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1 LECTURE 1: Neutrino from low energy

effective theories (1h30m)

1.1 Basic facts about neutrinos

We know how neutrinos interact from collider experiments. They are elec-
trically neutral but interact under weak interactions, and thus live in a weak
doublet. On the other hand, we know already for long time, that their mass
is so tiny to be undetectable in collider physics. For that we need to measure
neutrino oscillations among different flavors. At the moment we know about
3 flavors, two mixing angles and two mass differences [1]1:

m2
2 −m2

1 = (7.6± 0.2)10−5 eV2 ,
∣∣∣m2

3 −m2
2

∣∣∣ = (2.4± 0.2)10−3 (1)

tan2 θ12 = 0.48± 0.05 , sin2 2θ23 = 1.02± 0.04 (2)

If m2
3 − m2

2 > (<)0 we say we have a normal (inverse) hierarchy, but
at the moment the sign is unknown. On top of that we know from other
ground-based or cosmological and astrophysical observations that the sum
of the neutrino masses cannot exceed few tenths of eV, and that θ13 is less
than approximately 13o. At the moment we do not have any information on
the CP violating phase(s).

1.2 Neutrinos in the SM, how to give mass

Strictly speaking, the standard model (SM) cannot account for a nonzero
neutrino mass at the renormalizable level. The reason is gauge symmetry

1I would like to stress that throughout this paper citations are completely incomplete
and given here just for eventual further reading. This is obviously not a review on the
subject, but just some modest lecture notes.
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and the absence of a right-handed neutrino. In fact, the neutrino spinor
(in the 1-generation standard model) is just a component of the left-handed
lepton doublet

L =
(
ν
e

)
= (1, 2,−1) (3)

where the three numbers on the right-hand-side denote the field dimension-
ality under SU(3)C×SU(2)W×U(1)Y .

Although it is in principle possible to write down a Majorana mass
term for a neutral Weyl fermion (1/2, 0) or (0, 1/2) of the Lorentz group
SU(2)L×SU(2)R at the renormalizable level, i.e. (σ2 is the 2×2 Pauli matrix
with either SU(2)L or SU(2)R Lorentz indices)

LMajorana mass = −1

2
mψT iσ2ψ + h.c. (4)

this cannot be used for the neutrino, since it is not a SM singlet.
Exercise: Show that (4) is Lorentz invariant.
So, without introducing a new degree of freedom, i.e. the right-handed

neutrino, we can get the neutrino mass term in the SM only from a non-
renormalizable Lagrangian, the so-called dimension 5 Weinberg operator

Ld=5 = −yM (LT iτ2H)iσ2(HT iτ2L)

M
(5)

Here iτ2 takes care of the SU(2)W indices, i.e. makes LT iτ2H gauge in-
variant, while iσ2 does the same for the Lorentz invariance of spinor bilinears.

Exercise: With the fields H and L one can write two other dimension 5
invariant operators by connecting the SU(2)W indices differently. Show that
these other two operators boil down to the same form (5), so that only one
is actually independent.

Once the Higgs doublet vev spontaneously breaks the electroweak gauge
symmetry,

〈H〉 =
(

0
v/
√

2

)
, v = 246 GeV (6)

the neutrino gets a Majorana mass term (the M of yM reminds us of the
Majorana nature)
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Ld=5(v) = −yM v2

2M
νT iσ2ν + h.c. → mν = yM

v2

M
(7)

We do not know better now what the mass is, but at least we can fit it.
In this respect it is similar to the masses and Yukawas for charged fermions
in the SM: we cannot predict the number, but we can connect the interaction
Yukawa coupling with the value of the mass.

Notice that we do not actually need two parameters, yM and M , but only
one, the ratio yM/M . This way of writing suggests however the energy scale
of new physics, M .

For a 3-generation SM the operator (5) generalizes to

Ld=5 = −yMij
(LTi iτ2H)iσ2(HT iτ2Lj)

M
(8)

The energy scaleM suggests the validity of the low energy effective theory,
i.e. it is the cutoff of the SM. On the other side the six complex Yukawa
couplings yMij = yMji have all the flavor information of the neutrino world.
The neutrino mass matrix is

(mν)ij = yMij
v2

M
(9)

gets diagonalized with a unitary rotation from the flavor to the mass basis

mν = V ∗mdiag
ν V † (10)

which is obtained by simply rotating the neutrinos from the flavor diagonal
basis νf into the mass diagonal basis νm

νf → V νm (11)

In the basis of diagonal charged lepton mass matrix, this unitary matrix
V is called the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix and is
the lepton analogue of the Cabibbo-Kobayashi-Maskawa (CKM) matrix of
the quark sector. It gets usually parametrized as

V =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 diag(1, eiα, eiβ)(12)
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where cij = cos θij, sij = sin θij. Notice that on top of the usual matrix,
completely similar to the CKM one, we have here also a diagonal matrix
with two extra CP-violating phases, α and β. This is the consequence of the
Majorana nature of the term (8).

