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Abstract

These notes are intended for a one semester course (30 hours for theory and 15
hours for exercises) at the graduate level.
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1 Introduction, relativity (45min)

These notes will get changed and improved continuously. It is a short review of what was
lectured, with the exception of the sections marked with asterisk. These are written for a
reader who would like to know more about quantisation via the path integral. For more
detailed descriptions and derivations one should take for example the book of Ryder [1],
which, skipping few sections, is of the right length and deepness for a one semester course.
For those particularly interested I would recommend the book of Peskin and Schroeder
[2], or for example the notes of Siegel [3], which are for free on the net (they are very long
though), or Weinberg [4, 5]. Of course, for arbitrary information on particle physics it is
recommended to use INSPIRE [6] and for daily news (new papers) [7].

During the lectures we will almost always keep the convention c = 1 and ~ = 1. This
is nothing else than the choice of particular units. In this convention mass and energy
have for example the same unit, which is usually chosen to be GeV (gigaelectronvolt=109

eV), while time and distance have the unit GeV−1. Changing these units into the usual
ones is very simple: we multiply the quantity written in the c = 1 and ~ = 1 units by
proper powers of ~ and c.
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1.1 Motivation and goals

During the undergraduate study of physics one gets used to both quantum mechanics and
relativity (here and in the following we think always about special relativity), although
separately. In particle physics we are fast coming close to speed of light. Quantum
mechanics without relativity is thus very fast incomplete. The purpose of this course is
to learn how to compute measurable physical quantities as the cross section and decay
width in a relativistic invariant way.

1.2 Lorentz transformations

The essence of relativity are the Lorentz transformations. We will derive them as rotations
in 4-dimensional spacetime (the time x0 and spatial coordinates xi, in short xα). Indices
with latin letters will denote spatial coordinates and will run from 1 to 3, while indices
with greek letters will run from 0 to 3.

Let’s remind first how we describe rotations in a plane (2-dimensional space). They
are simply

(
x′

y′

)
=

(
cosα sinα
− sinα cosα

)(
x
y

)
(1.1)

The rotation matrix can be written (check it!) in an apparently strange way as

O =

(
cosα sinα
− sinα cosα

)
= exp (iαT ) (1.2)

where we call the matrix

T = −i
(

0 1
−1 0

)
(1.3)

the generator of rotations in 2-dimensional space. The matrices (1.2) are representations
of the Lie group SO(2). This is a Lie group because the parameter α is continuous, while
SO(d) in general means orthogonal (OOT = OTO = I) rotations in d-dimensional space
with unit determinant (detO = 1).

This form is very useful for generalisations. In a d-dimensional space we rotate a
vector x = (x1, ..., xd)T with a group element O (d× d matrix). All these elements make
up the group SO(d), while each element is described by the d(d− 1)/2 angles αab = −αba
via

O = exp

(
i

2
αabTab

)
(1.4)

4



and the same number of generators of rotation (the Kronecker δ is 1 when two indices are
equal and 0 otherwise)

(Tab)
kl = −i

(
δkaδ

l
b − δkb δla

)
(1.5)

Keep in mind that the indices a and b determine the generator (we could have deter-
mined them differently, for example with a single number from 1 to d(d− 1)/2, T12 → T1,
T13 → T2, etc.), while the indices k and l tell us, which element of the matrix we are
talking about.

In the case of SO(2) we have only one element, T12, which has been written so far
without any index for simpilicity.

The representation of generators via (1.5) is only one of the infinite many others.
These can be represented as n× n matrices, the representation (1.5) is the simplest one2

dimensional (d) and are called the fundamental representations of the group SO(d). In
general all SO(d) group generators (in any representation) satisfy the algebra defined by
the commutator

[Tab, Tcd] = i (δacTbd + δbdTac − δbcTad − δadTbc) (1.6)

Keeping in mind that Tab = −Tba and δab = +δba, we can check the consistency of the
above form by change 1) a↔ b, 2) c↔ d, 3) a↔ c and b↔ d together. It is not difficult
to check that the fundamental representation (1.5) really satisfy the definition (1.6).

If we allowed the orthogonal matrices to have the determinant also −1, we would get
the group O(d) instead of SO(d). In three dimensions this means for example that we
have also mirroring on arbitrary plane (xi → −xi for a single i) or inversion (xi → −xi
for all i).

Let’s go back to the Lorentz transformations. The spacetime is 4-dimensional but of
special type, since time is not space. This can be seen for example in the invariants.
Remember that the length in the four-dimensional flat spacetime is c2(∆t)2 − (∆x)2 −
(∆y)2 − (∆z)2, and not the sum of squares as in the usual Euclidean space. This means
that we get the product of two vectors in Minkowski space if we insert between them a
matrix - the metric tensor, which takes care of these extra minuses. If we have for example
two vectors aµ = (a0, ai) and bµ = (b0, bi), then the product is

a0b0 − a1b1 − a2b2 − a3b3 = aµgµνb
ν (1.7)

where the metric tensor is

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (1.8)

2usually also the smallest except for d < 4 for the the spinorial representations, see next section.
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We will always stick to the convention that two equal Lorentz indices implicitly mean
summing over them (i.e. without writing explicitly the sum), one of them must be written
up, one down (never both up or both down). For this reason it is useful to lower or raise
the index by the metric tensor. The above equation can thus be written in different
equivalent ways

aµgµνb
ν = aµbµ = aµg

µνbν = aµb
µ (1.9)

where we defined

aµ ≡ gµνa
ν = (a0, a1, a2, a3) = (a0,−a1,−a2,−a3) (1.10)

and the inverse of the metric tensor, i.e.

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (1.11)

which satisfies

(
gg−1

)
µ

ν
= gµαg

αν = δµ
ν (1.12)(

g−1g
)µ

ν
= gµαgαν = δµν (1.13)

From here we see that gµ
ν = δµ

ν .
The previous definitions for the group SO(d) can be now generalised to SO(d+,d−),

where the metric tensor has in the diagonal d+ value plus one and d− values minus one
(in our case we are interested in SO(1,3)). All the above definitions are still ok, providing
we systematically change all δ with g and understand all matrix products mediated by g
in between. So the definition of the commutator in the SO(1,3) algebra becomes

[Tαβ, Tµν ] = i (gαµTβν + gβνTαµ − gβµTαν − gανTβµ) (1.14)

while the definition for the group element (1.4), which is a matrix in the 4-dimensional
Minkowski space, must be understood in the series expansion

Λµ
ν = δµν +

θ

2

α1β1

(iTα1β1)
µ
ν +

1

2

θ

2

α1β1 θ

2

α2β2

(iTα1β1)
µ
λ(iTα2β2)

λ
ν + ... (1.15)

Single matrices can be found from the definition (1.5)

(iTαβ)µν = (iTαβ)µλ gλν =
(
δµαδ

λ
β − δλαδ

µ
β

)
gλν (1.16)

Now it is not difficult to check that (1.15) really describe the Lorentz transformations
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x′µ = Λµ
νx

ν (1.17)

For example, let’s check that the rotation θ01 = α represnets the Lorentz transforma-
tion along direction x. In this case

Λµ
ν =

[
δ + α (iT01.g) +

α2

2
(iT01.g)2 + ...

]µ
ν

(1.18)

From (1.16) we get

iT01.g =


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0.




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 =


0 −1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 (1.19)

and

Λµ
ν =

 coshα − sinhα 0 0
− sinhα coshα 0 0 0 0 1 0

0 0 0 1

 (1.20)

Finally we introduce a new variable, coshα = 1/
√

1− v2, and find exactly the known
Lorentz transformation (v is the velocity).

Similarly an arbitrary tensor transforms under Lorentz as

T ′α1...αn = Λα1
β1 ...Λ

αn
βnT

β1...βn (1.21)

It is good to remember that, due to antisymmetry of the generators¡ we get from (1.15)

Λµ
σ =

(
Λ−1

)σ
µ

(1.22)

and from here the relation

Λµ
νΛµ

σ = δσν (1.23)

Products of two vectors are thus Lorentz scalars:

a′µb′µ = Λµ
νa

νΛµ
σbσ = aνbν (1.24)

2 More on the Lorentz group (45min)

2.1 Spinors

At first sight it looks like the fundamental representation of the generators (1.5) is also
the simplest one, form which we can get the transformations of all higher tensors as in
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(1.21). It turns out this is not true, since it exists an even simpler represnetation fo the
Lorentz group, from which we can derive even the transformation matrix Λµ

ν , which is
needed in (1.17) or (1.21).

This can be seen from the following derivation (let’s stick to four dimensions): imagine
there exist four 4× 4 matrices γµ, which satisfy the Dirac algebra

{γµ, γν} ≡ γµγν + γνγµ = 2gµν (2.1)

Then the matrices

Σµν =
i

4
[γµ, γν ] (2.2)

satisfy the commutation relations (1.14).
The matrices we need can be written for example as (in the so called chiral represne-

tation) as

γµ =

(
0 σµ

σ̄µ 0

)
(2.3)

where σµ = (1, σi), σ̄µ = (1,−σi) and σi are the Pauli matrices. The spinorial represen-
tation Ψ of the Lorentz gruop is thus the one that transforms as

Ψ′ = Λ1/2Ψ = exp

(
i

2
αµνΣµν

)
Ψ (2.4)

In our case (4d) this is the 4-dimensional Dirac spinor. Since the spacetime dimension
is even, the generators of the Lorentz transformations in the spinorial representations are
block diagonal. Irreducible representations of the Lorents group are thus two-dimensional.
In the basis (2.3) they are the Weyl spinors ψL in ψR:

Ψ =

(
ψL
ψR

)
(2.5)

Under parity we have

Ψ→ γ0Ψ (2.6)

i.e.

ψL ↔ ψR (2.7)

The Lorentz transformation matrix in the fundamental representation Λµ
ν can be

written, as promised, with the matrix in the spinorial representation Λ1/2:

Λ−1
1/2γ

µΛ1/2 = Λµ
νγ

ν (2.8)
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For later use we define the 4× 4 matrix

γ5 ≡ iγ0γ1γ2γ3 =

(
1 0
0 −1

)
(2.9)

and

Ψ̄ ≡ Ψ†γ0 (2.10)

which transforms as

Ψ̄′ = Ψ̄Λ−1
1/2 (2.11)

All 16 possible bilinear combinations of Dirac spinors can be written as

S = Ψ̄Ψ (2.12)

P = Ψ̄γ5Ψ (2.13)

V µ = Ψ̄γµΨ (2.14)

Aµ = Ψ̄γµγ5Ψ (2.15)

T µν = Ψ̄ [γµ, γν ] Ψ (2.16)

The chosen letters (S =scalar, P =pseudoscalar, V =vector, A =axial vector, T =tensor)
denote their behaviour under Lorentz transformations

(S ′, P ′) = (S, P ) (2.17)

(V ′µ, A′µ) = Λµ
ν (V ν , Aν) (2.18)

T µν = Λµ
αΛν

βT
αβ (2.19)

and parity

S → +S (2.20)

P → −P (2.21)

V µ → (−1)δµ0+1 V µ (2.22)

Aµ → (−1)δµ0 Aµ (2.23)

T µν → (−1)δµ0+δν0 T µν (2.24)

2.2 All representations of the Lorentz group

Generic SO(1,3) generators can be written as označimo kot

T0a = Ka , Tab = εabcJc (2.25)
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where the Levi-Civite tensor εabc is antisymmetric under the exchange of arbitrary two
indices and ε123 = 1. The generators K represent Lorentz boosts, while generators J are
rotations in 3-dimensional space (angular momentum!). The commutation rules (1.14)
get written as

[Ka, Kb] = −iεabcJc (2.26)

[Ja, Kb] = iεabcKc (2.27)

[Ja, Jb] = iεabcJc (2.28)

Although this looks less compact as before, it gives some physical insight. The last
equation is nothing else than the commutation relation for the operator of angular mo-
mentum. Defining new linear combinations

Aa =
1

2
(Ja + iKa) (2.29)

Ba =
1

2
(Ja − ika) (2.30)

whose commutation relations simplify as

[Aa, Ab] = iεabcAc (2.31)

[Aa, Bb] = 0 (2.32)

[Ba, Bb] = iεabcBc (2.33)

These are commutation relations for rotations in 2-dimensional complex space (see the
above rules for angular momentum oparators). We can talk about the group SU(2), which
has 3 elements (a generic SU(n), these are rotations - no more orthogonal, but unitary -
in n-dimensional complex space, has n2 − 1 generators). A and B are thus generators of
two SU(2).

Generators of the SO(4) group thus get divided into generators of two unrelated rota-
tions, two SU(2) (one with generators A, teh second one with generators B). The group
SO(4) lis locally equivalent to the group SU(2)×SU(2).

Fields describing elementary particles transform as irreducible representations of the
Lorentz group, which can be characterised by two multiples of 1/2, i.e. with one spin
number for each SU(2). In this way the simplest representation is the Lorentz scalar
(0, 0). Then we have two types of spinors. we denote the above SU(2) groups with
the index L (left) and R (right), so that we have two types of basic (Weylovih) spinors
ψL ∼ (1/2, 0) or ψR ∼ (0, 1/2), called the left-handed or right-handed spinor. Each of
them can describe only massless fermions. For massive fermions we need either both of
them (i.e a Dirac spinor) or a combination of the two (i.e. a Majorana spinor). All known
massive fermions (electron, muon, tau, quarks) are Dirac particles, except the neutrino
which may be either Dirac or Majorana.
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The Dirac fermion transforms under Lorentz transformations with Λ1/2, see (2.4), from
here the sign 1/2, i.e. from spin 1/2 involved. The last representation we will use is for
the vector boson Aµ ∼ (1/2, 1/2), which is partly 0 (= 1/2 − 1/2) and partly spin 1
(= 1/2 + 1/2).

2.3 Exercise 1

• Check that Σµν = c [γµ, γν ] satisfy the commutation relations for SO(d+, d−) and
determine c.

• Show that Σµν are block diagonal in the chiral representation of the γ matrices.

• Prove the equation (2.8).

• Check equations (2.26)-(2.28), i.e. check the proportionality factor in the definition
of the angular momentum operator from Tab.

• Show that the Dirac equation is Lorentz covariant.

3 Quantm mechanics, equations for different spins

(45min)

3.1 Schrödinger equation

In quantum mechanics one is typically solving the Schrödinger equation of the form

i
∂

∂t
Ψ =

(
− 1

2mk

∇2
k + V

)
Ψ (3.1)

where we sum over all particles k = 1, ..., N , Ψ jis the wavefunction of the system, and V
the potential. From here it is easy to derive the continuity equation

∂

∂t
ρ = −∇k.

−→
j k (3.2)

where

ρ = Ψ∗Ψ (3.3)

a positive definite quantity, can be interpreted as the probability density (probability,
that the system is in a given state), while

−→
j k = − i

2mk

(Ψ∗∇kΨ−Ψ∇kΨ
∗) (3.4)

is the probability current of the k-th particle. The equation (3.2) tells us that probability
is conserved
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3.2 The Klein-Gordon equation

the Schrödinger equation is explicitly non-relativistic. It follows from the non-relativistic
relation for the energy

E =
−→p 2

2m
+ V (3.5)

and the exchange of the energy and momentum with the appropriate operators

E → i
∂

∂t
, −→p → −i∇ (3.6)

The generalisation for the relativistic case seems thus simple: from

E2 = −→p 2 +m2 (3.7)

we get the Klein-Gordon (KG) equation (for a free particle)(
∂2

∂t2
−∇2

)
Φ = −m2Φ (3.8)

Denoting

∂µ ≡
∂

∂xµ
=

(
∂

∂t
,∇
)

(3.9)

the KG equation can be explicitly written in a relativistic invariant form:

∂µ∂µΦ = −m2Φ (3.10)

This equation has two main shortcomings. First, it includes also negative energies
from the square root of the equation (3.7)

E = ±
√−→p 2 +m2 (3.11)

If we included an arbitrary interaction (the above form of the KG equation describes
only kinematics, it is only for free particles), a particle with positive energy could tarns-
form into a similar with negative energy, which obviously does not happen. Second,
similarly as in the case of the Schrödinger equation we could find the relativistic current

jµ =
i

2m
(Φ∗∂µΦ− Φ∂µΦ∗) (3.12)

which automatically satisfies teh continuity eqaution due to KG

∂µj
µ = 0 (3.13)

However now

ρ = j0 =
i

2m

(
Φ∗

∂

∂t
Φ− Φ

∂

∂t
Φ∗
)

(3.14)
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is not positive definite anymore and so cannot be interpreted as the probability density.
Said differently, the solution of the KG equation Φ is not a wavefunction anymore.

We will see that all problems get solved if we interpret the field Φ as an operator, which
can change the number of particles.

3.3 The Dirac equation

In the previous section we have not explicitly specified for which particles (of what spin)
the KG equation applies. The answer is simple: since this is just a kinematical constraint,
there is no interaction and it follows just as a relation between energy, momentum and
mass. So it should be valid for every spin. And indeed this is the case, although this
is the whole story only for scalars, i.e. for particles with spin 0, or, said differently, for
the representation (0, 0) of the Lorentz group. For particles with different spin we have
additional constraints.

Particles with spin 1/2 satisfy the well known Dirac equation

(i/∂ −m) Ψ = 0 (3.15)

where we used the known Feynman convention

/a ≡ γµaµ (3.16)

The Dirac equation is covariant under Lorentz transformations, for massless particles
is reduced to two independent equations, one for ψL, one for ψR.

The relativistic invariant current

jµ = Ψ̄γµΨ (3.17)

has a positive definite zero component, which can be thus interpreted as the probability
density, similarly as in the Schrödinger equation.

With the ansatz (px ≡ pµx
µ)

Ψ = u(α)e−ipx (ali v(α)e+ipx) (3.18)

the equation can be solved, with two eigenvalues (α = 1, 2) for energy positive (u), and
two negative (v). But since The Dirac equation describes partilces with spin 1/2, these
negative energies are innocuous. Not only, due to these negative energy solutions, Dirac
predicted the existence of antiparticles, i.e. particles with all charges opposite to the usual
particles. To forbid transitions of states with positive energy to those with negative energy,
Dirac postulated that all states with negative energy are filled. The vacuum (the ground
state of the system) has all negative energy states filled. The state of a positive energy
particle is thus stable, since due to the Pauli exclusion principle, it cannot transform into
a negative energy state, since all of them are already populated. On the other side, such
a vacuum allows, by addition of energy, a particle with negative energy to get excited to
a state with positive energy, leaving the previous negative energy state empty. The hole
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in the negative energy states means antiparticle, so such a process is nothing than the
generation of a particle-antiparticle pair.

The Dirac equation behaves much better than the the KG or Schrödinger euqtaions,
since it avoids the previously mentioned problems and it is relativistic. However, although
it describes a fermion at low energy , it fails at higher energies. The reason is that it fails
to describe processes which change the number of particles. Such processes are however
possible, as we have seen in the example of creation of a pair of particle-antiparticle. This
problem will be definitely solved only with a consistent quantum field theory description.

3.4 Maxwell’s equations

Let’s mention only briefly the Maxwell’s equations. These can be written in an explicit
relativistic covariant form as

Fµν = ∂µAν − ∂νAµ (3.19)

∂µFµν = jν (3.20)

where Aµ is the electromagnetic potential. Fµν transforms under the Lorentz transfor-
mations as a tensor with two indices, Aµ and jµ as vectors. The quantity jµ is the souce
(current) of the electromagnetic field and it is conserved (∂µjµ = 0). The equation (3.20)
has too much freedom. In fact, if Aµ(x) is the solution, so is also Aµ(x) + ∂µα(x), where
α(x) is an arbitrary function of coordinates and time. This can be cleverly used to sim-

plify the above equations. The physical quantities - then electric field ~E and the magnetic
field ~B - doe not depend on the choice of the parameter α, since

Ei = F0i Bi =
1

2
εijk∂jAk (3.21)

As an example of simplifying the equations (3.20) take such a α(x), for which ∂µAµ =
0. This can always be done. Suppose that Ãµ does not satisfy it. Then we can redefine
Aµ = Ãµ + ∂µα and choose α to satisfy the equation ∂2α = −∂.Ã. We say that we choose
a gauge.

