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SYMMETRIES IN HEP

Borut Bajca,b,1

a J. Stefan Institut, 1000 Ljubljana, Slovenia
b Faculty of Mathematics in Physics, University of Ljubljana, 1000 Ljubljana, Slovenia

Abstract

These lecture notes are written for a 5 hours short introductory course and
exercises given at the Sarajevo School of High Energy Physics in May 2013.
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1 Introduction

There are a number of books on symmetries in physics. What we will learn is described
in standard field theory introductory books like for example Ryder’s [1] or Peskin and
Schroeder’s [2], Maybe a bit more involved are Weinberg’s books [4, 5]. For more one can
try on INSPIRE [6].

1borut.bajc@ijs.si
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Throughout these lectures we will stick to the conventions c = 1 and ~ = 1. This is
nothing else than a specific choice of units. Masses and energies have for example the
same unit, which we typically take as GeV (gigaelectronvolt=109 eV), time and position
as GeV−1. The conversion of these units into the classical ones is very simple: we multiply
the quantity we want to convert with the right powers of ~ and c.

1.1 Motivation and aims

It is assumed that the reader knows the basics of quantum mechanics. What we will try
to give are the basics of two aspects of symmetries particularly used in quantum field
theory: space-time symmetries that lead to relativity through Lorentz transformations,
and internal symmetries like isospin for the global case or gauge symmetries.

2 Relativity and the Lorentz group (1h)

2.1 Lorentz transformations

The essence of relativity are the Lorentz transformations. These will be carried out as
rotations in 4-dimensional space (the time x0 and spatial coordinates xi, in short xα).
Latin indices will denote spatial coordinates and run from 1 to 3, while greek indices will
run from 0 to 3.

Let’s remind first how we describe rotations in a plane (2-dimensional space). It is
simply given by

(
x′

y′

)
=

(
cosα sinα
− sinα cosα

)(
x
y

)
(2.1)

The rotation matrix can be written (check it!) in an apparently weird way as

O =

(
cosα sinα
− sinα cosα

)
= exp (iαT ) (2.2)

where we call the matrix

T = −i
(

0 1
−1 0

)
(2.3)

the generator of rotations in a 2-dimensional space. Matrices (2.2) form the Lie group
SO(2). It is a Lie group because the parameter α is continuous, while SO(d) in gen-
eral means orthogonal (OOT = OTO = I) rotations in d-dimensional space with unit
determinant (detO = 1).
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This form is particularly useful for generalizations. In d-dimensional space the vector
x = (x1, ..., xd)T gets rotated by the group element O (d× d matrix). All these elements
form the group SO(d), each single element is uniquely determined by the d(d−1)/2 angles
αab = −αba through

O = exp

(
i

2
αabTab

)
(2.4)

and the same number of rotation generators (the Kronecker δ is 1 if the two indices
coincide and 0 otherwise)

(Tab)
kl = −i

(
δkaδ

l
b − δkb δla

)
(2.5)

Let’s remind the reader that the two indices a and b denote the generator (we could
denote them differently, for example sequentially from 1 do d(d−1)/2, T12 → T1, T13 → T2,
etc.), while the indices k and l denote the element of the given matrix.

In the case of SO(2) we have a single element, T12, which has been written so far
without indices for simplicity.

The representation of generators (2.5) is just one of infinitely many possibilities. In
fact we can represent generators in general as n × n matrices, being the representation
(2.5) the lowest2 dimensional (d) and called the fundamental representation of the group
SO(d). In general the generators (of arbitrary allowed representations) of the group SO(d)
satisfy the algebra, defined by the commutator

[Tab, Tcd] ≡ TabTcd − TcdTab = i (δacTbd + δbdTac − δbcTad − δadTbc) (2.6)

The consistency of this definition can be checked by changing 1) a ↔ b, 2) c ↔ d, 3)
a↔ c and b↔ d at the same time, taking into account that Tab = −Tba and δab = +δba.
It is not hard to check that the fundamental representation (2.5) indeed satisfies the
definition (2.6).

If we allowed the determinant of the orthogonal matrices to be also −1, we would talk
about the group O(d) instead of SO(d). In three dimensions this means that we include
also mirroring around an arbitrary plane (xi → −xi for a single i) or inversion (xi → −xi
for all i).