Does all this mean that the neutrino must have a Majorana mass? Obvi-
ously this is not true. Neutrinos could be Dirac particles as well. It is enough
to introduce the right-handed neutrino and write the usual Yukawa term

LY ukawa = yDij νRiH
TLj + h.c. (13)

which gives after electroweak symmetry breaking

LY ukawa(v) = yDij
v√
2
νRνL + h.c. (14)

The Dirac mass is thus (the D of yD stands for Dirac)

(mν) = yDij
v√
2

(15)

and gets diagonalized with

mν = VRm
diag
ν V † (16)

i.e. by rotating the left and right neutrinos as

νL → V νL , νR → VRνR (17)

but now with (12) without the extra Majorana phases α and β. The reason
for it is that these extra phases can be absorbed in the Dirac case by VR,
which does not enter the weak interaction, being the right-handed neutrino
a gauge singlet. In the Majorana case on the other side it is V that must
absorb such extra phases, so that they remain in the weak interaction term
(in the mass eigenbasis).

From the measurement of V and mdiag only it is hard to tell the nature
of the neutrino mass, i.e. whether it is Majorana or Dirac. As we said, in
the Majorana case there are two CP-violating phases more than in the Dirac
case, but all this is very hard to measure in practice.

The most promising channel is actually due to non-conservation of the
lepton number in the Majorana case. In fact, from (8) and (9) it is clear
that the lepton number is not conserved and that a nonzero Majorana mass
breaks lepton number by two units. So the idea is to look for a process
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that goes through neutrino mass and violate lepton number by two. If we
see such a process, then neutrino is a Majorana fermion. This brings us to
the neutrino-less double beta decay, which is an atomic decay of the type
(A,Z) → (A,Z + 2) + 2e−. The diagram of the neutrino-less double beta
decay is depicted in fig. 1.

The Lagrangian we are using is the usual weak interaction

Lint =
g√
2
ēγµPLνMW

−
µ + h.c. (18)

where νM is a Majorana neutrino and the projector PL = (1+γ5)/2 lets only
the left-handed components interact.

A naive estimate of the diagram would give

1

M2
W

(γµPL)
1

/p−m (γνPL)
1

M2
W

(19)

which is clearly wrong since it does not go through the neutrino mass (the
diagram violates lepton number by two units, so it must be proportional to
the Majorana neutrino mass). We have not been careful, since we applied
the Feynman rules for a Dirac fermion, while we have to do with a Majorana
fermion, so its propagator is not the one used above. We can try to correct
things either working with a 2-component notation, or, as we will do now,
rewrite everything consistently with a 4-component Majorana.

The definition of a Majorana fermion in four Lorentz components is (this
equation is the fermionic analogue of the reality condition φ∗ = φ for a
bosonic field φ)

νcM ≡ CνTM = νM (20)

where we introduced the charge conjugation matrix

C = iγ2γ0 =
(
iσ2 0
0 −iσ2

)
(21)

The solution of (20) is, written in terms of 2-component spinors ν

νM =
(

ν
iσ2ν

∗

)
(22)
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Figure 1: The neutrino-less double beta decay

The effective Majorana mass term (7) after the electroweak symmetry
breaking can now be written in four component notation as

−mM

2

(
νTMCνM + h.c.

)
(23)

Using the general formula

f̄1 (γ1γ2 . . . γn) f2 = f cT1 C (γ1γ2 . . . γn)Cf c2
T

= −f c2CT (γ1γ2 . . . γn)T CTf c1
= (−1)n f c2 (γn . . . γ2γ1) f c1 (24)

(γa is any matrix γµa) and the known relations

f̄ = f cTC f = Cf c
T

Cγµ = −γµTC CT = −C C2 = −1 (25)

half of the term in (18) can be changed to get

Lint =
g

2
√

2
(ēγµPLνM − νcMγµPRec)W−

µ + h.c.

