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6 Conclusion 35

0 Reminder

This material can be covered at the graduate level in around 4-5 hours. The choice of topics
and the references are biased. This is not a review on the subject or a correct historical
overview. The quotations I mention are incomplete and chosen merely for further reading.

There are some good books and reviews on the market. Among others I would mention
[1, 2, 3, 4].

1 Introduction to grand unification

Let us first remember some of the shortcomings of the SM:

• too many gauge couplings

The (MS)SM has 3 gauge interactions described by the corresponding carriers

Ga
µ (a = 1 . . . 8) , W i

µ (i = 1 . . . 3) , Bµ (1.1)

• too many representations

It has 5 different matter representations (with a total of 15 Weyl fermions) for each
generation

Q , L , uc , dc , ec (1.2)

• too many different Yukawa couplings

It has also three types of 3× 3 (in generation space) Yukawa matrices YU,D,E:

LY = ucYUQH + dcYDQH
∗ + ecYELH

∗ + h.c. (1.3)

This notation is highly symbolic. It means actually

ucTαkiσ2 (YU)klQ
αa
l εabH

b + dcTαkiσ2 (YD)klQ
αa
l H

∗
a + ecTk iσ2 (YE)kl L

a
lH
∗
a (1.4)

where we denoted by a, b = 1, 2 the SU(2)L indices, by α, β = 1 . . . 3 the SU(3)C
indices, by k, l = 1, . . . Ng the generation indices, and where iσ2 provides Lorentz
invariants between two spinors.

• massless neutrino

The SM at the renormalizable level predicts a massless neutrino (there is no right-
handed neutrino νc), while a massive neutrino can be incorporated in a R-parity
violating MSSM (we will not consider this option in these lectures). Notice that in
order to parametrise the neutrino masses and mixings we need another 3× 3 matrix,
either a Yukawa YνD for Dirac neutrinos
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Lν(Dirac) = ecYνDLH (1.5)

or a symmetric YN (and a new mass scale M) for Majorana neutrinos

Lν(Majorana) = (LH)
YN
M

(LH) (1.6)

• charge quantization

Finally, there is no real explanation of the quantization of the electric charge. Al-
though anomaly cancellation constraints do predict the electric charge quantization
in the SM, this does not have any further experimental consequences. Also, any
addition to it could involve non quantized charges.

The idea of grand unification theories (GUT) is to reduce all the gauge interactions to a
single gauge group and all the fermionic multiplets into one or two different representations
for each generation of matter. This typically implies some connections among different SM
Yukawa couplings. Of course our SM gauge group should then be a subgroup of the grand
unified gauge group, and the SM fermions included in the GUT matter representations.
The electric charge operator is in a GUT made out of a linear combination of non-abelian
gauge algebra generators, and its eigenvalues are obviously quantized. Finally, GUTs can
be or not theories of neutrino mass. In some cases - for example in SU(5) - one can adjust
the theory to give a nonzero neutrino mass (similar to add right-handed neutrinos in the
SM), while some other GUTs - typically SO(10) - can be more predictive, and connect it
to charged fermion Yukawas.

1.1 The renormalization group equations (RGE)

But what does unification really mean? That we put for example all SM gauge fields
together in a bigger adjoint representation of a simple group is clear, but we know that
the gauge couplings of the three SM gauge interactions are numerically different. So in
which sense they can unify? Here it is crucial the notion of running coupling constants.
We know that the gauge (and other) couplings run with energy. So what we have to do,
is to let them run and check if they meet all three together [5]. And if they do, the scale
at which this happens will be the scale of (the spontaneous breaking of) grand unification.
Fortunately this is easy to do at the 1-loop level, all we need is to solve the renormalization
group equations (RGEs):

dgi
d log µ

= − bi
(4π)2

g3
i i = 1, 2, 3 (1.7)

The 1-loop beta coefficient bi can be straightforwardly calculated via (G,F ,B stay for
gauge bosons, fermions, bosons)

b =
11

3
TG −

2

3
TF −

1

3
TB (1.8)

where at the scale µ one must take into account all the particles with mass lower than µ.
The fermions here are Weyl (for a Dirac one should multiply by 2, i.e. take −4TF/3), while
the bosons are complex (for a real one should divide by 2, i.e. take −TB/6). The Dynkin
index
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TRδ
ab = Tr

(
T aRT

b
R

)
(1.9)

depends on the choice of the gauge group and on the representation R involved. The indices
a, b run over the generators of the group (N2 − 1 in SU(N)). The normalization usually
chosen is T = 1/2 for the fundamental representation (quarks and leptons in SM). Then
one has in the SU(N) group for the adjoint T = N . To remember also that in SU(2) the
generators in the fundamental are the Pauli matrices T ija = τ ija /2, while in the adjoint
representation are the Levi-Civita antisymmetric tensor T ija = −iεaij.

For supersymmetric theories we know that for each Weyl fermion (complex boson) there
is a complex boson (Weyl fermion) in the same group representation, so (1.8) can be written
more compactly as

b = 3TG − T (1.10)

The beta coefficients in the SM are bi = (−41/10, 19/6, 7) (positive coefficients here
mean asymptotic freedom). One knows the experimental values of gi at MZ and can evolve
them towards larger scales µ using (1.7). It is now easy to check that there is no unification
of couplings in the SM. Two loops will not help so the only possibility for unification is
to add new particles in order to change the beta coefficients for energies above their mass.
We will see in the next sections two such examples.

There is one extra point to clarify. As we said, in non-Abelian groups

TrT 2 = 1/2 for fundamental representations (1.11)

This is true for SU(2), SU(3) and SU(5). But what about U(1), i.e. the hypercharge
of the SM? How do we normalize it? What is important (physical) is just the product
between the coupling (g′) and the charge (Y/2). The idea is to redefine the coupling and
the charge keeping their product the same:

g′
Y

2
= g1T1 (1.12)

i.e. from the old SM U(1) gauge coupling g′ to the new g1, so that now the new U(1)
”generator” T1 is normalized to 1/2 for a fundamental representation of SU(5). We will
see later that one of the SU(5) representations is an antifundamental made out of dc and
L. We thus have

g2
1 TrT

2
1 = g2

1

1

2
= g′2Tr

(
Y

2

)2

= g′2

3

(
1

3

)2

︸ ︷︷ ︸
dc

+ 2

(
−1

2

)2

︸ ︷︷ ︸
L

 (1.13)

i.e.

g′ =

√
3

5
g1 (1.14)

The equations for g1 and g′ are

dg1

d log µ
= − b1

(4π)2
g3

1

dg′

d log µ
= − bY

(4π)2
g′3 (1.15)

4



where

bY =
11

3

∑
G

(
Y

2

)2

− 2

3

∑
F

(
Y

2

)2

− 1

3

∑
B

(
Y

2

)2

(1.16)

Finally we get the useful expression

b1 =
3

5
bY (1.17)

It is g1 defined in (1.14) that has eventually to meet with g2 and g3 to get unification.
Exercise: Calculate the beta functions in the SM. Where do g1 and g2 (g2 and g3)

meet?

2 The Georgi-Glashow SU(5) model

The Georgi-Glashow SU(5) grand unified model [6] includes the SM three generations of
fermions (the number of generations in GUTs are not predicted, but put by hand, as in
the SM) in the 10F and 5cF representations

10F =


0 uc3 −uc2 u1 d1

−uc3 0 uc1 u2 d2

uc2 −uc1 0 u3 d3

−u1 −u2 −u3 0 ec

−d1 −d2 −d3 −ec 0

 , 5cF =


dc1
dc2
dc3
e
−ν

 (2.1)

The Higgs sector is made of an adjoint 24H , which gets a vacuum expectation value
(vev) to spontaneously break SU(5)→SU(3)C×SU(2)W×U(1)Y :

〈24H〉 =
v√
30


2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 −3 0
0 0 0 0 −3

 (2.2)

and of one fundamental representation, which contains also the SM Higgs doublet H =
(H+, H0)T :

5H = (H1
C , H

2
C , H

3
C , H

+, H0)T (2.3)

Now we have the whole particle content. Let’s see it in more detail.

2.1 The Higgs sector

The adjoint of SU(5) is Hermitian and transforms as

Σ→ UΣU † (2.4)

Keeping in mind that it is traceless, the only invariants we can write down up to the
fourth power are
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TrΣ2 TrΣ3 TrΣ4 (2.5)

The most general potential (assuming an additional Z2 symmetry Σ→ −Σ for simplic-
ity) is thus

V = −µ
2

2
TrΣ2 +

λ

4
TrΣ4 +

λ′

4

(
TrΣ2

)2
(2.6)

The tracelessness condition is taken into account by adding to the potential a Lagrange
multiplier

ξTrΣ (2.7)

The equations of motion are

∂V

∂Σji

= −µ2Σij + λ
(
Σ3
)
ij

+ λ′TrΣ2Σij + ξδij = 0 (2.8)

The Lagrange multiplier can be determined by requiring the trace of this equation (and
of Σ as well) to vanish:

δij
∂V

∂Σji

= λTrΣ3 + 5ξ = 0 (2.9)

to give

− µ2Σij + λ
(
Σ3
)
ij

+ λ′TrΣ2Σij −
λ

5
TrΣ3δij = 0 (2.10)

The Hermitian and traceless adjoint of SU(5) has 24 (real) degrees of freedom. Due
to the gauge freedom, we can however rotate away the non-diagonal elements, since any
Hermitian matrix Σ can be put in a diagonal form Σd with a proper choice of a unitary
matrix U:

UΣU † = Σd (2.11)

This is nothing else than a gauge transformation that we are free to choose at will.
From now on we will work with a diagonal

Σij = σiδij (2.12)

Eq. (2.10) becomes

σ3
i −

(
µ2

λ
− λ′

λ
TrΣ2

)
σi −

1

5
TrΣ3 = 0 (2.13)

For any fixed choice of the SU(5) invariants TrΣ2, TrΣ3 this equation is third order
and we can thus have at most three different solutions.