Let’s go back to Lorentz transformations. The space-time is indeed 4-dimensional, but
of a special kind. This can be seen for example in the form of the invariants. Remem-
ber that the distance between two elements in the 4-dimensional space-time is given by
c2(∆t)2− (∆x)2− (∆y)2− (∆z)2, and not by the sum of squares of differences, as it would
be in the usual Euclidean space. This means that we get the product of two vectors in
Minkowski space if we add between them a matrix - the metric tensor, which takes care
of these extra minuses. If for example aµ = (a0, ai) and bµ = (b0, bi), then the product is
given by

2An exception for d < 4 is given by the spinorial representations, see next section.

3



a0b0 − a1b1 − a2b2 − a3b3 = aµgµνb
ν (2.7)

where the metric tensor is

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (2.8)

We will keep the usual sum convention for two identical Lorentz indices (without the
need for an explicit sum sign), being one index up and the other down (never both up or
both down). The metric tensor can raise or lower such an index. The equation above can
be thus written in many different but equivalent ways:

aµgµνb
ν = aµbµ = aµg

µνbν = aµb
µ (2.9)

where we defined

aµ ≡ gµνa
ν = (a0, a1, a2, a3) = (a0,−a1,−a2,−a3) (2.10)

and the inverse of the metric tensor

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (2.11)

which satisfies

(
gg−1

)
µ

ν
= gµαg

αν = δµ
ν (2.12)(

g−1g
)µ

ν
= gµαgαν = δµν (2.13)

We see from here that gµ
ν = δµ

ν .
We can generalize now the previous definitions valid for SO(d) to SO(d+,d−), where

we have a diagonal metric tensor with d+ elements 1 and d− elements −1 (in our case
we will be interested in the case SO(1,3)). All the definitions so far are still ok provided
we systematically substitute all δ’s with g’s and interpret all matrix products with an
intermediate g. The definition of the commutator in the algebra SO(1,3) is thus for
example

[Tαβ, Tµν ] = i (gαµTβν + gβνTαµ − gβµTαν − gανTβµ) (2.14)
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while we have to understand the definition of the group element (2.4), i.e. a matrix in
the 4-dimensional Minkowski space, as

Λµ
ν = δµν +

α

2

α1β1
(iTα1β1)

µ
ν +

1

2

α

2

α1β1α

2

α2β2
(iTα1β1)

µ
λ(iTα2β2)

λ
ν + ... (2.15)

The different matrices can be obtained from (2.5)

(iTαβ)µν = (iTαβ)µλ gλν =
(
δµαδ

λ
β − δλαδ

µ
β

)
gλν (2.16)

Now it is not hard to check, that (2.15) is really a Lorentz transformation

x′µ = Λµ
νx

ν (2.17)

Let’s see for example, that the rotation given by α01 = α is nothing else than the
Lorentz transformation (boost) in the x direction:

Λµ
ν =

[
δ + α (iT01.g) +

α2

2
(iT01.g)2 + ...

]µ
ν

(2.18)

From (2.16) it follows

iT01.g =


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0.




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 =


0 −1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 (2.19)

and finally after summing the whole infinite series

Λµ
ν =


coshα − sinhα 0 0
− sinhα coshα 0 0

0 0 1 0
0 0 0 1

 (2.20)

Introducing a new variable coshα = 1/
√

1− v2, we get exactly a Lorentz boost (v is
the velocity) in the x direction.

It is good to remember that due to the antisymmetry of the generators one gets from
(2.15)

Λµ
σ =

(
Λ−1

)σ
µ

(2.21)

so that

Λµ
νΛµ

σ = δσν (2.22)
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Due to that vector products are Lorentz scalars:

a′µb′µ = Λµ
νa

νΛµ
σbσ = aνbν (2.23)

An arbitrary tensor gets transformed under Lorentz transformations similarly as

T ′α1...αm
β1...βn

= Λα1
µ1 . . .Λ

αm
µmΛβ1

ν1 . . .Λβn
νnT µ1...µmν1...νn

(2.24)

2.2 Spinors

At first sight it could seem that the fundamental representation for the generators (2.5)
is also the simplest one, and that transformations of all higher tensors can be obtained
by (2.24). It turns out this is not true, so that there is an even simpler representation of
the Lorentz group, from which we can derive even the transformation matrix Λµ

ν which
is used in (2.17) and (2.24).

