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Numerical analysis of the simplest odd-numbered system of coupled quantum dots reveals an interplay
between magnetic ordering, charge fluctuations, and the tendency of itinerant electrons in the leads to screen
magnetic moments. The transition from local-moment to molecular-orbital behavior is visible in the evolution
of correlation functions as the interdot coupling is increased. Resulting Kondo phases are presented in a phase
diagram which can be sampled by measuring the zero-bias conductance. We discuss the origin of the even-odd
effects by comparing with the double quantum dot.
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One of the main notions in molecular physics is the for-
mation of extended molecular orbitals when atoms are
brought together to bind into a molecule. Using atomic ma-
nipulation capabilities of modern low-temperature scanning
tunneling microscopes, the delocalization of electrons can
now be directly studied by adding individual atoms to a
molecule-like chain of atoms on a flat substrate.1 Alterna-
tively, one can study the transition from localized to ex-
tended behavior in the systems of coupled quantum dots,
which can also be considered as a variety of artificial mol-
ecules. Unlike in atomic chains, bonding in coupled dots can
be continuously adjusted using the pinch gate electrodes.2

The Kondo effect is a many-body phenomenon due to
interaction between a localized spin and free electrons. It
leads to an increased conductance through nanostructures
and it was observed in single quantum dots �QD�.3 The con-
ductance as a function of temperature, gate, and bias voltages
is in agreement with theoretical predictions that such dots
behave rather universally as single magnetic impurities4 and
can be modeled using single impurity Anderson and Kondo
models. By analogy, the Kondo effect in multiple-dot sys-
tems can be described using multiple-impurity Anderson
model.

Measurements of the transport properties of multiple QD
systems indicate that the conductance is significantly differ-
ent for even and odd number of dots.5 Double QD �DQD�
systems are the simplest representation of the two-impurity
Anderson model. Their phase diagram features single-
impurity Kondo effect, two-electron Kondo effect and a
suppressed-conductance state due to antiferromagnetic
�AFM� coupling between the dots.6,7 Good understanding of
these different regimes was obtained using various numerical
techniques.8–11

Much less is known about odd-number systems of
coupled QD. Even the properties of the triple quantum dot
�TQD�, the simplest member of the family, have not been
systematically resolved to date. There is clearly a regime of
Coulomb blockade at intermediate temperatures.12,13 Some
properties of the Kondo regime at low temperatures are
known from previous studies using the perturbation theory,14

the numerical renormalization group,15 scaling techniques,16

the slave-boson mean-field theory,17 mapping to an effective

site,18 and embedding.19 Some of these methods lead to con-
flicting results for the same type of TQD, so further studies
using reliable numerical techniques are required.

In this paper, we study the TQD using two complemen-
tary numerical methods: the constrained path Monte Carlo
method20 �CPMC� and the Gunnarsson-Schönhammer varia-
tional method �GS�.21 The conductance is calculated using
the sine method.22 We analyze the low-temperature phases of
the TQD embedded in series between two metallic leads,
Fig. 1.

The TQD is modeled as a cluster of three equal QD de-
scribed by Hamiltonians Hi=���dni�+Uni↑ni↓, i=1,2 ,3,
where the on-site energy �d can be varied using the gate
voltage and U is the electron-electron �e-e� repulsion. The
dots are interconnected with hopping matrix element t� and
are symmetrically coupled to the leads with hopping matrix
element t�. We choose the chemical potential in the middle of
the band, so that the model is particle-hole �p-h� symmetric
for �d+U /2=0.

For large t� /U, the system is in the molecular-orbital
Kondo regime when occupancy �n�=�i��ni�� is odd. In the
U→0 limit, the conductance through the TQD as a function
of the gate voltage exhibits three peaks corresponding to
resonant tunneling through distinct noninteracting levels:
nonbonding, bonding, and antibonding molecular orbitals
with energies �±,0= ±�2t� ,0 and hybridizations �±,0

= 3
8� , 1

2�, where �=2t�2 / t. When interactions are switched
on, the middle peak remains at �d+U /2=0, while the side
peaks are symmetrically shifted to �d+U /2� ± ��2t�+ 5

16U�
+O�U2 / t�� in the molecular limit �→0. The U term is a
consequence of the interorbital repulsion. The intraorbital e-e
repulsion is then given by U±� 3

8U+O�U2 / t�� and U0

� 1
2U+O�U3 / �t��2	. The Kondo temperatures T±,0 for levels

FIG. 1. �Color online� The triple quantum dot embedded be-
tween two leads.
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��, 0� can be determined from the Haldane formula23 for the
single QD using the corresponding parameters U±,0.

The zero-temperature phase diagram of TQD exhibits sev-
eral phases with enhanced conductance, Fig. 2. In the
molecular-orbital Kondo regime �shaded regions labeled
“M1” and “M3”� the conductance is G /G0�0.5 for low
temperatures T�T±,0, while for intermediate temperatures
T±,0�T�� the system is in the Coulomb blockade regime
with G�0 except along the border lines. Lightly shaded
stripes of width �� /2 represent the transition regions, where
G /G0�0.5. Phase “M2” is a nonconductive even-occupancy
spin-zero phase, where two electrons occupy the same mo-
lecular orbital.

