtains about one quark-anti-

quark pair per nucleon. Using this value of a gives 〈nπ+|p〉2 = 0.15. This num-
ber corresponds well with the experimental value of 〈nπ+|p〉2 = 0.165 ± 0.01

or 0.175 ± 0.01. It follows that in ≈ 0.26 cases the proton is a neutron+ π+ or a

proton+π0. This means that about one quater of the nucleon’s quark-antiquark
pairs show up as the pion fluctuation.

Acknowledgments We wish to thank A. Bunyatyan for the discussions of the
analysis on the forward neutron spectra and K. Rith for pointing us out the new
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b Jožef Stefan Institute, Ljubljana, Slovenia

Abstract. In the past year a large set of new data on photo- and electro-production of

mesons on nucleons and light nuclei has emerged, both near threshold and throughout

the nucleon resonance region. Some of the most recent results from the three leading ex-

perimental facilities, MAMI (Mainz, Germany), ELSA (Bonn, Germany), and Jefferson Lab

(Newport News, USA) relevant to this workshop are presented.

1 π and η photo-production on protons

In conjunction with the development of polarized target techniques and polarime-

try capabilities, production of single mesons by real photon beams has recently
become the richest source of information on nucleon dynamics from the meson

production threshold and throughout the nucleon resonance region. The basic

quantities that can be measured when polarization is exploited, are:

σ , T ,

when the photon beam and the target are both unpolarized, and when the beam

is unpolarized and the target is polarized along the y-direction, respectively;

Σ ,H , P ,G ,

with linearly polarized beam and no target polarization, and with target polar-
ized along x-, y- and z-directions, respectively;

F , E ,

when the beam is circularly polarized and the target polarization is along the
x- and z-directions, respectively. (The z-axis points along the beam; the z- and

x-axes span the meson production plane; the y-axis is perpendicular to it.) In ad-

dition to resolving the spin (helicity) structures, so-called complete experiments
can be performed for which measurements of the same observables have to be

performed in different reaction channels, so that isospin decomposition can be
done as well. Such measurements are also underway.

⋆ Talk delivered by S. Širca
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With the Crystal Ball and TAPS detectors at ELSA, preliminary results for Σ

(beam-helicity asymmetry) in the ~γp → pπ0 and ~γp → pη processes have been

obtained at Eγ = 1050MeV as a function of the pion emission angle θ [1, 2]. Al-
most the complete angular range has been covered at this energy. Apart from

a few modest unresolved deviations between the ELSA and older GRAAL data
sets [3] at extreme backward angles, all data are in excellent agreement with the

MAID and SAID analyses, as well as the Bonn-Gatchina Partial-Wave Analy-

sis (PWA). Moreover, there is a new precise unpolarized data set for η photo-
production from MAMI [4] which provides precise cross sections up to 400MeV

above threshold. Very sturdy results have been obtained on the angular expan-
sion coefficientsA1,A2, andA3, which will be of great help in improving various

PWA.

On the other hand, measurements of Σ in single-pion photo-production have

also been performed at Jefferson Lab within the CLAS Collaboration in the g8b
group of experiments, and here the agreement with respect to the theory (in par-

ticular MAID) is not as good. Largest deviations are observed at forward angles
where Σ is typically underestimated by theory. Because both final channels on

the proton target (pπ0 and nπ+) have been measured, different sensitivities toN⋆

and ∆ resonances could be probed. This is a very comprehensive and large data
set encompassing all angles and photon energies from 1000 to 2000MeV.

At ELSA, Σ has also been determined at θ = 110◦ as a function of Eγ rang-

ing from about 700 to 1200MeV, indicating that the P11(1440), D13(1520) and

F15(1680) resonances are all needed (at least within the MAID model) to repro-
duce the energy dependence of Σ.

Most recently, similar-quality results have been obtained at ELSA for the

double-polarization asymmetry G in ~γ~p → pη (energy dependence at θ = 110◦),
as well as for G in the ~γ~p → pη process. In the pη channel, at Eγ = 950 and

1050MeV, the preliminary data on G appears to be in rough agreement with the

Bonn-Gatchina PWA and MAID, but is underestimated by SAID at 1050MeV.

2 Electro-excitation of nucleon resonances

The focus of investigations of nucleon resonance excitations has recently shifted
away from the Delta region to the first and second resonance regions. The bulk

of the new data comes from the CLAS Collaboration and EBAC (Excited Baryons
Analysis Center) at Jefferson Lab.