This follows from the following derivation (let’s limit ourselves to four dimensions):
imagine there exist four 4× 4 matrices γµ, which satisfy the Dirac algebra

{γµ, γν} ≡ γµγν + γνγµ = 2gµν (2.25)

Then it is possible to show that the matrices

Σµν =
1

4i
[γµ, γν ] (2.26)

satisfy the commutation relations (2.14).
Such matrices are given explicitly for example (in the so-called chiral representation)

by

γµ =

(
0 σµ

σ̄µ 0

)
(2.27)

where σµ = (1, σi), σ̄µ = (1,−σi) and σi are the Pauli matrices. The spinorial represen-
tation Ψ of the Lorentz group is the one that transforms as

Ψ′ = Λ1/2Ψ = exp

(
i

2
αµνΣµν

)
Ψ (2.28)

In our case (4d) this is the 4-dimensional Dirac spinor. Since space-time is even
dimensional, these Lorentz generators in the spinorial representation are block diagonal.
The irreducible spinorial representations of the Lorentz group are thus two-dimensional.
In the basis (2.27) they are the two Weyl spinors ψL and ψR:

Ψ =

(
ψL
ψR

)
(2.29)
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Under parity the spinor transforms as

Ψ→ γ0Ψ (2.30)

i.e.

ψL ↔ ψR (2.31)

As promised, we can write the Lorentz transformation matrices in the fundamental
representation Λµ

ν from the matrices of Lorentz transformations in the spinorial repre-
sentation Λ1/2:

Λ−11/2γ
µΛ1/2 = Λµ

νγ
ν (2.32)

For later use let’s introduce also the 4× 4 matrices

γ5 ≡ iγ0γ1γ2γ3 =

(
1 0
0 −1

)
(2.33)

and

Ψ̄ ≡ Ψ†γ0 (2.34)

which transforms as

Ψ̄′ = Ψ̄Λ−11/2 (2.35)

We can now write down all the 16 possible bilinear combinations of Dirac spinors

S = Ψ̄Ψ (2.36)

P = Ψ̄γ5Ψ (2.37)

V µ = Ψ̄γµΨ (2.38)

Aµ = Ψ̄γµγ5Ψ (2.39)

T µν = Ψ̄ [γµ, γν ] Ψ (2.40)

The notation (S = scalar, P = pseudoscalar, V = vector, A = axial vector, T =
tensor) reminds us how the quantities transform under Lorentz

(S ′, P ′) = (S, P ) (2.41)

(V ′µ, A′µ) = Λµ
ν (V ν , Aν) (2.42)

T µν = Λµ
αΛν

βT
αβ (2.43)

and parity
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S → +S (2.44)

P → −P (2.45)

V µ → (−1)δµ0+1 V µ (2.46)

Aµ → (−1)δµ0 Aµ (2.47)

T µν → (−1)δµ0+δν0 T µν (2.48)

2.3 All representations of the Lorentz group

It is instructive to rewrite the generators of SO(1,3) as

T0a = Ka , Tab = εabcJc (2.49)

where the Levi-Civita tensor εabc is antisymmetric under the exchange of arbitrary two
indices and ε123 = 1. In the generators K we recognize the generators of Lorentz boosts,
while generators J represent rotations in 3-dimensional space (angular momenta!). The
commutation rules (2.14) can be now written

[Ka, Kb] = iεabcJc (2.50)

[Ja, Kb] = iεabcKc (2.51)

[Ja, Jb] = −iεabcJc (2.52)

Although this looks less compact as before, it gives a better physical insight. The
last equation is nothing else than the commutation rules for the operators of the angular
momentum. We can define new linear combinations through

Aa =
1

2
(Ja + iKa) (2.53)

Ba =
1

2
(Ja − iKa) (2.54)

so that the commutation relations simplify to

[Aa, Ab] = iεabcAc (2.55)

[Aa, Bb] = 0 (2.56)

[Ba, Bb] = iεabcBc (2.57)

These are commutation relations for rotations in 2-dim complex space. We talk about
the group SU(2), which has three generators (a general SU(n), i.e. rotations - not orthog-
onal anymore, but unitary matrices - in n-dim complex space, has n2 − 1 generators). A
and B are thus generators of two SU(2) groups.
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SO(4) group generators get thus divided into generators of two different and indepen-
dent rotations, two SU(2) (one with generators A, the other one with generators B). The
group SO(4) is locally equivalent to the group SU(2)×SU(2).