Let’s denote them by

σ = (σ1, σ2, σ3) (2.14)

Their multiplicities in the diagonal part of the adjoint Σ is

n = (n1, n2, n3) (2.15)
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where ni are non-negative integers satisfying

3∑
i=1

ni = 5 (2.16)

Tracelessness of Σ means

3∑
i=1

niσi = 0 (2.17)

while the absence of the quadratic term σ2
i means

3∑
i=1

σi = 0 (2.18)

Barring trivial renaming there are five different solutions of eqs. (2.16), (2.17) and
(2.18), summarized in Table 1.

(n1, n2, n3) (σ1, σ2, σ3) diag(Σ)

(5,0,0) (0, σ2,−σ2) (0, 0, 0, 0, 0)
(4,1,0) (σ1,−4σ1, 3σ1) (σ1, σ1, σ1, σ1,−4σ1)
(3,2,0) (σ1,−3σ1/2, σ1/2) (σ1, σ1, σ1,−3σ1/2,−3σ1/2)
(3,1,1) (0, σ2,−σ2) (0, 0, 0, σ2,−σ2)
(2,2,1) (σ1,−σ1, 0) (σ1, σ1,−σ1,−σ1, 0)

Table 1: Possible solutions of the SU(5) adjoint equations of motion with potential of
quartic order.

The only case from Table 1 which is not obviously unrealistic is the third one: it
breaks SU(5) into the SM SU(3)×SU(2)×U(1). Let us now find the solution for the vev
explicitly in terms of potential parameters. Our ansatz will be (the normalization is only
for convenience)

〈Σ〉 =
v√
30
diag(2, 2, 2,−3,−3) (2.19)

The potential becomes

V (v) = −1

2
µ2v2 +

(
7λ

30
+ λ′

)
v4

4
(2.20)

and the equation of motion

∂V

∂v
= v

[
−µ2 +

(
7λ

30
+ λ′

)
v2

]
= 0 (2.21)

The solution

v2 =
30µ2

7λ+ 30λ′
(2.22)

is a minimum only if
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7λ+ 30λ′ > 0 , µ2 > 0 (2.23)

Let us now calculate the spectrum in this sector. In the breaking of SU(5), the adjoint
gets decomposed into pieces with SM quantum numbers. We get

24→ O(8, 1, 0) + T (1, 3, 0) + S(1, 1, 0) +X(3, 2,−5/6) + X̄(3̄, 2, 5/6) (2.24)

The adjoint can be imagined in blocks

Σ =

(
3× 3 3× 2
2× 3 2× 2

)
(2.25)

so the above fields live schematically in

Σ =

(
O X
X̄ T

)
+

(
1 +

S

v

)
〈Σ〉 (2.26)

We have to expand this matrix. In doing so we can take just one element of each
representation, the other elements need to have the same mass since the SM symmetry is
still preserved. Using a common normalization for all the fields we get

Σ =


2v+S√

30
+ O√

2
0 0 X 0

0 2v+S√
30
− O√

2
0 0 0

0 0 2v+S√
30

0 0

X̄ 0 0 −3v+S√
30

+ T√
2

0

0 0 0 0 −3v+S√
30
− T√

2

 (2.27)

We also do not need to expand all these together. It is enough to do separately for each
of the fields O, T and S, while X and X̄ have a common mass. We get

m2
O =

λ

6
v2 (2.28)

m2
T =

2λ

3
v2 (2.29)

m2
XX̄ = 0 (2.30)

m2
S = 2µ2 (2.31)

Few comments:

• to have a stable solution λ must be non-negative.

• for λ = 0 we have 23 massless fields. This is a consequence of the Nambu-Goldstone
theorem: for this coupling the potential has more symmetry, SO(24). When this is
broken by the fundamental of SO(24) (i.e. what we called the adjoint of SU(5)) to
SO(23), we get

24× 23

2
− 23× 22

2
= 23 (2.32)

massless particles. The symmetry is not what we decide, but what the potential tells
us!
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• for λ > 0, the usual Goldstones of the SU(5) breaking are X, X̄ , i.e 24− 12 = 12.

2.2 The Yukawa sector

On top of the usual fermion representation (ε3 is the 3-D Levi-Civita tensor and ε2 = iτ2

is the corresponding 2-D one)

10F =

(
ε3u

c Q
−QT ε2e

c

)
5cF =

(
dc

ε2L

)
(2.33)

we introduce the Higgs representation

5H =

(
HC

H

)
(2.34)

It is not difficult to understand (2.33). We can construct the antifundamental out of
Q, L, uc, dc and ec counting the number of components and taking into account that
the sum of all electric charges in a representation vanishes (the generators are traceless).
The antisymmetric 10 on the other side must form a SU(5) and thus SM singlet when
multiplied with two antifundamentals. SM quantum numbers thus uniquely determine the
components up to coefficients.

There is an easy way to find invariants in SU(5): fundamental representations (and
their products) are the ones with indices up

F i1i2...in (2.35)

and transform as

F i1i2...in → U i1
j1U

i2
j2 . . . U

in
jnF

j1j2...jn (2.36)

Similarly the antifundamentals

Fi1i2...in (2.37)

transform under SU(5) as

Fi1i2...in → Fj1j2...jn
(
U †
)j1

i1

(
U †
)j2

i2
. . .
(
U †
)jn

in
(2.38)

There can be also mixed representations

F i1i2...in
j1j2...jm

(2.39)

that go like

F i1i2...in
j1j2...jm

→ U i1
k1U

i2
k2 . . . U

in
knF

k1k2...kn
l1,l2...lm

(
U †
)l1

j1

(
U †
)l2

j2
. . .
(
U †
)lm

jm
(2.40)

Invariants are found as products of these fields so that upper indices match with lower
ones (an implicit summation over two equal - one upper one lower - indices is assumed, as
in general relativity), for example

MabcN
abKc (2.41)
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On top of that one can use also the (5 index) Levi-Civita tensor

εi1i2...in or εi1i2...in (or mixed) (2.42)

Now we can understand better the presence of ε2,3 in (2.33). Since antifundamentals
carry indices down but L is fundamental, we need an ε2 to get an overall index down: εabL

b.
Similar considerations are for εαβγucγ and εabec in the expression of 10ijF .

Using this simple method, we find out that in our case of a single Higgs in the funda-
mental representation there are two SU(5) (and Lorentz) invariants for the renormalizable
Yukawas (two fermions, one Higgs)

LY = 5cFY510F5∗H +
1

8
ε510FY1010F5H (2.43)

Y5 and Y10 are matrices in generation space. The factor 1/8 is taken for convenience
and is of course optional, since it just redefines the Yukawa matrix Y10.

Here we are interested in the Yukawa terms with the light (SM) Higgs, so the first term
in (2.43) can be rewritten as

5cFY510F5∗H =
(
dc −Lε2

)
Y5

(
ε3u

c Q
−QT ε2e

c

)(
H∗C
H∗

)
→ dcY5QH

∗ + LY5e
cH∗ (2.44)

The two terms are essentially similar, except for the fact that the SU(2) doublet and
singlet fields are interchanged. Rewriting the second term as

LY5e
cH∗ = ecY T

5 LH
∗ (2.45)

it follows

YD = Y T
E (2.46)

i.e. the Yukawa (mass) matrix for down quarks is just the transpose of the Yukawa (mass)
matrix of the charged leptons. This surprising result is just a consequence of SU(5) con-
straints. At a qualitative level this is a success of grand unification. It explains why the
charged lepton and the down quark of the same generation have comparable masses. In
the SM this is a coincidence, it could be anything, but from the point of view of grand
unification we can now understand it, which is remarkable.

On a quantitative level, however, this simple relation is not exactly satisfied (it is not
obvious to see it though, since these relations are valid at the GUT scale and one needs
to run everything down by RGE to the low scale where these numbers are measured). We
will come back to this issue later.

It is easy to understand the result (2.46) from the the following: the Higgs vev breaks
SU(5) into SU(4), so that down quarks and charged lepton (which live in 5cF ) must have
the same Yukawa.

The second term in (2.43) is a bit more tricky to calculate, since it contains the 5-index
Levi-Civita tensor, but it is already clear from the structure that Y10 is symmetric. Let us
see what it describes in the low energy theory.

