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The thermodynamic properties: specific heat and magnetization are studied as a function
of temperature, doping, and interlevel spacing within the two-dimensional extended Falicov–
Kimball model for spinless fermions. It was recently shown that the strong coupling limit of the
above model possesses electronically driven ferroelectric order. Thermodynamic quantities
are calculated using the finite-temperature Lanczos method with additional phase-averaging
for a system of 4 × 4 sites. Our results indicate that valence transition exists in the extended
Falicov–Kimball model.
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1. INTRODUCTION

The Falicov–Kimball model (FKM) was origi-
nally proposed to explain a metal-insulator transition
that occurs in transition metals and rare-earth com-
pounds. In its original version [1], the FKM consists
of localized f orbitals which interact with a disper-
sive band of d orbitals through an on-site Coulomb
repulsion. A renewed interest in this model started
when Portengen et al. [2] suggested that introducing
hybridization in the FKM might lead to the forma-
tion of a new ground state, where d– f excitons Bose–
Einstein condense. Such a state possesses macro-
scopic electric polarization. This suggestion was later
supported by the exact solution of the FKM in infinite
dimensions [3].

Recently, one of us showed that electronically
driven ferroelectricity exists in the strong copling
regime of an extended FKM model [4] with no ex-
tra hybridization between f and d orbitals. The ex-
istence of this new mechanism opens the door to
new technological applications because of the strong

1J. Stefan Institute, SI-1000 Ljubljana, Slovenia.
2Faculty of Mathematics and Physics, University of Ljubljana,
SI-1000 Ljubljana, Slovenia.

3Theoretical Division, Los Alamos National Laboratory, Los
Alamos, 87545 New Mexico.

coupling between the orbital and the spin degrees
of freedom of each electron [4]: for instance, a mag-
netic field can be used as a switch for the ferroelectric
state.

The spontaneous ferroelectric (FE) state that ex-
ists in the mixed valence regime of the extended FKM
is the consequence of a coherent spontaneous hy-
bridization between two atomic orbitals with opposite
parity under spatial inversion ( f and d in our case) [4].
These state competes with an orbitally ordered (chess
board-like) state that is also realized in the mixed va-
lence regime. The most important ingredients neces-
sary for the realization of the electrically polarized
state are: (a) the system has to be in the mixed va-
lence regime, (b) the two orbitals which are involved
must have opposite parity under spatial inversion, (c)
there has to be finite Coulomb repulsion Ufd between
electrons occupying different bands, (d) unlike in the
original FKM, it is best if both bands have a compara-
ble bandwidth, and (e) hybridization between bands
is not necessary.

For simplicity, we will consider an extended
FKM for spinless fermions. Although the spin de-
grees of freedom can play an important role because
of the coupling with the orbital flavor [4], the phi-
losophy of the present work is to isolate the orbital
degrees of freedom, which are responsible for the
ferroelectricity, in order to simplify the study of its
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thermodynamic properties. The Hamiltonian defined
on a square lattice is given by:

H = εd

∑
i

nd
i + ε f

∑
i

n f
i − td

∑
〈ij〉

d†i dj

+U f d
∑

i

nd
i n f

i + t f

∑
〈ij〉

f †i fj, (1)

where n f
i = f †i fi and nd

i = d†i di are the f− and the
d− orbital occupation numbers on the site i. The
sum 〈ij〉 runs over pairs of nearest neighbor sites.
For historical reasons we have named the orbitals
as d and f but these two labels can represent any
pair of orbitals with opposite parity under a spatial
inversion.

While the original FKM can be viewed as a single-
particle problem at zero temperature, this is not the
case for the extended model given by Eq. (1). This
extended model can be exactly mapped into an asym-
metric Hubbard model (AHM) [4]. After this map-
ping, the orbital flavor is replaced by a pseudo spin
variable: ci↑ = fi and ci↓ = di. Replacing these expres-
sions in Eq. (1), we get the desired expression for
H:

H = ε
∑
i,σ

niσ −
∑
〈ij〉,σ

tσ (c†iσ cjσ + c†jσ ciσ )

+U f d
∑

i

ni↑ni↓ + Bz

∑
i

τ z
i , (2)

where ε = (εd + ε f )/2 and Bz = ε f − εd and τ z
i =

(n f
i − nd

i )/2. Without any loss of generality we set
ε = 0 since a finite ε merely represents a shift of
the chemical potential. When the original bands
have the same dispersion, i.e., t f = td = tσ , H is
reduced to the original Hubbard model with ad-
ditional Zeeman coupling to an external magnetic
field. For the general case, the SU (2) symme-
try of the original Hubbard model is reduced to
a U (1) symmetry because of the presence of the
Zeeman term and the different hopping amplitudes
for each spin polarization (t↑ 6= t↓). It is also im-
portant to note that in the new version of our
original model, the z-component of the total mag-
netization couples to the difference between the
populations of both bands. Therefore, in the new
language the valence instabilities are described as
metamagnetic or spin-flop (finite jump in the mag-
netization) transitions. In a real system, the value
of Bz is varied by applying pressure or by alloying.
In addition, the orbitally ordered state (chess-board-
like) and the Bose-Einstein condensation of exci-
tons are represented by longitudinal (along to the

z-axis) and transverse (xy-like) spin density waves,
respectively [4].