=
g

2
√

2
(ēγµPLνM − ν̄MγµPRec)W−

µ + h.c. (26)
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where passing to the second line we used (20). Notice that now we have PR
in the second term. This gives the result

1

M2
W

(γµPL)
1

/p−mν

(γνPR)
1

M2
W

∝ 1

M4
W

mν

p2
(27)

for the amplitude if the neutrino is of Majorana type (and zero if it is Dirac).
So a non-zero rate for the neutrino-less double beta decay is a smoking gun
for the Majorana nature of neutrino. On the other side, it is harder to prove
anything if nothing is seen. Since electrons are produced in this process,
the mass mν in (27) must be replaced by the appropriate matrix element,
i.e. (mν)11 (the above derivation is valid also for a matrix mν). Using (10),
(12) and the experimental constraints in (1), it turns out, that the Majorana
nature of the neutrino can be excluded only in the case of inverse hierarchy.

Exercise: Show it. Compare the result for example with fig. (8.5c) on
page 106 of [1].

1.3 The seesaw mechanism (type I, II, II)

The form of the Weinberg operator (7) and its generalization (8) tells us that
the smallness of the neutrino mass can be simply due to a large cutoffM . This
apparently simple observation is actually at the core of the so called see-saw
mechanism. But, to have a physical meaning, one should derive the non-
renormalizable Weinberg’s operator from a renormalizable UV completion.
Of course this means introducing new degrees of freedom close to the scale
M . If we introduce just one type of new fields, we have three possibilities,
that define the three types of see-saw.

1.3.1 Type I see-saw [2]

Imagine to have a fermionic weak singlet (the right-handed neutrino) νR.
Then we can write with it the Yukawa term

LY ukawa = νRy
T
DH

TL+ Ly∗DH
∗νR (28)

but since the new field is a gauge singlet, also the Majorana mass term is
allowed (for more generations M is in general a symmetric complex matrix)

LM = −1

2
νTRM

∗νR − 1

2
νRM

TνTR (29)
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Figure 2: The type I see-saw contribution of the fermionic singlet S(1, 1, 0)
to the neutrino mass. Type III is the same diagram, but with the singlet
S(1, 1, 0) replaced by a weak fermionic triplet T (1, 3, 0).

Now imagine the situation in which M >> mD = yDv/
√

2, i.e. the
Majorana mass dominates over the Dirac one. We can integrate out the
heavy field to get an effective mass for the light one

∂L
∂νR

= 0→ −MTνTR +mT
Dν = 0 (30)

which brings us to the final expression

L =
1

2
νTmDM

−1mT
Dν + h.c. (31)

The result is valid also for nL left-handed and nR right-handed neutrinos,
being now mD a (nL × nR) and M a (nR × nR) matrix. The light neutrino
Majorana mass matrix is

mν = mD.
1

M
.mT

D (32)

Its rank is at most nR for nL > nR and at most nL otherwise, which means
that there are at least nL − nR massless neutrinos for nL > nR. To give two
non-vanishing mass differences in the 3-generation SM one thus need nR = 2
(the lightest neutrino is massless) or 3 (all neutrinos can have mass).

This, type I, see-saw contribution is depicted on Fig. 2.
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Figure 3: The type II see-saw contribution of the bosonic triplet ∆(1, 3, 2)
to the neutrino mass.

1.3.2 Type II see-saw [3]

The mediator here is a bosonic triplet ∆ with SM quantum number (1,3,2).
The diagram contributing to the neutrino mass is shown on Fig. 3.

The relevant part of the Lagrangian is

L = −M2
∆|∆|2 +

1

2
Y ∆
ij L

T
i ∆Lj + µHT∆†H + h.c. (33)

The equations of motion give a non-vanishing triplet vev once the Higgs
doublet spontaneously breaks the electroweak symmetry:

〈∆〉 =
µv2

2M2
∆

(34)

which triggers the neutrino mass

mν = 〈∆〉Y ∆ (35)

A spectacular signal at a collider would be the detection of a doubly
charge component of this triplet, the ∆++. If light enough, it could be
produced through a Drell-Yan process (ud̄ → W+ → ∆++∆−). Its leptonic
decay

Γ(∆++ → l+i l
+
j ) ≈M∆|Y ∆

ij |2 (36)

would directly measure the Yukawa couplings and thus test the neutrino mass
matrix. To be able to do that one needs (on top of ∆ being light enough)
that the other decay channel
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Γ(∆++ → W+W+) ≈ 〈∆〉2/M∆ (37)

is smaller, which is true for 〈∆〉 ∼< 10−4 GeV.

1.3.3 Type III see-saw

This is very similar to the type I case. The only difference is that instead
of the singlet S(1, 1, 0) one has as a mediator a fermionic triplet T (1, 3, 0).
If light, it has however a much better chances to get noticed at the LHC
than the singlet, because it can be produced (and decay) through gauge
interactions.