ε510FY1010F5H = εijklm (10F )ij Y10 (10F )kl (5H)m (2.47)
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Let us divide the indices

SU(5) : i, j, k, l,m = 1 . . . 5 (2.48)

into two groups as usual:

SU(3) : α, β, γ = 1 . . . 3 SU(2) : a, b = 4 . . . 5 (2.49)

We are interested in 5H with a SU(2) index, and let us put the other possible SU(2)
index into the first or second 10F . (2.47) can be expanded then to

(2.47) → 2εαβγab (10F )αβ Y10 (10F )γa (5H)b

+ 2εγaαβb (10F )γa Y10 (10F )αβ (5H)b

= 2εαβγab (10F )αβ
(
Y10 + Y T

10

)
(10F )γa (5H)b (2.50)

The factor of 2 comes from the two possibilities, (10F )γa and (10F )aγ. Obviously

εαβγab = εαβγεab (2.51)

so we get further

2εαβγε
αβδucδ

(
Y10 + Y T

10

)
QγaεabH

b

= 4ucδ
(
Y10 + Y T

10

)
QδaεabH

b

Finally we have (again in a compact notation)

1

8
ε510FY1010F5H =

1

2
uc
(
Y10 + Y T

10

)
QH (2.52)

and thus the Yukawa (mass) matrix for the up quarks is symmetric:

YU = Y T
U (2.53)

Let’s summarize the relevant lesson we learned for the SM Yukawa couplings: the
charged lepton mass matrix is proportional to the down quark mass matrix at the GUT
scale, and the neutrinos are massless. How do we cure these shortcomings?

The first part, a correct description of the charged lepton and down quark masses, is
relatively easy. One has essentially two choices in SU(5): either add a new Higgs repre-
sentation, in this case for example a 45αβ

γ, which contains also the standard model Higgs
doublet, or allow non-renormalizable operators using the same minimal field content. To
show the point we will consider now the second option. Let us add to (2.43) the following
terms

δLY = 5cFY
(1)

5 10F

(
Σ

Λ
5∗H

)
+ 5cFY

(2)
5

(
Σ

Λ
10F

)
5∗H

+
1

8
ε510FY

(1)
10 10F

(
Σ

Λ
5H

)
+

1

8
ε510FY

(2)
10

(
Σ

Λ
10F

)
5H (2.54)

where Λ is a UV cutoff.
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Defining the SM Yukawa couplings through (1.3) we arrive at

YU =
1

2

(
Y10 + Y T

10

)
− 3

2

v√
30Λ

(
Y

(1)
10 + Y

(1)T
10

)
− 1

4

v√
30Λ

(
Y

(2)
10 − 4Y

(2)T
10

)
YD = Y5 − 3

v√
30Λ

Y
(1)

5 + 2
v√
30Λ

Y
(2)

5 (2.55)

Y T
E = Y5 − 3

v√
30Λ

Y
(1)

5 − 3
v√
30Λ

Y
(2)

5

We have now enough freedom to fit the charged lepton and down quark masses. Of
course, at the expense of predictiveness. Remember that all these relations are valid at the
GUT scale.

Exercise: Derive (2.55).

2.3 The gauge boson mass

The gauge boson live in the adjoint of the gauge group. We have already expanded the
adjoint in terms of the fields with good SM quantum numbers in (2.26). We can do the
same for the gauge boson adjoint, where, of course, there is no vev, and we use the notation
known from the SM for the known gauge bosons (SU(3) Gµ, SU(2) Wµ, U(1) Bµ):

√
2Aµ =

(
Gµ Xµ

X̄µ Wµ

)
+

Bµ√
30

(
2 0
0 −3

)
(2.56)

where we used the shorthand notation for the direction of the Higgs vev

〈Σ〉 =
v√
30

(
23×3 03×2

02×3 −32×2

)
→ v√

30

(
2 0
0 −3

)
(2.57)

The factor
√

2 on the left-hand side of (2.56) takes into account the right normalization

Aµ =
24∑
a=1

AaµT
a (2.58)

with the Dynkin index for the fundamental representation equal to 1/2.
The gauge boson mass can be calculated as in any Higgs mechanism through the kinetic

term of the Higgs in question, i.e. through the covariant derivative

DµΣ = ∂µΣ + ig [Aµ,Σ] (2.59)

That this is the right combination for the covariant derivative can be seen from

Σ→ UΣU † , Aµ → UAµU
† +

1

ig
U∂µU

† (2.60)

The matrix Σ is Hermitian, which is the matrix equivalent for reality. This means that
also

(DµΣ)† = ∂µΣ + ig [Aµ,Σ] (2.61)

We are interested into the masses of the X− X̄, all the other are in fact vanishing. The
commutator becomes
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[Aµ,Σ] = − 5v√
30

1√
2

(
0 Xµ

X̄µ 0

)
(2.62)

and the mass term in the Lagrangian is just (Xµ (X̄µ) is a 3× 2 (2× 3) matrix)

L =
1

2
Tr (DµΣDµΣ) → g2

2

(
25v2

30

)
1

2
Tr

(
0 Xµ

X̄µ 0

)(
0 Xµ

X̄µ 0

)
→ 5g2v2

12
Tr
(
XµX̄

µ
)

(2.63)

so that the mass is

M2
X =

5

12
g2v2 (2.64)

We will call it also MGUT , i.e. the scale at which the three SM gauge couplings get
unified.

2.4 The violation of baryon and lepton numbers

Baryon and lepton number conservation are peculiar to the SM: it is simply impossible in
the SM to write down a baryon and/or lepton number violating term at the renormalizable
level. We say that baryon and lepton numbers are accidental symmetries of the SM, they
do not need to be imposed, but they follow from the field content and the requirement of
gauge and Lorentz invariance. Thus, apart from anomalies (that give however a far too
small contribution, proportional to exp (−4π/α2) ≈ 10−150) baryon and lepton numbers
remain conserved, and thus loops cannot generate a nonzero nucleon decay rate or neutrino
mass. Of course higher dimensional operators can violate baryon and lepton numbers. The
lowest dimensional operators which lead to proton decay violate B+L but preserve B−L
and are of the form

Lpdk =
1

M2
qqql + h.c. (2.65)

where generically q denotes a quark with baryon number 1/3 (i.e. Q, ūc, d̄c) and L denotes
a lepton with lepton number 1 (i.e. L, ēc), such that the combination is a SM singlet. This
means that there can be only an even number of doublets and the total hypercharge must
vanish. It is not difficult to show that they can be of the form (for simplicity we omit all
possible γ matrices needed to make the 4-fermion interaction also Lorentz invariant),

qqql : QQūcēc , ūcd̄cQL , QQQL , ūcūcd̄cēc (2.66)

The estimate for the amplitude which leads to proton decay is (similar to the muon
decay through the four-fermion Fermi interaction which is proportional to 1/M2

W )

A(qq → q̄l̄) ≈ 1

M2
(2.67)

and thus the decay rate

Γ(p = qqq → qq̄l̄ = π0e+) ≈
m5
p

M4
(2.68)
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One can thus estimate that the experimental lifetime τp = 1/Γp of 1034 yrs or so
constrains

M ∼> 1015.5 GeV (2.69)

The problem of the SM is that we cannot tell what are the coefficients in front. In
short, the SM is not a theory of baryon and lepton number violation.

In GUTs different SM representations lie in same multiplets so baryon (and lepton)
number is not conserved, not even at the renormalizable level, so there is nothing that
prevents protons from decaying. And in fact we will now derive from the GUT Lagrangian
exactly the operators of the form (2.65). The first two operators in (2.66) will ome from
the exchange of the heavy gauge bosons Xµ, while the last two operators in (2.66) come
from the exchange of the heavy colour triplet HC .

2.5 Proton decay from gauge boson exchange

This contribution comes from gauge interaction, i.e. from the kinetic term of the fermions.
Using the usual transformation rule

T̂ a5c = −T aT5c (2.70)

where T a on the right-hand side are the SU(5) generators in the fundamental representation
(the Gell-Mann matrices), as well as (2.33) for 5cF , we get

i5cFγ
µDµ5cF →

(
dc ε2L

)
γµig

(
−1√

2

)(
0 Xµ

X̄µ 0

)T (
dc

ε2L

)
=

g√
2

(
dcγµX̄T

µ ε2L+ ε2Lγ
µXT

µ d
c
)

(2.71)

=
g√
2

[(
dc
)β
γµ
(
X̄µ

)b
β
εbaL

a +
(
L̄
)
a
εabγµ(Xµ)βb (dc)β

]
For the two index antisymmetric 10 the transformation rule is

T̂ a10 = T a10− 10TT aT (2.72)

Exercise: Find out the form of the hypercharge in the fundamental representation of
SU(5) through its correct action on the matter 5cF and 10F .