In our finite temperature study we will focus
on the investigation of the thermodynamic prop-
erties of the AHM (Eq. (2)) as a function of
temperature, doping, and external magnetic field.
Our primary objective is to gain deeper physi-
cal understanding of the AHM by studying its
thermodynamic properties. The motivation of such
investigation is primarily coming from the recently
established electronically driven spontaneous po-
larization [4]. Secondly, we want to study how
the valence instabilities are affected by the inclu-
sion of a realistic hopping integral for the lower
band.

2. METHOD

We study numerically the AHM on a square
lattice using the finite temperature Lanczos method
(FTLM) [5,6] with the additional phase averag-
ing explained in detail in Refs. [7,8]. In short,
the method is based on the Lanczos procedure
of exact diagonalization with a random sampling
over initial wave functions and phases represent-
ing the effect of a uniform vector potential [7,8].
The main limitation to the validity of the results
comes from finite size effects which appear at T <

Tfs. The Tfs strongly depends on the physical prop-
erties of the system. For gapless systems, a cri-
terion for Tfs defined through the thermodynamic
sum Z̄(T) = Tr exp(−(H− E0)/T) calculated in a
given system at fixed particle number Ne can be
used together with the requirement Z̄(Tfs) = Z∗ À
1 [6]. If there is a gap in the excitation spec-
trum, as is the case for t↑ 6= t↓, this criterion can
be relaxed (Z∗ & 1) leading to substantially lower
Tfs.

The calculation of the thermodynamic proper-
ties for the original FKM (t↑ = 0) does not require
to solve a many-body problem [9–12]. Instead, we
have to consider all single-particle energies of spin-
down electrons moving in a fixed potential created
by spin-up particles. The thermodynamic properties
are obtained by summation over all possible config-
urations of spin-up electrons using a grand canoni-
cal ensemble and phase-averaging on small square
clusters with L sites (L= 16). In this way the finite
size effects are considerably suppressed in general
and more specifically for the largest dopings n ∼ 0.6–
0.8.
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3. RESULTS

3.1. Specific Heat and Magnetization at Zero Bz

Using FTLM with additional phase averaging on
4 × 4 lattice for t↑/t↓ 6= 0 and sampling over all pos-
sible noninteracting states for the case of t↑ = 0 we
evaluate the entropy density s:

s = lnÄ/N+ (〈H〉 − µ〈Ne〉)/NT, (3)

where Ne is the total electron number operator, con-
nected to electron density through n = n↑ + n↓ =
〈Ne〉/N. From s we obtain the specific heat CV =
T(∂s/∂T)µ.

In Fig. 1 we present CV(T) for Ufd = 8, differ-
ent ratios of t↑/t↓ =1.0,0.3,0.1,0.0, and Bz = 0. We
first comment on results calculated at half filling, i.e.,
n = 1. The case t↑/t↓ = 1 corresponds to the origi-
nal SU (2) invariant Hubbard model. The low energy
peak at n = 1 is associated with spin excitations. In
terms of our original model, these spin excitations
represent the Goldstone modes of the orbital ordering
and the Bose-Einstein condensation of excitons which

Fig. 1. Specific heat CV (per unit cell) versus T for Ufd = 8, Bz =
0, various electron densities n and different ratios of t↑/t↓. Tiny
dashed lines represent CV for the S = 1/2 XXZ model (see also the
text).

are degenerate at the SU (2) invariant point. In the
large Ufd limit, Ufd > W = 4(t↑ + t↓), this peak is at
t↑ = t↓ approximately located at T = 8t2

↓/3Ufd [7,13].
In this limit, the low energy physics of the Hubbard
model for n = 1 can be mapped into a Heisenberg
model. The broad high-energy peak located around
T ∼ Ufd/4.8 is associated with charge excitations [13].
With decreasing the ratio t↑/t↓, the low-energy peak
becomes substantially sharper and moves towards
lower temperatures. At t↑ = 0, i.e., for the original ver-
sion of the FKM, our calculations qualitatively agree
with the results of Farkašovský [11].