The fields which describe elementary particles, transform as irreducible representations
of the Lorentz group, and can be characterized by two multiples of 1/2, i.e. with one spin
for each SU(2). The simplest irreducible representation is thus the Lorentz scalar (0, 0).
we then have the two types of spinors. We denote the above SU(2) groups with the
indices L (left) and R (right), so that we can have two types of elementary (Weyl) spinors
ψL ∼ (1/2, 0) and ψR ∼ (0, 1/2), which we call the left-handed and the right-handed
spinor. With a single one of them we can describe only massless fermions, while we need
both of them (i.e. a Dirac spinor) for a massive fermion. It gets transformed under
Lorentz transformations through Λ1/2, see (2.28). Now we understand the subscript 1/2,
we have to do with spin 1/2. Another representation which is very often used in field
theory is the one that describes the vector boson Aµ ∼ (1/2, 1/2), which is partially made
out of spin 0 (= 1/2− 1/2)and partially of spin 1 (= 1/2 + 1/2).

Exercise

1. Check that Σµν = c [γµ, γν ] satisfy the commutation rules for SO(d+, d−) and de-
termine c.

2. Show that Σµν are block diagonal in the chiral representation of the γ matrices.

3. Show equation (2.32).

4. Check equations (2.50)-(2.52), i.e. check the proportionality factor in the definition
of angular momentum operator from Tab.

5. Show that the Dirac equation is Lorentz covariant.

3 Equations of motions, internal symmetries (1h)

3.1 The action

The equation of motion can be derived by the variational principle, more precisely by the
principle of extremal (minimal) action. Let’s imagine that we have a Lagrangian density
(from now on we will call it simply Lagrangian), which is a scalar under Lorentz (and
other, see later) transformations. It is a function of the fields φ and their first derivatives
∂µφ, i.e. L(φ, ∂µφ).

The action is defined as a space-time integral of the Lagrangian

S[φ] =

∫
d4xL(φ, ∂µφ) (3.1)

The principle of extremal action states that we get the equations of motion by requiring
that the action does not change if we infinitesimally change the fields φ→ φ′ = φ+ δφ
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S[φ′]− S[φ] =

∫
d4x [L(φ′, ∂µφ

′)− L(φ, ∂µφ)]

=

∫
d4x

[
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ)

]
(3.2)

=

∫
d4x

[
∂µ

(
∂L

∂(∂µφ)
δφ

)
+

(
∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

))
δφ

]
= 0

In coming to the last line we took into account that the difference of derivatives is the
derivative of a difference δ(∂µφ) = ∂µδφ and used integration by parts.

The first term is a total derivative. By Gauss’ theorem its integral depends only on
the field value at the boundary (at infinity). If we limit ourselves to fields and their
derivatives which drops off fast enough at infinity, this term does not contribute. The
action is thus extremal for fields that satisfy the Euler-Lagrange equations

∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

)
= 0 (3.3)

What type of Lagrangians we use? As we said, they are Lorentz scalars. We would like
also that they reproduce the known equations of motion for free fields (no interaction),
i.e. the Klein-Gordon equation (spin 0), the Dirac equation (spin 1/2) and the Maxwell
equations (spin 1).

It is not hard to check that the Lagrangian for a free real scalar field is

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 (3.4)

where the normalization to 1/2 of the first term (with derivatives) is from historical
reasons similar as in quantum mechanics:

L =
1

2
m

(
d−→x
dt

)2

(3.5)

In fact remember that what correspond to time t and coordinate −→x (t) in quantum
mechanics are the vector xµ = (t,−→x ) and field φi(x

µ), respectively, in field theory.
For the free complex field we have

L = ∂µφ
∗∂µφ−m2φ∗φ (3.6)

The normalization here is chosen so that a complex field can be expressed by two real
scalar fields φ = (φ1 + iφ2) /

√
2.

Similarly we get for fermions

L = ψ̄ (iγµ∂µ −m)ψ (3.7)

where for the derivation of the Euler-Lagrange equations we have to consider ψ and ψ̄ as
two independent fields (similarly as φ and φ∗ in (3.6)).
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Finally we get Maxwell’s equations from

L = −1

4
FµνF

µν + Lgf (3.8)

where the last term depends on the gauge fixing. For a Lorentz gauge fixing

Lgf = − 1

2ξ
(∂µA

µ)2 (3.9)

with ξ the Lagrange multiplier.
The factor −1/4 in (3.8) is found, if we require the same normalization as in (3.4) for

the time derivatives of the spatial components Ai. For the time components A0 we do not
have such a term, which confirms that all four components of Aµ are not physical degrees
of freedom, this is why we need the gauge fixing term (for example (3.9)).