In such a (Lorentz) gauge it is enaugh to solve, instead of (3.20), only the simplified
equation

∂2Aν = jν (3.22)

with an extra constraint

∂.A = 0 (3.23)

3.5 Exercise 2

• Solve the Dirac equation for a free field, write explicitly u(α)(p), v(α)(p).
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• Normalising

ū(α)(p)u(α′)(p) = 2mδαα
′

(3.24)

v̄(α)(p)v(α′)(p) = −2mδαα
′

(3.25)

compute the quantities

P+ ≡
2∑

α=1

u(α)(p)ū(α)(p) (3.26)

P− ≡ −
2∑

α=1

v(α)(p)v̄(α)(p) (3.27)

• Assuming that

u(α)ū(α) =
1

2

(
1 + γ5/S(α)

)
P+ (3.28)

compute explicitly the polarisation vector S
(α)
µ (spin) and check that pµSµ = 0.

Repeat the exercise also for v(α).

• Calculate for n = 0, ..., 4

Tr (γµ1 ...γµn) (3.29)

Tr (γ5γµ1 ...γµn) (3.30)

4 Equations of motion, internal symmetries (1h30min)

4.1 The action

All the above equations of motion can be derived from the known principle of extreme
action, which we know already from classical mechanics. Here we generalise it for the
case of fields in 4-dimensional spacetime. Imagine that we have a Lagrangian density
(from here I will usually call it simply Lagrangian), which is a scalar under Lorentz (and
other, see later) transformations. This Lagrangian is a function of the field φ and its first
derivative ∂µφ, so L(φ, ∂µφ).

The action is defined as the space and time integral of the Lagrangian

S[φ] =

∫
d4xL(φ, ∂µφ) (4.1)
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According to the principle of extreme action the equations of motion are obtained by
requiring that the action does not change for small changes of the field φ→ φ′ = φ+ δφ

S[φ′]− S[φ] =

∫
d4x [L(φ′, ∂µφ

′)− L(φ, ∂µφ)]

=

∫
d4x

[
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ)

]
(4.2)

=

∫
d4x

[
∂µ

(
∂L

∂(∂µφ)
δφ

)
+

(
∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

))
δφ

]
= 0

In going to the last line we took into account that the difference of derivatives os equal
to the derivative of the difference δ(∂µφ) = ∂µδφ and we integrated by parts.

The first term is a total derivative. Its integral depends thus only on the values of the
fields at the boundary (at infinity). If we limit ourselves to small enough fields and/or
difference of fields δφ, then this term does not contribute. The action is then extremal
for fields that satisfy the Euler-Lagrange equations

∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

)
= 0 (4.3)

What type of Lagrangians will we use? As we already said, let the Lagrangian be
a Lorentz scalar. In the case of free fields we would also like to correctly reproduce
the equations for different spins derived in the previous section, i.e. the Klein-Gordon
equation (spin 0), the Diracovo equation (spin 1/2) and the Maxwell equation (spin 1).

It is not difficult to check that the Lagrangian for a free scalar field is

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 (4.4)

where the normalisation to 1/2 of the first term (with derivatives) is similar to the defintion
in quantum mechanics:

L =
1

2
m

(
d−→x
dt

)2

(4.5)

Time t and the particle coordinate −→x (t) in classical mechanics corresponds now in
quantum field theory the four-vector xµ = (t,−→x ) and the field φi(x

µ) .
For a free complex field we write

L = ∂µφ
∗∂µφ−m2φ∗φ (4.6)

The normalisation is chosen here so that the complex field can be expressed with two
real fields as φ = (φ1 + iφ2) /

√
2.

Similarly for fermions

L = ψ̄ (iγµ∂µ −m)ψ (4.7)
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where we must consider the fields ψ and ψ̄ in the derivation of the Euler-Lagrange equa-
tions as independent fields (similarly as φ and φ∗ in (4.6)).

Finally we get the Maxwell equations from

L = −1

4
FµνF

µν + Lgf (4.8)

where the last term depends on the choice of gauge (gf=gauge fixing). If the Lorentz
gauge is chosen

Lgf = − 1

2ξ
(∂µA

µ)2 (4.9)

with ξ a Lagrange multiplicator.
The factor −1/4 in (4.8) is determined by the requirement that the product of time

derivatives of the spatial components Ai satisfy the same normalisation as in (4.4). The
time components A0 on the other side do not have this kinetic term, which indicates that
not all four components of Aµ are physical, which further motivates the gauge fixing term
(for example (4.9)).

4.2 The Noether theorem

Let us go back to the equation (4.2). Let’s assume that the field φ satisfies the equation of
motion. We are interested now in the internal symmetries of the Lagrangian, i.e. on such
δφ, for which the Lagrangian is invariant. In this case the first term under the integral is
zero in the whole spacetime (and not only after the integration, or stated differently, at
infinity, as for arbitrary δφ)

∂µ

(
∂L

∂(∂µφ)
δφ

)
= 0 (4.10)

If there are more fields, we need to add the single contributions. We will be inter-
ested here in continuous transformations, which are described by a Lie group (Ta are the
generators)

φ′ = eiα
aTaφ (4.11)

Then δφ = iαaTaφ. All together we get as many conserved currents as the number of
the generators of transformations we have:

∂µj
µ
a = 0 , jµa =

∂L
∂(∂µφ)

iTaφ (4.12)

These relations are exact only after using the equations of motion.
Let’s see the known example of a Lagrangian for a free complex scalar field (4.6). The

simmetry here is the U(1) phase:

φ′ = eiαφ , φ∗′ = e−iαφ∗ (4.13)
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under which the Lagrangian (4.6) is invariant. Then the current is

jµ = i (φ∂µφ∗ − φ∗∂µφ) (4.14)

If we differentiate

∂µj
µ = i

(
φ∂2φ∗ − φ∗∂2φ

)
= i
(
−φm2φ∗ + φ∗m2φ

)
= 0 (4.15)

where we took into account the equation of motion(
∂2 +m2

)
φ = 0 (4.16)

We encountered this current (4.14) already in the previous section, where it came
from the Klein-Gordon equation, while here it comes directly from the symmetry of the
Lagrangian. We say that the current is conserved, since the quantity

Qa =

∫
d3xj0

a (4.17)

which is called the charge, is time independent:

dQa

dt
=

∫
d3x∂0j

0
a =

∫
d3x∂µj

µ
a = 0 (4.18)

As usual we took into account that the fields decrease fast enough towards infinity,
and use the Gauss law (the space integral of a total derivative is equal to the integrand
at the boundary). We call the current (4.12) and the charge (4.17) the Noether current
and the Noether charge. The Noether theorem states that these charges are conserved.

4.3 Gauge invariance

So far we took transformations (4.11) with constant parameters. In this section we will
consider the very important case, when these parameters are functions of coordinates,
αa = αa(x). These are the gauge transformations.

The motivation for them comes from the gauge invariance of the Maxwell equations.
We can couple a fermion

L = ψ̄iγµ∂µψ (4.19)

with the EM field with the known quantum mechanical receipe

i∂µ → pµ → pµ + eAµ → i∂µ + eAµ → iDµ (4.20)

We defined the covariant derivative

Dµψ = (∂µ − ieAµ)ψ (4.21)

The Lagrangian
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L1 = ψ̄iγµDµψ (4.22)

is invariant under gauge transformations

ψ → eiα(x)ψ , Aµ → Aµ +
1

e
∂µα (4.23)

since the definition of the covariant derivative on a field is to transform exactly as the
field itself.

(Dµψ)′ = eiα(x)Dµψ (4.24)

Similarly the kinetic term for the EM field

L2 = −1

4
FµνF

µν (4.25)

is invariant under gauge transformations, since it is invariant already the field strength
itself.

Fµν = ∂µAν − ∂νAµ (4.26)

F ′µν = Fµν (4.27)

The sum (4.22) and (4.25) is the Lagrangian for a fermion and the EM field.
Transformations (4.23) form, as we know, the group U(1), i,e. the change of the

fermion phase. This can be generalised to other groups, which has been first done by
Yang and Mills in the fifties, who first wrote down the Lagrangian invariant under the
transformation group SU(2).

More genrally, we would like to understand how to write Lagrangians invariant under

ψ′ = Uψ , U = U(α(x)) , U † = U−1 (4.28)

where U are unitary matrices, elements of the SU(N) group. Terms of the formψ̄ψ are
invariant since U is unitary, U †U = 1. Problems appear though when we have to do with
derivatives:

∂µψ
′ = U∂µψ + (∂µU)ψ (4.29)

so that the Lagrangian is not invariant due to the second term

ψ̄′iγµ∂µψ
′ 6= ψ̄iγµ∂µψ (4.30)

Similarly as before with the photon field Aµ we would like to transform also here the
usual derivative intro a covariant one. Now we have the group SU(N), and so N2 − 1
gauge bosons, the same number as the number of generators of transformations. We first
define the matrix

19



Aµ ≡ AaµT
a (4.31)

where the generators T a are in the same representation as ψ. If for example ψ is in
the fundamental representation, for the case of SU(2) the generators T a are the properly
normalised Pauli matrices σa/2, while in the case of SU(3) the Gell-Mann matrices. In
any case we stick to the normalisation convention for the genrators in the fundamental
representation

Tr
(
T aT b

)
=

1

2
δab (4.32)

(a different choice would just redefine the coupling constant g). Let us now use a similar
trick as before. We introduce the covariant derivative

Dµψ ≡ (∂µ − igAµ)ψ (4.33)

which under gauge transformations

ψ′ = eiαa(x)Taψ , A′µ = UAµU
† +

c

g
∂µ (U)U † (4.34)

behaves as (4.24). We guessed this change of the vector field (of the matrix (4.31)), and
the constant c is determined from the condition (4.24) for α(x) ≡ αa(x)T a finding c = −i.

Ho do we get the invariant for the kinetic terms of the gauge boson Aµ? It makes sense
to have a similar form as before, but taking a trace since we have to do with matrices:

L = − 1

4c2

Tr (FµνF
µν) (4.35)

which does not tell us much, since we have not defined Fµν for a general SU(N) group. The
simplest ansatz (4.26) turns out wrong, so we try another guess (we demand antisymmetry
under exchange of indices)

Fµν = ∂µAν − ∂νAµ + c1g [Aµ, Aν ] (4.36)

To have an invariant trace (4.35), we need

F ′µν = UFµνU
† (4.37)

which determines c1 = −i. The last constant c2 is fixed by normalisation. Fo every gauge
field Aaµ we want to have the same normalisation of its kinetic term as for the case of
electromagnetism. This shows that c2 is just the normalisation factor for the generators
(in a given representation)

Tr
(
T aT b

)
= c2δ

ab (4.38)

and so equal to 1/2 in the case of fundamental representation.
Two more comments.
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First, we can use the same general formula for SU(N) also for the case of electro-
magnetism, where the only generator T a = q is now a constant, which is not necessarily
normalised the same way for different fields. This means that each field ψq can have its
own q. In this way we can for example interpret e as the electron charge (it has q = 1),
so that the up quark has q = 2/3, down quark q = −1/3, etc. The product qe is the
U(1) charge of the field ψq. Here there is a difference between the abelian U(1) in the
nonabelian SU(N) groups. While in the abelian case each field can have its own charge,
in the nonabelian case the charge depends uniquely on the group representation.

Second, in the same way as we defined the covariant derivative for fermions, we could
have done it for bosons.

Dµφ ≡ (∂µ − igAµ)φ (4.39)

while the invariant kinetic term is

L = (Dµφ)†Dµφ (4.40)

4.4 Exercise 3

• Show that the Noether theorem for translations and rotations mean conservation of
energy, momentum and angular momentum.

• Compute c1 from equation (4.36), by checking that the electromagnetic field strength
transforms correctly as F ′µν = UFµνU

†. Check also if the same tensor can be writtena
as DµAν −DνAµ or [Dµ, Dν ].

5 Perturbation (3h)

5.1 * Quantum mechanics

The Schrödinger equation keeps the number of particles constant, its solution (the wave-
function) tells us how the initial ψ(xa, ta) (xa are the coordinates of all partilces in the
initial moment ta) changes into ψ(xb, tb) (xb are the coordinates of all partilces in the final
moment tb). This can be written via the function G(xb, tb;xa, ta):

ψ(xb, tb) =

∫
G(xb, tb;xa, ta)ψ(xa, ta)dxa (5.1)

If we know the function G, then we know the system completely. Something similar
will be true also later on in field theory, when the number of particles can change, while
the interpretation (5.1) clearly will not be correct.

The equation we try to solve is in general of the form

Oxb,tbψ(xb, tb) = 0 (5.2)
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This can for example be

Oxb,tb = − 1

2mb

∇2
xb

+ V (xb, tb)− i
∂

∂tb
(5.3)

If we knew how to solve such equation exactly,this section would finish here. But since
we do not know exact solutions almost never, we must make use of approximations. The
most common one is a systematic perturbation expansion. We split he operator O into
a piece which can be solved exactly (this piece is typicall without interactions) and the
rest:

O = O0 +O1 (5.4)

We choose the operator O0 so that we are able to solve the homogeneous equation

O0
x,tψ0(x, t) = 0 (5.5)

O0
x2,t2

G0(x2, t2;x1, t1) = −iδ(x2 − x1)δ(t2 − t1) (5.6)

In the case (5.3) we choose for a particle inD spatial dimensions for example (the Heaviside
function θ(t) = 1 for t > 0 and 0 otherwise)

O0 = − 1

2m
∇2 − i ∂

∂t
(5.7)

O1 = V (5.8)

ψ0(x, t) ∝ e−i(Et−
−→p −→x ) , E =

−→p 2

2m
(5.9)

G0(x2, t2;x1, t1) =
( m

2πit

)D/2
exp

[
im−→x 2

2t

]
θ(t) (5.10)

where −→x ≡ −→x 2 −−→x 1 and t ≡ t2 − t1.
Let derive the result (5.10) from (5.6) for D = 1. AS usual, the invariance under

translations tells us that the Green function G0 depends only on differences xx = x2− x1

and xt = t2 − t1:

G0(x2, t2;x1, t1)→ G0(x) (5.11)

We guess the solution (5.6) through the integral

G0(x) =

∫
d2k

(2π)2
G̃0(k)e−ikx (5.12)

We get

G̃0(k) =
i

kt − k2
x/(2m)

(5.13)
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This has been a formal calculation, for the integration under we need also a prescription
how to avoid the pole on the real axis. kt = k2

x/2m. This can be done by adding in the
denominator a term +iε, where ε > 0 is infinitesimally small and will be made vanish at
the end of the calculation. Then the new pole is

kt =
k2
x

2m
− iε (5.14)

i.e. in the fourth quadrant of the complex plane (Re(kt), Im(kt)). The integration under
(real) kt from −∞ to +∞ can be transformed into a closed integral around the upper half-
plane if t < 0 or into a closed integral around the lower half-plane if t > 0 (the integral on
the half-circle at infinity is zero if Re(−iktt) = Im(kt)t < 0). The only pole in the whole
kt plane is, as we said, in the fourth quadrant, so the integral vanishes automatically for
t < 0. In the opposite (t > 0) case w eget

G0(x) = θ(t)

∫ +∞

−∞

dkx
2π

exp

[
−i
(

k2
x

2(m+ iε)
t− kxx

)]
(5.15)

(that the new ε is not completely the same as the previous one is not really important,
what is important is only that they both have the same sign). The Heaviside takes care
of the vanishing of the integral for t < 0.

The last integral can be evaluated with the help of∫ +∞

−∞
dxe−λx

2

=

√
π

λ
(5.16)

which is true providing Re(λ) > 0, which is true in the above example thanks to the
positiveε.With all this we arrive at (5.10), which is what we wanted to show.

A typical process we will study will be scattering when particles come from very far.
At that time (ta → −∞) these particles are essentially free and so solve homogeneous
equation (5.5). Of course this cannot be completely true since the plane wave is present in
the whole of space, so also close to the interaction. In reality te particles are wave-packets
and at infinity they do not feel the interaction. The approximation that at infinity the
wavefunction is for free fields must thus be valid:

ψ(xa, ta) = ψ0(xa, ta) (5.17)

The solution (5.2) satisfies the integral equation

ψ(xb, tb) = ψ0(xb, tb)− i
∫
G0(xb, tb;x, t)O1

x,tψ(x, t)dxdt (5.18)

which we check by acting on it with the operator O0
xb,tb

.
—————————–
And here we go: we expand ψ on the right-hand-side according to the equation itself

and find the perturbative expansion (for O1 = V )
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ψ(xb, tb) = ψ0(xb, tb) +

∫
G0(xb, tb;x, t)(−i)V (x, t)ψ0(x, t)dxdt (5.19)

+

∫
G0(xb, tb;x, t)(−i)V (x, t)G0(x, t;x′, t′)(−i)V (x′, t′)ψ0(x′, t′)dxdtdx′dt′ + ...

ψ0(x, t) is the same function of space and time we had at the beginning (same mo-
mentum), i.e.

ψ0(x, t) =

∫
G0(x, t;xa, ta)ψ0(xa, ta)dxa (5.20)

which applies for t > ta, so that (5.5) is satisfied.
A similar expansion can be repeated for

G(xb, tb;xa, ta) = G0(xb, tb;xa, ta) (5.21)

+

∫
G0(xb, tb;x, t)(−i)V (x, t)G0(x, t;xa, ta)dxdt+ ...

5.2 Classical field theory, Feynman rules and diagrams

The above derivation of the solution to the Schrödinger equation is pictorially clear, since
we can follow the change of the propagator in the interacting theory G: this is made of
the free propagator G0, two free propagators G0 connected with one interacting vertex V ,
three free propagators connected with two interacting vertices, etc. For small interaction
term V we hope this expansion will converge.

There are two shortcomings of this approach: 1) everything is nonrelativistic; 2) the
interaction is external, i.e. the number of particles does not change. Point 1 will be
solved by considering the Klein-Gordon equation instead of the Schrödinger equation,
while point 2 will be taken care of by generalising the linear equation in the wavefunction
ψ by adding nonlinear terms. Let’s see this in more detail.

We will consider the Lagrangian

L =
1

2
(∂φ)2 − V (φ) (5.22)

The equation of motion is

∂2φ = −∂V
∂φ

+ J (5.23)

where we added on the right-handside the source of particles J . Similarly as in the
previous case we are unable to solve in full generality, so will will do ti perturbatively. To
dom that we will make an expansion in powers of a fictitious parameter λ. At the end of
the calculation we will put it to one, λ→ 1.
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φ→
∞∑
n=0

λnφn , J → λJ (5.24)

The equation of motion (5.23) becomes an infinite system of equations:

∂2φ0 + V ′(φ0) = 0 (5.25)(
∂2 + V ′′(φ0)

)
φ1 = J (5.26)(

∂2 + V ′′(φ0)
)
φ2 = −1

2
V ′′′(φ0)φ2

1 (5.27)(
∂2 + V ′′(φ0)

)
φ3 = −V ′′′(φ0)φ1φ2 −

1

3!
V ′′′′(φ0)φ3

1 (5.28)

. . . . . .

The first equation determines the background around which we expand our solution.
Usually this background solves the equation with a constant φ0, which we call the vacuum
expectation value of the field φ. Sometimes the solution is non-trivial, time and/or space
dependent. In this case we talk about solitonic solutions in Minkowski spacetime, and
vacuum transitions or instantons if the spacetime is Euclidean. The solution φ0 represents
the vacuum of the system, and we need to check that this extremum is a minimum and
not a maximum of the action. This requirement is satisfied if the operator ∂2 + V ′′(φ0)
has only nonnegative eigenvalues. We assume here that this is true.

The next equation (5.26) is solved with the ansatz

φ1(x) =

∫
dy i∆(x, y)iJ(y) (5.29)

where the propagator ∆(x, y) is the Green function of the equation(
∂2
x + V ′′(φ0(x))

)
i∆(x, y) = −iδ4(x− y) (5.30)

satisfying

∆(x, y) = ∆(y, x) (5.31)

All these i-factors are here for historic reasons.
The next equation is (5.27), with the solution

φ2(x) =
1

2

∫
dy1 i∆(x, y1)(−iV ′′′(y1)) (5.32)

×
∫
dy2i∆(y1, y2)iJ(y2)

∫
dy3i∆(y1, y3)iJ(y3)

where we used the notation
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V (n)(x) ≡ ∂nV (φ)

∂φn

∣∣∣∣
φ=φ0(x)

(5.33)

We continue the iteration

φ3(x) =

∫
dy1 i∆(x, y1)(−iV ′′′(y1))

∫
dy2 i∆(y1, y2)iJ(y2)

× 1

2

∫
dy3 i∆(y1, y3)(−iV ′′′(y3))

∫
dy4 i∆(y3, y4)iJ(y4)

×
∫
dy5 i∆(y3, y5)iJ(y5)

+
1

3!