Due to antisymmetry of 10 this gives

1

2
Tr
(

10T̂ a10
)

= Tr
(
10T a10

)
(2.73)

i.e. it is enough to transform just the first index in 10. We continue by using the matrix
form (2.33) for 10F :
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i

2
Tr
[
10Fγ

µDµ10F
]
→

iT r

[(
ε3uc −Q̄T

Q̄ ε2ec

)
γµig

1√
2

(
0 Xµ

X̄µ 0

)(
ε3u

c Q
−QT ε2e

c

)]
=

g√
2
Tr
[
ε3ucγ

µXµQ
T + Q̄TγµX̄µε3u

c − Q̄γµXµε2e
c − ε2ecγµX̄µQ

]
=

g√
2

(
εαβδ (uc)

α
γµQδb +

(
Q̄
)
aβ
εabγµec

)
(Xµ)βb

− g√
2

(
εαβδ

(
Q̄
)
bα
γµ (uc)δ + ecγµεbaQ

βa
) (
X̄µ

)b
β

(2.74)

To this we have to add the gauge boson mass term (2.63):

M2
X

(
X̄µ

)b
β
(Xµ)βb (2.75)

These heavy fields we want to integrate out to get the effective 4-fermion (dimension 6)

interaction. We thus sum up (2.71), (2.74) and (2.75), take the derivative first over
(
X̄µ

)b
β

to get

(Xµ)βb =
g√

2M2
X

[
εαβδ

(
Q̄
)
bα
γµ (uc)δ + ecγµεbaQ

βa +
(
dc
)β
γµεabL

a
]

(2.76)

then over (Xµ)βb to obtain

(
X̄µ

)b
β

=
−g√
2M2

X

[
εαβδ (uc)

α
γµQ

δb +
(
Q̄
)
aβ
εabγµe

c +
(
L̄
)
a
εabγµ (dc)β

]
(2.77)

The original Lagrangian thus becomes (only the B and L violating terms)

Ld=6 =
g2

2M2
X

εαβδ (uc)
α
γµQ

δb
(
ecγµεbaQ

βa +
(
dc
)β
γµεabL

a
)

+ h.c. (2.78)

We see that the mass M in (2.65) is now given by

1

M2
≈ g2

M2
X

=
1

M2
GUT

(2.79)

and so we see that

MGUT ∼> 1015.5 GeV (2.80)

2.6 Proton decay from colour triplet exchange

In the Georgi-Glashow SU(5) the Higgs stays in the fundamental, and the triplet partner
HC has Yukawa couplings that can be derived from (2.43) and look like

LY (HC) = H∗C (LY5Q− dcY5u
c)−

(
1

2
QY10Q− ucY10e

c

)
HC (2.81)

This triplet is heavy
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Lmass(HC) = −M2
HC
H∗CHC (2.82)

and its exchange leads to the Fermi interaction

Ld=6 = − 1

2M2
T

(QY10Q)
(
QY T

5 L
)
− 1

M2
T

(dcY5u
c) (ucY10e

c) (2.83)

Since proton is made of first generation quarks, there will be mostly these Yukawas that
will contribute. So for these operators the mass M in (2.65) is given by

1

M2
≈ yuyd
M2

HC

(2.84)

from which we can set the following experimental limit

MHC ∼> 1011 GeV (2.85)

2.7 Magnetic monopoles ↔ charge quantization

One of the unexplained features of electrodynamics is the quantization of the electric charge.
Since the non-Abelian generators have quantized eigenvalues, this then means that in the
SM what is quantized is the hypercharge. This connection obviously reminds us of a
possible explanation. If the SM gauge group derives from a non-Abelian common group,
all the diagonal generators of it have quantized eigenvalues and thus the hypercharge and
electric charge that follows from them are quantized as well.

One can come to a similar conclusion in an apparently completely different way. Imagine
that there is a magnetic monopole with magnetic charge qM . Dirac showed with quantum
mechanical arguments (the wave-function must be single-valued) that all the electric charges
qE must in this case be quantized as

qEqM = n2π n ∈ Z (2.86)

But it turns out that a non-Abelian gauge group that gets broken into a final one with
at least one Abelian factor actually has as a classical solution to the equation of motion a
magnetic monopole. So the two explanations are connected.

GUT magnetic monopoles are heavy, order MGUT , or even a bit more. Their magnetic
field is quantized, and their eventual presence from the sky has been searched at the Gran
Sasso National Laboratories. The experiment MACRO has put the best limit on their
abundance in the universe [7].

Due to time constraints I will unfortunately not pursue this very fascinating subject in
the following.

2.8 The doublet-triplet splitting

Before going into the description of particular realistic models, I would like to mention
another peculiar characteristic of grand unified theories. The SM Higgs doublet, when
embedded in a GUT representation, typically has as partners color triplets which mediate
proton decay. The lower limit to Its mass has been given in eq. (2.85).

On the other side, our Higgs doublet, the SU(5) partner of this heavy colour triplet HC ,
has a (negative) mass term of order −M2

Z , i.e. practically massless. The two requirement,
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a heavy colour triplet and a light weak doublet from the same multiplet, are difficult to
achieve in a natural way. This is called the doublet-triplet splitting problem. Although
formally one can satisfy these constraints, a light doublet and a heavy triplet from the
same multiplet, this will need fine-tuning of the model parameters, unless one works in
complicated and non-minimal set-ups. Let us see this a bit more precisely. The interaction
between the Higgs responsible for SU(5) breaking (the 24H) and the Higgs responsible for
the electro-weak breaking (the 5H) looks like

5∗H
(
a+ b24H + c242

H

)
5H (2.87)

Once the heavy Higgs gets a vev (2.2) the masses of the two parts of the fundamenal
multiplets split as

(
a+ 2b

v√
30

+ c
4v2

30

)
|HC |2 +

(
a− 3b

v√
30

+ c
9v2

30

)
|H|2 = M2

HC
|HC |2 +M2

H |H|2 (2.88)

Due to (2.22) we need a fine-tuning of the parameters of the Lagrangian of order
O(M2

H/M
2
HC

) ≈ 10−20. This is called the doublet-triplet splitting problem.
There are various ways of solving this problem, but unfortunately no minimal model

has such solutions. So the solution of it, at least at the state of the art, needs non-minimal
generalizations, and supersymmetry on top of that to stabilize it. Such solutions typically
do not have particular predictions, i.e. they cannot be experimentally differentiated at low-
energies from the minimal, fine-tuned, models. The issue, although probably important,
seems thus at the moment a bit philosophical. For this reason I will not pursue the subject
any longer.

3 Two realistic SU(5) models

The Georgi-Glashow model is very simple, but it has at least two problems. The first one
is already enough to rule it out. It has to do with the fact that the gauge couplings do not
unify, see fig. 1. Another way of saying, it predicts wrong gauge couplings at the scale MZ .

On top of that, this model suffers from the same problem as the SM: it predicts massless
neutrinos. It is actually even worse than the SM: there we could at least phenomenologically
write down an effective Weinberg operator

LWeinberg SM = ySMij
(LiH)(HLj)

M
+ h.c. (3.1)

With properly chosen values of ySM/M we could fit the experimental numbers, since
M can be essentially anything. This is not allowed anymore in SU(5). Although we can
write down a similar effective operator

LWeinberg SU(5) = y
SU(5)
ij

(5cF i5H)(5H5cFj)

M
+ h.c. (3.2)

the cutoff M cannot be lower than MGUT if we want this theory to make sense at the
unification scale. Due to proton decay constraints MGUT ∼> 1016 GeV the resulting neutrino
masses turn out too small (y ∼< 1 because of perturbativity assumption).

I will show now two examples of realistic models that can overcome these problems, the
missing unification and the practically vanishing neutrino mass.
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Figure 1: The running of the gauge couplings in SM.

3.1 Minimal non-supersymmetric SU(5)

As we mentioned in the previous chapter, the idea is to include new degrees of freedom.
For this purpose I will add to this model a fermionic adjoint [8], [9]. Under the SM it
decomposes into

24F = S(1, 1, 0) + T (1, 3, 0) +O(8, 1, 0) +X(3, 2,−5/6) +X(3̄, 2, 5/6) (3.3)

Exercise: Derive (3.3). Hint: 24 ∼ 5̄× 5.
The Higgs 24H obviously decomposes in a similar way. We have thus the following

possibility for light states (the gauge singlets do not contribute to the beta function, while
the XH , XH get eaten by the longitudinal components of the SU(5) heavy gauge bosons
via the Higgs mechanism):

spin = 0 : TH(1, 3, 0) , OH(8, 1, 1) , HC(3, 1,−1/3) (3.4)

spin = 1/2 : T (1, 3, 0) , O(8, 1, 1) , X(3, 2,−5/6) , X̄(3̄, 2, 5/6)

Although apparently a lot of freedom, there is not much choice for their masses, if we
want unification. An important point is that in order to get lighter triplets and octets
in 24F , higher dimensional operators has to be used, and so the maximum mass for the
leptoquark is mX ≈M2

GUT/Λ, where Λ is the cutoff of the SU(5) model, at least 100MGUT

or so, to make it perturbative. For this reason one can show that

mT ≈ 1 TeV (3.5)

a neat prediction of the model. One can also show, that higher is the triplet mass, lower
turns out to be the GUT scale, which means faster is the proton decay. At the moment
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the LHC lower limit for the triplet mass is around 800 GeV, although there are some
assumptions there. This means that the proton lifetime in this model is smaller than
τp ∼< 1035 yrs. So if we do not find it at the LHC, we should definitely find soon the proton
decay, or discard the model.

Exercise: Derive (3.5) at 1-loop.
It is interesting that part of the spectrum is determined by the requirement of the SM

being embedded in a GUT. And, even more exciting, the fermionic triplet lies in the range
of the LHC.

We have now to solve the neutrino mass issue yet. We have two candidates for mediators
of the see-saw mechanism, the fermionic singlet S (type I see-saw) and the fermionic triplet
T (type III see-saw). They are coupled to the SM leptons as

LY uk = yiTLiTH + yiSLiSH (3.6)

to give the neutrino mass matrix (MT,S are the triplet and singlet masses)

mij
ν =

v2

2

(
yiTy

j
T

mT

+
yiSy

j
S

mS

)
(3.7)

with rank two, so the model predicts one massless neutrino.
The fermionic weak triplet T = (T+, T 0, T−) decays through weak interactions mainly

into a lepton and a gauge boson:

T± → W±ν or Z0e± (3.8)

T 0 → W±e∓ or Z0ν (3.9)

with a decay width estimate

ΓT ≈ |yT |2mT (3.10)

The decay rate depends on the same Yukawa couplings that are responsible for the
neutrino mass. LHC could thus give us information on the yet unmeasured parameters of
the neutrino sector.