3.2 Noether’s theorem

Let’s go back to (3.2). Let’s assume now that the field φ satisfy the equations of motion,
and let’s concentrate to internal symmetries of the Lagrangian, i.e. to such variations δφ,
which keep the Lagrangian invariant. The first term of the integrand vanishes everywhere
in spacetime and not only after the integration or at infinity (as was true for an arbitrary
δφ so far)

∂µ

(
∂L

∂(∂µφ)
δφ

)
= 0 (3.10)

If we have more fields, we need to add up single contributions. We will be interested
in continuous transformations, described by a Lie group (Ta are generators)

φ′ = eiα
aTaφ (3.11)

In this case δφ = iαaTaφ. The number of conserved currents we get are equal to the
number of generators:

∂µj
µ
a = 0 , jµa =

∂L
∂(∂µφ)

iTaφ (3.12)

These relations are correct only after taking into account the equation of motion, i.e.
on-shell.

Let’s check it in the known case of the Lagrangian for a free complex field (3.6). The
symmetry here is the phase U(1):

φ′ = eiαφ , φ∗′ = e−iαφ∗ (3.13)

under which the Lagrangian (3.6) is invariant. The current is

jµ = i (φ∂µφ∗ − φ∗∂µφ) (3.14)
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Its divergence is

∂µj
µ = i

(
φ∂2φ∗ − φ∗∂2φ

)
= i
(
−φm2φ∗ + φ∗m2φ

)
= 0 (3.15)

where we imposed the equations of motion(
∂2 +m2

)
φ = 0 (3.16)

We say that the current (3.12) is conserved, because the quantity

Qa =

∫
d3xj0a (3.17)

which we call the charge, does not change with time:

dQa

dt
=

∫
d3x∂0j

0
a =

∫
d3x∂µj

µ
a = 0 (3.18)

As usual we limited ourselves to fields that decrease fast enough at infinity, and used
the Gauss’ theorem (the volume integral of a divergence is equal to the boundary integral).
The current (3.12) and the charge (3.17) are called Noether’s current and Noether’s charge,
respectively. The Noether’s theorem says that such currents are conserved.

3.3 Gauge invariance

So far we assumed transformations (3.11) with constant parameters αa. Now we will
consider the very important case of these parameters being functions of space-time coor-
dinates, αa = αa(x). We will call them gauge transformations.

The motivation for them comes from the gauge invariance of Maxwell’s equations. If
we want to couple the fermion

L = ψ̄iγµ∂µψ (3.19)

with the electromagnetic (EM) field, we use the well known quantum mechanical recipe

i∂µ → pµ → pµ + eAµ → i∂µ + eAµ → iDµ (3.20)

In the process we defined the covariant derivative

Dµψ = (∂µ − ieAµ)ψ (3.21)

The Lagrangian

L1 = ψ̄iγµDµψ (3.22)

is invariant under the gauge transformations

ψ → eiα(x)ψ , Aµ → Aµ +
1

e
∂µα (3.23)
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In fact we defined the covariant derivative of the field to transform under gauge transfor-
mations exactly as the field itself

(Dµψ)′ = eiα(x)Dµψ (3.24)

Similarly is the kinetic term for the electromagnetic field

L2 = −1

4
FµνF

µν (3.25)

invariant under gauge transformations, being already the EM tensor invariant itself.

Fµν = ∂µAν − ∂νAµ (3.26)

F ′µν = Fµν (3.27)

The sum (3.22) and (3.25) describes the Lagrangian for a fermion and the EM fields.
Transformations (3.23) form, as we know, the group U(1), this is the phase change of

the fermion. This can be generalized to other groups, which has been first done by Yang
and Mills in the fifties. They wrote down for the first time a Lagrangian invariant under
SU(2) gauge transformations.