The low temperature behavior of CV at n = 1 is
easy to understand if we take into consideration that
the low energy spectrum of the AHM maps into an
S = 1/2 XXZ model in the strong coupling regime.
The effective couplings are: Jz = 2(t2

↑ + t2
↓)/Ufd and

J⊥ = 4t↑t↓/Ufd [4]. The CV(T) curves calculated with
XXZ model on a 20 lattice sites are presented in
Fig. 1 with tiny dashed lines for t↑/t↓ = 0.3, 0.1, 0.
The peak positions and the widths are well captured
by this effective model even though the ratio Ufd/W
is not so high. The XXZ model becomes an Ising
model when J⊥ = 0. If we consider that the Ising vari-
ables take the values ±1, the effective coupling be-
comes JIsing = Jz/4 = t2

↓/2Ufd. The CV of the Ising
model has a logarithmic singularity at the phase tran-
sition temperature Tc ∼ 2.27JIsing ∼ 1.14/Ufd which
roughly agrees with the position of the low temper-
ature peak at t↑ = 0. Because of obvious limitations
in the size of our system we can not study the devel-
opment of the singularity in the specific heat that is
expected for the thermodynamic limit. Instead of this
singularity, we observe a finite peak which becomes
sharper for lower values of t↑/t↓, since the effective
model becomes more Ising-like.

There is a substantial difference in CV between
the symmetric and the AHM models at low tempera-
tures. In the symmetric case, the low temperature be-
havior is governed by the two-dimensional magnon
spectra which leads to CV ∝ T2, while for t↑/t↓ 6= 1
a gap opens in the magnon spectrum leading to an
exponentially activated behavior of CV . Those details
can not be clearly seen in Fig. 1 because we are unable
to study the system at low enough temperatures.

At small doping away from half-filling, e.g., n =
0.9, the low temperature peak at t↑/t↓ = 1 substan-
tially diminishes, while for t↑/t↓ < 1 it moves toward
smaller temperatures indicating a softening of the low
energy collective excitations. At even larger dopings,
e.g., n. 0.7, the two peaked structure completely dis-
appears. In the symmetric limit, CV approaches the
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result for noninteracting electrons, while for t↑/t↓ 6= 1
an asymmetric peak at T/t↓ ∼ 0.25 develops in the
specific heat and at even lower temperatures expo-
nentially approaches zero. This rather unexpected
difference is caused by the fact that doping away
from half-filling turns the asymmetric system into a
band ferromagnet where ferromagnetism is in addi-
tion driven by the strong Coulomb repulsion Ufd.

A more detailed understanding of the behavior
of our model for various band fillings can be gained
by inspecting the magnetization M = (n↑ − n↓)/2 as
a function of filling n which is presented in Fig. 2.
M is zero for any filling in the symmetric limit. In
contrast, a finite magnetization is obtained by doping
away from half-filling the asymmetric system (t↑ 6=
t↓). As the band filling decreases, a larger number of
spin-up electrons is removed from the system because
of highier density of states of the spin-up polarization
band at the Fermi level. The effect of the interaction at
smaller fillings n < 1 is to increase the magnetization
in comparison to its noninteracting value. For Ufd = 0,
the magnetization peaks at n∗ = 0.5 with a maximum
value of M(n = 1/2, T = 0)=n/2= 0.25. At finite Ufd,
for all the interacting cases presented in Fig. 2, the
peak value M(n∗) exceeds the noninteracting limit. If
t↑ = 0, M(n) nearly follows its saturated value M =
n/2, presented with a tiny dashed line, in the interval

Fig. 2. Magnetization M (per unit cell) versus n for Ufd = 8, Bz = 0,
various temperatures T and different ratios of t↑ < t↓. Tiny dashed
lines represent T = 0 and Ufd = 0 saturation limit M= n/2.

0.6.n. 0.7. Therefore, even though ferromagnetism
in the AHM at n < 1 is a band effect, finite Coulomb
repulsion Ufd enhances the magnetization. This is an
expected behavior, since by transferring charge from
the band with lower occupancy to the more populated
one the interband Coulomb energy is reduced.