1.4 Neutrinos in MSSM

One could think that the issue of neutrino mass in MSSM is similar to the
SM. But this is not the case. The reason is, that although the Lagrangian at
tree order does not allow a neutrino mass, essentially for the same reasons
(gauge symmetry) as in the SM, the lepton number is not automatic anymore
in MSSM at tree order. In fact, the issue of the lepton number conservation
(as the baryon number too) is peculiar to SM: it is simply impossible in the
SM to write down a lepton number violating term at tree level. We say that
lepton (and baryon) number is an accidental symmetry of the SM, it does not
need to be imposed, but it follows from the field content and the requirement
of gauge and Lorentz invariance. Thus, apart from anomalies (that give
however a far too small contribution, proportional to exp (−4π/α2) ≈ 10−150)
lepton number remains conserved, and thus loops cannot generate a nonzero
neutrino mass. This is no longer true in MSSM.

To see it, let’s write down the most general renormalizable superpotential
in MSSM:

W = (yU)ijQiHuu
c
j + (yD)ijQiHdd

c
j + (yE)ijLiHde

c
j + µHuHd (38)

+
1

2
λijkLiLje

c
k + λ′ijkQiLjd

c
k +

1

2
λ′′ijku

c
id
c
jd
c
k + µ′iLiHu

The first four terms represent the usual Yukawa terms of the SM properly
supersymmetrized (except for the presence of the second Higgs, which is
mandatory in MSSM), and are lepton (L) and baryon (B) number conserved.
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The model without the last four terms has a discrete Z2 symmetry, called
R-parity, which is defined for any field as

R = (−1)3(B−L)+2S (39)

where S is the spin. It does not commute with supersymmetric transforma-
tions (due to the explicit presence of the spin) and is even for SM fields and
odd for their superpartners. If conserved, it has an interesting prediction for
the SM: the existence of a stable non-SM particle (the lightest supersym-
metric partner - LSP), which, if neutral, can be a perfect dark matter (DM)
candidate.

The last four terms however violate this R-symmetry, as well as either lep-
ton or baryon number, but are nevertheless allowed by gauge symmetry. Of
course they cannot be arbitrary, since this would lead for example to a spec-
tacularly fast proton decay. In fact, exactly from proton decay constraints
one could derive that roughly

λ′λ′′ ∼< 10−27
( m

d̃

300GeV

)2

(40)

while from neutron-antineutron oscillation constraint it follows that

λ′′ ∼< (10−6 − 10−7)
( m

d̃

300GeV

)2 ( mχ̃0

100GeV

)1/2

(41)

where m
d̃

and mχ̃0 are the lightest down squark and neutralino masses.
All we need is just a small enough λ′′, i.e. a very good approximate

baryon number conservation, but we definitely can have nonzero λ, λ′ and
µ′. But once we have a nonzero λ, we can generate at one loop the Weinberg
operator and thus a nonvanishing neutrino mass through the left diagram of
fig. 4, which gives (assuming the slepton mass m˜̀ to be the largest mass in
the loop)

mν '
λ2(m2˜̀)LRmτ

16π2m2˜̀ , (m2˜̀)LR = A`vd − µ∗yτvu (42)

There are other possibilities though. For example, if λ′ 6= 0, a similar
diagram with internal sleptons and leptons replaced by proper squarks and
quarks give rise to a very similar contribution. There is a possibility also of
a tree order mass. It is shown in the right diagram of fig. 4, due to a non-
zero superpotential parameter µ′. Notice that this diagram is essentially a
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Figure 4: The leading contributions to neutrino mass in MSSM: the left 1-
loop diagram is proportional to λ (a similar diagram with internal (s)leptons
replaced by (s)quarks is proportional to λ′), the right one tree-level is pro-
portional to µ′.

type I see-saw with neutralino replacing the right-handed neutrino. Finally,
soft supersymmetry breaking terms can also violate R-parity and lead to
non-vanishing contributions to the neutrino mass.

One last comment. If R-parity is broken to give a realistic mass to neu-
trinos, the LSP decays fast and cannot be a DM candidate. Then, assuming
gravity has also to be supersymmetrized (in this case we are talking about
local supersymmetric transformation, i.e. about supergravity), the only re-
mained DM candidate is the gravitino, the spin 3/2 superpartner of the
graviton. It still decays, but the extremely tiny gravitation coupling makes
it almost stable on the timescale of the universe.