The most spectacular advances have been made regarding the Roper reso-

nance N∗(1440). The transverse and scalar helicity couplings extracted from a

wealth of previous single-pion production data [5, 6] and the most recent two-
pion data set [7] are in excellentmutual agreement. In the framework of the EBAC

analysis, this allows for a model-independent determination of the N∗ electro-
magnetic couplings for Q2 up to ≈ 4GeV2. It is now clear that the transverse

helicity amplitudeA1/2 crosses zero in the vicinity ofQ2 ≈ 0.5GeV2 and that the

structure of the Roper can evidently be explained in terms of a quark core as a
first radial excitation of three dressed quarks, plus external meson-baryon dress-

ing. (The CLAS12 project will test these findings to much higher Q2 ≈ 12GeV2.)
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There are also new data on helicity amplitudes for the electro-excitation of

the N∗(1535) resonance on the proton, extracted from both the nπ+ and the pη

channel, both of which, again, are in good agreement between each other in the
transverse case (while there are no pη data in the scalar case). Note that this is the

first extraction ever of S1/2(Q2) up to Q2 ≈ 4GeV2.

With the present data on A1/2 extending to relatively high values of Q2, it
is now possible to investigate (or rather, speculate) whether transitions to the

regime of perturbative QCD occur. The main motivation behind these scaling
studies is to observe the transition to photon interactions with the dressed quarks.

The Q2 dependence of the product Q3A1/2(Q2) has been studied as function of

Q2 in the P11 channel (Roper), the S11 channel (N∗(1535)) and the D13 chan-
nel (N∗(1520)). Apparently Q3A1/2(Q2) flattens out at Q2 as low as ≈ 3GeV2,

persisting to Q2 ≈ 4GeV2 where the data ceases. But although this plateau is
appealing, extensions to higher Q2 are needed to confirm it.

3 π, ππ, and η photo-production on deuterons

Most interesting experiments have been performed on the deuteron, in particular

single-π0 and single-η photo-production. The reaction mechanisms for π0 photo-

production are

γ+ d −→






π0 + p(n) ; quasi − free on p ,
π0 + n(p) ; quasi − free on n ,

π0 + d ; coherent .

For Eγ > 500MeV, the coherent contribution is negligible. Practically all mea-

surements focus on that region, where the sum of the exclusive processes on the
proton and the neutron should almost exactly add up to the quasi-free inclusive

result. This process has been previously measured at MAMI/A2 [8] and LNS
Sendai [9], but has now been superseded by a much lovelier data set [10].

Single-meson production on deuterons has important ramifications regard-

ing the inclusion of D13, F15, and D15 resonances in unitary-isobar models and
partial-wave analyses, as the proton and neutron channels exhibit distinct sensi-

tivities to these ingredients. Two-pion production on the proton and the deuteron

(allowing for the extraction of the corresponding neutron channel contribution) is
relevant in the very same sense [11]. New preliminary data on γp → pπ0π0 and

γn → nπ0π0 from the CB/TAPS @ MAMI Collaboration has become available,
indicating that the electro-magnetic excitation of the F15 is relatively stronger on

the proton, while the excitation of the D15 is stronger on the neutron. Helicity

asymmetries for these two processes have also been measured.

But of the recent data sets, one of the most exciting and puzzling is that on

quasi-free η photo-production on the deuteron,

γ+ d→ η+ n(p) ,

acquired by the CB/TAPS Collaboration at ELSA. The differential cross-section

for this process exhibits a narrow structure at W ≈ 1.65GeV, regardless of the
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emission angle (specifically, it has been most often shown at −0.9 < cos θ < −0.5,

−0.3 < cosθ < 0.1, and 0.1 < cos θ < 0.5). The structure has been observed

previously at LNS Sendai, by the GRAAL Collaboration [12], but now high preci-
sion data by the CBELSA/TAPS Collaboration has become available [13], clearly

identifying the structure at

W = 1660MeV , Γ = (25 ± 12)MeV .

Because the excess cross-section appears in the rescaled neutron cross-section as

compared to the free-proton and quasi-free proton cases, this structure has be-
come known as the “neutron anomaly”. The reasons for the anomaly remain

unknown, although several explanations have been offered. It may be an inter-

ference effect of the S11(1650) and P11(1710) resonances; it may be caused by a
non-strange penta-quark; but it could also be generated by a KΣ threshold en-

hancement of the neutron cross-section as a consequence of the pion loops. Note
that while the ηp cross-section is ≈ 80% S-wave, the nature of the ηn is not so

well known.

At ELSA, quasi-free η photo-production has also been measured on 3He nu-
clei. The idea behind replacing the deuteron by 3He is that these nuclei have

different nucleon momentum distributions (in the deuteron case, it peaks at ≈
40MeV, while it is maximal at ≈ 70MeV in 3He). This should generate different
proton/neutron cross-section contributions in the processes

γ+3 He −→ η+ p(pn) ,

γ+3 He −→ η+ n(pp) .

Apparently the broad structure atW ≈ 1.65GeV persists, with Γ = (45±11)MeV,

which is comparable to the experimental resolution.
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