
Journal of Superconductivity: Incorporating Novel Magnetism, Vol. 13, No. 6, 2000

Mobile Bipolaron—Strong Coupling Approach

J. Bonča1 and S. A. Trugman2

We explore the properties of the bipolaron in a 1D Holstein–Hubbard model with dynamical
quantum phonons. We apply strong coupling theory to investigate the intersite bipolaron.
We investigate the influence of the Hubbard interaction on the bipolaron binding energy,
effective mass, and phase diagram. We compare our analytic results to recent numerical
calculations [1]. In the intermediate and strong coupling regimes, a bipolaron is stable beyond
the naive stability limit U0 � 2�g2. The intersite bipolaron has a significantly reduced mass
compared to the single site bipolaron, and is stable in the strong coupling regime up to
Uc � 4�g2.
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Although there is a generally accepted belief
that in high-Tc superconductors (HTSC) a domi-
nantly electronic interaction is responsible for the
unusually high transition temperatures, the interplay
between the electron–phonon interaction and the
strong electron–electron interaction nevertheless
plays a significant role in determining the physical
properties of these strongly correlated systems [2,3].
Although theoretical study of lattice effects in
strongly correlated materials is steadily growing
[4–6], understanding of the influence of the Hubbard
interaction U on bipolaron formation is still incom-
plete. In particular, it is known that in the strong
coupling regime bipolarons have an extremely large
effective mass [1,7,8], which represents one of the
main objections [8,9] against the theory of small bipo-
laron superconductivity [10]. Recent calculations in
the adiabatic (static phonon) limit show that a first-
order phase transition exists between the on-site (S0)
and intersite (S1) bipolaron [11]. The properties of
the S1 bipolaron were also investigated by an approx-
imate variational method [12].

Our recent numeric calculations [1] based on a
new numerical approach [14,15] show that the effec-
tive mass of S1 can be many orders of magnitude
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smaller than the S0 bipolaron mass. In this article,
we focus on strong coupling theory applied to the S0
and the intersite S1 bipolaron. We show that the
effective S1 bipolaron mass scales with the same ex-
ponent—that is, e�g2

—as the polaron mass and that
the stability criteria of S1 bipolaron in strong coupling
limit has a simple asymptotic form: Uc � 4�g2. With
dynamic quantum phonons, there is a crossover
rather than a phase transition between the S0 and
the S1 regimes.

We consider the Holstein–Hubbard Hamilto-
nian [13]

H � �t �
js

(c†
j�1,scj,s � H.c.)

�g� �
js

c†
j,scj,s(aj � a†

j ) � � �
j

a†
j aj � U �

j
nj�nj�

(1)

where c†
j,s creates an electron of spin s and a†

j creates
a phonon on site j. The last term in Eq. (1) represents
the on-site Coulomb repulsion. We consider the case
in which two electrons with opposite spins couple to
dispersionless optical phonons.

We start by applying second-order strong cou-
pling perturbation theory to the S0 bipolaron. Fol-
lowing Lang and Firsov [16], we use the canonical
transformation H̃ � esHe�S, where S � q �jsnjs(aj �
a†

j ). The transformed Hamiltonian takes the follow-
ing form:
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H̃ � H0 � V

H0 � � �
j

a†
j aj � �g2 �

j
nj � (U � 2�g2) �

j
nj�nj�

V � �te�g2 �
js

(c†
j�1,scj,se�g(a†

j�1�a†
j )eg(aj�1�aj) � H.c.) (2)

where nj � n� � n�. The first term in H0 is the energy
of the phonon excitations, and the second is the en-
ergy gained by the oscillator that is displaced by the
force of the electron. In the limit where g � 0 and
� � � while �g2 remains a constant, the phonon
interaction is instantaneous, and the Holstein–
Hubbard model maps onto a negative U Hubbard
model with an effective Hubbard interaction Ũ �
U � 2�g2. In 1D, a bound state exists as long as
Ũ � 0.

In the strong coupling limit, V in Eq. (2) is con-
sidered a perturbation. It represents the hopping of
electrons, including possible creation and destruction
of phonon excitations. The S0 state �0 � c†

0�c†
0��0�

has the lowest energy to zeroth order in V when
Ũ � 0. In perturbation theory to second order, the
energy of the S0 bipolaron is computed as an infinite
sum of diagrams (Fig. 1).

ES0
bi (k) � U � 4�g2

� 4t2e�2g2 ��
n,m�0

g2(n�m)

n!m!
1 � (�1)n�m cos k

Ũ � (n � m)�
(3)

In the first step, one of the two electrons hops from
the original doubly occupied site to a neighboring
site, creating m and n additional phonons on the
original and neighboring site, respectively (see Fig.
1). In the next step, there are two distinct processes:
(a) the original electron hops back, erasing the cre-
ated phonon excitations; and (b) the second electron
follows the first, erasing the phonons. Although in
both cases the system returns to the original S0 bipo-
laron configuration, there is an important difference
between the two sets of diagrams. In the second case,
the S0 bipolaron is shifted by one lattice spacing.
Those diagrams lead to dispersion [k dependence in

Fig. 1. Diagrams that contribute to second-order perturbation the-
ory for the S0 bipolaron.