3.2. Thermodynamics at Finite Bz

In this subsection we focus on the thermody-
namic properties at half-filling, n = 1, as a function
of the pseudomagnetic field Bz = ε f − εd, which in
the original version of the extended FKM (Eq.(1))
represents the energy difference between the centers
of the f and d bands. Starting with CV(T), shown in
Fig. 3, we first notice that the effect of Bz on the low-
T behavior of CV(T) changes substantially between
the symmetric and the asymmetric limits. While the
effect of increasing Bz is small for t↑ = t↓, a much
more pronounced change is observed in the asym-
metric case. In particular, increasing Bz for the sym-
metric case in the interval 0 ≤ Bz < t↓ only diminishes
slightly the low-T peak. In contrast, if t↑ = 0.3t↓ the

Fig. 3. Specific heat CV (per unit cell) versus T for Ufd = 8, n = 1,
various values of Bz and different ratios of t↑/t↓.
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low-T peak moves toward smaller temperatures and
broadens in the regime Bz. 0.8t↓. For Bz& 0.8t↓ only
a broad shoulder remains visible. For an even smaller
ratio of the hoppings, t↑ = 0.1t↓,0, and Bz& 0.4t↓, the
low-T peak either completely disappears or moves to
temperatures which are not accessible to our calcu-
lations. CV(T) is small and nearly T- independent at
low temperatures, 0.05 < T/t↓ < 0.5, in the interval
0.4 < Bz/t↓ < 0.6. Such a behavior indicates that the
entropy increases at low-T. As we can see in Fig. 4,
the magnetization changes very rapidly in this interval
of magnetic fields. For larger values of the magnetic
field, Bz& 0.8↓, the low-T behavior of CV(T) shows
again the activated behavior of a gaped systems. In
terms of the original language, this is the band gap
originated by the complete transfer of charge from
the d to f band. In terms of the spin variables, the
magnetization is saturated (M = n/2) and there is an
energy gap proportional to |Bz− Bc

z| (Bc
z is the critical

field that saturates the magnetization) [4].
In Fig. 4, we also show M (T, Bz) for differ-

ent values of asymmetry ratio t↑/t↓ and n = 1. Note
that for Bz = 0, M(T) = 0 in all the cases. While at
high temperature, i.e., T/T↓ > 1, M(T, Bz) shows a

Fig. 4. Magnetization M (per unit cell) versus T for Ufd = 8, n = 1,
various values of Bz and different ratios of t↑/t↓.

small variance between systems with different val-
ues of t↑/t↓, the change is much more pronounced
at small temperatures. In the symmetric limit, M(T,
Bz) changes nearly linearly with increasing Bz. Away
from this limit, a strong nonlinear behavior resem-
bling a meta magnetic transition is observed at low
temperatures for t↑/t↓ ∼ 0.3. This behavior is more
pronounced near t↑ ∼ 0. A meta magnetic transition
in the AHM model corresponds to a valence tran-
sition in the extended FKM. Because of our limi-
tation to small system sizes that is reflected in our
inability to extend the calculation to smaller temper-
atures, we are unable to determine weather the jump
in M(T→ 0, Bz) is discontinuous for t↑ < t↓ or is just
a rapid crossover. Quantum Monte Carlo simulations
of the XXZ model [14] in very large clusters show that
there is a discontinuous change of the magnetization
as a function of Bz. This is then the expected behavior
for the strong coupling limit of our AHM.

4. CONCLUSIONS

We have studied the thermodynamic properties
of the AHM as a function of T, n, and Bz. In particular,
we followed the change of the thermodynamic prop-
erties as the system evolves from its symmetric limit
represented by the original Hubbard model (t↑ = t↓)
to the other limiting case, t↓ = 0, which corresponds
to the original FKM for spinless fermions. The re-
sults of CV(T) for n = 1 and Bz = 0 always show two
peaks: a low-T peak associated with low energy collec-
tive spin excitations (orbital excitations in the original
language) and a high energy peak that corresponds to
charge excitations. More pronounced differences be-
tween the symmetric and asymmetric regimes appear
in the specific heat away from half-filling. This effect is
related to the band ferromagnetism produced by the
different hopping amplitudes of each spin polariza-
tion which, in addition, is enhanced by the presence
of a strong Coulomb interaction. The enhancement
of ferromagnetism by Ufd is clearly seen in the M(n)
plots where the saturation value of the magnetization
(M = n/2) is reached in a wide interval of densities
and temperatures.

The response of the system to the external mag-
netic field Bz or the shift of the f level position in the
original FKM strongly depends on the ratio of t↑/t↓
as well. In the symmetric limit only small changes are
seen in CV as Bz is varied in the interval 0 < Bz/t↓ < 1.
In the asymmetric case, Bz is much more effective in
softening and suppressing collective spin excitations
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causing the shift and suppression of the low-T peak
of CV , which is accompanied by the rapid change of
the magnetization with increasing Bz. Rapid change in
magnetization represents a valence transition driven
by the shift of the f level position in the original FKM.
Our results indicate that this valence transition exists
in the extended FKM for the whole range of hopping
ratios t↑ < t↓ and disappears when this ratio becomes
equal to one.
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