2 LECTURE 2: Examples of theories of neu-

trino mass: GUT (1h30m)

The (MS)SM has 3 gauge interactions and 5 different matter representations
for each generation. The idea of grand unification theories (GUT) is to
reduce these numbers to one single gauge group and one or two different
representations for each generation of matter. Of course our SM gauge group
should then be a subgroup of the grand unified gauge group, and the SM
fermions included in the GUT matter representations.
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But what does this really mean? That we put for example all SM gauge
fields together in a bigger adjoint representation of a simple group is clear,
but we know that the gauge couplings of the three SM gauge interactions are
numerically different. So in which sense they can unify? Here it is crucial
the notion of running coupling constants. We know that the gauge (and
other) couplings run with energy. So what we have to do, is to let them run
and check if they meet all three together [4]. And if they do, the scale at
which this happens will be the scale of (the spontaneous breaking of ) grand
unfication. Fortunately this is easy to do, all we need is to solve the (1-loop)
renormalization group equations (RGEs):

dgi
d log µ

= − bi
(4π)2

g3
i i = 1, 2, 3 (43)

The 1-loop beta coefficient bi can be straightforwardly calculated via
(G,F ,B stay for gauge bosons, fermions, bosons)

b =
11

3
C2(G)− 2

3
TF − 1

3
TB . (44)

The Dynkin index

T (R)δab = Tr (Ta(R)Tb(R)) (45)

and the second Casimir

C2(R)δij =
∑
a

(Ta(R)Ta(R))ij (46)

depend on the choice of the gauge group and on the representation involved.
The indices a, b run over the generators of the group (N2 − 1 in SU(N)),
while i, j run from 1 to the dimension of the representation. The normaliza-
tion usually chosen is T = 1/2 for the fundamental representation (quarks,
leptons). Then one has in the SU(N) group for the fundamental representa-
tion C2 = (N2 − 1)/(2N), and for the adjoint T = C2 = N . The dimension
of the representation is N for fundamentals and N2 − 1 for adjoint. To re-
member also that in SU(2) the generators in the fundamental are the Pauli
matrices T ija = τ ija /2, while in the adjoint representations are the Levi-Civita
antisymmetric tensor T ija = −iεaij.

For supersymmetric theories we know that for each fermion (boson) there
is a boson (fermion) in the same group representation, so (44) can be written
more compactly as
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b = 3C2(G)− T . (47)

The beta coefficients in the SM are bi = (−41/10, 19/6, 7) (positive coef-
ficients here mean asymptotic freedom). One knows the experimental values
of gi at MZ and can evolve them towards larger scales µ using (43). It is now
easy to check that there is no unification of couplings in the SM. Two loops
will not help so the only possibility for unification is to add new particles in
order to change the beta coefficients for energies above their mass. We will
see in the next two sections two such examples.

2.1 Minimal non-supersymmetric SU(5)

The Georgi-Glashow SU(5) grand unified model [5] includes the SM three
generations of fermions (the number of generations in GUTs are unfortu-
nately not predicted, but put by hand, as in the SM) in the 10F and 5F
representations

10F =


0 uc3 −uc2 u1 d1

−uc3 0 uc1 u2 d2

uc2 −uc1 0 u3 d3

−u1 −u2 −u3 0 ec

−d1 −d2 −d3 −ec 0

 , 5F =


dc1
dc2
dc3
ν
e

 (48)

The Higgs sector is made of an adjoint 24H , which gets a vacuum expec-
tation value (vev) to spontaneously break SU(5)→SU(3)C×SU(2)W×U(1)Y :

〈24〉H = MGUT


2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 −3 0
0 0 0 0 −3

 (49)

and of one fundamental representation, which contains also the SM Higgs
doublet H = (H+, H0)T :

5H = (HC
1 , H

C
2 , H

C
3 , H

+, H0)T (50)
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This model is however ruled out, because it predicts wrong gauge cou-
plings at the scale MZ (another way of saying that the 3 gauge couplings of
the SM do not unify). On top of that, this model suffers from the same prob-
lem as the SM: it predicts massless neutrinos. It is actually even worse than
the SM: there we could at least phenomenologically write down an effective
Weinberg operator (8). With a properly chosen values of y/M we could fit
the experimental numbers. This is not allowed anymore in SU(5). Although
we can write down an effective operator

LWeinberg SU(5) = yij
(5F5H)(5TH5

T
F )

M
(51)

the cutoff M cannot be lower than MGUT . Since, due to proton decay con-
straints MGUT ∼> 1016 GeV, the resulting neutrino masses turn out too small
(y ∼< 1 because of perturbativity assumption).