In Fig. 3 we present the zero-bias conductance G along
with the total occupancy �n� as a function of the gate voltage
for a range of t� and for fixed U / t=1 and � / t=0.18, calcu-
lated with various methods as discussed below. For t� /U
�0.2, the system is in the molecular-orbital regime. As the
occupancy monotonically decreases from 6 �full TQD� to 0
�empty TQD�, the conductance exhibits well resolved peaks
when occupancy is odd and valleys when occupancy is
even.3

As the TQD coupled to the leads is Fermi liquid,15 the
zero temperature linear conductance is given by the sine for-
mula derived in Ref. 22, G=G0 sin2� N

4t �E0−E	�	. Here G0

=2e2 /h and E0,	 are the ground state energies of a large
N-site auxiliary ring with embedded interacting system, with
periodic and antiperiodic boundary conditions, respectively.
Ground state properties are determined using CPMC and GS
methods.

In the CPMC method,20 the ground state wave function


0� is projected from a known trial function 

T� using a
branching random walk that generates an overcomplete
space of Slater determinants 
�� and can be written as 

0�
=��c�
��, where c��0. To completely specify 

0�, only
determinants satisfying �
T 
���0 are needed, because 

0�
resides in either of two degenerate halves of the Slater deter-
minant space separated by a nodal plane. In this manner, the
minus-sign problem is alleviated. Extensive testing has dem-

onstrated a significant insensitivity of the results to reason-
able choices of 

T�.20,24 The CPMC calculations were per-
formed on a ring of 100–180 sites. As the number of sites
with interaction is small, CPMC produces ground state ener-
gies with excellent precision, typically of the order of
E /E=10−6.

In the GS method, the ground state energies are deter-
mined as the minimum energy of the variational wave func-

tion 

�=��=1
64 c�P�
0̃�, where P� are the projection operators

for the three sites of the molecule, e.g., P1=�i,��1−ni,��,
P2=n1,↑�1−n1,↓��i=2,3,��1−ni,��, ¼, P64=�i,�ni,�. The

vacuum state 
0̃� corresponds to the Fermi sea of a noninter-

acting Hamiltonian H̃ with renormalized parameters. The
variational wave function is exact in the U→0 and t�→0
limits and the test results for a single Anderson site perfectly
match the exact Bethe Ansatz results.22,25,26

For t� /U�0.2 the conductance obtained with CPMC and
GS methods shows good agreement. For lower t� /U the
CPMC method is no more applicable since due to the com-
putational restriction on the system size its energy resolution
is insufficient to describe the small Kondo scale.27 In that
range we thus rely only on the GS method. At the p-h sym-
metric point we find perfect conductance,15 not a dip.19

The local regime emerges when t� /U decreases below
�0.2. The orbital description breaks down as the orbitals
start to overlap which leads to qualitative changes in the
system properties. The relevant interaction becomes U rather
than U±,0. As presented in Figs. 3�d� and 3�e�, G /G0�1 near
the symmetric point �d+U /2=0, while in the charge transfer
region, 
�d+U /2
�U /2, the conductance exhibits humps
separated by dips. Due to larger U, the Kondo scale in the

FIG. 2. �Color online� M1, M3: molecular-orbital Kondo regime
with �n��1,3. M2: nonconductive even-occupancy state. L3: local
Kondo regime with �n��3. TSK: two-stage Kondo regime. K2:
local double Kondo regime with �n��2.

FIG. 3. �Color online� G /G0 and �n� vs �d+U /2 �proportional to
the gate voltage� for various interdot hopping t�. Note enhanced
energy scale in panels �d� and �e�. Error bars of CPMC are smaller
than the size of circles. For comparison, we also show the Hartree-
Fock �HF� as well as U=0 results.
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local regime decreases. Note that for t� /U�0.2 the HF cal-
culation starts to deviate, signaling the onset of the strong
coupling regime. For even lower t� /U the HF curves differ
qualitatively from correct results.

The relation between the DQD and the TQD in the local
regime is first considered for �n��2. This corresponds to the
p-h symmetric point of the DQD, where the two relevant
energy scales are known6 to be the exchange energy J
=4�t��2 /U and the Kondo temperature T1K=TK�U ,�1�, with
�1=� /2, which is the hybridization of a single impurity
coupled to one lead.23 In TQD, two electrons can reduce
their energy by hopping within the TQD, therefore instead of
J the relevant scale is the kinetic energy linear in t�. The
transition between the phase M2 to the phase K2 �see Fig. 2�
occurs when �2t��2T1K. The phase K2 is a double Kondo
phase, where the spin of each electron is screened by elec-
trons from the nearest lead.