∫
dy1 i∆(x, y1)(−iV ′′′′(y1))

∫
dy2 i∆(y1, y2)iJ(y2)

×
∫
dy3 i∆(y1, y3)iJ(y3)

∫
dy4 i∆(y1, y4)iJ(y4) (5.34)

All this can be put in a more symmetric and useful form if we introduce the generator
of connected diagrams W [J ], which is a functional of the source J via

δW [J ]

δJ(x)
= φ(x) (5.35)

where the functional derivative is generically defined as

δF [f(t)]

δf(τ)
= lim

ε→0

F [f(t) + εδ(t− τ)]− F [f(t)]

ε
(5.36)

If we now integrate and expand the solution as powers of sources, we get (we can
always choose W [0] = 0)

W [J ] =
1

i

∞∑
n=1

1

n!

∫
dx1 . . .

∫
dxnG(x1, . . . , xn)iJ(x1) . . . iJ(xn) (5.37)

where we defined with

G(x1, . . . , xn) ≡ δniW [J ]

δiJ(x1) . . . δiJ(xn)

∣∣∣∣
J=0

(5.38)

the n-point connected Green function. Let’s write down few lower ones:
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Figure 1: The Feynman rule for the 2-point Green function (propagator) in x-space.

Figure 2: The Feynman rule for the n-point Green function in x-space.

G(x1) = φ0(x1) (5.39)

G(x1, x2) = i∆(x1, x2) (5.40)

G(x1, x2, x3) =

∫
dy i∆(x1, y)i∆(x2, y)i∆(x3, y)(−iV ′′′(y)) (5.41)

G(x1, x2, x3, x4) =

∫
dy i∆(x1, y)i∆(x2, y)i∆(x3, y)i∆(x4, y)(−iV ′′′′(y))

+

∫
dy1

∫
dy2(−iV ′′′(y1))i∆(y1, y2)(−iV ′′′(y2))

× (i∆(x1, y1)i∆(x2, y1)i∆(x3, y2)i∆(x4, y2)

+i∆(x1, y1)i∆(x3, y1)i∆(x2, y2)i∆(x4, y2)

+i∆(x1, y1)i∆(x4, y1)i∆(x2, y2)i∆(x3, y2)) (5.42)

The result becomes more and more complicated, but there is a natural pictorial in-
terpretation of the solution through diagrams. The propagator i∆(x, y) is denoted by a
line between x and y, the nteraction (−iV (n)(x)) is a n-point vertex (with n legs). This
correspondence is called the Feynman rules. The diagrams drawn in this way are the
Feynman diagrams.

The n-point classical Green function can be got through these diagrams . We first
draw all possible tree (with this we mean all diagrams which do not enclose any point
in the figure) diagrams with n external legs, and then using the Feynman rules we write
down the corresponding function. In doing that we should not forget the integration over
all internal points (yi in equations (5.41)-(5.42)), which is implicit in the diagram.
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Figure 3: 3 and 4-point Green functions.

5.3 Backgrounds with Lorentz simmetry, Feynman rules and
diagrams in p-space

Although everything is written very compactly, it is very difficult if not impossible to
compute the Green’s functions analytically for a generic background φ0(x). Everything
simplifies drastically for backgrounds which maintain the Lorentz symmetry, i.e. with a
constant φ0. In the following we will consider such backgrounds.

In such a case the constraint for nonnegative eigenvalues of the Klein-Gordon operator
∂2 + V ′′(φ0) becomes a constraint on the positive mass square of the excitation

m2 = V ′′(φ0) ≥ 0 (5.43)

If we did not take care of this constarint, the next equation (5.26) would give an
exponentially increasing solution, signalling an instability (at the maximum of the action
the system is unstable).

We can take advantage of the Lorentz symmetry by transforming all quantities through
a Fourier transformation into p space.
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i
p2−m2

−iV (n)

Figure 4: Feynman rules in p-space

G(x1, . . . , xn) =

∫
d4p1

(2π)4
. . .

d4p1

(2π)4
eip1x1 . . . eipnxn

× (2π)4δ4(p1 + . . .+ pn)G(p1, . . . , pn) (5.44)

where the δ-function in the integrand follows from translation invariance

G(x1 + y, . . . , xn + y) = G(x1, . . . , xn) (5.45)

It is now easy to derive (for the propagator we prefer to use G(p) instead of G(p,−p))

G(p) =
i

p2 −m2
(5.46)

G(p1, p2, p3) = G(p1)G(p2)G(p3)(−iV ′′′) (5.47)

G(p1, p2, p3, p4) = G(p1)G(p2)G(p3)G(p4) [(−iV ′′′′) (5.48)

+ (−iV ′′′)2(G(p1 + p2) +G(p1 + p3) +G(p1 + p4))
]

. . . . . .

Remember that V (n) = ∂nV (φ0)/∂φn0 .
We got the result in p-space, which has no addditional integration. The solution of

classical equations of motion can be thus written in momentum p-space as the sum of
all Feynman diagrams, where to each line corresponds a propagator (5.46) and to each
n-point vertex a constant term (−iV (n)).

As we will see the Green function G(p1, . . . , pn) is directly connected to a physical
quantity. More precisely, it is proportional to the classical amplitude for a physical process,
where there are n number of (in this case same) external particles. All we have to do is to
skip in the expression for the Green function the contributions of the external propagators,
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and put all external propagators on-shell (this means they need to satisfy the relations
p2
i = m2

i ). If we multiply all this with i we get

A(p1, p2, p3) = V ′′′

A(p1, p2, p3, p4) = V ′′′′ − i(V ′′′)2 (G(p1 + p2) +G(p1 + p3) +G(p1 + p4))

. . . . . .

6 To quantum field theory (1h30min)

So far we derived a way how to get the solution of the equation of motion assuming rela-
tivistic invariance, allowing through interaction that the number fo particles get changed.
We already mentioned that this corresponds to the classical level. This follows somehow
from the definition: the solution of the equation of motion is a classical solution. For
example the solution to Maxwell equation is valid in classical electrodynamics. In this
section we will generalise the calculation of the Greens’ functions for quantum-mechanical
systems. We will first put the Schrödinger equation into such a special form, which will
be easily generalised in field theory. Then we will show that such a generalised definition
of the generator of connected diagrams behaves as we expect in the classical limit. Finally
we will define the canonical quantisation and compare it with the path integral method.

6.1 Path integral

The idea of the path integral, which has been first introduced by Feynman in the forties
of the last century, comes form a simple argument: the interference in the two slot ex-
periment, which is valid in classical optics for light, is valid in quantum mechanics also
for particles. This essentially means that the particle moves through all possible paths.
Imagine that at time ta the particle wavefunction is ψ(xa, ta). We want to compute the
wavefunction at final time ψ(xb, tb). What we need is the propagator G(xb, tb;xa, ta). All
possible paths must be taken, which from the initial position xa at time ta go to an arbi-
trary final position xb at time tb. For a given x(t) with correct initial and final constraint
x(ta,b) = xa,b we get a change of phase

∆φ =

∫ b

a

(pdx− Edt) =

∫ tb

ta

dt (pẋ−H(x, p)) =

∫ tb

ta

dtL(x, ẋ) (6.1)

where as usual p = ∂L(x, ẋ)/∂ẋ. If only one path x1(t) is possible

G(xb, tb;xa, ta) ∝ ei∆φ1 (6.2)

if two are possible, x1(t) and x2(t), we have

G(xb, tb;xa, ta) ∝ ei∆φ1 + ei∆φ2 (6.3)
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while in general we can have an arbitrary path, which means that we have to integrate
x(ti) for every ti ∈ [ta, tb] from −∞ to +∞. Of course there is an infinite number of such
ti, i.e. there is an infinite number of integrations over x(ti), so we could define such an
operation as the limit

G(xb, tb;xa, ta) = lim
n→∞

Cn

∫ +∞

−∞
dx1...

∫ +∞

−∞
dxn (6.4)

× exp

[
i

n∑
i=0

∆t L

(
xi+1 + xi

2
,
xi+1 − xi

∆t

)]
where we divided the whole interval in equal parts ∆t = (tb−ta)/n, and took into account
the constraints x0 = xa and xn+1 = xb. The constanto Cn will be determined soon.

This definition can be written as

G(xb, tb;xa, ta) =

∫
Dx(t) exp

[
i

∫ tb

ta

dtL(x, ẋ)

]
(6.5)

although we always have in mind (6.4).
Let’s now convince ourselves that the above is correct and calculate the unknown

constant. To this end we check that the Green function (6.4) satisfies the Schrödinger
equation, as we expect from (5.1):

Cn =
( m

2πi∆t

)n+1
2

(6.6)

6.2 Quantum field theory, finally

Similarly as for the solution of the Schrödinger equation, we can define via the path
integral also the generator of the connected Greens functions W [J ], which we call the
generating functional. The following correspondence between quantum mechanics and
field theory can be used:

t → xµ = (t, xi) (6.7)

x(t) → φ(xµ) = φ(x) (6.8)

The generating functional is

exp (iW [J ]) =

∫
Dφ(x) exp

[
i
∫
d4x (L(φ, ∂φ) + Jφ)

]∫
Dφ(x) exp

[
i
∫
d4xL(φ, ∂φ)

] (6.9)

Let’s check if we get at first order the already known relations. At the same time we
will show that corrections to them are quantum. For this purpose we will reintroduce
the Planck constant ~. The Lagrangeva density has the same mass dimension as the
Hamiltonian density, i.e. mass per volume:
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[L] = [H] = ML−3 (6.10)

Since

[~] = ML (6.11)

the definition (6.9) gets correctly written

exp

(
i

~
W [J ]

)
=

∫
Dφ(x) exp

[
i
~

∫
d4x (L(φ, ∂φ) + Jφ)

]∫
Dφ(x) exp

[
i
~

∫
d4xL(φ, ∂φ)

] (6.12)

Instead of the full case let’s have a look to the analogous simplified case

exp

(
i

~
w[j]

)
=

∫ +∞
−∞ dx exp

[
i
~ (s(x) + jx)

]∫ +∞
−∞ dx exp

[
i
~ (s(x))

] (6.13)

We expand the function s(x) in the numerator around xcl, which satisfies

s′(xcl) + j = 0 (6.14)

and around x0
cl in the denominator

s′(x0
cl) = 0 (6.15)

We introduce a new variable x = xcl + x̂ in the numerator and a similar one in the
denominator, getting

exp

(
i

~
w[j]

)
= exp

[
i

~
(
s(xcl) + jxcl − f(x0

cl)
)]

×

∫ +∞
−∞ dx̂ exp

[
i
~
∑∞

n=2
s(n)(xcl)

n!
x̂n
]

∫ +∞
−∞ dx̂ exp

[
i
~
∑∞

n=2

s(n)(x0cl)

n!
x̂n
] (6.16)

We redefine x̂→ ~1/2x̂, assume that s(2)(xcl) has a small positive imaginary component
(in field theory this is the prescription m2 → m2 − iε) and finally obtain

exp

(
i

~
w[j]

)
= exp

[
i

~
(
s(xcl) + jxcl − s(x0

cl)
)]

×
[
s(2)(xcl)

s(2)(x0
cl)

]−1/2 (
1 +O(~1/2)

)
(6.17)

The first approximation (classical) is

w[j] = s(xcl) + jxcl − s(x0
cl) +O(~) (6.18)
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The third term on the right-handside, −s(x0
cl), has no special meaning, it just enforces

w[0] = 0.
Let’s now repeat the same for the case of field theory (6.12). It is not difficult to guess

that the analogue of (6.18) is

W [J ] = S[φcl] +

∫
d4xJφcl +O(~) (6.19)

If we take a functional derivative over J(x) we get φcl as the solution of

δS[φcl]

δφcl(x)
+ J(x) = 0 (6.20)

Since the action is

S[φ] ≡
∫
d4xL(φ, ∂φ) =

∫
d4x

(
1

2
(∂φ)2 − V (φ)

)
(6.21)

we can change (6.20) using (5.36) and integration by parts into

− ∂2φcl(x)− V ′(φcl(x)) + J(x) = 0 (6.22)

Of course this is nothing else than our old friend, the equation (5.23).
We thus have the definition (6.13) for the generating functional W [J ], which is valid

quantum mechanically. At first order (6.19) gives the already known solution to the
classical equation of motion (6.22).

we obtain the n-point connected Green function in general as

G(x1, ..., xn) =
δniW [J ]

δiJ(x1)...δiJ(xn)

∣∣∣∣
J=0

(6.23)

Let’s stress some points on the above equations.

• In field theory to each type of particle there corresponds a field. So for example a
field is for the electron, one for the up quark, etc. The above definition we used
is for a generic field φ. If we have many different fields, then we have to integrate
over all of them. For example if we study the a system with particle φ (whatever
this may be) and the photon Aµ, then we have to integrate over Dφ and over DAµ.
Strictly speaking, the above definition can be used only for particles with spin zero.
For fermions and gauge bosons we will need some more explanations.

• A system with many particles of the same type (for example 3 electrons) does not
introduce any new integration, just more derivatives. So for example (6.23) is related
to the probability (this is not the S-matrix yet) for a transition from n1 φ-particles
into n2 φ-particles, where n1 + n2 = n. The n functional derivatives of generating
functional mean this the total number of initial and final particles in the process.
Each particle has appeared or disappeared at its own time ti at position −→x i.
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• Now we can see the meaning of teh denominator (6.9): the transition from vacuum
to vacuum without intermediate sources is normalised to 1, i.e. nothing happens.

• The formulation via the path integral is explicitly relativistic invariant (providing
of course the Lagrangian is a Lorentz scalar).

The method of path integral via direct integration as we have shown in the previous
section is very useful in the computation of various quantities, as for example the quantum-
mechanical corrections to the equations of motion )the so-called Coleman-Weinberg po-
tential). For the amplitude we will however use another method. This will be done in the
next section.

7 Canonical quantisation

In previous sections we introduced everything we need to calculate the physical quantities
in a quantum field theory. We quantised the classical fields via the path integral without
even noticing it. Historically another method is more known, the canonical quantisation.
Since some interesting details and computational bonuses are connected with it, we will
spend this section to get an idea of this method. At the same time we will come back to
our old problems: the existence of solutions with negative energy and the interpretation
of the zeroth component of the conserved current. In spite of having already constructed
the rules of a quantum field theory, solutions to these issues are not seen clearly yet.

7.1 The Hamiltonian

Let’s first define the Hamiltonian density (or shortly the Hamiltonian) via the known
method. We have a Lagrangian as a function of fields and its first derivatives:

L = L(φ(x), ∂µφ(x)) (7.1)

The field momentum is (analogouly as the coordinate momentum in quantum mechan-
ics)

π(x) ≡ ∂L(φ(x), ∂µφ(x))

∂(∂0φ(x))
(7.2)

The Hamiltonian is then

H(φ(x), π(x)) = π(x)∂0φ(x)− L(φ(x), ∂µφ(x)) (7.3)

where ∂0φ(x) on the right-handside has to be replaced by φ(x) and π(x). Let’s see some
typical examples.
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7.1.1 The free real scalar field

We know already its Lagrangian:

L =
1

2
(∂φ)2 − m2

2
φ2 (7.4)

By using the above rules we get

π = ∂0φ (7.5)

and then

H =
1

2
π2 +

1

2
(∇φ)2 +

m2

2
φ2 (7.6)

The energy (the Hamiltonian) i explicitly positive definite, so there is no danger for
states with negative energy. The problem has been thu solved by replacing a particle with
its (classical) field.

7.1.2 Free complex scalar field

From the Lagrangiana

L = ∂φ∗∂φ−m2φ∗φ (7.7)

we get, similarly as as before,

π =
L

∂(∂0φ)
= ∂0φ

∗ , π∗ =
L

∂(∂0φ∗)
= ∂0φ (7.8)

and again the Hamiltonian is positive definite

H = |π|2 + |∇φ|2 +m2|φ|2 (7.9)

so again no problems with negative energy states.

7.1.3 Free Dirac field

From the Lagrangian

L = ψ̄ (i/∂ −m)ψ (7.10)

we first get the field canonical momentum

Π =
∂L

∂(∂0ψ)
= ψ̄iγ0 (7.11)

and then the Hamiltonian

H = Π∂0ψ − L = ψ†i∂0ψ (7.12)
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where in the last line we used the Dirac equation. The result is not surprising (in quantum
mechanics the time derivative corresponds to the Hamiltonian), but, differently form the
previous cases, the operator is not explicitly positive definite. To solve this problem we
have to change the classical fields with operators - we have to quantise. To tell this
operation from the quantisation of coordinate and momenta in quantum mechanics (first
quantisation) we call this new quantisation of fields the second quantisation.

7.2 Quantisation of fields

We now very briefly repeat the case of the harmonic oscillator with the Hamiltonian

H =
1

2
p2 +

ω2

2
x2 (7.13)

We quantise the coordinate i.e. the momentum via the commutation relation (as usual
[A,B] ≡ AB −BA)

[x, p] = i (7.14)

Let’s define the creation (a†) and annihilation (a) operator via

x =
1√
2ω

(a+ a†) , p = −i
√
ω

2
(a− a†) , [a, a†] = 1 (7.15)

(7.13) turns into

H =
ω

2

(
a†a+ aa†

)
(7.16)

The vacuum |0〉 is defined as the state, annihilated by the annihilation operator:

a|0〉 = 0 (7.17)

The n-particle state is defined via the creation operator

|n〉 =
1√
n!

(
a†
)n |0〉 (7.18)

We will now try to repeat the procedure for the case of a field theory.

7.2.1 The real scalar field

Similarly as we quantised the coordinate and momentum in quantum mechanics via the
commutation relation (7.14), we quantise in the case of field theory the field and the field
momentum

[φ(t, ~x), π(t, ~y)] = iδ3(~x− ~y) (7.19)
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We had to generalise the quantum mechanical commutation relation, since we have
now one operator for each point in space. The relation is valid for fields defined at the
same time t. For different times the commutator vanishes.

(7.14) becomes

φ(x) =

∫
d3k

(2π)32ωk

(
ake
−ikx + a†ke

ikx
)

(7.20)

π(x) =

∫
d3k

(2π)32ωk
(−iωk)

(
ake
−ikx − a†ke

ikx
)

(7.21)[
ak, a

†
k′

]
= (2π)32ωkδ

3(~k − ~k′) , [ak, ak′ ] =
[
a†k, a

†
k′

]
= 0 (7.22)

where

kµ = (ωk, ~k) (7.23)

and the energy of the single particle state is (we will se this later)

ωk =

√
~k2 +m2 (7.24)

The Hamiltonian, i.e. the volume integral of the Hamiltonian density (7.6) is now

H =

∫
d3xH

=

∫
d3x

1

2

∫
d3k

(2π)32ωk

∫
d3k′

(2π)32ωk′[
(−iωk)(−iωk′)

(
ake
−ikx − a†ke

ikx
)(

ak′e
−ik′x − a†k′e

ik′x
)

+(i~k)(i~k′)
(
ake
−ikx − a†ke

ikx
)(

ak′e
−ik′x − a†k′e

ik′x
)

+ m2
(
ake
−ikx + a†ke

ikx
)(

ak′e
−ik′x + a†k′e

ik′x
)]

=
1

2

∫
d3k

(2π)22ωk

1

2ωk[
−ω2

k

(
aka−ke

−2ωkt − aka†k − a
†
kak + a†ka

†
−ke

i2ωkt
)

−~k2
(
−aka−ke−2ωkt − aka†k − a

†
kak − a

†
ka
†
−ke

i2ωkt
)

+ m2
(
aka−ke

−2ωkt + aka
†
k + a†kak + a†ka

†
−ke

i2ωkt
)]

=

∫
d3k

(2π)32ωk

ωk
2

(
a†kak + aka

†
k

)
(7.25)

where we used essentially (7.24) and
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∫
d3xei(

~k−~k′)~x = (2π)3δ3(k − k′) (7.26)

The vacuum state |0〉 is defined as that one, which gets annihilated by all annihilation
operators:

ak|0〉 = 0 (7.27)

The one particle state with momentum k is defined as

|k〉 = a†k|0〉 (7.28)

and the Hermitian conjugated state

〈k| = 〈0|ak (7.29)

The one particle state are orthonormal:

〈k|k′〉 = 〈0|aka†k′ |0〉 = 〈0|
[
ak, a

†
k′

]
|0〉 = (2π)32ωkδ

3(k − k′) (7.30)

where we used (7.27), (7.22) and the vacuum normalisation 〈0|0〉 = 1.
Analogously we define a multiparticle state (free particles!) as

|n1, k1; . . . ;nN , kN〉 =
1√
n1!

(
a†k1

)n1

. . .
1√
nN !

(
a†kN

)nN
|0〉 (7.31)

According to thi notation the previous one particle state |k〉 should have been written
as |1, k〉.