To summarize, the minimal non-supersymmetric SU(5) model predicts

• a weak fermionic triplet with mass mT ≈ 1 TeV;

• one neutrino massless;

• neutrino mass matrix a mixture of type I and type III see-saw;

• triplet decays constrained by neutrino masses and mixings.

3.2 Supersymmetric SU(5) version

In the MSSM 2 the beta coefficients are bi = (−33/5,−1, 3). If we put all the superpartners
at TeV, the three couplings unify in a single point at µ ≈ 1016 GeV [18] 3. So, if we have

2There is an almost infinite amount of literature on supersymmetry, so to avoid to choose let me mention
only my shorter [11] and longer [?] notes.

3In order to get unification from low energy susy, the authors of [18] predicted sin2 θW to be higher
than known at that time and the top mass to be around 200 GeV instead of the ten times lighter believed
at that time, both predictions confirmed by later experiments.
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supersymmetric partners at MZ or close to 1 TeV as required by naturalness (hierarchy
problem), then we have the unification of gauge couplings for free. This is one of the (main)
motivations for supersymmetry with low scale (TeV) superpartners (and of unification in
supersymmetric theories). Let us now construct a supersymmetric SU(5) GUT.
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running of gauge couplings in the MSSM

Figure 2: The running of the gauge couplings in MSSM.

3.2.1 The Yukawa sector

The Yukawa structure does not change, except that we have now two Higgs fundamental
representations, call them 5uH and 5dH . They are needed for two reasons: anomaly cancel-
lation and nonzero Yukawa couplings for both up and down sectors. Both requirements
are just GUT generalizations of the well known reason for two Higgs doublets in MSSM.
So we get the Yukawa (2.43) with 5H and 5∗H replaced by 5uH and 5dH from the following
superpotential (now all the fields are actually chiral superfield)

WY = 5cFY510F5dH +
1

8
ε510FY1010F5uH (3.11)

The subscript F denotes matter (fermionic) multiplets. Regarding group theory, su-
persymmetry does not change the conclusions of symmetric YU and equality of YD = Y T

E .
Although running from MMSSM to MGUT changes with respect to the SM case, it does not
get substantially closer to these relations. This can be cured by allowing large A soft terms,
i.e. using the finite 1-loop contribution of the susy breaking threshold corrections. Other
ways to make such a model realistic are similar to what has been used in the ordinary -
non-supersymmetric case: either by adding a new Higgs superfield, for example a 45H (and
a 45H), or allowing non-renormalizable terms. Let’s stick for definiteness to the second
possibility in the following.
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3.2.2 The Higgs sector

Now what about the Higgs potential? The 24H is now a complex field. Its superpotential
is given at the renormalizable level as

WH =
µ

2
Tr242

H +
λ

3
Tr243

H (3.12)

As in the non-supersymmetric case will consider SM-like vacua, in which

〈24H〉 =
v√
30
diag(2, 2, 2,−3,−3) (3.13)

with now v = µ/λ.
Exercise: Show that other (degenerate) vacua are possible. For a discussion on their

fate in supergravity see [19].
It is easy to show that in such renormalizable superpotential all the SM decomposed

fields are at the same scale MGUT . This is not necessarily true anymore if one includes also
higher, non-renormalizable terms in the superpotential (3.12). Since we are forced to use
non-renormalzible terms to cure bad mass relations in the Yukawa sector, we should allow
for such possibility. Let’s add thus

δWH =
c1

4Λ
Tr244

H +
c2

4Λ

(
Tr242

H

)2
(3.14)

where we leave for the moment the cut-off scale Λ free. It is now straightforward to find
out in the limit λ→ 0 the following relation

mT = 4mO ≈ c
v2

Λ
(3.15)

Exercise: Calculate the Higgs spectrum in the general case and verify (3.15) in the
λ→ 0 limit. Explain why the X and X̄ are massless if only the superpotential is considered.

3.2.3 Running in the non-renormalizable case

What we just found out is very important, because we have now new states below the GUT
scale v. For this reason we have to redo the renormalization group analysis for the gauge
couplings:

2π
(
α−1

1 (MZ)− α−1
U

)
= −5

2
log

MSUSY

MZ

+
33

5
log

MGUT

MZ

+
2

5
log

MGUT

mT

2π
(
α−1

2 (MZ)− α−1
U

)
= −25

6
log

MSUSY

MZ

+ log
MGUT

MZ

+ 2 log
MGUT

m3

2π
(
α−1

3 (MZ)− α−1
U

)
= −4 log

MSUSY

MZ

− 3 log
m8

MZ

+ log
MGUT

MHC

(3.16)

Taking two linear combinations we can get rid of the experimentally unknown gauge
coupling at the unification scale

2π
(
3α−1

2 − 2α−1
3 − α−1

1

)
= −2 log

MSUSY

MZ

+
12

5
log

MHC

MZ

+ 6 log
mO

mT

2π
(
5α−1

1 − 3α−1
2 − 2α−1

3

)
= 8 log

MSUSY

MZ

+ 12 log

√
mTmOM

2
GUT

M3
Z

(3.17)
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Denoting with M0
HC

and M0
GUT the values for the renormalizable case in which mT =

mO = M0
GUT we get first

MHC
= M0

HC

(
mT

mO

)5/2

(3.18)

MGUT = M0
GUT

(
M0

GUT√
mTmO

)1/2

(3.19)

and then, since mT = 4mO ≈M2
GUT/Λ

MHC
= 32M0

HC
(3.20)

MGUT ≈
[(
M0

GUT

)3
Λ
]1/4

(3.21)

i.e. the GUT scale and the color triplet mass get increased. This is very important, and
we will use it in the next section when considering proton decay.

3.2.4 Dimension 5 proton decay

In supersymmetry we have on top of the usual (dimension 6) heavy gauge boson (and
gaugino) mediated proton decay modes also another, potentially much more dangerous
decay mode coming from the exchange of the heavy color triplet Higgs from 5u,dH . Using
(2.33) and the corresponding

5dH =

(
Hc
C

Hd

)
5uH =

(
HC

Hu

)
(3.22)

one can easily derive in the renormalizable case (3.11) the coupling of these triplets to the
SM chiral fermions (compare with (2.81))

WY (Hc
C , HC) = Hc

C (LY5Q− dcY5ε3u
c)−

(
1

2
QY10Q− ucY10e

c

)
HC (3.23)

These triplets are heavy, with mass term (compare with (2.82))

Lmass(Hc
C , HC) = −MHC

Hc
CHC (3.24)

so they can be integrated out by solving the equations of motion, getting (compare with
(2.83))

Wd=5 = − 1

2MHC

(QY10Q)
(
QY T

5 L
)
− 1

MHC

(dcY5u
c) (ucY10e

c) (3.25)

By itself this does not yet produce a proton decay 4-fermion operator at tree level, but
only a baryon and lepton number violating term among two fermions and two sfermions, for
example between two quarks, and a slepton and a squark. This is a dimension 5 operator.
It can be however closed in a loop by for example exchange of a gaugino (gluino or wino)

22



Figure 3: The d = 5 proton decay operator closed by a wino exchange loop.

or Higgsino, giving rise to the usual 4-fermion interaction. An example of such diagrams
is given on fig. 3. For a complete analysis of such processes and formulae involved see for
example [13, 14].

Assuming the sfermion masses are bigger than the wino one, this gives rise to an operator
of the form (schematically) (

Y10Y5

MHC

)(α2

4π

)(mw̃

m2
q̃

)
qqql (3.26)

What is however peculiar here, is that such an operator is suppressed only by one inverse
power of the heavy triplet mass, instead of the two powers of the heavy gauge boson mass
in the usual d = 6 operator. In principle this could give rise to a huge enhancement of the
decay rate [15, 16]. There are however several reasons that make the proton lifetime long
enough though [17]:

• the proton is made from first generation quarks, so at least some of the Yukawas
involved are typically small;

• due to Yukawa higher dimensional operators needed to cure the wrong mass relations,
the corresponding Yukawas appearing in the d = 5 operator do not need to be con-
nected to the fermion masses and can thus conspire to cancel the dangerous decay
modes;

• a similar uncertainty is present in the squark sector: the mixing angles need not be
related to the fermion ones, even if one takes into account the stringent constraints
from flavor violating transitions;

• due to non-renormalizable operators in the Higgs sector the color octet and weak
triplets can be, as shown in the previous section, lighter than the GUT scale, and
thus can change the running. It is thus easy to accommodate a higher GUT scale
and color triplet mass, thus suppressing further (3.26);

• finally, the susy scale could be raised a bit without destroying unification. This
obviously helps by suppress the proton decay rate. Even better, if possible, is to use
a split susy scenario with sfermions heavy while keeping gauginos and higgsinos light.