In an even more general way we would like to find out the Lagrangians invariant under

ψ′ = Uψ , U = U(α(x)) , U † = U−1 (3.28)

where U are unitary matrices, elements of the group SU(N). Terms of the form ψ̄ψ are
invariant because of the unitarity of the transformation matrix U . Problems arise however
when we encounter derivatives:

∂µψ
′ = U∂µψ + (∂µU)ψ (3.29)

so that because of the second term the kinetic term in the Lagrangian is not invariant

ψ̄′iγµ∂µψ
′ 6= ψ̄iγµ∂µψ (3.30)

Similarly as we did before with the photon field Aµ we want now to transform the
usual derivative into a covariant one. Our group now is SU(N) and we have thus N2 − 1
gauge bosons, the same number as the group generators. We define first the matrix

Aµ ≡ AaµT
a (3.31)

and let the generators T a be in the same representation as ψ. If ψ is for example in
the fundamental representation, then in the case of SU(2) the generators T a are properly
normalized Pauli matrices σa/2, while in the case SU(3) they are Gell-Mann matrices. In
any case the convention will be that the generators in the fundamental representation are
normalized as

Tr
(
T aT b

)
=

1

2
δab (3.32)
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(a different choice for the norm just redefines the coupling constant g). Let’s now use the
same trick as before, i.e. define the covariant derivative

Dµψ ≡ (∂µ − igAµ)ψ (3.33)

which behaves under gauge transformations

ψ′ = eiαa(x)T
a

ψ , A′µ = UAµU
† +

c

g
∂µ (U)U † (3.34)

as in (3.24). We guessed the change of the vector field (actually of the matrix (3.31)).
Requiring (3.24) for α(x) ≡ αa(x)T a we can determine the constant c = −i.

How does it look now the kinetic term for the gauge boson? We can use a similar
ansatz as before, but with a mandatory trace since we deal with matrices now:

L = − 1

4c2
Tr (FµνF

µν) (3.35)

which however does not tell us much until we define Fµν for a general group SU(N). Trying
with (3.26) proves inefficient, so we can try with the following ansatz (taking into account
the antisymmetry under interchange of indices)

Fµν = ∂µAν − ∂νAµ + c1g [Aµ, Aν ] (3.36)

Requiring

F ′µν = UFµνU
† (3.37)

i.e. the invariance of (3.35) gives c1 = −i. The last unknown constant c2 comes just from
normalization. We would like to have the same normalization of the kinetic term for every
gauge field Aaµ as we had it for the electromagnetic field. In this convention c2 is just the
normalization factor of the generators (in a given representation)

Tr
(
T aT b

)
= c2δ

ab (3.38)

and thus equals 1/2 in the case of fundamental representation.
Two comments.
First, we can use the same general formulae for SU(N) also for the simplest case of

electromagnetism, with a single generator T a = q being a constant, which does not need
to be equally normalized for different fields. This means that each field ψq has its own q.
In this way we can interpret e as for example the electron charge (with q = 1), so that
the up quark has q = −2/3, down quark q = 1/3, etc. The product qe is thus the U(1)
charge of the field ψq. This is the difference between the abelian U(1) and the nonabelian
SU(N) groups. While in the abelian case every field has its own charge, the charge of a
nonabelian field depends only on its representation.

Second, as we defined the covariant derivative for fermionic fields, we could define it
for bosonic fields as well:

14



Dµφ ≡ (∂µ − igAµ)φ (3.39)

The invariant kinetic term is now

L = (Dµφ)†Dµφ (3.40)

Exercise

1. Show that Noether’s theorem for translations and rotations lead to the conservation
of energy, momentum and angular momentum.

2. Calculate the value of c1 from equation (3.36), checking if F ′µν = UFµνU
†. Check

also that the same tensor can be written as DµAν −DνAµ or [Dµ, Dν ].

3. Write down an invariant Lagrangian for scalars in the adjoint representation of the
gauge symmetry SU(N).

4. Write down explicitly the kinetic terms of all the fields of the standard model.

4 The vacuum expectation value of a field (1h)

4.1 Negative m2

So far we always assumed that m2 in (3.4) were a positive number. This made sense, since
the equation of motion for the field was the Klein-Gordan, which solutions are periodic in
this case. If we have an interaction though, this is no more true. A negative m2 points in
this case to an instability (an exponentially increasing or decreasing function), which is a
consequence to the fact, that we were expanding around a maximum and not a minimum
of the action. If we write in fact

L =
1

2
(∂φ)2 − V (φ) (4.1)

then the Hamiltonian density is

H ≡ Π ∂0φ− L =
1

2
Π2 +

1

2
(∇φ)2 + V (φ) (4.2)

Π ≡ ∂L
∂ (∂0φ )

= ∂0φ (4.3)

The first two terms are positive definite, so the system has a minimal energy for
constant solutions of the equation

∂V (φ)