The energy of the vacuum is, because of the second term in (7.35), strictly speaking
infinite. In fact, if we use the definition (7.22), we get

H =

∫
d3k

(2π)32ωk
ωk

(
a†kak + (2π)3ωkδ

3(0)
)

(7.32)

However, in the absence of gravity, we can put the zero of the energy anywhere, since
only energy difference are measurable. Let’s then take as the natural value for the energy
zero. This can be formally obtained by the operation of normal ordering N̂3, which
organises an arbitrary product of creation and annihilation operators, so that all creation
operators stay on the left of all annihilation operators. In this way for example

N̂
(
ak1a

†
k2

)
= a†k2ak1 (7.33)

The Hamiltonian gets defined then as

H =

∫
d3xN̂ (H) (7.34)

3in literature the normal ordered operatorÔ, i.e. N̂(Ô), is seldom written as : Ô :.
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and is in our case

H =

∫
d3k

(2π)32ωk
ωka

†
kak (7.35)

The energy of the multiparticle state (7.31) equals

E = n1ω1 + . . .+ nNωN (7.36)

Similarly as (7.35) we can define also the momentum operator:

~P =

∫
d3k

(2π)32ωk
~ka†kak (7.37)

so that for the multiparticle state (7.31) it equals

~P = n1
~k1 + . . .+ nN~kN (7.38)

7.2.2 The complex scalar field

The generalisation is easy, we have to take two types of operators, ak, a
†
k and bk, b

†
k:

φ(x) =

∫
d3k

(2π)32ωk

(
ake
−ikx + b†ke

ikx
)

(7.39)

The operator a†k (ak) creates (annihilates) a particle, the operator b†k (bk) creates
(annihilates) and antiparticle. In the previous (real) case we had bk = ak, the particle
was it own antiparticle.

Their commutation relations are now

[
ak, a

†
k′

]
=

[
bk, b

†
k′

]
= (2π)32ωkδ

3(~k − ~k′) (7.40)

[ak, ak′ ] =
[
a†k, a

†
k′

]
= [bk, bk′ ] =

[
b†k, b

†
k′

]
= 0 (7.41)

[ak, bk′ ] =
[
a†k, b

†
k′

]
=
[
ak, b

†
k′

]
=
[
bk, a

†
k′

]
= 0 (7.42)

Completely analogously with the previous case we can now derive

H =

∫
d3k

(2π)32ωk
ωk

(
a†kak + b†kbk

)
(7.43)

which is the sum of particles’ energy and antiparticles’ energy.
The vacuum state |0〉 isdefined a that state, which is annihilated by all annihilation

operators, those for particles (ak) and those for antiparticles (bk):

ak|0〉 = bk|0〉 = 0 (7.44)

It is interesting to see, what happens with the interpretation for the conserved current
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jµ = i (φ∂µφ∗ − φ∗∂φ) (7.45)

Written with operators the charge is

Q =

∫
d3xj0 =

∫
d3k

(2π)32ωk

(
a†kak − b

†
kbk

)
(7.46)

Here we explicitly see that antiparticle contribute to the total charge oppositely as
particles, from here their opposite sign. They contribute the same to the Hamiltonian,
though. The current jµ is thus the charge current of the complex scalar field.

7.2.3 The Dirac field

Let’s consider now also fermions, i.e. particles with half spin, in our case only spin 1/2.
The situation is somehow analogous to the complex scalar field, but now the free fields
should satisfy the Dirac equation instead of the Klein-Gordon equation. It is thus natural
the following expansion:

ψ(x) =

∫
d3k

(2π)32ωk

2∑
s=1

(
asku

s(k)e−ikx + bs†k v
s(k)eikx

)
(7.47)

If we now assumed, as in the case of a complex scalar field, the commutation relations
among the operators ak, bk, etc, we would end up with problems: the Hamiltonian would
be unbounded from below. For this reason we have to assume the anticommutation
relation among them (in general this means {A,B} ≡ AB +BA):

{
ask, a

s′†
k′

}
=

{
bsk, b

s′†
k′

}
= (2π)32ωkδ

ss′δ3(~k − ~k′) (7.48){
ask, a

s′

k′

}
=

{
as†k , a

s′†
k′

}
=
{
bsk, b

s′

k′

}
=
{
bs†k , b

s′†
k′

}
= 0 (7.49){

ask, b
s′

k′

}
=

{
as†k , b

s′†
k′

}
=
{
ask, b

s′†
k′

}
=
{
bsk, a

s′†
k′

}
= 0 (7.50)

Stated differently, if we change the order of two arbitrary operators, we always get a
minus sign, while in the case (7.48) we get also an addition.

The energy of an arbitrary system is now bounded from below. Th e Hamiltonian is
in fact

H =

∫
d3k

(2π)32ωk
ωk
∑
s

(
as†k a

s
k + bs†k b

s
k

)
(7.51)

and is explicitly positive definite.
The vacuum is defined via

ask|0〉 = bsk|0〉 = 0 (7.52)
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7.2.4 The Maxwell’s field

Very shortly we give jut the result for the massless case. The expansion used is

Aµ(x) =

∫
d3k

(2π)32ωk

∑
λ

(
aλ(k)εµλ(k)e−ikx + a†λ(k)εµ∗λ (k)eikx

)
(7.53)

where we sum up over all polarisations λ and where the polarisation vector satisfies the
constraint

kµε
µ
λ(k) = 0 ,

∑
λ

εµλ(k)εν∗λ (k) = −gµν (7.54)

7.3 Exercise 4

• Derive (7.19) and (7.36).

• Calculate the vacuum expectation value of the time ordered product of two free
scalar fields

〈0
∣∣∣T̂ φ(x)φ(y)

∣∣∣ 0〉 ≡ 〈0 |φ(x)φ(y)| 0〉Θ(x0 − y0)

+ 〈0 |φ(y)φ(x)| 0〉Θ(y0 − x0) (7.55)

and show that it satisfies the equation (c =?)

(
∂2
x +m2

)
〈0
∣∣∣T̂ φ(x)φ(y)

∣∣∣ 0〉 = cδ4(x− y) (7.56)

7.4 Exercise 5

• Instead of the anticommutation relations use for the Dirac field the (wrong!) com-
mutation relations and show that the Hamiltonian is unbounded from below.

• In the case of a real scalar field show that causality is satisfied: check that [φ(x), φ(y)] =
0 if (x− y)2 < 0.

7.5 Fields in different pictures, the operator of time evolution

So far we considered operators for free fields. The expansion of the field under the creation
and annihilation operators went through (7.20). This field is in the interaction picture,
i.e. it gets evolved in time via the Hamiltonian for a free field. We can see this better
if we define a time independent field, i.e. the field in the Schrödinger picture via (t0 is
arbitrary)

φS(x) ≡ φ(t0, ~x) = e−iH0(t−t0)φ(x)eiH0(t−t0) (7.57)
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where we have for example for a free real field

H0 =

∫
d3x

1

2

(
Π2(x) + (∇φ)2(x) +m2φ2(x)

)
(7.58)

That the right-hand side 7.57) is really time independent can be seen from the simple
fact that, using (7.35),

e−iH0(t−t0)ake
iH0(t−t0) = eiωk(t−t0)ak , e−iH0(t−t0)a†ke

iH0(t−t0) = e−iωk(t−t0)a†k (7.59)

From here it follows that

H0(φ) = H0(φS) (7.60)

and so

φ(x) = eiH0(φS)(t−t0)φS(x)e−iH0(φS)(t−t0) (7.61)

Similarly we define the field in the Heisenberg picture as the one which transforms in
time through the full (not free) but time independent Hamiltonian. In this way /

φH(x) = eiH(φS)(t−t0)φS(x)e−iH(φS)(t−t0) (7.62)

If we collect everything

φH(x) = U †(t, t0)φ(x)U(t, t0) (7.63)

where we defined the time evolution operator in the interaction picture as

U(t, t0) = eiH0(φS)(t−t0)e−iH(φS)(t−t0) (7.64)

We want to write this operator with φ(x). For this purpose we take the time derivative:

i
∂

∂t
U(t, t0) = eiH0(φS)(t−t0) (−H0(φS) +H(φS)) e−iH(φS)(t−t0)

= Hint(φ)U(t, t0) (7.65)

where we too into account that the interaction part of the Hamiltonian

Hint ≡ H −H0 (7.66)

is typically a polynomial of the field.
If Hint were a function, the solution (7.65) would be simply U = exp(−i

∫
dtHint).

But now we have to do with operators, not with functions, so the equation (7.65) with
the initial condition U(t0, t0) = 1 is solved at most perturbatively, for small Hint:
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U(t, t0) = 1 + (−i)
∫ t

t0

dt1Hint(t1) + (−i)2

∫ t

t0

dt1Hint(t1)

∫ t1

t0

dt2Hint(t2) + . . . (7.67)

We notice that products of the Hamiltonians are alway time ordered: first (on the
left) are the Hamiltonians at late times, then those at initial times, i.e. Hint(t1)Hint(t2)
if t1 ≥ t2. A we already mentioned, we have in general to do with noncommutative
operators, so we need to take care of this orderings. To get a more symmetric notation,
we introduce the operator of time ordered product T̂ :

T̂
(
Ô1(t1)Ô2(t2)

)
≡ Ô1(t1)Ô2(t2)θ(t1 − t2) + Ô2(t2)Ô1(t1)θ(t2 − t1) (7.68)

Te quadratic part can be rewritten for t > t0 as

∫ t

t0

dt1

∫ t1

t0

dt2Hint(t1)Hint(t2) =
1

2!

(∫ t

t0

dt1

∫ t1

t0

dt2Hint(t1)Hint(t2) + (t1 ↔ t2)

)
=

1

2!
T̂

∫ t

t0

dt1

∫ t

t0

dt2Hint(t1)Hint(t2) (7.69)

Similarly we can treat an arbitrary power, which brings us to the final result

U(t, t0) ≡ T̂ exp

(
−i
∫ t

t0

dtHint(φ(x))

)
, t > t0 (7.70)

What if t < t0? Then, if we repeat the above exercise,

U(t, t0) = [U(t0, t)]
† (7.71)

The operator (7.64) can be slightly generalised, defining

U(t1, t2) = eiH0(φS)(t1−t0)e−iH(φS)(t1−t2)e−iH0(φS)(t2−t0) (7.72)

which is explicitly unitary and the same as the previous definition (7.64) when t2 equals
the reference time t0. Now it is easy to confirm that such a unitary operator U satisfies
(t1 > t2 > t3)

U(t1, t2)U(t2, t3) = U(t1, t3) (7.73)

U(t1, t2)U(t2, t1) = = 1 (7.74)

For this reason we have for example

U(t1, t3)U(t3, t2) = U(t1, t3) [U(t2, t3)]† = U(t1, t2)U(t2, t3) [U(t2, t3)]−1 = U(t1, t2) (7.75)
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7.6 Correlation (Green) functions

Correlation function are defined

〈0H |T̂ φH(x1) . . . φH(xn)|0H〉 (7.76)

We would like to write it with the fields φ(x), which we know how to expand in
creation and annihilation operators. Fo the field φH we use (7.63), what we still miss is
relate the vacuum state |0H〉 with the vacuum state |0〉 defined via (7.27). As is |0〉 the
vacuum state of the operator H0, so i |0H〉 the vacuum state of the operator H. This is,
the smallest eigenvalue of the energy operator H. Generically

H|nH〉 = En|nH〉 (7.77)

Let’s calculate now

e−iHT |0〉 = e−iE0T |0H〉〈0H |0〉+
∑
n>0

e−iEnT |nH〉〈nH |0〉 (7.78)

We can think that all energies have a small negative imaginary part. Then all higher
states exponentially decay faster than the ground state for a big enough time T (so that
we can safely take T → T + t0):

|0H〉 = lim
T→∞

e−iH(T+t0)|0〉
e−iE0(T+t0)〈0H |0〉

= lim
T→∞

e−iH(T+t0)eiH0(T+t0)|0〉
e−iE0(T+t0)〈0H |0〉

= lim
T→∞

(
eiH0((−T )−t0)e−iH((−T )−t0)

)† |0〉
e−iE0(T+t0)〈0H |0〉

= lim
T→∞

[U(−T, t0)]† |0〉
e−iE0(T+t0)〈0H |0〉

= lim
T→∞

U(t0,−T )|0〉
e−iE0(T+t0)〈0H |0〉

(7.79)

where we took into account that
H0|0〉 = 0 (7.80)

Similarly, from

〈0|e−iHT = e−iE0T 〈0|0H〉〈0H |+ . . . (7.81)

we can derive (homework!)

〈0H | = lim
T→∞

〈0|U(T, t0)

e−iE0(T−t0)〈0|0H〉
(7.82)

From the normalisation constraint we get

1 = 〈0H |0H〉 = lim
T→∞

〈0|U(T,−T )|0〉
e−2iE0T |〈0|0H〉|2

(7.83)
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i.e.

lim
T→∞

e−2iE0T |〈0|0H〉|2 = lim
T→∞
〈0|U(T,−T )|0〉 (7.84)

The correlation function is thus

〈0H |T̂ φH(x1) . . . φH(xn)|0H〉 = lim
T→∞

1

e−iE0(T−t0)〈0|0H〉
〈0|U(T, t0)

×T̂
[
U †(x0

1, t0)φ(x1)U(x0
1, t0) . . . U †(x0

n, t0)φ(xn)U(x0
n, t0)

]
× 1

e−iE0(T+t0)〈0H |0〉
U(t0,−T )|0〉

= lim
T→∞

〈0|T̂ φ(x1) . . . φ(xn)U(T,−T )|0〉
〈0|U(T,−T )|0〉

(7.85)

and due to Hint = −Lint we can rewritten with the free field (in the interaction picture):

〈0H |T̂ φH(x1) . . . φH(xn)|0H〉 =
〈0|T̂ φ(x1) . . . φ(xn) exp

(
i
∫
d4xLint(φ(x))

)
|0〉

〈0|T̂ exp
(
i
∫
d4xLint(φ(x))

)
|0〉

(7.86)

We will constantly use this equality and calculate the correlation functions from the
right-hand side. As we will see, these correlation functions are directly related to physical
quantities as for example the cross section or decay width.

7.7 The Wick theorem

Now we essentially have all we need to compute the correlation functions. In the right-
hand side of eq. (7.86) we expand the exponent. The interaction term of the Lagrangian
density is typically a polynomial in fields. In the so-called ”φ4” theory we have for example

L =
1

2
(∂φ)2 − 1

2
m2φ2 − λ

4!
φ4 (7.87)

and so

Lint(φ(x)) = − λ
4!
φ4(x) (7.88)

What we need are thus the correlation functions for free fields, i.e.

〈0|T̂ φ(y1) . . . φ(ym)|0〉 (7.89)

In principle we know how to get them: Taking into account the time ordered product
we expand the free fields in the interaction picture in terms of creation and annihilation
operators. For a real scalar field it is the expansion (7.20). This way, although clear, is
a bit long, especially if we have to do with a product of many fields. It turns out that
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things get much simplified if we take the vacuum expectation value of such a product.
This simplification and such a rule goes under the name of Wick’s theorem, which we will
present now.

We split the field φ(x) into a part with positive energy φ+(x) and a part with negative
energy φ(−)x:

φ(x) = φ+(x) + φ−(x) (7.90)

φ+(x) =

∫
d3k

(2π)32ωk
ake
−ikx ; φ−(x) =

∫
d3k

(2π)32ωk
a†ke

ikx (7.91)

Notice that φ(+) has annihilation operators ak and a minus in the exponent exp (−ikx),
while φ(−) has creation operators a†k and a plus in the exponent exp (ikx), and not the
other way! Then

N̂ [φ(x1)φ(x2)] = φ+(x1)φ+(x2) + φ−(x2)φ+(x1) + φ−(x1)φ+(x2) + φ−(x1)φ−(x2) (7.92)

For two fields we have

T̂ φ(x1)φ(x2) =
[
φ+(x1)φ+(x2) + φ+(x1)φ−(x2) + φ−(x1)φ+(x2) + φ−(x1)φ−(x2)

]
Θ(x0

1 − x0
2)

+ [x1 ↔ x2] Θ(x0
2 − x0

1)

=
(
N̂ [φ(x1)φ(x2)] +

[
φ+(x1), φ−(x2)

])
Θ(x0

1 − x0
2)

+ (x1 ↔ x2) Θ(x0
2 − x0

1) (7.93)

This notation is particularly useful since the vacuum expectation value of a normal
ordered product is always zero

〈0|N̂ [Ô]|0〉 = 0 (7.94)

while the rest is easily computed:

[
φ+(x1), φ−(x2)

]
=

∫
d3k1

(2π)32ωk1

∫
d3k2

(2π)32ωk2

[
ak1 , a

†
k2

]
e−ik1x1+ik2x2

=

∫
d3k

(2π)32ωk
e−ik(x1−x2) (7.95)

This is a c-number, not an operator anymore, so

〈0|T̂ φ(x1)φ(x2)|0〉 =
[
φ+(x1), φ−(x2)

]
Θ(x0

1 − x0
2) +

[
φ+(x2), φ−(x1)

]
Θ(x0

2 − x0
1) (7.96)

The integral representation for the Heaviside step function is
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Θ(y) =

∫ +∞

−∞

dω

2πi

eiωy

ω − iε
(7.97)

since for y > 0 one can close the integral with the upper half circle at infinity with zero
contribution (exp (−Im(ω)y)→ 0) so that the closed upper half-plane contributes exactly
1, while for y < 0 one needs to add the contribution of the lower half circle at infinity
(now exp (+Im(ω)y)→ 0) but there is no pole in the lower half-plane giving zero.

Then

〈0|T̂ φ(x1)φ(x2)|0〉 =

∫
d3k

(2π)3

∫
dω

2π

−i
2ωk (ω − iε)

ei(ω−ωk)(x01−x02)+i~k(~x1−~x2) + (x1 ↔ x2)

(7.98)
defining a integration variables as

k0 = −ω + ωk (7.99)

we get

〈0|T̂ φ(x1)φ(x2)|0〉 =

∫
d4k

(2π)4

−i
2ωk (ωk − k0 − iε)

(
e−ik(x1−x2) + eik(x1−x2)

)
(7.100)

Then we change k → −k in the second integral and get

〈0|T̂ φ(x1)φ(x2)|0〉 =

∫
d4k

(2π)4

−ie−ik(x1−x2)

2ωk

(
1

ωk − k0 − iε
+

1

ωk + k0 − iε

)
(7.101)

and using

ω2
k = ~k2 +m2 (7.102)

we finally arrive at the known result

〈0|T̂ φ(x1)φ(x2)|0〉 =

∫
d4k

(2π)4

i

k2 −m2 + iε
e−ik(x1−x2) (7.103)

The correlation function of an odd number of free fields is always zero. Repeating the
procedure for four fields we get (exercise)

〈0|T̂ φ(x1)φ(x2)φ(x3)φ(x4)|0〉 = + 〈0|T̂ φ(x1)φ(x2)|0〉〈0|T̂ φ(x3)φ(x4)|0〉
+ 〈0|T̂ φ(x1)φ(x3)|0〉〈0|T̂ φ(x2)φ(x4)|0〉
+ 〈0|T̂ φ(x1)φ(x4)|0〉〈0|T̂ φ(x2)φ(x3)|0〉 (7.104)
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The correlation function for free fields is thus just the sum of propagators with all
possible permutations. This can be easily generalised for an arbitrary number of free
fields. This is the Wick theorem.

We can now derive the Feynman rules. Take the φ4 theory:

L = L0 + Lint (7.105)

L0 =
1

2
∂φ2 − m2

2
φ2 , Lint = − λ

4!
φ4 (7.106)

The Feynman rule for the propagator in x-space is given by (7.103) and so in p-space

i

k2 −m2 + iε
(7.107)

while we derive for the vertex

〈0|T̂ φ(x1)φ(x2)φ(x3)φ(x4) exp

(
i

∫
d4zLint(φ(z))

)
|0〉

→ −i λ
4!

∫
d4z〈0|T̂ φ(x1)φ(x2)φ(x3)φ(x4)φ4(z)|0〉

= −iλ
∫
d4z〈0|T̂ φ(x1)φ(z)|0〉〈0|T̂ φ(x2)φ(z)|0〉〈0|T̂ φ(x3)φ(z)|0〉〈0|T̂ φ(x4)φ(z)|0〉

=
4∏
i=1

∫
d4ki
(2π)4

ie−ikixi

k2
i −m2 + iε

(2π)4δ4(k1 + . . .+ k4) (−iλ) (7.108)

As we see, the Feynman rule for the vertex in p-space for the φ4 theory

− iλ (7.109)

7.8 Exercise 6

(A)

• In the φ4 theory compute the 6-point Green’s function for connected diagrams up
to order O(λ2). How does it look in p-space?