Due to all these uncertainties, proton decay is not yet a problem in the minimal super-
symmetric SU(5). Even the renormalizable version is alive thanks mainly to an increase of
the susy breaking scale and allowing non-universal and large susy breaking A terms [10].
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What is however a problem, or better, a shortcoming of this model, is the description
of neutrinos. There are some ways of curing it: one can allow for example for R-parity
violating couplings [20], add extra representations (15H and 15H , a 24F , etc), leading to
a correct fit of the neutrino data, but these generalizations typically do not lead to any
prediction. The non-supersymmetric model described previously was an exception: due
to its minimality and simplicity the model was predictive, which is no longer true in the
supersymmetric version. In general cases the first (and probably last) non-trivial GUT
model of neutrino mass is SO(10), which we will consider now.

4 SO(10) grand unification

SO(10) models are richer than SU(5) and there are more choices for the possible represen-
tations that can embed the SM. We will insist as so far to have the gauge symmetry as our
only guidance and not include any more global continuous or discrete symmetries. This is
not the only possible choice and much work has been done considering for example family
(horizontal) and other symmetries on top of the gauge one.

We will go through SO(10) describing a specific supersymmetric model that has been
first proposed 30 years ago [21, 22] but has been studied in detail only in the last decade.

4.1 Representations

There are two types of representations in SO(10) (and SO(N) in general): tensorial and
spinorial. The first type is a bit what we were using in SU(5), although now there are no
differences between upper and lower indices. For example the combination

MijkNijPk (4.1)

where repeated indices automatically run from 1 to 10 (N in SO(N)), is an SO(10) invariant.
All this follows from the transformation rule of a fundamental index:

M ′
i = OijMj (4.2)

which is easily generalized for more indeces:

R′i1...iN = Oi1j1 . . . OiN jNRj1...jN (4.3)

where the transformation matrix

Oij = exp (iαklTkl)ij (4.4)

Tkl are the anti-symmetric generators (10 × 10 matrices, 45 of them independent) of
SO(10), that satisfy the commutation relations

[Tij, Tkl] = i (δikTjl + δjlTik − δilTjk − δjkTil) (4.5)

All this is completely analogous to the well known SO(3) case of ordinary rotations in
3D space.

The different tensorial representations have one or more fundamental indices, and usu-
ally some extra constraint on them, for example symmetry, antisymmetry, tracelessness,
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and, as we will see later, (anti)self-duality. We will consider obviously only the lower dimen-
sional ones, although in SO(10) very few representations are really low dimensional. The
building block among tensorial representations is the fundamental 1-index 10i. With two
indices we can construct either an antisymmetric 45ij = −45ji or a symmetric 54ij = 54ji
combinations

10× 10 = 45 + 54 + 1 (4.6)

We may use in the following also the 3 indices completely antisymmetric 120 (= 10 ×
9 × 8/3!), a 4 indices completely antisymmetric 210 (= 10 × 9 × 8 × 7/4!) and 5-indices
completely antisymmetric with an extra self (or anti-self) duality relation

126ijklm = ± i
5
εijklmnopqr126nopqr (4.7)

In fact, 126 = (1/2)10× 9× 8× 7× 6/5!.
The spinorial representations are a bit more tricky. They follow from a different type

of generators that satisfy (4.5). One must first generate the 10 (N) different 25 = 32-
dimensional (in a general SO(N) the power is N/2 for N even and (N − 1)/2 for N odd)
Γ matrices that satisfy the anticommutation relation

{Γi,Γj} = 2δij (4.8)

Then the 45 matrices 32× 32

Σij =
1

4i
[Γi,Γj] (4.9)

satisfy the SO(10) commutation relations (4.5). The explicit form of the Γ and thus Σ
matrices can be found in [23, 24].

Similarly as in the 4-dimensional Lorentzian case which obeys SO(4) algebra, the ana-
logue of the charge conjugation is

B = iΓ2Γ4 . . .Γ10 (4.10)

which satisfy

ΣT
ijB = −BΣij (4.11)

With it we can write the following obects

32TBΓi1 . . .Γin32 (4.12)

which transform as an SO(10) tensor with n (completely antisymmetric) indices.
The spinorial 32-dimensional representation is reducible. One can in fact define the

analogue of γ5 in Minkowski spacetime as

ΓFIV E = iΓ1Γ2 . . .Γ10 (4.13)

and project the left 16 and right 16 states as

16 =
1

2
(1 + Γ5) 32 16 =

1

2
(1− Γ5) 32 (4.14)

Now we have enough knowledge to see better into the useful representations of SO(10).
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4.2 Our choice of representations

First, the matter fields of one generation live in a single 16 dimensional (spinorial) repre-
sentation of SO(10). It is great that all SM fermions are unified, and the 16th element is a
singlet, the right-handed neutrino:

16F = (Q, uc, dc, L, νc, ec) (4.15)

This obviously calls for the see-saw mechanism [25, 26]. Also, it is not strange that
different Yukawas will be connected now. So one can derive in SO(10) various constraints
among SM Yukawa couplings (quarks and leptons, neutrino included).

Second, only three types of Yukawas are possible, i.e. only 10, 120 and 126 dimensional
Higgses of SO(10) can couple to spinorial bilinears

16× 16 = 10 + 120 + 126 (4.16)

We will keep just two of them, 10 and 126 only, with the SM Higgs doublets (remember
that in MSSM there must be two Higgs doublets) living in both 10 and 126 (i.e. linear
combinations of doublets there) [27, 28]. Schematically

WY ukawaSO(10) = 16F (Y1010H + Y126126H)16F (4.17)

SO(10) constraints the Yukawa matrices in generation space Y10 and Y126 to be sym-
metric (Y120 turns out to be antisymmetric).

Third, SO(10) has rank 5, the SM rank 4. So to break the rank one needs to give a
vev to the SM singlet in 126 (another, non-minimal option is to add a new Higgs in a 16
dimensional representation). But since we are in supersymmetry, another superfield, the
126, must be introduced to cancel the nonzero D-terms (or, better, to allow the rank break-
ing). Notice that here the situation is different from the introduction of the second Higgs
doublet in MSSM: SO(10) is anomaly free by construction, no matter what representation
one chooses.

This same (126) vev is the one that gives mass to the right-handed neutrino. Notice
that this means that its mass matrix has the same Yukawa Y126 that is used for other
fermion masses, a powerful consequence of SO(10) gauge invariance.

Finally, the renormalizable Higgs sector needed to break SO(10) into SM can be con-
structed with 54 and 45 or 210 only, on top of the above-mentioned 126− 126 pair. Since
only the second choice allow in supersymmetry weak doublet mixing in 10 and 126, we will
stick to this choice.

Finally, an adjoint 45 dimensional vector multiplet will describe the gauge part of
SO(10).

To summarize: we will work with

3× 16F , 10H , 126H , 126H , 210H , 45V (4.18)

The index F means that our light fermions are living there, H that sooner or later some
of the fields are getting a nonzero vev, and V refers to the vector superfield.
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4.3 The Pati-Salam subgroup

Here it is perhaps time to introduce the Pati-Salam (PS) subgroup of SO(10). It is a
left-right symmetric model with 4 colors, i.e. the product group SU(2)L×SU(2)R×SU(4)C .
The matter fields under it are

16 = (2, 1, 4) + (1, 2, 4̄) (4.19)

where the left and right handed doublets are in

(2, 1, 4) =

(
u1 u2 u3 ν
d1 d2 d3 e

)
, (1, 2, 4̄) =

(
uc1 uc2 uc3 νc

dc1 dc2 dc3 ec

)
(4.20)

Notice that leptons are just the 4th color.
The 10 and 126 dimensional Higgses get decomposed under the PS subgroup (not the

SM anymore!) as (for this and most other group theory results the reader should consult
the famous review of Slansky [29])

10 = (2, 2, 1) + (1, 1, 6) (4.21)

126 = (2, 2, 15) + (3, 1, 10) + (1, 3, 10) + (1, 1, 6) (4.22)

126 = (2, 2, 15) + (1, 3, 10) + (3, 1, 10) + (1, 1, 6) (4.23)

210 = (1, 1, 1) + (2, 2, 6) + (3, 1, 15) + (1, 3, 15)

+ (2, 2, 10) + (2, 2, 10) + (1, 1, 15) (4.24)

45 = (3, 1, 1) + (1, 3, 1) + (2, 2, 6) + (1, 1, 15) (4.25)

I derived the above in the following way. Remember that the PS theory is locally
equivalent to SO(4)×SO(6), since locally SO(4)∼SU(2)L×SU(2)R and SO(6)∼SU(4)C .

10i has one index of SO(10), i, which runs from 1 to 10. The elements in 10 with index i
from 1 to 4 represent a 4 of SO(4), i.e. a (2,2,1) under Pati-Salam. The remaining elements
10i with i = 5, . . . 10 are a 6 of SO(6), thus a (1,1,6) of PS.

On the other side 126 is a 5-index completely antisymmetric matrix with a self-dual
relation that modes out half of the degrees of freedom. We can just repeat the previous
case of 10, but now with 5 indeces. For example, taking all 5 indices running from 5 to 10
and antisymmetrizing them we get just a 6 of SO(6) (in 6 dimensions a 1-form is dual to
a 5-form, i.e. in d-dimensions an object with p completely antisymmetric indices has the
same number of components as an object with d-p completely antisymmetric indices), i.e.
a (1,1,6) of PS. We continue then with 4 indices of SO(6) and one index of SO(4) to get a
(2,2,15) of PS, etc.