Eq. (3)], which further leads to the effective mass
renormalization. Note that there is an additional mi-
nus sign in this case that is responsible for a large
effective mass (see below).

To calculate the binding energy � � Ebi � 2Epo,
we also compute the polaron energy up to second
order in V

Epo(k) � ��g2 � 2t cos ke�g2

�
2t2e�2g2

� �
n�1

g2n

nn!
(2n � cos (2k)) (4)

The energy minimum is in both cases at k � 0. The
effective mass m�1 � �2E(k)/�k2 of a polaron and a
bipolaron can be obtained in an analytical form from
Eqs. (3,4) by calculating the infinite sums [1,6,7]

m�1
po � 2te�g2 �1 �

4t
�

e�g2
(Ei(g2) � � � ln g2)� (5)

mS0�1

bi �
42

�
e��2g2�

Ũ

�
ln 2g2� �� ��

Ũ
��� � ��

Ũ
�

, 2g2��
(6)

where � is Euler’s constant, Ei(x) is the exponential
integral, and �(x) and �(a, x) are gamma and incom-
plete gamma functions, respectively.

Taking the asymptotic limit (g � �) in Eqs. (5,
6), one finds (see also Ref. [7])

m�1
po � 2t �1 �

4t
�g2� e�g2

(7)

m�1
S0 �

	�4t2

�g �1 �
1

	�g
� e�4g2

(8)

where the limit U � 0 was taken in Eq. (8). Clearly,
at large g, ms0 is roughly a factor exp(3g2) larger
than mpo.

One would naively expect that within the strong

Fig. 2. Pictorial representation of the secular equation �Vij � �ij

ES1
bi � � 0. Taking into account translation invariance, we fix one

of the spins at the origin (site 0). Dots numbered 
�3, . . . , 3�
represent functions �i , Vi,j and are matrix elements up to second
order in strong coupling theory. The function �0 enters the calcula-
tion only through the virtual process that contributes to V�1,1 .
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coupling approximation, a bipolaron unbinds when
Ũ 	 0. This is false: A bound bipolaron may exist
even for Ũ 	 0. In this regime, a set of degenerate
states �i � c†

0�c†
i��0� for i � 0, written in a transla-

tionally invariant form, represents states with mini-
mum energy of H0. The energy of an S1 bipolaron is
obtained by solving the secular equation �Vij � �ij

ES1
bi � � 0, where matrix elements Vij � ��i�V��j� are

calculated up to second order in V. The secular equa-
tion can be viewed as a tight-binding model in which
degenerate wave functions ��i� are connected with
off-diagonal matrix elements (Fig. 2).

Vi,i�1 � � (1 � eik) te�g2
(9)

Vi,i�2 � � (1 � e2ik) t 2e�2g2 ��
n�1

g2n

n!
1

n�
,

� � (1 � e2ik)
t2

�g2 e�g2
(10)

V1,�1 � �t2e�2g2 ���
n�1

(2g2)n

n!
2e�ik

Ũ � n�

�
g2n

n!
1 � e�2ik

Ũ � n��� �
2t 2

U
e�ik (11)

On-site energies of the tight-binding model in Fig.
(2) are diagonal matrix elements

Vi,i � �4t2e�2g2 ��
n�1

(2g2)n

n!
1

n�
� �

2t2

�g2 (12)

V1,1 � �2t2e�2g2 ���
n�1
�(2g2)n

n! � 1
n�

�
1

Ũ � n��
�

g2n

n!
cosk
n� ��

1
Ũ�� �t2 � 1

�g2 �
2
U� (13)

The forms for general site i are used except where
specific forms are listed for sites i � 1, �1. The ap-
proximate expressions of the above matrix elements
are valid in the limit g � �. Note that the strong
coupling expansion is an expansion in t2/�g2, and not
in t exp(�g2), as one would naively expect from the
first-order expression. Eigenvectors of the secular
equation represent the wavefunction of the S1 bipo-
laron written in the basis �i.

The main source of the binding in this formalism
arises because the overlap between the two states
where electrons are on neighboring sites in different
spin configurations V1-1 is much larger than all other
off-diagonal matrix elements. Although in the limit
when g � �, V1�1 � �t2/U, the second largest (first-
order) matrix elements Vi,i�1 � t exp(�g2) for i � 
0,

�1�. In the singlet configuration, �S�0
1 � (�1 � ��1)/

	2, the diagonal correction to the energy is given by
V11 � V1�1. There is also a contribution to V11 that
resembles a retardation effect, in which one electron
hops, creating one or more phonon quanta on the
site that it has left, and then the second electron
follows, absorbing phonons. This effect, however, de-
creases with g exponentially as t2/(�g2) exp(�g2), and
is not strong enough to bind two polarons in the
triplet configuration.