∂φ
= 0 (4.4)
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As an example let’s take the known case φ4

V (φ) =
m2

2
φ2 +

λ

4!
φ4 (4.5)

The equation of motion

m2φ+
λ

6
φ3 = 0 (4.6)

has a single solution for m2 > 0

φ0 = 0 (4.7)

but three solutions for m2 < 0

φ0 = 0 , φ± = ±
√
−6m2

λ
(4.8)

The first one corresponds to a maximum, while the other two are minima, which can
be checked explicitly by calculating the second derivative of the potential

∂2V (φ)

∂φ2
= m2 +

λ

2
φ2 (4.9)

in the extrema (4.8):

∂2V

∂φ2
(φ0) = m2 < 0 ,

∂2V

∂φ2
(φ±) = −2m2 > 0 (4.10)

The correct procedure is now to expand around the right minimum (the vacuum),
which we take for example at:

φ(x) = φ+ + ϕ(x) (4.11)

We insert this to the original Lagrangian and get

L =
1

2
(∂ϕ)2 − V (φ+ + ϕ)

=
1

2
(∂ϕ)2 − 1

2
m2
ϕϕ

2 − µ

3!
ϕ3 − λ

4!
ϕ4 (4.12)

where

m2
ϕ = −2m2 , µ = λφ+ (4.13)

We explicitly see that the new mass m2
ϕ is positive. It is only now that we can freely

calculate the Green’s functions, i.e. evaluate the Feynman diagrams. The full original φ
is thus a constant (solution to the classical equation of motion) plus quantum corrections
(ϕ - creation and annihilation operators, etc).
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It is now good to remember that the original Lagrangian had a discrete symmetry

φ→ −φ (4.14)

In the case of a negative m2 we had to choose a vacuum (there were two), φ+ or φ−,
and thus break this symmetry. We say, that the symmetry has been spontaneously broken
(the solutions to the equations of motions break the symmetry of the Lagrangian). This
is denoted by a non-zero field vacuum expectation value (vev), and in this case this vev
〈φ〉 is an order parameter:

〈φ〉 = φ+ 6= 0 (4.15)

The Feynman rules, the calculation of Green’s functions etc. can be used only for fields
with vanishing vev 〈ϕ〉 = 0. The recipe is thus the following: first solve the equations of
motion, then expand your fields around the vacuum (minimum), and only then use the
whole machinery of Feynman etc.

4.2 The Nambu-Goldstone theorem

In the example above we spontaneously broke the discrete symmetry Z2 (4.14). This is
a group with only two elements, +1 and −1. For this reason we had only two possible
vacua, φ+ and φ− in the case of negative m2. This can be generalized to higher discrete
or even continuous, i.e. Lie, groups. The Lie groups are the ones we will concentrate on
now. Imagine to have a Lagrangian, symmetric under SO(N). We will consider a field in
the fundamental representation, i.e. a vector

~φ =


φ1

.

.

.
φN

 (4.16)

The Lagrangian we will study is

L =
1

2
∂µ~φ∂µ~φ− V (~φ2) (4.17)

with the SO(N) invariant potential

V = −m
2

2
~φ2 +

λ2

4
(~φ2)2 (4.18)

We consider a positive m2, which, as we saw, leads to spontaneous symmetry breaking,
here of SO(N). This same SO(N) symmetry can be now used to rotate the vev into the
direction of, let’s say, φ1. In a sense this is the choice of our coordinates. Now we plug
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~φ = 〈~φ〉+ ~ϕ =


v + ϕ1

ϕ2

.

.
ϕN

 (4.19)

into (4.17) getting

V (〈~φ〉+ ~ϕ) = V (〈~φ〉) + ϕ1v(−m2 + λ2v2)

+
1

2
ϕ2
1(−m2 + 3λ2v2) +

1

2
(ϕ2

2 + . . .+ ϕ2
N)(−m2 + λ2v2)

+ λ2vϕ1~ϕ
2 +

λ2

4
(~ϕ2)2 (4.20)

The equation of motion is the term proportional to ϕ1 and determines the vev

〈φ1〉 = v = m/λ (4.21)

so that we remain with

V =
1

2
(2m2)ϕ2

1 + λmϕ1~ϕ
2 +

λ2

4
(~ϕ2)2 (4.22)

We see that there is only one massive state at this point, i.e. ϕ1 with a now positive
mass square 2m2, and N − 1 massless states ϕ2, . . . , ϕN . This is a consequence of the
spontaneous breaking of a continuous global symmetry. Nambu and Goldstone have stud-
ied such cases in general and proved a general theorem. The Nambu-Goldstone theorem
tells us, that the number of massless fields (the so-called Nambu-Goldstone bosons) is
equal to the number of broken generators.