Exercise: Derive the decompositions in (4.21)-(4.25).
One last thing will be useful in future: the electric charge can be written with the

following symmetric combination of SO(10) generators:

Qem = T3L + T3R +
B − L

2
(4.26)

Here T3L,R are the eigenvalues of the third generator in SU(2)L,R, in fundamental rep-
resentation for example from the usual Pauli matrix τ3/2:

27



T3 =
1

2

(
1 0
0 −1

)
(4.27)

while B−L is proportional to the last, 15th generator of SU(4)C , in fundamental represen-
tation for example by

B − L
2

=
1

3


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3

 (4.28)

4.4 The Higgs sector

We have now most of the ingredients needed to describe the SO(10) breaking into the SM.
First of all, which of the HIggs involved contain SM singlets? After a look to their Pati-
Salam decomposition we find these candidates in Φ(210), Σ(126) and Σ(126). We denote
their vevs as

p = 〈Φ(1, 1, 1)〉 , a = 〈Φ(1, 1, 15)〉 , ω = 〈Φ(1, 3, 15)〉
σ = 〈Σ(1, 3, 10)〉 , σ̄ = 〈ΣH(1, 3, 10)〉 (4.29)

The most general renormalizable SO(10) invariant superpotential with fields Φ, Σ and
Σ can be written ([30])

WHiggs =
mΦ

4!
ΦijklΦijkl +

mΣ

5!
ΣijklmΣijklm (4.30)

+
λ

4!
ΦijklΦklmnΦmnij +

η

4!
ΦijklΣijmnoΣklmno

The next step is to rewrite this same superpotential (4.30) in terms of SM singlets (4.29).
To do that we need to localize the SM, i.e. find out in which components of representations
Φ, Σ and Σ they live (i.e. to calculate the Clebsch-Gordan coefficients).

The fundamental representation of SO(10) satisfies (4.5), and is given by

(Tij)kl = −i (δikδjl − δilδjk) (4.31)

The Cartan subalgebra of SO(10) (the maximal Abelian subgroup of SO(10)) is 5-
dimensional, and is composed of

T12, T34, T56, T78, T90 (4.32)

The SM generators and B−L are linear combinations of these Cartan generators. Let’s
see it.

Remember that indices from 1 to 4 mean the left-right SU(2)L×SU(2)R subgroup, while
those from 5 to 10 (this last denoted for simplicity just by 0) live in SU(4)C . Let’s consider
the first case. It boils down to the known way of writing SU(2)×SU(2) generators T 1,2,3

L,R

from the SO(4) generators Tij (i < j and running from 1 to 4).
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Take one index as particular, and define (a, b, c now run from 1 to 3):

Ta4 = Ka Tab = εabcJc (4.33)

Since Tij satisfy (4.5), the new generators satisfy

[Ka, Kb] = iεabcJc [Ja, Kb] = iεabcKc [Ja, Jb] = iεabcJc (4.34)

Just one step more and define

T aL =
1

2
(Ja +Ka) T aR =

1

2
(Ja −Ka) (4.35)

with the SU(2)L×SU(2)R commutation relations[
T aL,R, T

b
L,R

]
= iεabcT

c
L,R

[
T aL,R, T

b
R,L

]
= 0 (4.36)

In components one has in terms of the original generators

T 1
L =

1

2
(T23 + T14) T 1

R =
1

2
(T23 − T14)

T 2
L =

1

2
(T31 + T24) T 2

R =
1

2
(T31 − T24) (4.37)

T 3
L =

1

2
(T12 + T34) T 3

R =
1

2
(T12 − T34)

Similarly we find the SU(4)C generators explicitly from the SO(6) ones:

T3L ∝ T12 + T34

T3R ∝ T12 − T34

B − L ∝ T56 + T78 + T90 (4.38)

T3C ∝ T56 − T78

T8C ∝ T56 + T78 − 2T90

Exercise: Find out the proportionality factors in (4.38).
Let’s come back to our original problem, i.e. finding where the SM singlets live. Imagine

the generator T12. It acts on a one index object as(
T̂12X

)
k

= (T12)klXl = −i (δ1kX2 − δ2kX1) (4.39)

Since for Xk1k2...kN the transformation rule is as usual

(
T̂ijX

)
k1k2...kN

= (Tij)k1lXlk2...kN + (Tij)k2lXk1l...kN + . . .+ (Tij)kN lXk1k2...l (4.40)

we can immediately find out that

T2i−1,2iX2k−1,2k = 0 (4.41)

for any i, k = 1, 5. This is a necessary constraint for a SM singlet, but not sufficient. For
example a 15 of SU(4)C has 3 such objects with the eigenvalues of all Cartan generators

29



(U(1) quantum numbers) zero. The fundamental of SU(4) get decomposed into SU(3)×U(1)
as

4 = (3,−1/3) + (1, 1) (4.42)

so that the adjoint becomes

15 = (4× 4̄)− 1 = [(3̄, 1/3) + (1,−1)]× [(3,−1/3) + (1, 1)]− 1

= (8, 0) + (1, 0) + (3,−4/3) + (3̄, 4/3) (4.43)

In the octet of SU(3) there are two elements with zero T3 and T8, i.e. the neutral pion
and eta. These should not be counted.

So which are the SM singlet states in 210? The easiest one is the PS singlet (all 4 SO(4)
indices) which is

p = 〈Φ1234〉 (4.44)

All the possible permutations are also possible (remember that Φ is completely anti-
symmetric in its 4 indices).

Next comes the (1, 1, 15), which is made from all 4 SO(6) indices:

a = 〈Φ5678〉 = 〈Φ5690〉 = 〈Φ7890〉 (4.45)

Finally we have the mixed (1, 3, 15), so that

ω = 〈Φ1256〉 = 〈Φ1278〉 = 〈Φ1290〉 = 〈Φ3456〉 = 〈Φ3478〉 = 〈Φ3490〉 (4.46)

We will not go through the whole derivation for the Σ, which is a bit more complicated,
but one can have a look for example to [31]. Plugging this directions into the superpotential
we get

WHiggs = mΦ

(
p2 + 3a2 + 6ω2

)
+ 2λ

(
a3 + 3pω2 + 6aω2

)
+ mΣσ̄σ + ησ̄σ (p+ 3a− 6ω) (4.47)

The minimization of this superpotential leads to non-zero values of the vevs p, a, ω and
σ = σ̄. This last equality follows from D-terms.

Exercise: Analize the possible minima of (4.47). Check the results in [31].

4.5 The Yukawa sector

From (4.17) and the above decomposition it is easy to get the SM Yukawas. For example

16F10H16F → (2, 1, 4)F (2, 2, 1)H(1, 2, 4)F

16F126H16F → (2, 1, 4)F (2, 2, 15)H(1, 2, 4)F + (1, 2, 4)F (1, 3, 10)H(1, 2, 4)F

+ (2, 1, 4)F (3, 1, 10)H(2, 1, 4)F + . . . (4.48)

The SM doublets live in (2, 2, 1)H and (2, 2, 15)H , the SM singlet that break the rank of
SO(10) is in (1, 3, 10)H , while the SU(2)W triplet Higgs that gives rise to a type II see-saw
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is in (3, 1, 10). Remember again that now the decomposition is under Pati-Salam, not the
SM!

It is now relatively simple to guess the SM fermion masses for down quarks (D), up
quarks (U), charged leptons (E) and neutrinos (N), valid for any number of generations:

MD = vd10Y10 + vd126Y126 (4.49)

MU = vu10Y10 + vu126Y126 (4.50)

ME = vd10Y10 − 3vd126Y126 (4.51)

MN = −MνDM
−1
νR
MνD +MνL (4.52)

where we defined the Dirac (νD), left Majorana (νL) and right Majorana (νR) neutrino
masses as

MνD = vu10Y10 − 3vu126Y126 (4.53)

MνL = vLY126 (4.54)

MνR = vRY126 (4.55)

and the vevs are

vu,d10 = 〈(2, 2, 1)u,dH 〉 , vu,d126 = 〈(2, 2, 15)u,dH 〉 (4.56)

vR = 〈(1, 3, 10)H〉 , vL = 〈(3, 1, 10)H〉 (4.57)

The only thing that has to be still understood is the factor of −3 in front of Y126 in ME

and MνD . It is due to the vev of the (traceless) adjoint 15 of SU(4)C in (2,2,15)H :

〈15C〉 ∝ diag(1, 1, 1,−3) (4.58)

and thus give an extra factor −3 to leptons with respect to quarks.
Remember also that every left-right bidoublet (2,2) is (as any chiral superfield spin 0

component) complex in supersymmetry, so there are two possible vevs, which we denoted
with indices u and d.

Finally, we have still to specify how SO(10) gets broken to the SM, i.e. the Higgs
sector. It turns out that on top of the fields I have mentioned so far (the matter 16F and
the Higgses 10H and 126H) we need two other representations, the 5 indices antisymmetric
and anti-self-adjoint 126H and the 4 indices antisymmetric 210.