The behavior of the TQD near the p-h symmetric point,
�n��3, is different from the behavior of the DQD near its
p-h symmetric point, �n��2, due to the different properties
of integer and half-integer spin states. It is also different
from the behavior of the DQD near its charge-transfer points,
�n��1,3, which exhibit Kondo effect only for large t� /U.
The TQD is fully conducting at the p-h symmetric point for
any t� and as t� /U is reduced the system goes continuously
through three different Kondo regimes. The molecular-
orbital M3 regime has already been discussed. For low t� /U
there are two different regimes of local Kondo physics. �i� In
the local Kondo L3 regime for J�2T1K, the TQD is antifer-
romagnetically rigid and electrons form an ordered chain
with spin 1/2 that exhibits the usual Kondo effect. Transition
between molecular-orbital M3 and local L3 is quite soft and
determined by the competition between kinetic �t�� and mag-
netic �J� scale. �ii� In the two-stage Kondo TSK regime for
J�2T1K, each side QD �i=1,3� couples with �1 to the near-
est lead and their spin is screened at T�T1K, while due to
very weak coupling the remaining spin is screened at much
lower temperature TTSK�T1K exp�−cT1K /J� with c�1.10

In Table I we give quantitative relations for lines between
different phases of the system. Boundaries between phases
M1, M2, M3, and L3 are determined in the molecular

�→0 limit to the lowest nontrivial order in U �or t��. The
expressions are in excellent agreement with numerical re-
sults. We note that all transitions are smooth �crossovers� and
there are no abrupt phase transitions.

The finger-print of the Kondo physics are not only the
broadened conductance peaks, but also the formation of a
local moment in the TQD, which is then screened by the
electrons in the leads. In the left panels of Fig. 4 we present
�Sz

2�, where Sz=�i=1
3 Siz is the z component of the total spin of

the TQD. For large t�, formation of local moment �spin dou-
blet� is evident, but the spin is not saturated, 4�Sz

2��1. For
t�→0 and �n��2, increased 4�Sz

2��1 illustrates formation
of the K2 phase with large local moment and the absence of
intersite spin correlations. The two electrons are relatively
independent and therefore total spin is enhanced �note that
for two uncorrelated spins 4�Sz

2�=2�. Each electron is
coupled by the Kondo mechanism to the adjacent lead.

Spin-spin correlation functions �SizSjz� are shown in the
right panels of Fig. 4. For decreasing t� and �n��3, increas-
ing diagonal ��Si

z�2� represent formation of local moments on
separate dots. At the same time, neighboring spins tend to
antialign, �S1zS2z��0, while left-most and right-most spins
align �S1zS3z��0. This demonstrates the formation of an an-
tiferromagnetically ordered chain when we enter the L3
phase.

Charge fluctuations n2=Š�n− �n��2
‹ and the correspond-

ing charge susceptibility �c=−�	� /4���n� /��d exhibit
double peaks at positions of the conductance peaks as an
additional characteristic of the Kondo effect26 and start to
build a dip in the symmetric point for t� /U�0.2 �not shown
here�. This additionally signals the transition from orbital to
local Kondo regime and is in agreement with local spin for-
mation shown in Figs. 4�d� and 4�e�.

In summary, we have determined the phase diagram of the

TABLE I. Definitions of boundaries and crossover regions be-
tween various phases in Fig. 2. Here �=�d+U /2 and J=4�t��2 /U.

Phase 1 Phase 2 Condition

Empty M1 ��U /2+�2t�
M1 M2 ���U /2+3�t��2 /U, t��U

��U /8+�2t�, t��U 
M2 M3, L3 ���U /2−�2t�+3�t��2 /U, t��U

��U�1/4+
3

512
�U / t��2�, t��U 

M3 L3 �2t��J

M2 K2 �2t�+3�t��2 /U�2 min�T1K ,�1�
L3 TSK J�2T1K

FIG. 4. �Color online� Moments �Sz
2� vs �d+U /2, left panels

�a1�–�e1�. Spin-spin correlation functions �SizSjz� for �ij�= �11�,
�22�, �12�, and �13� as calculated from the GS wave function, right
panels �a2�–�e2�.
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TQD. For strong interdot coupling, the system behaves as an
artificial molecule. The extended “molecular orbitals” are
filled consecutively and the system exhibits the usual Kondo
effect when the number of confined electrons is odd. For
weak interdot coupling, local spin behavior is observed. The
crossover from extended to local Kondo physics is illustrated
by the smooth evolution of the spin-spin correlation func-
tions. In the vicinity of the p-h symmetric point, the TQD
tends to an antiferromagnetically ordered state when the in-
terdot coupling is decreased. For extremely weak coupling,
the Kondo screening of local moments occurs in two stages.
In the charge transfer regime the left and right sites tend to
form two relatively independent Kondo correlated states.

We expect that in the limit of extremely weak coupling,

other complex phases might exist in the immediate vicinity
of the �d=0 point, where occupancy of the central dot
changes abruptly. Furthermore, we believe that the properties
of all n dot systems �with n odd� are similar at the p-h sym-
metric point: as the interdot coupling is decreased, the
molecular-orbital Kondo regime Mn is followed by an anti-
ferromagnetically locked Kondo regime Ln and then by a
two-stage Kondo regime.
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