• Draw all connected Feynman diagrams for the 8-point G.f. up to order O(λ3). Use
the Feynman rules and write down the same G.f. in p space.

• Compute the 2-point G.f. in p space up to O(λ). What goes wrong?

(B)
Consider a model with two real scalar fields φ and χ with the Lagrangian

L =
1

2
(∂φ)2 +

1

2
(∂χ)2 − 1

2
m2
φφ

2 − 1

2
m2
χχ

2 − λ

4
φ2χ2 (7.110)
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1. Derive the Feynman rules in p space.

2. Draw all connected Feynman diagrams for all possible 2-point Green functions to λ
and 4 and 6 point G.f. to order λ2.

3. Use the Feynman rules in p space for all the above cases.

8 * The generating functional (2h15min)

In this section we will rederive the Feynman diagrams and rules, but now, instead through
the canonical quantisation), directly from the path integral. For this case we will generalise
what we have already derived in the classical approximation. We will first consider a
system of free field, and then introduce the interaction. We will see which Feynman
diagrams we have to add to get quantum corrections, and how we should generalise the
Feynman rules.

8.1 The example of a free field

Clearly this example is not interesting for its dynamics, since there is none. We will get
acquainted with the methods and put the basis in the simplest case, the one we know
how to solve exactly. We will then evolve perturbatively around this solution.

Let’ s consider a free bosonic real field with zero spin. We have already encountered
such a Lagrangian, the KG one:

L0 =
1

2
(∂φ)2 − m2

2
φ2 (8.1)

Whatever else with a higher power of φ becomes interaction, the part which we know
how to treat in 4 dimensions only perturbatively. This essentially follows from the fact
that we are able to analytically perform only the Gauss integral, whatever is of higher
power in the exponent is out of our reach. We have to put in a Gauss form the action
with the Lagrangian plus the source term∫

d4x

[
1

2
(∂φ)2 − m2

2
φ2 + Jφ

]
=

∫
d4x

[
−1

2
φ
(
∂2 +m2

)
φ+ Jφ

]
(8.2)

Going to the right-hand-side we integrated by parts, taking into account that fields
are negligible at infinity.

We integrate the exponent of this action over Dφ, so we better get rid of the linear
term in (8.2). We thus make a translation φ(x) → φ(x) + φ0(x) (the integral measure
does not change under it, Dφ(x)→ Dφ(x)) and get∫

d4x

[
−1

2
(φ+ φ0)

(
∂2 +m2

)
(φ+ φ0) + J (φ+ φ0)

]
(8.3)

φ0(x) can be arbitrary, so we choose it to be the solution of
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Figure 5: The first approximation to the 2-point Green function.

(
∂2 +m2

)
φ0(x) = J(x) (8.4)

What is left is thus ∫
d4x

[
−1

2
φ
(
∂2 +m2

)
φ+

1

2
Jφ0

]
(8.5)

φ0(x) is essentially via (8.4) a functional of the source J(x). In the previous sections
we have already defined the Feynman propagator ∆(x) as a solution of(

∂2
x +m2

)
i∆(x− y) = −iδ4(x− y) (8.6)

so that

φ0(x) =

∫
d4y i∆(x− y) iJ(y) (8.7)

We can evaluate the Feynman propagator, the most used form is through its Fourier
transform:

i∆(z) =

∫
d4k

(2π)4

ie−ikz

k2 −m2 + iε
(8.8)

To evaluate the full generating functional we need to integrate over Dφ(x): whatever
this integration gives, it is irrelevant because it gets canceled by the same factor in the
denominator. What remains is (with the index 0 we denote the generating functional for
the free field)

iW0[J ] =
1

2

∫
d4x

∫
d4y iJ(x) i∆(x− y) iJ(y) (8.9)

From here we can, using the definition (6.23), immediately check, that the only nonzero
connected Green function for the free real scalar field is

G0(x1, x2) = i∆(x1 − x2) (8.10)

while all the others are zero. The free field can propagate undisturbed.
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8.2 Interaction

So far we compute everything exactly for the case of a free field. Of course the interesting
part stays in the interaction, which we will include now. We can do it for example by
adding to the free Lagrangian the term (8.1)

L = L0 −
λ

4!
φ4 (8.11)

Before continuing a word on the mass dimensions of the various quantities. The
coordinates have mass dimensions [x] = −1; since the action is dimensionless, we find
that [L] = 4 and [φ] = 1, so that also the coupling constant λ is dimensionless (this is
why we choose exactly such an interaction).

Already this apparently minimal addition makes the problem much harder, so that
we are able to calculate the Green’s functions only perturbatively. Let’s assume that this
extra interacting piece is small enough (i.e. λ � 1), so that W [J ] can be expanded in
powers of λ.

Let’s now see how the generating functional changes in the first order of powers of
λ. We know already the result, since this is exactly the classical approximation. We will
rederive it now once again, in a slightly different way. We have to do with functions and
not operators, so we can separate the exponent part with interaction from the rest:

exp (iW [J ]) =

∫
Dφ(x) exp

[
i
∫
d4x

(
1
2
(∂φ)2 − m2

2
φ2 − λ

4!
φ4 + Jφ

)]
∫
Dφ(x) exp

[
i
∫
d4x

(
1
2
(∂φ)2 − m2

2
φ2 − λ

4!
φ4
)]

=

∫
Dφ(x) exp

(
−i λ

4!

∫
d4xφ4

)
exp

[
i
∫
d4x (L0 + Jφ)

]
(as above)J=0

(8.12)

From the simplified example∫
dxf(x)ejx = f

(
d

dj

)∫
dxejx (8.13)

we guess an analogous form in the case of functionals:

exp (iW [J ]) =

exp

(
−i λ

4!

∫
d4z
(

δ
δiJ(z)

)4
)∫
Dφ(x) exp

[
i
∫
d4x (L0 + Jφ)

]
(as above)J=0

=
eÔeiW0[J ]

(as above)J=0

→
1 +

(
1 + Ô

) (
eiW0[J ] − 1

)
(as above)J=0

(8.14)

where we defined

Ô =

∫
d4z

(
−i λ

4!

)(
δ

δiJ(z)

)4

(8.15)
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Figure 6: Two cases of non connected graphs.

in kept only terms up to order λ.
The denominator normalises W [0] = 0. In the following we will be interested only in

Green’s functions, so we will skip it.
Let’s now consider the 4-point Green function: obviously we need to expand exp (iW0[J ])

to the eighth order of the source J (four powers will be cleaned up by the four derivatives
due to the interaction φ4, the remaining four by the four derivatives from the definition
of the 4-point Greens function from the generating functional (6.23)), which means to
order (iW0[J ])4. At first glance one could think that we can expand only up to the fourth
derivative of the fourth power of iW0[J ], and that we do not need to expand the term
independent of Ô. However, doing like that we would get also the unconnected diagrams,
as for example those on fig. (6). The logarithm takes care of cancelling such unconnected
diagrams, so we need to consistently expand the logarithm:

iW [J ] → log
(

1 +
(

1 + Ô
) (
eiW0[J ] − 1

))
=

[(
1 + Ô

) (
eiW0[J ] − 1

)]
− 1

2

[(
1 + Ô

) (
eiW0[J ] − 1

)]2

+
1

3

[(
1 + Ô

) (
eiW0[J ] − 1

)]3

+ . . . = e−iW0[J ]Ô
(
eiW0[J ]

)
(8.16)

→ Ô
(iW0[J ])4

4!
− (iW0[J ])Ô

(iW0[J ])3

3!
+

(iW0[J ])2

2
Ô

(iW0[J ])2

2!

where we wrote down only the terms, which contribute to the final result.
We now take into account that third and higher derivatives of the functional iW0[J ]

vanish:
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Figure 7: The first approximation to the 4-point Green function.

(
δ

δiJ(z)

)4
(iW0[J ])4

4!
=

(
δiW0[J ]

δiJ(z)

)4

+ 6(iW0[J ])

(
δiW0[J ]

δiJ(z)

)2(
δ2iW0[J ]

δ(iJ(z))2

)
+

3

2
(iW0[J ])2

(
δ2iW0[J ]

δ(iJ(z))2

)2

(
δ

δiJ(z)

)4
(iW0[J ])3

3!
= 6

(
δiW0[J ]

δiJ(z)

)2(
δ2iW0[J ]

δ(iJ(z))2

)
+ 3(iW0[J ])

(
δ2iW0[J ]

δ(iJ(z))2

)2

(
δ

δiJ(z)

)4
(iW0[J ])2

2!
= 3

(
δ2iW0[J ]

δ(iJ(z))2

)2

(8.17)

If we sum up everything and take into account that

δiW0[J ]

δiJ(z)
=

∫
d4u iJ(u) i∆(u− z) (8.18)

we see that the unconnected diagrams indeed cancel out. It remains

iW [J ] →
∫
d4z

(
−i λ

4!

)(
δiW0[J ]

δiJ(z)

)4

=

∫
dx1 . . .

∫
dx4

λ

4!
J(x1) . . . J(x4)

× (−i)
∫
dzi∆(x1 − z) . . . i∆(x4 − z) (8.19)

The final result for the 4-point Green function is (up to order λ)

G(x1, x2, x3, x4) = (−iλ)

∫
d4zi∆(x1 − z)i∆(x2 − z)i∆(x3 − z)i∆(x4 − z) (8.20)

which we already know from (5.42), reminding that now V ′′′′ = λ and V ′′′ = 0. For this
reason we have, instead of the four graphs in fig. 3 only the first contribution, which is
shown once again with the Feynman diagram on fig. 7
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As we have already seen, we can systematise this procedure (Feynman rules for the
theory φ4 (8.11) in coordinate space):

1. first we draw all connected Feynman diagrams with given external points x1, . . . , xn

2. the vertex is in the point z, to it belongs the term −iλ (i because we always have
exp (iS), −λ because this is how the interaction term looks like in (8.11),4!, since
this is exactly the right number of ways we can connect four external points to the
vertex);

3. each link means a propagator i∆(xi − z);

4. we need to integrate over the whole spacetime z.

The next step is to Fourier transform all propagators on the right-hand side of the
equation as in (8.8) and integrate over the coordinates of the interaction z.

G1(x1, x2, x3, x4) =

∫
d4p1

(2π)4

∫
d4p2

(2π)4

∫
d4p3

(2π)4

∫
d4p4

(2π)4

× (2π)4δ4(p1 + p2 + p3 + p4)e−i(p1x1+p2x2+p3x3+p4x4)

× (−iλ)
i

p2
1 −m2

i

p2
2 −m2

i

p2
3 −m2

i

p2
4 −m2

(8.21)

In general we can define the n-point Green function in p space G(p1, . . . , pN) as

G1(x1, . . . , xN) =

∫
d4p1

(2π)4
. . .

∫
d4pN
(2π)4

e−i(p1x1+...+p4x4)

× (2π)4δ4(p1 + . . .+ pN)G(p1, . . . , pN) (8.22)

In our case this is

G(p1, . . . , p4) = (−iλ)
i

p2
1 −m2

i

p2
2 −m2

i

p2
3 −m2

i

p2
4 −m2

(8.23)

The Feynman rules for the φ4 theory are even simpler in p space:

1. draw all connected Feynman diagrams with given external particles 1, . . . , n

2. for every vertex write −iλ;

3. for each propagator take i/(p2 −m2);

4. in every vertex the total 4-momentum is conserved;

5. the conservation of 4-momenta in all vertices does not determine all internal four-
momenta; we have to integrate over all undetermined ones, for each of them we have
then

∫
d4q/(2π)4;
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6. the symmetry factor: if all 4! do not get canceled, one needs to take this into account.

Regarding the propagator and vertices, we denote them as

i
p2−m2

−iλ

It is not strange that these rules are in accord with those obtained with the canonical
quantisation.

8.3 Perturbation and loops

In the above case we computed the 4-point Green function to first order in powers of λ.
What we get on top with this procedure are the quantum corrections, although we have
not derived them yet. These are proportional to higher powers of λ on a given amplitude
(Green function). We see this is the case from equation (6.12), taking into account our
Lagrangian (8.11) and redefine the field as φ → ~1/2φ. In a given number of external
particles (fixed number of derivatives over J) the quantities λ and ~ enter only through
the combination ~λ, which proves what we said.

What type of diagrams give higher powers of λ in the φ4 theory? For a diagram with
E external legs, I internal propagators and L closed loops the following relation is always
satisfied:

4− E = −2I + 4L (8.24)

which follows simply from dimensional analysis. In fact

[W ] = M0 , [J ] = M3 (8.25)

and each functional derivative due to (5.36)

[δ/δJ ] = M (8.26)

so that the E-point Green function in x-space (6.23) has the dimension

[G(E)(x)] = ME (8.27)

So the Green function in p-space (5.44)
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[G(E)(p)] = M4−3E (8.28)

Each loop gives an integration over the internal four-momenta (together 4L integra-
tions), each propagator contributes two inverse mass dimensions (together −2(I + E)).

Due to the fact that 4 propagators exits from each vertex and that each internal
propagator is shared by two vertices, we can similarly derive that

E + 2I = 4V4 (8.29)

where V4 is the number of vertices. From here we get the relation

L = 1 + V4 − E/2 (8.30)

which tells us that at the fixed number of external legs the number of loops and the power
of the coupling constant increase the same way.

So, let’s repeat. To compute physical quantities (cross sections, decay widths), with n
external (initial incoming and final outgoing) particles, we need the n-point Green func-
tion. This is illustrated with connected Feynman diagrams, while the Feynman rules relate
to each diagram an analytic expression as function of the quantum numbers (momenta,
spin, etc.) of the external particles.

8.4 Exercise 7

• The equivalence between the canonical formalism and the path integral is shown by
the equation

〈0|T̂F [φ̂]ei
∫
Lint(φ̂)|0〉

〈0|T̂ ei
∫
Lint(φ̂)|0〉

=

∫
Dφ(x)F [φ]ei

∫
(L0(φ)+Lint(φ))∫

Dφ(x)ei
∫

(L0(φ)+Lint(φ))
(8.31)

where on the left-hand side φ̂(x) are free field operators, which are expanded as
usually with the creation and annihilation operators (canonical quantisation), while
on the right-hand side φ(x) are simple functions.

In the known φ4 model show the equality (8.31) up to order λ for the case of 4-point
Green function. Compare single terms in both cases.

9 Physical quantities (45 min)

Once we have a n-point Green function, the next step towards a physical quantity is the
so called scattering or S matrix. The Green function is already almost the right thing, but
surely not completely. The external particles obey the on-shell condition between energy
and three-momentum, p2−m2 = 0. If we impose this constraint, the external propagators
of the Green function would diverge, since these are their poles. The correct prescription
is however simple, one needs just to keep the residuum of this pole. The number of poles
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tells us how many external particles are involved in the process, while the residuum is the
amplitude: imagine we are interested in the scattering process of particles described the
above Lagrangian φ4, let’s say a particle with four momentum p1 hits another particle
with four-momentum p2, while the outgoing particles have four-momenta qj, j = 1, ..., n.
The amplitude for such a process is simply

iT (p1, p2; q1, ...qn) = lim
p2i ,q

2
j→m2

2∏
i=1

[
−i
(
p2
i −m2

)] n∏
j=1

[
−i
(
q2
j −m2

)]
(9.1)

× G(p1, p2, q1, ...qn)(2π)4δ4(p1 + p2 − q1 − . . .− qn)

= Gamp(p1, p2, q1, ...qn)(2π)4δ4(p1 + p2 − q1 − ...− qn)
∣∣
p2i ,q

2
j→m2

= iA(p1, p2, q1, ..., qn)(2π)4δ4(p1 + p2 − q1 − . . .− qn)

It is thus enough that for the computation of the Green functions we do not include the
external propagators, those connected to external particles. We call such a Green function,
Gamp, the amputated Green function. We see also that the total 4-momentum must be
conserve. The difference between amputated Green function Gamp and the amplitude4 A
is in the fact that the four momenta of the external legs in the amputated Green function
are arbitrary (subject only to the total conservation of four/momentum), while in the
amplitude they satisfy the relation p2 ≡ p2

0−−→p 2 = m2. When this relation is satisfied, we
say that the external particle is on-shell: very far from the interaction point such particles
behave in a good approximation as free and thus have in a good approximation a well
defined four momentum (they are waves exp (−ipixi) or exp (iqjyj)).

Keep in mind that only external particles satisfy the on mass shell relation (p2 = m2).
The internal particle of a Feynman diagram are virtual, their energy k0 and three mo-

mentum
−→
k are not related in any way (they are independent quantities), so the internal

propagators do not diverge (except in special cases, but this happens only when we inte-
grate over the whole four/momentum of the virtual particle).

9.1 * The amplitude from the path integral

Equation (9.1) can be written more formally. First we define the so-called S-matrix

Ŝ = N̂

[
exp

(
i

∫
dz φ̂(z)

(
∂2
z +m2

) δ

δiJ(z)

)]
(iW [J ])

∣∣∣∣
J=0

(9.2)

where the canonically quantised operator for the free real scalar field

φ̂(z) =

∫
d3p

(2π)32p0

(
â(p)e−ipz + â†(p)eipz

)
(9.3)

satisfies the Klein-Gordon equation (p2 = m2, p0 > 0)

4In a sloppy way we call with the same name ampliutude both the quantity T as A from the definition
(9.1).
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(
∂2
z +m2

)
φ̂(z) = 0 (9.4)

and the operator N̂ is the normal ordered product. As we know, it acts on operators
bringing all creation operators to the left of all creation operators.

The elements of the S-matrix are products in Hilbert space of initial states (kets) and
final states (bras). We get the amplitude (9.1) as

iT (p1, p2; q1, q2) = 〈q1q2|
(
Ŝ − Î

)
|p1p2〉 (9.5)

where Î is the identity (particles that go out are the same and with the same momenta
etc. as those that go in - nothing has happened).

9.2 The cross section

As we know already from quantum mechanics, the main information on the scattering
process is in the cross section. When we have the amplitude, we can get the cross section
similarly as in quantum mechanics. Let us remind this derivation. To simplify the prob-
lem, let us consider the scattering of two scalar particles into two scalar particles (the
generalisation to a final state with more particles is direct, while we will comment later
the cases of fermions or gauge bosons).

The amplitude for such a transition is

iT (k1, k2, p3, p4) = (2π)4δ4(k1 + k2 − p3 − p4)iA(k1, k2, p3, p4) (9.6)

Strictly speaking, the initial particles are wave packets, i.e. distributions for different
momenta with a sharp peak around p1 or p2 (such is the usual experimental situation).
The initial state is described more precisely by∫

dk̃1

∫
dk̃2 f1(k1)f2(k2)|k1k2〉 (9.7)

where we used a short notation for the Lorentz invariant integration measure (ω2−
−→
k 2 =

m2)

dk̃ ≡ d3k

(2π)32ω
(9.8)

The square of the amplitude is then

∫
dk̃1

∫
dk̃2

∫
dq̃1

∫
dq̃2f1(k1)f ∗1 (q1)f2(k2)f ∗2 (q2)

× (2π)4δ4(k1 + k2 − p3 − p4)(2π)4δ4(q1 + q2 − p3 − p4)

× A(k1, k2, p3, p4)A∗(q1, q2, p3, p4)

We rewrite the second δ-function in (9.9) as (using the first δ-function)
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(2π)4δ4(q1 + q2 − p3 − p4) = (2π)4δ4(q1 + q2 − k1 − k2)

=

∫
d4xei(q1+q2−k1−k2)x (9.9)

keeping in mind that the wave packets have a sharp peak at p1and. p2, so that we can
write

(2π)4δ4(k1 + k2 − p3 − p4)A(k1, k2, p3, p4)A∗(q1, q2, p3, p4)

≈ (2π)4δ4(p1 + p2 − p3 − p4) |A(p1, p2, p3, p4)|2 (9.10)

and define the Fourier transform of the distribution fj(kj)

f̃j(x) =

∫
dk̃jfj(kj)e

−ikjx (9.11)

so that the square of the amplitude becomes now (in the remaining δ-function we have
already transformed ki with pi before)∫

d4x
∣∣∣f̃1(x)

∣∣∣2 ∣∣∣f̃2(x)
∣∣∣2 (2π)4δ4(p1 + p2 − p3 − p4) |A(p1, p2, p3, p4)|2 (9.12)

In the final state we are not looking after states with infinitely sharply defined 4-
momenta −→p 3,4, but all states with momenta in the interval between −→p 3,4 and −→p 3,4+d−→p 3,4,
so we have to multiply the above expression with the Lorentz invariant number of such
states

dp̃3dp̃4 (9.13)

All together the probability for transition for a unit volume and time is

dW

V T
=
∣∣∣f̃1(x)

∣∣∣2 ∣∣∣f̃2(x)
∣∣∣2 |A(p1, p2, p3, p4)|2 dLips2(p1 + p2; p3, p4) (9.14)

where the Lorentz invariant phase space for n particles with total 4-momentum P is
defined generally as

dLipsn(P ; p1, . . . , pn) = (2π)4δ4(P −
n∑
i=1

pi)
n∏
j=1

d3pj
(2π)32ωj

(9.15)

The cross section dσ is defined from

dW

V T
= dσjρ (9.16)

where the target density (let’s be in the laboratory system, where the particles 1 have
zero velocity) is
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ρ =
∣∣∣f̃1(x)

∣∣∣2 2m (9.17)

(we took the standard state normalisation 2p0), while the flux is made of particles 2:

j =
∣∣∣f̃2(x)

∣∣∣2 2|−→p 2| (9.18)

In general the seemingly non-invariant product m|−→p 2| can be written down in a
Lorentz invariant way as

m|−→p 2| =
[
(p1p2)2 − p2

1p
2
2

]1/2
(9.19)

Finally the differential cross section is

dσ(p1p2 → p3p4) =
|A(p1, p2, p3, p4)|2

4
[
(p1p2)2 − p2

1p
2
2

]1/2dLips2(p1 + p2; p3, p4) (9.20)

This quantity is a Lorentz scalar, invariant of the choice of the coordinate system in
which we measure.