The effective S1 bipolaron mass is expected to
be much smaller than mS0

bi . Approximating the S1
bipolaron wave-function with only �S�0

1 (omitting the
exponential tail), the effective mass is

m�1
S1 �

2t2e�2g2

� �2�
Ũ

� �
n�1

g2n

n! � 2
Ũ/� � n

�
1
n��

� 2t2e�g2 � 2
U � �g2 �

1
�g2� (14)

As in the case of Eqs. (5, 6), mS1 can also be expressed
in terms of gamma and exponential integral func-
tions. However, the second approximate form in Eq.
(14) provides greater physical intuition. There are
three distinct processes contributing to mS1: an S1 pair
can move by one lattice site through an intermediate
doubly occupied state with n phonons [terms that
contain U in Eq. (14)], or through an intermediate
state with only phonon degrees of freedom (terms
without U). In the first process, the spins either ex-
change or do not exchange. The main difference be-
tween mS0 and mS1 is that the latter is of the order of
the polaron mass.

In Fig. 3, we present numerical results for bind-
ing energy � � Ebi � 2Epo vs. U. For a discussion of
numeric results in the weak and intermediate cou-
pling regimes, see Ref. [1]. Comparison with strong
coupling results for g � 2 using Eqs. (3, 4) and pertur-
bation theory that involves states �i shows good
agreement with numeric results.

Figure 4 plots the bipolaron mass in units
of the polaron mass [1]. We plot the ratio Rm �
mbi/(2 * mpo) vs. U for different values of � and g.
At fixed � � 1, the bipolaron mass ratio increases
by several orders of magnitude with increasing g at
U � 0. The increase can be understood within the
strong coupling theory.

Increasing U has a dramatic effect on the mass
ratio Rm in the S0 regime. A sharp decrease of Rm is
observed. Note that the scale in Fig. 4 is logarithmic.
Near the strong coupling regime (g � 2) and for small
U, good agreement is found between the numerical
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Fig. 3. Binding energy � vs. U, where � � 0 for a bound state.
Thick lines are numerical results (Nh � 18 generations used in the
variational space). Thin lines are strong coupling expansion results
for g � 2, � � 1 obtained from a) Eqs. (3, 4) and b) including
degenerate states �i as well as �0 . Hopping t � 1 in this and all
subsequent numerical calculations.

and the strong coupling result obtained from Eqs. (5,
6). The difference between these results increases as
U approaches U0 � 8, where the perturbation theory
based on the S0 bipolaron breaks down. In the S1
regime, for U 
 U0, Rm is small, as predicted by the
strong coupling result.

We conclude with the phase diagram Uc(g)
shown in Fig. 5 at fixed � � 1. Numeric results, shown

Fig. 4. The mass ratio Rm � mbi/(2 � mpo) vs. U. Numerical results
are shown as thick lines. The thin line is the strong coupling
expansion result.

Fig. 5. Phase diagram calculated at � � 1. Numerical results are
represented by full circles. The dashed line represents the limit
of stability of a S0 bipolaron in the strong coupling limit, i.e.,
Uc � 2�g2. The dot-dashed line represents the degenerate strong
coupling perturbation result that asymptotically approaches
Uc � 4�g2.

as circles, indicate the phase boundary between two
dissociated polarons and a (bipolaron) bound state.
The dashed line, given by U0 � 2�g2, is a reasonable
estimate for the phase boundary at small g. At large
g, the dashed line roughly represents the crossover
between a massive S0 and lighter S1 bipolaron. The
S1 region grows with increasing g. The dot–dashed
line is the phase boundary between S1 and the un-
bound polaronic phase, as obtained by degenerate
strong coupling perturbation theory. Numeric results
approach this line at larger g. The dashed line asymp-
totically approaches Uc � 4�g2, which can be under-
stood within the strong coupling approach: Because
all the off-diagonal matrix elements except V1�1 scale
as exp(�g2), we can work in the static limit where
the condition for a bound state is given by V11 �
V1�1 � Vii. Keeping only terms of the order t2/�g2

and setting k � 0, the matrix elements can be ex-
pressed as V11 � Va � Vb, V1�1 � Vb and
Vii � 2Va; i 
 1, with

Va �
�2t2e�2g2

� �
n�1

(2g2)n

n!n
� �

t2

�g2 (15)

Vb �
�2t2e�2g2

� �
n�0

(2g2)n

n!
1

Ũ
�

� n
� �

2t2

U
(16)



Mobile Bipolaron—Strong Coupling Approach 1003

In the large-g limit, this yields the inequality U �
4�g2.

In conclusion, using strong coupling perturba-
tion theory and precise numerical calculations [1], we
demonstrate that near the strong coupling limit a
mobile S1 bipolaron exists with an effective mass of
the order of a polaron mass. The wavefunction of the
intersite S1 bipolaron is a spin singlet with extended
s-wave spatial symmetry. Taking into account the
asymptotic stability criterion Uc � 4�g2, it is clear
that a triplet S1 bipolaron that corresponds to the
U � � solution is not bound. In the static limit it
can be shown that bound states of three or more
polarons are not stable in the S1 regime, thus ruling
out phase separation in the strong coupling regime
of the Holstein–Hubbard model.
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