I will show now how to overcome both problems, the missing unification
and the practically vanishing neutrino mass. As we mentioned in the previous
chapter, the idea is to include new degrees of freedom. For this purpose I will
add to this model a fermionic adjoint [6], [7]. Under the SM it decomposes
into

24F = S(1, 1, 0) + T (1, 3, 0) +O(8, 1, 0) +X(3, 2,−5/6) +X(3̄, 2, 5/6) (52)

Exercise: Derive (52). Hint: 24 ∼ 5̄× 5.
The Higgs 24H obviously decomposes in a similar way. We have thus the

following possibility for light states (the gauge singlets do not contribute to
the beta function, while the XH , XH get eaten by the longitudinal compo-
nents of the SU(5) heavy gauge bosons via the Nambu-Goldstone mecha-
nism):

S = 0 : TH(1, 3, 0) , OH(8, 1, 1) , HC(3, 1,−1/3) (53)

S = 1/2 : T (1, 3, 0) , O(8, 1, 1) , X(3, 2,−5/6) , X̄(3̄, 2, 5/6)

Although apparently a lot of freedom, there is not much choice for their
masses, if we want unification. An important point is that in order to get
lighter triplets and octets in 24F , higher dimensional operators has to be
used, and so the maximum mass for the leptoquark is mX ≈ M2

GUT/Λ,
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where Λ is the cutoff of the SU(5) model, at least 100MGUT or so, to make
it perturbative. For this reason one can show that

mT ≈ 1 TeV (54)

a neat prediction of the model. One can also show, that higher is the triplet
mass, lower turns out to be the GUT scale, which means faster is the proton
decay. So if we do not find it at the LHC, we should definitely find soon the
proton decay, or discard the model.

Exercise: Derive (54) at 1-loop.
It is interesting that part of the spectrum is determined by the require-

ment of the SM being embedded in a GUT. And, even more exciting, the
fermionic triplet lies in the range of the LHC.

We have now to solve the neutrino mass issue yet. We have two candidates
for mediators of the see-saw mechanism, the fermionic singlet S (type I see-
saw) and the fermionic triplet T (type III see-saw). They are coupled to the
SM leptons as

LY uk = yiTLiTH + yiSLiSH (55)

to give the neutrino mass matrix (MT,S are the triplet and singlet masses)

mij
ν =

v2

2

(
yiTy

j
T

MT

+
yiSy

j
S

MS

)
(56)

with rank two, so the model predicts one massless neutrino.
The fermionic weak triplet T = (T+, T 0, T−) decays through weak inter-

actions mainly into a lepton and a gauge boson:

T± → W±ν or Z0e± (57)

T 0 → W±e∓ or Z0ν (58)

with a decay width estimate

ΓT ≈ |yT |2mT (59)

The decay rate depends on the same Yukawa couplings that are respon-
sible for the neutrino mass. LHC could thus give us information on the yet
unmeasured parameters of the neutrino sector.

To summarize, the minimal non-supersymmetric SU(5) model predicts
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• a weak fermionic triplet with mass mT ≈ 1 TeV;

• one neutrino massless;

• neutrino mass matrix a mixture of type I and type III see-saw;

• triplet decays constrained by neutrino masses and mixings.

2.2 Minimal supersymmetric renormalizable SO(10)

In the MSSM the beta coefficients are bi = (−33/5,−1, 3). If we put all the
superpartners at TeV, the three couplings unify in a single point at µ ≈ 1016

GeV [8]. To appreciate this fact one should remember that this unification
fails badly in the nonsupersymmetric case (compare the two runnings on Fig.
5. So, if we have supersymmetric partners at MZ or close to 1 TeV as re-
quired by naturalness (hierarchy problem), then we have unification of gauge
couplings for free! This is one of the (main) motivations for supersymmetry
with low scale (TeV) superpartners (and of unification in supersymmetric
theories).
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Figure 5: The running of the gauge couplings in SM (left) and low energy
MSSM (right).

Let us now construct a supersymmetric GUT. Although we could use the
SU(5) model, it is not the best one to constrain information on neutrinos. The
previous model was an exception, only its simplicity implied constraints. In
general cases the first (and probably last) non-trivial GUT model of neutrino
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mass is SO(10). Unfortunately we do not have much time to study it in
details. I will thus just mention few most important facts about it.

First of all, the matter fields of one generation live in a single 16 dimen-
sional (spinorial) representation of SO(10). It is great that all SM fermions
are unified, and the 16th element is a singlet, the right-handed neutrino.

16F = (Q, uc, dc, L, νc, ec) (60)

This obviously calls for the see-saw mechanism. Also, it is not strange
that different Yukawas will be connected now. So one can derive in SO(10)
various constraints among SM Yukawa couplings (quarks and leptons, neu-
trino included).