The generalisation to scattering of two particles into n + 2 particles is now logically
unproblematic:

dσ(p1p2 → p3 . . . pn+2) =
|A(p1, p2, p3, . . . , pn+2)|2

4
[
(p1p2)2 − p2

1p
2
2

]1/2 dLipsn(p1 + p2; p3, . . . , pn+2) (9.21)

9.3 Decay width

Usually we are not interested into the possibility that three or more initial particles
scatter, since the probability for three particles to meet each other is usually negligibly
small. There is however another possibility, i.e. a single initial particles decaying into final
state. In this case we do not speak about cross section but the decay width. As we know,
this changes in different inertial systems (particles which fly by live longer according to
a static observer). What we usually mention is the decay width for a particle in its own
inertial system. For it we can use almost the same equation as for the cross section (we
skip the flux) and get

dΓ(P → p1 . . . pn) =
|A(P, p1, . . . , pn)|2

2m
dLipsn(P ; p1, . . . , pn) (9.22)

where in the system of the decaying particles we have of course P = (m,
−→
0 ).
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10 Quantum electrodynamics (QED)

(2h 15 min)

10.1 The Lagrangian

This is the field theory which describes the electron and the photon., i.e. the electro-
magnetic interaction of a charged fermion. The Lagrangian, which describes it, has been
already written down

L = ψ̄ iγµ (∂µ − ieAµ)ψ −mψ̄ψ − 1

4
F µνFµν (10.1)

where the field strength

Fµν = ∂µAν − ∂νAµ (10.2)

is found from the requirement of gauge invariance under local (spacetime dependent)
phase U(1) transformation:

ψ → eiα(x)ψ , Aµ → Aµ +
1

e
∂µα(x) (10.3)

10.2 Feynman rules

We can derive the Feynman rules similarly as in the case of a scalar field.

10.2.1 Propagators

Let’s first consider the propagators. We get them in p space as the inverse of the quadratic
Lagrangian term. In the case of a real scalar field the i times the action in the exponent
of the path integral was

iS[φ] = i

∫
d4zL(φ(z), ∂φ(z)) = i

∫
d4z

1

2

[
(∂φ)2 −m2φ2

]
+ . . .

= −1

2

∫
d4z φ(z) i(∂2 +m2)φ(z)

= −1

2

∫
d4p

(2π)4
φ(−p)

[
(−i)(p2 −m2)

]
φ(p) (10.4)

where we arrived tot he second line after integration by part, and to the third one by the
Fourier transform

φ(z) =

∫
d4p

(2π)4
φ(p)e−ipz (10.5)

The propagator of the real scalar field in p space is defined as the inverse of the square
bracket in (10.4), i.e.
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GS(p) =
i

p2 −m2
(10.6)

In the case of a complex scalar field, there would have been no 1/2 at the beginning,
but the result would have been the same as (10.6).

We can proceed in the same way for the case of fermions

GF (p) =
i

/p−m
(10.7)

where

/p ≡ γµpµ (10.8)

A problem arises if we use the same procedure for the case of a vector field. In this
case we get after the integration by parts and the transition to p space

i

∫
dz

(
−1

4

)
FµνF

µν = −1

2

∫
d4p

(2π)4
Aµ(−p)

[
i
(
p2gµν − pµpν

)]
Aν(p) (10.9)

But the inverse of the square bracket does not exist, since the matrix p2gµν − pµpν has
an eigenvector pν with zero eignevalue!

Although this may seem strange, we should have expected some problem since we
never choose a gauge. So we now correct the mistake and without breaking Lorentz
invariance add a term (4.9):

Lgf = − 1

2ξ
(∂A)2 (10.10)

This can be understood even better in the path integral formulation. Without this
extra term, which breaks gauge invariance, the integral looks∫

DAµeiSinv [A] (10.11)

where Sinv is the invariant part of the action. This would be analogous to an integral of a
periodic function of an angle α, for example f(cos(α)), from −∞ to +∞ instead from 0 to
2π. Said differently, the integrand (10.11) has too much symmetry. We have to integrate
only over ”one period”, and so we choose the gauge, i.e. we exchange the above integral
with for example ∫

DAµδ(∂A)eiSinv [A] (10.12)

We repeat the above calculation
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i

∫
dz

[(
−1

4

)
FµνF

µν − 1

2ξ
(∂A)2

]
= −1

2

∫
d4p

(2π)4
Aµ(−p)

[
i
(
p2gµν − (1− 1/ξ)pµpν

)]
Aν(p) (10.13)

We guess the inverse as

Gνσ
V (p) = A(p2)gνσ +B(p2)pνpσ (10.14)

and of course require [
i
(
p2gµν − (1− 1/ξ) pµpν

)]
Gνσ
V (p) = gµ

σ (10.15)

The final solution is

Gνσ
V (p) =

i

p2

(
−gνσ + (1− ξ)p

νpσ

p2

)
(10.16)

A particularly useful and easy choice of the gauge is the so-called ’t Hooft-Feynman
gauge ξ = 1, which gives asa very simple photon propagator

Gνσ
V (p) =

−igνσ

p2
(10.17)

This is very often used, although the general choice (10.16) can sometimes be useful,
since the parameter ξ must disappear at the end (a physical quantity cannot depend on
the choice of gauge),, and so the general calculation represents a test.

10.2.2 Vertices

the next thing we have to determine are the Feynman rules for the vertices. We have to
do only with one such vertex, since we have only one interaction term in the Lagrangian

Lint = eψ̄/Aψ (10.18)

We know how to determine the Feynman rule for this vertex. We are interested into
a diagram, where the component ξ of a Dirac fermion with momentum p1 emits the
component η of a Dirac fermion with a momentum p2 and the component µ of the photon
with momentum q. We thus calculate the Green function in p space∫

dxdydz G
[
ψξ(x)ψ̄η(y)Aµ(z)

]
e−ip1x+ip2y+iqz (10.19)

and then leave out all the three external propagators and the delta function. The result:

ie(γµ)ξη (10.20)
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10.2.3 Fermion loops

When using the Wick theorem we have often to interchange two fermion fields. Since
they anti-commute (different from bosons which commute), we get during such operation
an extra factor (−1). Let’s see more precisely when this happens. It is enough to have a
look to the only two possible cases to which all diagrams reduce to. In the first one the
fermion fields are external, in the second they are internal. Because of the conservation
of the fermion line (these are always continuous, which can be seen from the fact that
fermion fields appear, due to Lorentz invariance, only quadratically in the Lagrangian)
we cannot have a third case.

In the first case the part of the Green function we are interested in looks like

〈0|T̂ψξ(x)ψ̄η(y)
N∏
i=1

i

∫
dzieψ̄/Aψ(zi)|0〉 (10.21)

where all the vertices in between are connected by the fermion line. It is not difficult to
convince oneself that there is no minus sign here.

The second case is the one with two internal vertices. We have thus a close loop

〈0|T̂
N∏
i=1

i

∫
dzieψ̄/Aψ(zi)|0〉 (10.22)

Here it is clear that we get exactly a factor (−1).
Let’s repeat: for every closed fermion loop we get an extra factor (−1). Of course the

whole loop must be fermionic, from the beginning to the end.

10.2.4 External legs

The last thing we need to specify is what to add for an external particles. This is something
new, which was not present in the case of a real scalar field. Let’s try to guess. We get
nothing of this kind for the case of a Green function, only in the case of the S-matrix,
which has been written in (9.2) and which we want to generalise for the case of the vector
field with spin 1 Aµ (the photon) and of the fermion particle of spin 1/2 (the electron).

In the case of the real scalar field we expanded the external asymptotically free
field (which satisfies the KG equation) with creation and annihilation operators (p0 =√
m2 + ~p2 and m the mass of the scalar field)

φ̂(x) =

∫
d3~p

(2π)32p0

(
a(p)e−ipx + a†(p)eipx

)
(10.23)

Similarly we do with the vector field, which satisfies the Maxwell equations in empty
space (p0 = |−→p |, since the photon is massless)

Âµ(x) =
2∑

λ=1

∫
d3~p

(2π)32p0

(
aλ(p)ε

µ
λ(p)e−ipx + a†λ(p)ε

∗µ
λ e

ipx
)

(10.24)
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where λ denotes one of the two possible transverse photon polarisations, ελ(p) is the
polarisation vector which satisfies

pµε
µ
λ(p) = 0 (10.25)

we get for the free fermion field (the same relation between the energy p0 and the three
momentum ~p is valid as in the previous case of a free scalar field), which satisfies the
Dirac equation

ψ̂(x) =
2∑
s=1

∫
d3~p

(2π)32p0

(
bs(p)us(p)e

−ipx + d†s(p)vs(p)e
ipx
)

(10.26)

where s denotes one of the two possible spin choices for the fermion, bs(p) and d†s(p)
are the annihilation operator for the fermion (electron) and the creation operator for the
antifermion (positron). Similarly

¯̂
ψ(x) =

2∑
s=1

∫
d3~p

(2π)32p0

(
ds(p)v̄s(p)e

−ipx + b†s(p)ūs(p)e
ipx
)

(10.27)

To find out which factors has to be used in the case of external fermions or gauge
bosons we have to remember how we reached the amplitude (9.1) from the definition of
the S-matrix (9.2) for the case of the scalar field.

Let’s take the example of two particles with momenta p1 and p2 at the beginning, and
two particles with momenta q1 and q2 at the end. The amplitude is by definition

A(p1, p2 → q1, q2) × (2π)4δ4(p1 + p2 − q1 − q2) = 〈q1, q2|
(
Ŝ − Î

)
|p1, p2〉

= 〈0|a(q1)a(q2)
(
Ŝ − Î

)
a†(p1)a†(p2)|0〉 (10.28)

The part of the scattering matrix we are interested in has the appropriate number of
creation and annihilation operators:
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Ŝ − Î → 1

4!
N̂

[
4∏
i=1

∫
dziφ̂(zi)i

(
∂2
zi

+m2
) δ

δiJ(zi)

]
iW [J ]

∣∣∣∣∣
J=0

(10.29)

=
1

4

∫
dz1

∫
dz2

∫
dz3

∫
dz4 (10.30)

×
∫

d3k1

(2π)32k01

a†(k1)eik1z1
∫

d3k2

(2π)32k02

a†(k2)eik2z2

×
∫

d3k3

(2π)32k03

a(k3)e−ik3z3
∫

d3k4

(2π)32k04

a(k4)e−ik4z4

× i
(
∂2
z1

+m2
)
. . . i

(
∂2
z4

+m2
)
G(z1, z2, z3, z4)

=
1

4

∫
d3k1

(2π)32k01

. . .

∫
d3k4

(2π)32k04

a†(k1)a†(k2)a(k3)a(k4)

× (2π)4δ4(k1 + k2 − k3 − k4)Gamp(k1, k2, k3, k4) (10.31)

where amp means amputated (i.e. the Green function without external legs). From here
it follows

A(p1p2 → p3p4) =
1

i
Gamp(p1, p2, p3, p4)(2π)4δ4(p1 + p2 − p3 − p4) (10.32)

which we already knew.
The above derivation helps in the generalisation to external particles with spin 1/2

and 1. In this case what gets generalised is of course also the form of the S matrix (the
KG operator should be replaced for example with the Dirac operator, etc.), but on top of
this it is clear that we get the following extra factors, if we compare (10.23) with (10.24),
(10.26) and (10.27).

First let’s see the case of an external photon with momentum q and polarisation λ. If
it is in the initial state, we multiply the amplitude with

εµλ(q) (10.33)

while if we find ti as a final state, we multiply with its complex conjugated value

εµ∗λ (q) (10.34)

For a fermion with momentum p and spin s we use the following rules:
incoming particle:

us(p) (10.35)

incoming antiparticle:

v̄s(p) (10.36)
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outgoing particle:

ūs(p) (10.37)

outgoing antiparticle:

vs(p) (10.38)

Each fermion line in the Feynman diagram has an arrow, which points in the case of a
particle in the direction of the momentum (in the direction from initial state to the final
state), while in the case of antiparticles the arrow points in the opposite direction than
the momentum. We follow the rule to go in the Feynman diagram always in the opposite
direction of the arrow (which shows the fermion number current): we start first with the
outgoing particle, (ūs(p)) or incoming antiparticle (v̄s(p)), and finish with the incoming
particle (us(p)) or outgoing antiparticle (vs(p)). So, as required by Lorentz invariance, we
always have on the left spinors with a bar, and on right spinors without it.

10.2.5 Summary of Feynman rules for QED

Let’s shortly summarise the rules:

• fermion propagator (
i

/p−m

)
ξη

• photon propagator (covariant gauge)

i

p2

(
−gµν + (1− ξ)p

µpν

p2

)
• vertex

ie(γµ)ξη

• factor (−1) for each closed fermion loop

• incoming (outgoing) photon:

εµλ(q) (εµ∗λ (q))

• incoming (outgoing) electron:

us(p) (ūs(p))
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• incoming (outgoing) positron:

v̄s(p) (vs(p))

10.3 Exercise 8

• Compute the amplitude for the Compton scattering eγ → eγ.

• Check that the amplitude vanishes if we replace εµ(k)→ kµ.

• Calculate the scattering cross section, average over the initial spins and polarisa-
tions, and sum up over the final ones. Use the above behaviour for εµ(k) → kµ to
prove that the exchange

∑
λ

εµλε
ν∗
λ → −gµν

gives the correct result.

• Check that in the limit ω → 0 (initial photon energy) one gets the Thompson cross
section (α ≡ e2/(4π))

σ =
8πα2

3m2

10.4 The Ward-Takahashi equations

The original Lagrangian is invariant under the gauge transformation, but the need for
choosing a gauge destroys it. Of course the physical results should not depend on the
choice of gauge(α), since this is something like the choice of basis or coordinates. Because
of this nontrivial requirement the Green function satisfy special equations, which we call
Ward-Takahashi identities. These identities are automatic, it is enough to follow correctly
the Feynman rules in calculating the Greens’ functions, they are nevertheless useful since
they represent a possible nontrivial test of the calculation.

Let’s see how they look like. We can derive them form the definition of the generating
functional. In the case of QED we have not even write it down, since we derived the
Feynman rules directly. Let’s do it now. We introduce the generating functional for both
connected and unconnected diagrams

Z [Jµ, η, η̄] = exp (iW [Jµ, η, η̄]) (10.39)

=
1

N

∫
DAµDψDψ̄ exp

[
i

∫
dz
(
L(A,ψ, ψ̄) + JµAµ + ψ̄η + η̄ψ

)]
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where the Lagrangian is divided into the gauge invariant piece and a pice which breaks
gauge invariance

L = Linv −
1

2ξ
(∂A)2 (10.40)

while the factor N keeps the functional correctly normalised, Z[0, 0, 0] = 1 oz. W [0, 0, 0] =
0.

The sources Jµ are simple generalisations of the source in previous examples of a real
scalar field, they are now 4 instead of a single one. A word more is needed for the fermion
sources η and η̄. Each of them has also 4 (Dirac) components, and we should be careful
on their anti-commutation relations. The quantities η, η̄, ψ, ψ̄ are not operators, since
we use the path integral, but they are Grassmanian numbers, which anti-commute among
themselves. So for example

δ

δη̄(x)

∫
dzη̄(z)ψ(z) = ψ(x) (10.41)

as we expect also in the boson case, but we get another minus sign for

δ

δη(x)

∫
dzψ̄(z)η(z) = −ψ̄(x) (10.42)

since the derivative operator (Grassman) needed to overtake the Grassmanian ψ̄.
In the generating functional (10.39) let’s transform the fields as

Aµ → A′µ = Aµ +
1

e
∂µα (10.43)

ψ → ψ′ = eiαψ (10.44)

ψ̄ → ψ̄′ = ψ̄e−iα (10.45)

and expand all to order α. The integrand in the exponent changes first by

− 1

eξ
(∂A)∂2α + Jµ

1

e
∂µα− iαψ̄η + iαη̄ψ (10.46)

and then, after after multiple integration by parts and the expansion of the exponent we
get

∫
DADψDψ̄

(
−1

ξ
∂2∂A− ∂J − ieψ̄η + ieη̄ψ

)
ei

∫
dz(L(A,ψ,ψ̄)+JA+ψ̄η+η̄ψ) = 0 (10.47)

With the known trick we exchange the fields in the integrand with functional deriva-
tives over the sources and keep into mind Grassmanian particularities (10.42):

− 1

ξ
∂2
x∂

µ
x

δZ

δiJµ(x)
− ∂µJµ(x)Z − ieηϑ(x)

δZ

δiηϑ(x)
+ ieη̄ϑ(x)

δZ

δiη̄ϑ(x)
= 0 (10.48)
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With the index ϑ we remind the reader, that we have to sum over this Dirac index.
Now let’s take a derivative over the whole expression

δ2

δiη̄ζ(x1)δiηρ(x2)
(10.49)

and put all sources to zero: Jµ = η = η̄ = 0. The second term in (10.48) vanishes, what
remains is

− 1

ξ
∂2
x∂

µ
x

δ3Z

δiJµ(x)δiη̄ζ(x1)δiηρ(x2)

∣∣∣∣
0

(10.50)

− eδ(x− x2)
δ2Z

δiη̄ζ(x1)δiηρ(x)

∣∣∣∣
0

− eδ(x− x1)
δ2Z

δiηρ(x2)δiη̄ζ(x)

∣∣∣∣
0

= 0

which is nothing else than

1

ξ
∂2
x∂

µ
x 〈0|T̂Aµ(x)ψζ(x1)ψ̄ρ(x2)|0〉 (10.51)

+ eδ(x− x2)〈0|T̂ψζ(x1)ψ̄ρ(x2)|0〉 − eδ(x− x1)〈0|T̂ψζ(x1)ψ̄ρ(x2)|0〉 = 0

We interpret the above expectation values of the time ordered product as on the left-
hand side of eq. (8.31) and take into account the generalised definition of the time ordered
product (7.55) for fermions (with a minus)

〈0
∣∣∣T̂ψ(x)ψ̄(y)

∣∣∣ 0〉 ≡ 〈0
∣∣ψ(x)ψ̄(y)

∣∣ 0〉Θ(x0 − y0)

− 〈0
∣∣ψ̄(y)ψ(x)

∣∣ 0〉Θ(y0 − x0) (10.52)

as we would expect to be for (anti-commuting) Grassmanian variables. The Fourier
transform of the three point G.f. is

〈0|T̂Aµ(x)ψζ(x1)ψ̄ρ(x2)|0〉 (10.53)

=

∫
d4q

(2π)4
eiqx

∫
d4p1

(2π)4
e−ip1x1

∫
d4p2

(2π)4
eip2x2(2π)4δ4(p1 − p2 − q)

× G
(2)
µµ′(q)Sζζ′(p1)G(3)

amp

[
Aµ

′
(q)ψζ′(p1)ψ̄ρ′(p2)

]
Sρ′ρ(p2)

where G
(3)
amp is the three-point amputated G.f., i.e. without propagators at the external

legs, while G(2) and S are the photon and electron propagators, all in p space:

〈0|T̂Aα(x)Aβ(y)|0〉 =

∫
d4p

(2π)4
e−ip(x−y)G

(2)
αβ(p) (10.54)

〈0|T̂ψζ(x)ψ̄ρ(y)|0〉 =

∫
d4p

(2π)4
e−ip(x−y)Sζρ(p) (10.55)
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Using (10.16) we get

1

ξ
∂2
x∂

µ
x 〈0|T̂Aµ(x)ψζ(x1)ψ̄ρ(x2)|0〉 (10.56)

=

∫
d4q

(2π)4
eiqx

∫
d4p1

(2π)4
e−ip1x1

∫
d4p2

(2π)4
eip2x2(2π)4δ4(p1 − p2 − q)

× (−1)qµSζζ′(p1)G(3)
amp

[
Aµ(q)ψζ′(p1)ψ̄ρ′(p2)

]
Sρ′ρ(p2)

The second term in (10.51) is then

e

∫
d4q

(2π)4
eiq(x−x2)

∫
d4p1

(2π)4
e−ip1x1

∫
d4p′2
(2π)4

eip
′
2x2(2π)4δ4(p1 − p′2)Sζρ(p1) (10.57)

and get after the redefinition p′2 = p2 + q

e

∫
d4q

(2π)4
eiqx

∫
d4p1

(2π)4
e−ip1x1

∫
d4p2

(2π)4
eip2x2(2π)4δ4(p1 − p2 − q)Sζρ(p1) (10.58)

Similarly the third term is first

− e
∫

d4q

(2π)4
eiq(x−x1)

∫
d4p′1
(2π)4

e−ip
′
1x1

∫
d4p2

(2π)4
eip2x2(2π)4δ4(p′1 − p2)Sζρ(p2) (10.59)

and after redefinition p′1 = p1 − q

− e
∫

d4q

(2π)4
eiqx

∫
d4p1

(2π)4
e−ip1x1

∫
d4p2

(2π)4
eip2x2(2π)4δ4(p1 − p2 − q)Sζρ(p2) (10.60)

After summing (10.56), (10.58) and (10.60) and skipping all common factors

− qµSζζ′(p1)G(3)
amp

[
Aµ(q)ψζ′(p1)ψ̄ρ′(p2)

]
Sρ′ρ(p2) + eSζρ(p1)− eSζρ(p2) = 0 (10.61)

Multiply everything with (
S−1(p1)

)
αζ

(
S−1(p2)

)
ρβ

(10.62)

(implicitly we sum up over all repeating Dirac indices) and finally get

− qµG(3)
amp

[
Aµ(q)ψα(p1)ψ̄β(p2)

]
+ e

(
S−1(p2)

)
αβ
− e

(
S−1(p1)

)
αβ

= 0 (10.63)
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This is a Ward identity, which is valid at all orders in perturbation theory. Let’s check
that it is valid at the lowest order. Keeping into account (10.20) and (10.7):

− qµie (γµ)αβ + e
/p2 −m

i
− e/p1 −m

i
= 0 (10.64)

which is indeed true due to momentum conservation q = p1 − p2.
During the derivation we assumed (10.56), which we know to be true at the leading

order. It turns out that it is always true, although we will not prove it.