It is easy to check that this counting works in our example. A N -dimensional vector
breaks SO(N) into SO(N-1). At the start there were N(N − 1)/2 generators, after the
breaking only (N − 1)(N − 2)/2. The difference is N − 1, and this is exactly the number
of massless modes.

4.3 The Higgs mechanism

There is a further case we would like to consider. So far we assumed only global sym-
metries, i.e. the ones with only constant rotations. What if they become space-time
dependent, i.e. what if the symmetry in question is a gauge one?

For simplicity let’s consider the simplest example, the SO(2), or equivalently, the U(1)
case. The two-component vector gets replaced by a complex scalar field. As we learned,
a global symmetry gets promoted to a local one by changing the normal derivative with
the covariant one, and adding the kinetic terms for the gauge bosons:
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L = (Dµφ)∗(Dµφ)− V (|φ|)− 1

4
FµνF

µν (4.23)

After symmetry breaking we expand as usually our complex field around the minimum

φ =
1√
2

(v + ϕ1 + iϕ2) (4.24)

where v solves the equation of motion

dV

dv
= 0 (4.25)

at a minimum.
The covariant derivative becomes

Dµφ = (∂µ − ieAµ)φ→ 1√
2

((∂µϕ1 + eAµϕ2) + i(∂µϕ2 − evAµ − eAµϕ1)) (4.26)

so that

|Dµφ|2 →
1

2
(∂ϕ1)

2 +
1

2
(∂ϕ2)

2 − evAµ∂µϕ2 +
1

2
e2v2A2 + interaction (4.27)

The term −evAµ∂µϕ2 is a mixing between φ2 and the vector field. We should get rid
of it, and this has been cleverly done long ago by ’t Hooft. Remember that (4.17) is not
well defined without the so called gauge fixing term. This term is usually taken as

Lgf = − 1

2ξ
(∂A)2 (4.28)

(with ξ an arbitrary number, which must drop out from the final physical results) but in
the case of symmetry breaking a better choice is

Lgf = − 1

2ξ
(∂A+ ξevϕ2)

2 (4.29)

After expanding one gets

Lgf → −
1

2ξ
(∂A)2 − ev∂Aϕ2 −

ξe2v2

2
ϕ2
2 (4.30)

The third term in (4.27) and the second in (4.30) combine into a total derivative

− ev∂µ(Aµϕ2) (4.31)

and can be thus safely ignored.
The term 1

2
e2v2A2 in (4.27) represents the mass term for the gauge boson. We have

finally got a theory with a consistent massive vector field. Gauge symmetry in fact
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forbids the gauge boson to have a mass, but a spontaneously broken gauge symmetry
automatically gives a massive gauge boson.

A final comment for the last term in (4.30). Apparently it is a mass term for ϕ2, with
a ξ-dependent mass. This is a signal that the field ϕ2 is not physical. In fact it is not
an asymptotic state and it must be considered only as a virtual state in the Feynman
diagrams. The original φ2 state has been eaten by the longitudinal polarization of the
massive gauge boson. A massive gauge bosons has 3 degrees of freedom, while the massless
one has only two. The counting of degrees of freedom now fits.

Exercise
1. Take the so-called σ model (m2 > 0)

L =
1

2
(∂
−→
φ )2 +

µ2

2

−→
φ 2 − λ2

4

−→
φ 4 (4.32)

which is invariant under SO(4) rotations,
−→
φ = (φ1, φ2, φ3, φ4). Find the minimum

of the potential (use the symmetry O(4), so that only 〈φ4〉 6= 0). Expand the
Lagrangian in new fields (let φ1,2,3 remain the same, φ4 → 〈φ4〉 + σ). What are
the masses of the fields? What is the remained symmetry of the system after the
breaking of SO(4)?

Derive the Feynman rules. At leading order λ2 calculate the amplitude

φiφj → φkφl

How does it look the last amplitude in the limit mσ → 0 but m/λ fixed? How big
it is when the initial momenta go to zero?

2. Consider the SM Higgs and calculate the masses of the gauge bosons after sponta-
neous symmetry breaking.
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