Just to taste the predictiveness of this model, consider the case of 2 generations (let
us talk about the heaviest two, the second and the third generation of the SM) and limit
ourselves to the real case. We can always go into the basis in which Y10 for example is
diagonal:

vd10Y10 =

(
a 0
0 b

)
, vd126Y126 =

(
c d
d e

)
(4.59)

Then the number of free parameters in the charged fermion sector is 7:
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a , b , c , d , e , vu10/v
d
10 , v

u
126/v

d
126 (4.60)

They can be determined by fitting 7 experimental data:

ms , mb , mc , mt , mµ , mτ , Vcb (4.61)

With one single new parameter,

vR/vL (4.62)

we can now calculate two measurable quantities from the neutrino sector (we assume here
a normal hierarchy in the neutrino sector)

m3/m2 =
√
|∆m2

31/∆m
2
21| , θ23 = θATM (4.63)

so we have in total one prediction.
Exercise: Show that by increasing the number of generations one gets more predictions,

assuming all parameters real.
Now let’s see this fit in detail. Rewrite (4.49)-(4.51) as

MU = D + S (4.64)

MD = r1D + r2S (4.65)

ME = r1D − 3r2S (4.66)

Since all the matrices involved are symmetric we can invert them, i.e. calculate MU,D

in terms of S,D

(
D
S

)
=

1

r2 − r1

(
r2 −1
−r1 1

)(
MU

MD

)
(4.67)

and plug the expressions in the last equation to get

ME =
4r1r2

r2 − r1

MU −
3r2 + r1

r2 − r1

MD (4.68)

From it we find two useful equations taking its trace, or trace its square:

TrME =
4r1r2

r2 − r1

TrMU −
3r2 + r1

r2 − r1

TrMD (4.69)

TrM2
E =

(
4r1r2

r2 − r1

)2

TrM2
U +

(
3r2 + r1

r2 − r1

)2

TrM2
D

− 2

(
4r1r2

r2 − r1

)(
3r2 + r1

r2 − r1

)
TrMUMD (4.70)

We know all the above traces, the last one being

TrMUMD = (mtmb +mcms)− (mt −mc)(mb −ms)V
2
cb (4.71)

where we used the fact that in the MU = Md
U basis
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MD = V T
CKMM

d
DVCKM (4.72)

Let’s simplify the neutrino sector assuming that type II seesaw dominates. In this case

MN = cS =
c

r2 − r1

(−r1MU +MD) (4.73)

Two other invariant combinations can be found. The first one is

TrM2
N

(TrMN)2 =
r2

1TrM
2
U + TrM2

D − 2r1TrMUMD

(−r1TrMU + TrMD)2 (4.74)

where the left-hand-side equals

1 +
(
m3

m2

)2

(
1 + m3

m2

)2 (4.75)

must be compared to the experimental value (assuming a hierarchical neutrino spectrum
4) (

m3

m2

)2

=

∣∣∣∣∆m2
ATM

∆m2
SOL

∣∣∣∣ = 32± 2 (4.76)

Here and in the following we are using for the neutrino fit the values from [32, 33].
The second useful invariant is

TrMNME

TrMN

=
1

−r1TrMU + TrMD

(4.77)

×
[
−4r2

1r2

r2 − r1

TrM2
U −

3r2 + r1

r2 − r1

TrM2
D +

r2
1 + 7r1r2

r2 − r1

TrMUMD

]
where the left-hand-side is(

m3

m2
mτ +mµ

)
−
(
m3

m2
− 1
)

(mτ −mµ)V 2
23

m3

m2
+ 1

(4.78)

with the experimental value

V 2
23 = sin2 θATM = 0.51± 0.06 (4.79)

We have thus 4 equations (4.69), (4.70), (4.74) and (4.77) for two unknowns, r1 and r2,
clearly an overconstrained system. The idea is to consider a χ2 analysis for all the observable
involved (except the charged lepton masses, which are known too well). Remember that all
these quantities must be evaluated at the GUT scale, which has been fortunately already
done. We can use for example [34] for the masses, while the neutrino parameters and the
value Vcb ≈ 0.04 ± 0.001 [35] at MZ do not change significantly, see for example [36] for
a discussion on this point. Remember also that all the masses can have arbitrary sign, so
there are all together 25 = 32 possibilities, since one mass can be fixed.

4In the case of inverse hierarchy the two generation analysis is probably not a good approximation,
since we would neglect a large mass.
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Exercise: Find numerically some local minima of χ2 for the above case.
Instead of doing this numerical fit, let me mention an argument for why we may hope

it will work. One of the main problems is to get a large atmospheric mixing angle and a
small corresponding quark angle. Assuming as above that type II seesaw dominates, we
have

MN ∝ S ∝MD −ME (4.80)

i.e. explicitly in the basis ME = Md
E (θD is the angle between MD and ME)

MN ∝ V (θD)

(
ms 0
0 mb

)
V T (θD)−

(
mµ 0
0 mτ

)
(4.81)

Small off-diagonal entries automatically give small Vcb, so we see that the only way to
get a large atmospheric angle is to cancel as much as possible the 33 entry, which we obtain
if mb ≈ mτ . This so called b− τ unification is however a well-known phenomenon occuring
in MSSM. Although not exact, it is typically correct up to 20-30%. So a large atmospheric
angle can be connected to b− τ unification, assuming type II seesaw dominates [37].

The realistic case of three generations and complex parameters is of course much more
involved. Allowing an arbitrary Higgs sector several fits are possible and summarized for
example in [38, 39, 40].

It is possible to fit all the data also in the minimal model with the Higgs superpotential
described above, providing the gaugini and higgsini of MSSM lie at about 10-100 TeV,
while the sfermions and the second Higgs are much heavier (1013 GeV or so), which does
not spoil one-step unification (one version of the so-called split supersymmetry scenario).
Such a model determines all the parameters, among others predicts all proton decay rates
and a relatively large value of the yet unmeasured neutrino mixing angle θ13 (see [41] and
references therein). Notice that this prediction of a large θ13 is now confirmed by T2K
experiment [42].

Another possibility (for those who do not like the split susy scenario and almost nothing
to find at LHC) is to include another multiplet, the 120. This has been recently done
successfully. For details and references see [43] and the latest [44].

4.6 Proton decay in susy SO(10)

One last word regarding proton decay. It is similar to the SU(5) case, the dimension 5
decay dominating the rate unless the sfermions are too heavy. There are though more color
triplets mediating it. They live in 10H , 126H , 126H and 210H . They mix, so that their mass
matrix is certainly not diagonal. But only some elements are coupled to the SM fermions,
and thus only some entries of the inverse mass matrix are important for the proton decay
rate. It is thus at least in principle possible to arrange cancellations if the rate becomes
dangerously large. For detailed studies see for example [45, 46].

5 Does nucleon decay mean grand unification?

Let me briefly just ask the following question: if we measure nucleon decay, how do we
know it is a consequence of grand unification? In fact other possible set-ups like R-parity
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violating supersymmetry can lead to similar decays. The answer to such a question is hard,
but there are some decays that cannot come from grand unification.

It is possible to show in general that a dimension 6 nucleon decay operator can have
only the form [47]

qqql + q̄q̄q̄l̄ (5.1)

where by q we mean Q, uc or dc, etc. All the operators (2.78), (2.83) and (3.26) we have
derived in SU(5) were of this form. We measure nucleon and not antinucleon decays, so
channels like

n→ K±l∓ (5.2)

cannot come from operators (5.1), since they need to either produce a final s-quark (in
K− = ūs) or a final l−.

Operators that lead to (5.2) must contain a Higgs doublet and are higher-dimensional.
They are thus suppressed by a further power of the cutoff scale and are negligible if the
cutoff is the grand unification scale. An experimental evidence for decay (5.2) would point
toward a low energy baryon and lepton number violation, not grand unification.

6 Conclusion

There were many aspects of grand unification not considered in these lectures. Let me
just mention the groups SU(6) and E6, the SO(10) models with 16H instead of 126H , non-
supersymmetric SO(10), etc. They would need more time, and each of these models has
its advantages but also drawbacks. It is correct to say that at the moment there is no
really satisfactory model of grand unification. What prevents to be such are the successful
solution to the doublet-triplet splitting problem, the origin of supersymmetry breaking and
a better understanding of the hierarchies in general. But these are problems present in
any physics beyond the standard model as well in the standard model itself. What grand
unified theories do is what any physical theory should do: connect different phenomena.
And GUTs provide links between proton decay, fermion masses and gauge symmetries.
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[8] B. Bajc and G. Senjanović, “Seesaw at Lhc,” JHEP 0708 (2007) 014 [arXiv:hep-
ph/0612029].
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[31] B. Bajc, A. Melfo, G. Senjanović and F. Vissani, “The Minimal Supersymmetric Grand
Unified Theory. I: Symmetry Breaking and The Particle Spectrum,” Phys. Rev. D 70
(2004) 035007 [arXiv:hep-ph/0402122].

[32] A. Strumia and F. Vissani, “Neutrino Masses and Mixings And..,” arXiv:hep-
ph/0606054.

[33] T. Schwetz, M. Tortola and J. W. F. Valle, “Global Neutrino Data and Recent Reactor
Fluxes: Status of Three-Flavour Oscillation Parameters,” New J. Phys. 13 (2011)
063004 [arXiv:1103.0734 [hep-ph]].

[34] Z. z. Xing, H. Zhang and S. Zhou, “Updated Values of Running Quark and Lepton
Masses,” Phys. Rev. D 77 (2008) 113016 [arXiv:0712.1419 [hep-ph]].

[35] K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010).

[36] C. R. Das and M. K. Parida, “New Formulas and Predictions for Running Fermion
Masses at Higher Scales In Sm, 2Hdm, and Mssm,” Eur. Phys. J. C 20 (2001) 121
[arXiv:hep-ph/0010004].
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