11 Some new quantities (45 min)

So far we introduced the generating functional, the Green functions, the amputated G.f.,
both in x and p space, the amplitude, the S-matrix. From the practical point of view,
the amputated G.f. in p space, which becomes the amplitude once the external particles
are put on-shell, seems the most useful.

There are some more basic quantities, from which one can easily compute the G.f.

11.1 Generating functional for connected diagrams

In the previous section we already introduced the generating functional for both connected
and unconnected Feynman diagrams Z[J ]:

Z[J ] = exp (iW [J ]) (11.1)

In calculations we always used only the generating functional for connected diagrams
W [J ] and via

G(n)(x1, . . . , xn) =
δniW [J ]

δiJ(x1) . . . δiJ(xn)

∣∣∣∣
J=0

(11.2)

computed the connected Greens’ functions.

11.2 1-point irreducible (1-PI) vertices

We divided the diagrams into connected and unconnected. The connected ones were all
those, which could be divided into two parts only by cutting at least one line in the
diagram (in an unconnected diagram we can divide it without cutting any line).

Let’s now define even more special diagrams: those which can be divided into two
parts by cutting at least two lines. Such F. diagrams describe 1-particle irreducible (1-PI)
vertices or G.f. n-point 1-PI vertices in p space will then be those basic blocks which we
mentioned before. We get them through the Legendre transformation

W [J ] = Γ[φ] +

∫
dxJ(x)φ(x) (11.3)
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As is W [J ] the generator of G.f. of all connected diagrams, so is Γ[φ] the generator of
all 1-particle irreducible vertices. We will check this on some examples.

The quantities J and φ are independent, so (by definition)

δW [J ]

δJ(x)
= φ(x) (11.4)

δΓ[φ]

δφ(x)
= −J(x) (11.5)

If we take the limit J(x)→ 0, we obtain the vacuum expectation value of the 1-point
Green’s function

φcl(x) =
δW [J ]

δJ(x)

∣∣∣∣
J=0

= 〈0|T̂ φ(x)|0〉 (11.6)

which is the solution to the equation of motion

δΓ[φ]

δφcl(x)
= 0 (11.7)

In the limit of constant fields this is the vacuum expectation value 〈φ〉.
Generically

G(x1, . . . , xn) ≡ δniW [J ]

δiJ(x1) . . . δiJ(xn)
(11.8)

Γ(x1, . . . , xn) ≡ δnΓ[φ]

δφ(x1) . . . δφ(xn)
(11.9)

The second derivatives are thus

G(x, y) ≡ δ2iW [J ]

δiJ(x)δiJ(y)
= −iδφ(x)

δJ(y)
= −i δφ(y)

δJ(x)
(11.10)

Γ(x, y) ≡ δ2Γ[φ]

δφ(x)δφ(y)
= −δJ(x)

δφ(y)
= −δJ(y)

δφ(x)
(11.11)

and are inverses of each other.∫
dyG(x, y)Γ(y, z) =

∫
dy(−i)δφ(x)

δJ(y)
(−1)

δJ(y)

δφ(z)
= iδ(x− z) (11.12)

If we take a functional derivative

δ

δiJ(v)
= −i

∫
du

δφ(u)

δJ(v)

δ

δφ(u)
=

∫
duG(v, u)

δ

δφ(u)
(11.13)
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we get ∫
dyG(x, y, v)Γ(y, z) +

∫
dy

∫
duG(x, y)G(v, u)Γ(u, y, z) = 0 (11.14)

Let’s multiply with G(z, w) and integrate over
∫
dz:

iG(x,w, v) +

∫
dy

∫
dz

∫
duG(x, y)G(w, z)G(v, u)Γ(y, z, u) = 0 (11.15)

In the limit J → 0 the quantity Γ(y, z, u) is obviously nothing else than (up to an
irrelevant phase) the amputated 3-point G.f. in x space.

We can get also the inverse (in some sense) of the above equation:

Γ(y, z, u) =

∫
dx

∫
dw

∫
dv Γ(y, x)Γ(z, w)Γ(u, v)G(x,w, v) (11.16)

Let’s now take another derivative over iJ(t). Using the equality (11.13) and taking
repeatedly into account (11.15) we get after some change of variable names

G(x1, x2, x3, x4) =

∫
dy1

∫
dy2

∫
dy3

∫
dy4

× G(x1, y1)G(x2, y2)G(x3, y3)G(x4, y4)

× Gamp(y1, y2, y3, y4) (11.17)

where the 4-point amputated G.f. is related to the 1-PI one via

−iGamp(y1, y2, y3, y4) = Γ(y1, y2, y3, y4) (11.18)

+ i

∫
dz

∫
dz′ Γ(y1, y2, z)G(z, z′)Γ(z′, y3, y4)

+ i

∫
dz

∫
dz′ Γ(y1, y3, z)G(z, z′)Γ(z′, y2, y4)

+ i

∫
dz

∫
dz′ Γ(y1, y4, z)G(z, z′)Γ(z′, y2, y3)

It is clear that the 4-point G.f. (11.17) can be divided into two parts cutting a single
line: we can cut one of the external propagators G(xi, yi), or, in diagrams of the last three
terms in (11.18), cutting the internal propagator G(z, z′).

Similarly we can continue to an arbitrary G.f. G(n), which can be always made out of
basic blocks, 1-point irreducible vertices Γ(i), i = 3, . . . , n and propagators G(2).

All this can be easily translated into p-space. As usual we define these quantities as
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G(x1, . . . , xn) =

∫
d4p1

(2π)4
e−ip1x1 . . .

∫
d4pn
(2π)4

e−ipnxn

× G̃(2)(p1) . . . G̃(2)(pn)

× (2π)4δ4(p1 + . . .+ pn) G̃amp(p1, . . . , pn) (11.19)

Γ(x1, . . . , xn) =

∫
d4p1

(2π)4
e−ip1x1 . . .

∫
d4pn
(2π)4

e−ipnxn

× (2π)4δ4(p1 + . . .+ pn) Γ̃(p1, . . . , pn) (11.20)

which gives for the above 3- and 4-point amputated G.f.

G̃amp(p1, p2, p3) = iΓ̃(p1, p2, p3) (11.21)

G̃amp(p1, p2, p3, p4) = iΓ̃(p1, p2, p3, p4) (11.22)

+ iΓ̃(p1, p2,−p1 − p2) G̃(p1 + p2) iΓ(−p3 − p4, p3, p4)

+ iΓ(p1, p3,−p1 − p3) G̃(p1 + p3) iΓ̃(−p2 − p4, p2, p4)

+ iΓ̃(p1, p4,−p1 − p4) G̃(p1 + p4) iΓ̃(−p2 − p4, p2, p3)

where one automatically takes into account that the sum of all momenta is conserved.

11.3 Exercise 9

• Compute the amplitude for the process e+e− → µ+µ− in QED at tree order.

• Write down all possible amplitudes for polarised fermions. In the calculation take
the approximation me = mµ = 0.

11.4 Exercise 10

• Calculate the differential cross section dσ/dΩ and the total cross section σ for un-
polarised fermions in the process of the previous exercise.

12 ∞ (6 h)

We have already encountered infinite integrals. They did not appear at the leading order
(in tree level Feynman diagrams), but only in corrections (loops).

12.1 Regularisation

The first step towards taming infinities is its regularisation, i.e. a redefinition of the
theory, so that everything is finite, and the original theory and infinities are recovered
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back only after some limit. The most used regularisation is the dimensional regularisation,
which conserves gauge invariance. Essentially the infinite integral in 4-dimensions gets
generalised into an integral in d dimensions, where d is not necessarily an integer. The
integrals can be evaluated for arbitrary d, and the results have usually poles for integer
dimensions. From here the problems when we take the limit d→ 4 i.e. ε ≡ 4− d→ 0.

Let’s see it more precisely for the case of φ4. 2-point 1-PI G.f. is up to 1-loop order

Γ(2)(p2,m2, λ, ε) = p2 −m2 +
1

i

1

2
(−iλ)

∫
d4−εk

(2π)4−ε
i

k2 −m2
(12.1)

The integral is infinite for ε = 0, since for large k it is essentially
∫ +∞
−∞ kdk. But this

is no more true for an arbitrary non-integer ε. Let’s have a look at Peskin’s book:∫
ddk

(2π)d
1

(k2 −∆)n
=

(−1)ni

(4π)d/2
Γ(n− d/2)

Γ(n)
∆−n+d/2 (12.2)

Let’s use it for our case, use the relations

Γ(x+ 1) = xΓ(x) (12.3)

lim
ε→0

Γ(ε/2) = 2/ε− γ +O(ε) (12.4)

where γ ≈ 0.577 is the Euler-Mascheroni constant, and get up to order O(ε0)

Γ(2)(p2,m2, λ, ε) = p2 −m2 +
λm2

2(4π)2

(
2

ε
− γ + ln 4π + 1− lnm2

)
(12.5)

The expression is clearly divergent in the physically sensible limit of 4 dimensions.
Similarly we get for the 4-point 1-PI G.f. up to 1-loop

Γ(4)(pi,m
2, λ, ε) = −λ+ I(s,m2, λ, ε) + I(t,m2, λ, ε) + I(u,m2, λ, ε) (12.6)

where

I(p2,m2, λ, ε) =
1

i

1

2
(−iλ)2

∫
d4−εk

(2π)4−ε
i

k2 −m2

i

(k + p)2 −m2
(12.7)

and where we introduced the Mandelstam variables (remember that p1 +p2 +p3 +p4 = 0)

s ≡ (p1 + p2)2 = (p3 + p4)2 (12.8)

t ≡ (p1 + p3)2 = (p2 + p4)2 (12.9)

u ≡ (p1 + p4)2 = (p2 + p3)2 (12.10)

for which
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s+ t+ u = 4m2 (12.11)

(in general the right-hand side is equal to m2
1 +m2

2 +m2
3 +m2

4).
We again make use of Peskin’s book. First we use

1

A1 . . . An
=

∫ 1

0

dx1 . . .

∫ 1

0

dxn δ

(
n∑
i=1

xi − 1

)
(n− 1)!

(x1A1 + . . .+ xnAn)n
(12.12)

to get

I(p2,m2, λ, ε) =
λ2

2i

∫
d4−εk

(2π)4−ε

∫ 1

0

dx
1

[k2 −m2 + (p2 + 2pk)x]2
(12.13)

Eith a change of variables

k′ = k + xp (12.14)

we get rid of the linear term in k, so that we can use again eq. (12.2). The result is

I(p2,m2, λ, ε) =
λ2

2(4π)2

[
2

ε
− γ + ln 4π −

∫ 1

0

dx ln
(
m2 − p2x(1− x)

)]
(12.15)

12.2 Renormalisation

We regularised the two- and four-point 1-PI G.f., but they still remain infinite in the limit
ε→ 0. Before performing such a limit we redefine the parameters of our model: m2 and
λ. We are allowed to do it, after all the physically measurable quantities are amplitudes
or 1-PI G.f., and not necessarily the parameters of the Lagrangian. Som we write

m2 = m2
R − δm2 (12.16)

λ = λRµ
εZλ (12.17)

With the index R we denote renormalised, i.e. finite, quantities. Of course we hide
all the dangerous terms 1/ε in δm2, i.e. δZλ = Zλ − 1, but in principle also something
finite can be added. There are infinite possible choices, and the physical quantities again
should not depend on that.

As we said, there is still a lot of choice to be done in defining (12.16) and (12.17). mR

and λR should of course be finite. We get rid of infinities if we choose for example the
following renormalisation constraints:

Γ(2)(m2
R,m

2, λ, ε) = 0 (12.18)

Γ(4)(0,m2, λ, ε) = −λRµε (12.19)
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Formally δm2 and δZλ are of higher order in coupling constant λR than m2
R or 1. This

means that

δm2 = −λRm
2
R

2(4π)2

(
2

ε
− γ + ln 4π + 1− ln

m2
R

µ2

)
(12.20)

δZλ =
3λR

2(4π)2

(
2

ε
− γ + ln 4π − ln

m2
R

µ2

)
(12.21)

Let’s define now the renormalisation functions Γ
(n)
R , which are functions of the renor-

malised parameters as (as we will see later, this definition can be slightly changed in more
general settings, but in our φ4 example at 1-loop it is ok)

Γ
(n)
R (pi,m

2
R, λR) = Γ(n)(pi,m

2, λ, ε) (12.22)

So the renormalised 1-PI G.f. (we came back to four dimensions in the meantime, i.e.
we took the limit ε→ 0)

Γ
(2)
R (p2,m2

R, λR) = p2 −m2
R (12.23)

i.e.

Γ
(4)
R (pi,m

2
R, λR) = −λR + IR(s,m2

R, λR,m
2
R) (12.24)

+ IR(t,m2
R, λR,m

2
R) + IR(u,m2

R, λR,m
2
R)

where we used

IR(p2,m2
1, λ,m

2
2) = − λ2

2(4π)2

∫ 1

0

dx ln
m2

1 − p2x(1− x)

m2
2

(12.25)

12.3 A further complication: field renormalisation

We saw that the corrections to the two- and 4-point 1-PI Green functions are of the form

Γ(2)(p2,m2, λ, ε) = p2 −m2 + I(2)(p2,m2, λ, ε) (12.26)

Γ(4)(pi,m
2, λ, ε) = −λ+ I(4)(pi,m

2, λ, ε) (12.27)

In the φ4 case to 1-loop it was enough to renormalise the mass and the coupling
constant. At two loops or in slightly more complicated theories it turns out that also I(2)

is a function of p2 and in fact proportional to 1/ε. In this case we have to renormalise
also the field

φ = Z
1/2
φ φR (12.28)
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This must be done even in the case with finite I(2)(p2) (but infinite in the ε→ 0 limit).
This can be seen in the following way. Let’s define m2

POL as

Γ(2)(m2
POL,m

2, λ, ε) = 0 (12.29)

In our above examples we had m2
R = m2

POL, but this is not necessarily always true.
The residuum of the pole of the propagator is not 1 in general, but

dΓ(2)

dp2
(p2,m2, λ, ε)

∣∣∣∣
p2=m2

POL

= Z−1
φ 6= 1 (12.30)

For such cases the equation for the amplitude is invalid. In fact we derived it for the
correctly normalised (Zφ = 1) fields, for which the KG operator transforms the external
legs into a δ function. Let’s call such a field φR and its source JR. The source J of the
non-canonically normalised field φ can be defined as

JRφR = Jφ (12.31)

from where

J = Z
−1/2
φ JR (12.32)

Schematically the amplitude is

A(n) ∼
[
i
(
∂2 +m2

)]n( δ

δJR

)n
W [JR]

∣∣∣∣
JR=0

→ Z
−n/2
φ

[
i(∂2 +m2)

]n
G(n) (12.33)

Taking into account

G(n) ∼
[
G(2)

]n
G(n)
amp (12.34)

and

−i(∂2 +m2)

{
G(2)

G
(2)
R

}
∼

{
Zφ
1

}
(12.35)

eq. (12.33) becomes

A(n) ∼ Z
n/2
φ G(n)

amp (12.36)

On another side
G(n) ∼ 〈φn〉 = Z

n/2
φ G

(n)
R (12.37)

from which it follows that (12.33) can be written
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A(n) ∼ G
(n)
amp,R (12.38)

as we expected.
The renormalised 1-PI G.f. is defined after comparison (12.33)-(12.38) as

Γ
(n)
R (pi,m

2
R, λR) = Z

n/2
φ (m2, λ, ε)Γ(n)(pi,m

2, λ, ε) (12.39)

The renormalisation constraints are

Γ
(2)
R (m2

R,m
2
R, λR) = 0 (12.40)

dΓ
(2)
R

dp2
(m2

R,m
2
R, λR) = 1 (12.41)

Γ
(4)
R (0,m2

R, λR) = = −λR (12.42)

from which we can compute δm2, δZλ and δZφ = Zφ − 1.

12.4 Counter-terms

We can exchange the bare quantities m2, λ, φ with the renormalised m2
R, λR, φR can be

done from the start. The bare Lagrangian

L =
1

2
(∂φ)2 − 1

2
m2φ2 − λ

4!
φ4 (12.43)

can be replaced by a sum of the renormalised Lagrangian

LR =
1

2
(∂φR)2 − 1

2
m2
Rφ

2
R −

λRµ
ε

4!
φ4
R (12.44)

and counter-terms (CT)

LCT =
1

2
δZφ(∂φR)2 − 1

2

(
δZφm

2
R − Zφδm2

)
φ2
R −

λRµ
ε

4!

(
ZλZ

2
φ − 1

)
φ4
R (12.45)

We consider these new terms as real Lagrangian terms, derive from them the Feynman
rules and take them into account in the Feynman diagrams. Clearly they are formally of
higher power of the coupling constant λR. We can expand them in powers of the coupling
constant (the coefficients can of course be singular in 1/ε)

δm2 = δm2
1λR + δm2

2λ
2
R + . . . (12.46)

δZλ = δZλ1λR + δZλ2λ
2
R + . . . (12.47)

δZφ = δZφ1λR + δZφ2λ
2
R + . . . (12.48)

and should thus be formally taken into account at the right power of λR.
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12.5 Different renormalisation conditions (schemes)

The renormalisation conditions above are not unique. We can choose them differently,
and indeed this is what we often do. Let’s now shortly describe the so called MS scheme,
which is used especially in QCD.

We do not have here any constraints in special kinematic points as before, but we
determine the counter-terms simply from the requirement of getting rid of all terms 2/ε−
γ + ln 4π. The name MS means minimal subtraction, the bar added is because on top of
the divergent terms we included also the above finite terms.