Second, only three types of Yukawas are possible, i.e. only 10, 120 and
126 dimensional Higgses of SO(10) can couple to spinorial bilinears

16× 16 = 10 + 120 + 126 (61)

The minimal model turns out to be the one with 10 and 126 only, with
the SM Higgs doublets (remember that in MSSM there must be two Higgs
doublets) living in both 10 and 126 (i.e. linear combinations of doublets
there). Schematically

LY ukawaSO(10) = 16TF (Y1010H + Y126126H)16F (62)

SO(10) constraints the Yukawa matrices in generation space Y10 and Y126

to be symmetric (Y120 turns out to be antisymmetric).
Third, SO(10) has rank 5, the SM rank 4. So to break the rank one needs

to give a vev to the SM singlet in 126 (another, non-minimal option is to
add a new Higgs in a 16 dimensional representation). This same vev is the
one that gives mass to the right-handed neutrino. Notice that this means
that its mass matrix has the same Yukawa Y126 that is used for other fermion
masses, a powerful consequence of SO(10) gauge invariance.

Here it is perhaps time to introduce the Pati-Salam (PS) subgroup of
SO(10). It is a left-right symmetric model with 4 colors, i.e. the product
group SU(2)L×SU(2)R×SU(4)C . The matter fields under it are

16 = (2, 1, 4) + (1, 2, 4̄) (63)

where the left and right handed doublets are in
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(2, 1, 4) =
(
u1 u2 u3 ν
d1 d2 d3 e

)
, (1, 2, 4̄) =

(
uc1 uc2 uc3 νc

dc1 dc2 dc3 ec

)
(64)

Notice that leptons are just the 4th color.
The 10 and 126 dimensional Higgses get decomposed under the PS sub-

group (not the SM anymore!) as

10 = (2, 2, 1) + (1, 1, 6) (65)

126 = (2, 2, 15) + (3, 1, 10) + (1, 3, 10) + (1, 1, 6) (66)

I derived the above in the following way. Remember that the PS theory
is locally equivalent to SO(4)×SO(6), since locally SO(4)∼SU(2)L×SU(2)R
and SO(6)∼SU(4)C .

10i has one index of SO(10), i, which runs from 1 to 10. The elements
in 10 with index i from 1 to 4 represent a 4 of SO(4), i.e. a (2,2,1) under
Pati-Salam. The remaining elements 10i with i = 5, . . . 10 are a 6 of SO(6),
thus a (1,1,6) of PS.

On the other side 126 is a 5-index completely antisymmetric matrix with
a self-dual relation that modes out half of the degrees of freedom, i.e.

126ijklm =
i

5!
εijklmnopqr126nopqr (67)

where εi...r is the 10-dimensional completely antisymmetric Levi-Civita ten-
sor. We can just repeat the previous case of 10, but now with 5 indeces.
For example, taking all 5 indices running from 5 to 10 and antisymmetrizing
them we get just a 6 of SO(6) (in 6 dimensions a 1-form is dual to a 5-form,
i.e. in d-dimensions an object with p completely antisymmetric indices has
the same number of components as an object with d-p completely antisym-
metric indices), i.e. a (1,1,6) of PS. We continue then with 4 indices of SO(6)
and one index of SO(4) to get a (2,2,15) of PS, etc.

From (62) and the above decomposition it is easy to get the SM Yukawas.
For example

16F10H16F → (2, 1, 4)F (2, 2, 1)H(1, 2, 4)F

16F126H16F → (2, 1, 4)F (2, 2, 15)H(1, 2, 4)F + (1, 2, 4)F (1, 3, 10)H(1, 2, 4)F

+ (2, 1, 4)F (3, 1, 10)H(2, 1, 4)F + . . . (68)
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The SM doublets live in (2, 2, 1)H and (2, 2, 15)H , the SM singlet that
break the rank of SO(10) is in (1, 3, 10)H , while the SU(2)W triplet Higgs
that gives rise to a type II see-saw is in (3, 1, 10). Remember again that now
the decomposition is under Pati-Salam, not the SM!

It is now relatively simple to guess the SM fermion masses for down
quarks (D), up quarks (U), charged leptons (E) and neutrinos (N), valid for
any number of generations:

MD = vd10Y10 + vd126Y126 (69)

MU = vu10Y10 + vu126Y126 (70)

ME = vd10Y10 − 3vd126Y126 (71)

MN = −MT
νD
M−1

νR
MνD

+MνL
(72)

where we defined the Dirac (νD), left Majorana (νL) and right Majorana (νR)
neutrino masses as

MνD
= vu10Y10 − 3vu126Y126 (73)

MνL
= vLY126 (74)

MνR
= vRY126 (75)

and the vevs are

vu,d10 = 〈(2, 2, 1)u,dH 〉 , vu,d126 = 〈(2, 2, 15)u,dH 〉 (76)

vR = 〈(1, 3, 10)H〉 , vL = 〈(3, 1, 10)H〉 (77)