In the previous φ4 case would this mean

δm2 = −λRm
2
R

2(4π)2

(
2

ε
− γ + ln 4π

)
(12.49)

δZλ =
3λR

2(4π)2

(
2

ε
− γ + ln 4π

)
(12.50)

δZφ = 0 (12.51)

Of course the renormalised 1-PI G.f. look different than before

Γ
(2)
R (p2,m2

R, λR, µ) = p2 −m2
R +

λRm
2
R

2(4π)2

(
1− ln

m2
R

µ2

)
(12.52)

Γ
(4)
R (pi,m

2
R, λR, µ) = −λR + IR(s,m2

R, λR, µ
2) (12.53)

+ IR(t,m2
R, λR, µ

2) + IR(u,m2
R, λR, µ

2)

However we have to remember that now mR and λR are something completely different
from before (different numbers).

12.6 Exercise 11

• To the φ4 Lagrangian add a fermion and the terms

ψ̄ (i/∂ −mf )ψ − yφψ̄ψ (12.54)

• Compute a correction to the vertex ψ̄ψφ at one loop and renormalise y in the MS
scheme.

• Calculate the vertex φ3 at one loop and show that it diverges.

• From here it follows that we should have added already from the beginning a term
Mφ3, and the renormalisation of M would cancel the divergence of the vertex φ3,
which appears at one loop, similarly as the renormalisation of y cancels the diver-
gence of the vertex ψ̄ψφ.

• What happens in the mf → 0 limit? Why the vertex φ3 in this case does not get
generated at one loop for M = 0 ? Which is the symmetry that forbids it?
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12.7 Renormalisation group equations

The above expressions are a bit surprising at first sight, since it looks like the physical
quantities depends on an extra arbitrary parameter µ, which entered into the result via
dimensional regularisation and the requirement of dimensionless renormalised coupling
constant. This would have usually5 happened even in theories without any mass param-
eter: renormalisation itself generates a dimensionfull factor, which we call dimensional
transmutation. This way or another, the dependence over the unknown µ is only ap-
parent. We will show that the renormalised parameters (m2

R, λR in the MS scheme)
depend also on µ, so that the total effect gets neutralised and the physical quantities are
independent of µ.

To check this is of course important, but we will get another bonus. We will in fact show
that we can, using this trick, resum up an infinite series of dangerous large logarithms,
which show up in some kinematical limits, and so save the perturbation expansion.

Let’s start recognising that all bare parameters are independent on µ.

0 = µ
dλ

dµ
= µ

d

dµ
(λRµ

εZλ(λR, ε)) (12.55)

From here we get the equation

ελR + µ
dλR
dµ

(
1 + λR

∂ lnZλ(λR, ε)

∂λR

)
= 0 (12.56)

The ansatz for the solution is an expansion in positive powers of the renormalised
coupling constant (higher orders become important only and the level of two loops or
later)

µ
dλR
dµ

= AλR +Bλ2
R + . . . (12.57)

Taking into account (12.50) we get

µ
dλR
dµ

= −ελR +
3λ2

R

(4π)2
(12.58)

Now we can safely take the limit ε → 0 and get an equation, which describes the
change of the renormalised coupling constant with the scale µ.

µ
dλR
dµ

=
3λ2

R

(4π)2
(≡ β(λR)) (12.59)

The expansion in powers of λR on the righthand-side is called the β function. The
equation can be integrated

λR(µ) =
λR(µ0)

1− 3λR(µ0)
(4π)2

ln µ
µ0

(12.60)

5except in conformal theories
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Increasing the scale we arrive at a singularity, since the beta function is positive. This
means that the coupling constant gets increased with the scale at which we measure it. Of
course the approximation breaks down before we reach the singularity, called the Landau
pole, since λR becomes large enough so that we cannot stop the expansion at one loop
level.

The same can be done with the mass:

0 = µ
dm2

dµ
= µ

d

dµ

(
m2
R − δm2(m2

R, λR, ε)
)

(12.61)

from where

µ
dm2

R

dµ
+

(
m2
Rµ
dλR
dµ

+ λRµ
dm2

R

dµ

)
1

2(4π)2

(
2

ε
− γ + ln 4π

)
= 0 (12.62)

Similarly as before we expand

µ
dm2

R

dµ
= CλR + . . . (12.63)

and using (12.58) we get at first order

µ
dm2

R

dµ
=

λR
(4π)2

m2
R (12.64)

the solution of which is

m2
R(µ) =

m2
R(µ0)(

1− 3λR(µ0)
(4π)2

ln µ
µ0

)1/3
(12.65)

12.8 An explicit example

Imagine we have an accelerator of particles φ, which we postulate can be described by
our old friend, the φ4 Lagrangian. We are interested in elastic scattering of two particles
(this means that the number and type of particles at the beginning and at the end are
the same).

The incoming particles have momenta in the centre-of-mass system (let it be equal to
the laboratory system)

pµ1 = (E, 0, 0, p) (12.66)

pµ2 = (E, 0, 0,−p) (12.67)

while the final particles have

pµ3 = −(E, p sin θ, 0, p cos θ) (12.68)

pµ4 = −(E,−p sin θ, 0,−p cos θ) (12.69)
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where

E2 − p2 = m2 (12.70)

and m2 is the pole of the propagator. At tree order this is just the mass parameter of the
Lagrangian, while at the one loop level this is m2

R defined via (12.23) in our case, or via
(12.29) in general. This is also the mass felt by gravity in the Newton’s law.

Imagine we can somehow measure the scattering cross section σexp in the limit where
the initial particles have a very small momentum (this is usually hard since it essentially
mean that the initial particles do not move, so there is no scattering; we will imagine it
as a kind of limit). We choose this definition only to get simpler equations, in the real
case we measure in a different kinematical point. In this convenient limiting (p → 0)
kinematical phase space point the Mandelstam variables are

s → 4m2
R (12.71)

t → 0 (12.72)

u → 0 (12.73)

At tree order the amplitude

Γ(4)(pi,m, λ) = −λ (12.74)

is independent of momenta. Since we measure the cross section, we have to evaluate the
phase space etc. from formula (9.20). The result is

σ =

∣∣Γ(4)
∣∣2

64πE2
=

λ2

64πE2
(12.75)

The coupling constant λ is determined from the measured σexp in the limit (12.71)-
(12.73):

σexp =
λ2

64πm2
(12.76)

So in general

σ = σexp

(m
E

)2

(12.77)

Imagine now that we are not happy with the precision of comparison between theory
and experiment. In this case we can use the results of the next approximation, i.e. in the
one loop approximation. For the renormalisation constraints we choose (12.40)-(12.42),
so that the expression for the 4-point Green function is given in (12.24). This is in the
kinematical point we measure (12.71)-(12.73) equal to (we have to evaluate the integrals
of type (12.25))
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Γ(4)
exp = −λR +

λ2
R

(4π)2
(12.78)

When squaring Γ(4)we should not take into account the largest power λ4
R, since this is

already of higher order (if we calculated up to two loops, we would have also the order
λ3 in (12.78), which would, multiplied with the tree order, give also the same power), so
that

σexp =
1

64πm2
R

(
λ2
R − 2

λ3
R

(4π)2

)
(12.79)

Through this equation we calculate the value of λR. If it is small enough, i.e. if

λR
(4π)2

� 1 (12.80)

the perturbative expansion of the Greens’ functions converge and the computation is
consistent.

We calculate the scattering cross section in an arbitrary kinematical point using (9.20)
and (12.24), where however now λR is numerically fit through (12.79).

What if, instead of (12.42), we had used a different constraint, for example in the limit
(12.71)-(12.73)

Γ
(4)
R → −λ

′
R (12.81)

Then

σexp =
λ′2R

64πm2
R

(12.82)

As we see, the numerical value of λ′R is different from λR, the final result however is,
the same, up to corrections formally of higher order in powers of the coupling constant.
Numerically the physical result (the scattering cross section as a function of momenta)
can slightly depend on the choice of the renormalisation scheme, but the difference is, if
the convergence is good (12.80), small enough .

What if we use instead the MS scheme? To avoid extra complications, let’s use this
scheme only for the coupling constant, while let the mass be still the propagator pole:

Γ
(2)
R = p2 −m2

R (12.83)

Γ
(4)
R = −λR(µ) + IR(s,m2

R, λR(µ), µ2)

+ IR(t,m2
R, λR(µ), µ2) + IR(u,m2

R, λR(µ), µ2) (12.84)

The coupling constant λR(µ) is now, differently from previous one, the running one,
dependent on the parameter µ through the renormalisation group equation (12.59). We
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should not worry about it. Using the same procedure as before we get first in the limit
(12.71)-(12.73)

Γ(4)
exp → −λR(µ) +

λ2
R(µ)

(4π)2

(
1 + 3 ln

µ

mR

)
(12.85)

At µ = mR we have the same expression as before, see (12.78)

Γ(4)
exp = −λR(mR) +

λ2
R(mR)

(4π)2
(12.86)

so λR(mR) is numerically equal to λR, which is got through eq. (12.79). When we integrate
(12.59), we take into account the following boundary condition:

λR(µ) =
λR(mR)

1− 3λR(mR)
(4π)2

ln µ
mR

(12.87)

The careful reader can now ask, if the last expression can be maintained in this form,
or if it should be expanded in powers of λR(mR), as usual. But here there is a difference,
since we have here also ln (µ/mR), which could be in principle large. If it is small enough

λR(mR)

(4π)2
ln

µ

mR

� 1 (12.88)

one can safely expand to quadratic order, insert it into (12.84), and get

Γ(4)(pi,m
2
R, λR) = −λR + IR(s,m2

R, λR,m
2
R) (12.89)

+ IR(t,m2
R, λR,m

2
R) + IR(u,m2

R, λR,m
2
R)

totally the same as (12.24). In this case there is no difference between the original scheme
and the MS scheme.

Once get a difference however, when (12.88) is not satisfied, but (12.80) is. This is
obviously possible only at very (exponentially) large ratios µ/mR. In this case the solution
of the RG equation helped to sum up all powers(

λR(mR)

(4π)2
ln

µ

mR

)n
(12.90)

which appear at the level of n-th loop. Of course these n-th loops for n > 1 has not been
calculated, but the solution of the RG equation allows us to resum these dominant terms
in this limit.

The careful reader will obviously be again confused. Why should we use at all these
large (or small) ratios µ/mR, after all we said we are allowed to (at least in principle) use
any such ratio. Such a reason could be for example the behaviour of the cross section at
very large energies, for example when s/m2

R → ∞. In the case (12.24) the correction to
tree order−λR would be of the form

86



λ2
R

(4π)2
ln

s

m2
R

(12.91)

and this number is not necessarily less than one. Higher terms would contribute higher
powers (

λ2
R

(4π)2
ln

s

m2
R

)n
(12.92)

and the expansion would not converge.
This problem is solved with the running coupling constant (12.87) and the use of

(12.85) for µ ≈ E. Then the ratios (
λR(mR)

(4π)2
ln

s

µ2

)n
(12.93)

which appear in (12.85) and eventually at higher orders, are small enough not to spoil
the convergence. Of course we included all these contributions of higher orders into the
running coupling constant

λR(E) =
λR(mR)

1− 3λR(mR)
(4π)2

ln E
mR

(12.94)

The whole procedure converges under condition

λR(E)

(4π)2
� 1 (12.95)

which is not true if we are too close to the Landau pole.
We see that resummation saved the perturbative expansion in the case of very large

(or small) energies. This is why the scheme with running coupling constant is useful.

12.9 Exercise 12

• Compute the differential unpolarised cross section for e−µ− → e−µ−. Make use of
the results for e+e− → µ+µ−. In a similar way use the known results for Compton
scattering eγ → eγ to calculate the cross section for annihilation e+e− → γγ.
Comment the ”crossing” symmetry.

12.10 Exercise 13

• Consider the system with interaction λσφ1φ2. If the corresponding masses satisfy
mσ > m1 + m2 calculate the decay width Γσ at tree level. Show that at the first
nonzero order in λ the optical theorem is valid
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mσΓσ = Im
(
Γ(2)
σσ(m2

σ)
)

where Γ
(2)
σσ(p2) is the 2-point 1-PI G.f. for σ.

13 Quantum electrodynamics up to one loop

(1h30min)

In this section we will use the method of counter-terms, all quantities will be renormalised,
but for simplicity we will write them without the sign R.

The tree level renormalised Lagrangian for QED is then (we choose the Feynman gauge
ξ = 1)

L = ψ̄i/∂ψ −mψ̄ψ + eµε/2ψ̄/Aψ − 1

4
(∂µAν − ∂νAµ)2 − 1

2
(∂A)2 (13.1)

while the counter-terms are of the form

LCT = δZ2ψ̄i/∂ψ − δmψ̄ψ + δZ1eµ
ε/2ψ̄/Aψ − δZ3

4
(∂µAν − ∂νAµ)2 (13.2)

We consider these new terms as small perturbations. They are formally of higher
order in powers of the coupling constant (δZi and δm are order e), so we consider them
as interaction. We write for them the following Feynman rules

• counter-term for the fermion propagator

i (δZ2/p− δm) (13.3)

• counter-term for the photon propagator

− iδZ3

(
p2gµν − pµpν

)
(13.4)

• vertex counter-term

iδZ1eµ
ε/2γµ (13.5)

We check the first one by considering the whole quadratic part of the fermion

(1 + δZ2)ψ̄i/∂ψ − (m+ δm)ψ̄ψ

Clearly the propagator is in this case
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i

(1 + δZ2)/p− (m+ δm)

If we now expand, we get (take into account that (M1M2)−1 = M−1
2 M−1

1 )

i

(/p−m) + (δZ2/p− δm)
=

i

(/p−m)[1 + (/p−m)−1(δZ2/p− δm)]

=
i

/p−m
+

i

/p−m
[i (δZ2/p− δm)]

i

/p−m
+ . . .

which coincides with the above rule.
It si not difficult to check also the complete quadratic photon term

−1 + δZ3

4
(∂µAν − ∂νAµ)2 − 1

2
(∂A)2

gives the following propagator

−i
(1 + δZ3)p2

(
gµν + δZ3

pµpν
p2

)
which can be expanded

−igµν
p2

+
−igµα
p2

[
−iδZ3

(
p2gαβ − pαpβ

)] −igβν
p2

+ . . .

as with the above rules.
The vertex correction is obvious.

13.1 Electron propagator

The one loop contribution to it is usually denoted as

i

/p−m
(−iΣ(p))

i

/p−m
which gives for the 2-point 1-PI G.f. for the electron

Γ
(2)
ψ (p) = /p−m+ δZ2/p− δm− Σ(p) (13.6)

Now let’s calculate:

− iΣ(p) =
(
ieµε/2γα

) ∫ ddk

(2π)d
i

/k −m
−igαβ

(k − p)2

(
ieµε/2γβ

)
(13.7)
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As common we use the identity

1

/k −m
=

/k +m

k2 −m2
(13.8)

The definition for the γ matrices

{γµ, γν} = 2gµν (13.9)

is valid in arbitrary (also non-integer) dimensions, so (gαα = d)

γαγα = d (13.10)

γαγµγα = −(d− 2)γµ (13.11)

We first get

Σ(p) = −ie2µε
∫

ddk

(2π)d
−(d− 2)/k + dm

(k2 −m2)(k − p)2
(13.12)

and withe the usual trick

Σ(p) = −ie2µε
∫ 1

0

dx

∫
ddk

(2π)d
−(d− 2)/k + dm

[k2 −m2(1− x) + (p2 − 2kp)x]2
(13.13)

We introduce a new variable k′ = k − xp (and skip the prime)

Σ(p) = −ie2µε
∫ 1

0

dx

∫
ddk

(2π)d
−(d− 2)x/p+ dm

[k2 −m2(1− x) + p2x(1− x)]2

=
e2µε

(4π)d
Γ(2− d/2)

∫ 1

0

dx
−(d− 2)x/p+ dm

[m2(1− x)− p2x(1− x)]2−d/2

= − e2

(4π)2
(/p− 4m)

(
2

ε
− γ + ln 4π

)
+O(1) (13.14)

Compare with (13.6) and get in the MS scheme

δZ2 = − e2

(4π)2

(
2

ε
− γ + ln 4π

)
(13.15)

δm = −4m
e2

(4π)2

(
2

ε
− γ + ln 4π

)
(13.16)
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13.2 Photon propagator

All contributions at one loop order (with counter-terms included) can be written as

−igµν
p2

+
−igµα
p2

[
iΠαβ(p)− iδZ3

(
p2gαβ − pαpβ

)] −igβν
p2

+ . . . (13.17)

where (remember the (−1) factor for the fermion loop!)

iΠαβ(p) = (−1)

∫
ddk

(2π)d
Tr

(
i

/k + /p−m
ieµε/2γα

i

/k −m
ieµε/2γβ

)
= −e2µε

∫
ddk

(2π)d
Tr
[
(/k + /p+m) γα (/k +m) γβ

][
(k + p)2 −m2

]
[k2 −m2]

(13.18)

We need to generalise the dimensionality of the γ matrices for d dimensions. We can
define completely consistently

Tr (1) = f(d) (13.19)

Tr
(
γαγβ

)
= f(d)gαβ (13.20)

Tr
(
γαγβγµγν

)
= f(d)

(
gαβgµν − gαµgβν + gανgβµ

)
(13.21)

with the only constraint that f(4) = 4.
We get

iΠαβ(p) = −e2µεf(d)

∫
ddk

(2π)d
2kαkβ + kαpβ + pαkβ + (m2 − k(k + p)) gαβ[

(k + p)2 −m2
]

[k2 −m2]

= −e2µεf(d)

∫ 1

0

dx

∫
ddk

(2π)d
2kαkβ + kαpβ + pαkβ + (m2 − k(k + p)) gαβ

[k2 −m2 + (p2 + 2kp)x]2

We again introduce a new variable k′ = k + xp (and again we skip the prime)

iΠαβ(p) = −e2µεf(d)

∫ 1

0

dx

∫
ddk

(2π)d
1

[k2 −m2 + p2x(1− x)]2
(13.22)

×
[
−2x(1− x)pαpβ +

(
(2/d− 1)k2 +m2 + p2x(1− x)

)
gαβ
]

where we used the relation

kαkβ → k2

d
gαβ (13.23)

which is of course valid under the integration.
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Let’s now check if the photon gets a mass due to one loop corrections. This would be
catastrophic, since it would mean the breaking of gauge invariance. As we will see, noth-
ing of this happens, which confirms our belief that dimensional regularisation explicitly
conserves gauge invariance.

We would potentially get a mass term in the p → 0 limit of the above expression. It
follows

Παβ(0) = −e2µεf(d)gαβ
∫ 1

0

dx

∫
ddk

(2π)d
m2 + (2/d− 1)k2

(k2 −m2)2

= −e2µεf(d)gαβ

[
m2 i

(4π)d/2
Γ(2− d/2)

Γ(2)

(
1

m2

)2−d/2

(13.24)

+ (2/d− 1)
−i

(4π)d/2
d

2

Γ(2− d/2− 1)

Γ(2)

(
1

m2

)2−d/2−1
]

Using (12.3) the result is exactly

iΠαβ(0) = 0 (13.25)

as we expected (and hoped).
Now let’s see also the divergent pieces. In the proof of a massles photon we showed

that ∫
ddk

(2π)d
m2 + (2/d− 1)k2

(k2 −m2)2
= 0 (13.26)

From here it follows

∫
ddk

(2π)d
m2 + (2/d− 1)k2

[k2 −m2 + p2x(1− x)]2
=

∫
ddk

(2π)d
p2x(1− x)

[k2 −m2 + p2x(1− x)]2
(13.27)

and then

iΠαβ(p) = −2e2µεf(d)i

(4π)2−ε/2

(
p2gαβ − pαpβ

)
Γ
( ε

2

)∫ 1

0

dx
x(1− x)

[m2 − p2x(1− x)]ε/2
(13.28)

The limit ε→ 0 gives

iΠαβ(p) = −i4
3

e2

(4π)2

(
p2gαβ − pαpβ

)(2

ε
− γ + ln 4π

)
+O(1) (13.29)

We require that δZ3 in (13.17) exactly cancels the divergent pieces:

δZ3 = −4

3

e2

(4π)2

(
2

ε
− γ + ln 4π

)
(13.30)
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13.3 Exercise 14

• In the MS scheme show that in QED Z1 = Z2 at the one loop level, which follows
from the requirement of gauge invariance

Dα = ∂α − ieAα = ∂α − ieRARα

13.4 Exercise 15

• Calculate the anomalous magnetic moment of the electron in QED at one loop.
Compare the result with the latest measurements and theoretical predictions in
PDG (to be found in [6]).
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