The only thing that has to be still understood is the factor of −3 in front
of Y126 in ME and MνD

. It is due to the vev of the (traceless) adjoint 15 of
SU(4)C in (2,2,15)H :

〈15C〉 ∝ diag(1, 1, 1,−3) (78)

and thus give an extra factor −3 to leptons with respect to quarks.
Remember also that every left-right bidoublet (2,2) is (as any chiral super-

field spin 0 component) complex in supersymmetry, so there are two possible
vevs, which we denoted with indices u and d.
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Finally, we have still to specify how SO(10) gets broken to the SM, i.e.
the Higgs sector. It turns out that on top of the fields I have mentioned
so far (the matter 16F and the Higgses 10H and 126H) we need two other
representations, the 5 indices antisymmetric and anti-self-adjoint 126H and
the 4 indices antisymmetric 210.

Just to taste the predictiveness of this model, consider the case of 2
generations (let us talk about the heaviest two, the second and the third
generation of the SM) and limit ourselves to the real case. We can always go
into the basis in which Y10 for example is diagonal:

vd10Y10 =
(
a 0
0 b

)
, vd126Y126 =

(
c d
d e

)
(79)

Then the number of free parameters in the charged fermion sector is 7:

a , b , c , d , e , vu10/v
d
10 , v

u
126/v

d
126 (80)

They can be determined by fitting 7 experimental data:

ms , mb , mc , mt , mµ , mτ , θbc (81)

With only two new parameters,

vR/v
d
126 , vL/v

d
126 (82)

we can now describe three measurable quantities from the neutrino sector

m2 , m3 , θ23 (83)

so we have one neat prediction.
Exercise: Show that the predictiveness becomes even better with in-

creasing the number of generations, assuming all parameters real.
The realistic case of three generations and complex parameters is of course

much more involved. It is however possible to fit all the data in the minimal
model, providing the gaugini and higgsini of MSSM lie at about 10-100 TeV,
while the sfermions and the second Higgs are much heavier (1013 GeV or
so), which does not spoil one-step unification (one version of the so-called
split supersymmetry scenario). Such a model determines all the parameters,
among others predicts all proton decay rates and a large value of the yet
unmeasured neutrino mixing angle θ13 (see [9] and references therein).
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2.3 Conclusion

Here I did not have time to enter into details of GUTs. Let me just mention
at the end some general properties.

The first and probably the most important of all is proton decay. As
we found out, baryon and lepton numbers are not conserved anymore in
GUTs, so there is nothing that prevents the proton from decaying. Since
in the limit of the GUT scale to infinity proton must become stable, it is
clear that the decay lifetime must be proportional to some positive power of
MGUT . To get it a bit more precisely, remember that the heavy GUT gauge
bosons have mass MGUT , and that their interaction violates B and L. So a
B and L violating amplitude between four fermions gets a contribution from
the exchange of such a gauge boson. The amplitude is (similar as the W
exchange in muon decay, where the amplitude goes as 1/M2

W )

A(qq → q̄l̄) ≈ 1

M2
GUT

(84)

and thus the decay rate

Γ(p = qqq → qq̄l̄ = π0e+) ≈ m5
p

M4
GUT

(85)

One can thus estimate that the experimental lifetime τp = 1/Γp of 1034

yrs or so constrains

MGUT ∼< 1016 GeV (86)

which we used above.
The second important point is the electric charge quantization. This is

considered a mystery of the SM. Why are all electric charges integer multiples
of the down quark charge? Dirac had such an explanation. If there is only one
(Dirac) magnetic monopole in the universe, all charges has to be quantized, a
consequence of quantum mechanics. Another explanation is the embedding
of the SM into a bigger simple group. Then all charges are quantized because
originally they were just integer eigenvalues of a non-abelian simple group
generator. The two explanations are however related. In fact it can be
shown that each GUT that gets broken into the SM has as classical solution
topological magnetic monopoles. But we are now a bit too far from neutrinos,
so I will stop here.
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Charan Aulakh, Ilja Doršner, Enkhbat, Pavel Fileviez Perez, Ilia Gogoladze,
Ramon Guevara, Alejandra Melfo, Miha Nemevšek, Andrija Rašin, Fabrizio
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Gauge Models with Spontaneous Parity Violation,” Phys. Rev. D 23
(1981) 165.

[4] H. Georgi, H. R. Quinn and S. Weinberg, “Hierarchy of Interactions in
Unified Gauge Theories,” Phys. Rev. Lett. 33 (1974) 451.

[5] H. Georgi and S. L. Glashow, “Unity of All Elementary Particle Forces,”
Phys. Rev. Lett. 32 (1974) 438.
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