Yukawa sector in SO(10)

Alejandra Melfo CFF, Mérida, Venezuela IJS, Ljubljana, Slovenia

IN COLLABORATION WITH.

Goran Senjanovic (ICTP)

Borut Bajc (IJS)

Francesco Vissani (LNGS)

Alba Ramírez (CFF)

Charanjit S. Aulakh (P.U.)

Outline

- GUTs and neutrino mass
- Intermediate scales
- The see-saw and the Yukawa sector
- Non supersymmetric models
- The minimal SUSY model
- Departing from the minimal

GUTs and neutrino mass

SO(10): all fermions in 16 representation

SU(5) fermions: in $\underline{5}$ and $\underline{10}$ representations

 $\Rightarrow \nu_R$

is a singlet

- adding a singlet to the theory gives a lot of new parameters
- SU(5) breaks directly to SU(3)xSU(2)xU(1)

- no intermediate scales

... and $m_{
u}$ calls for intermediate scales

The (B-L) breaking scale

Best idea for small m_{ν} : the see-saw mechanism

give ν_R a mass by breaking B-L at a large scale M_R

$$\langle \Delta \rangle \nu_R^T i \sigma_2 \nu_R$$

$$\langle \Delta \rangle = M_R$$

$$m_{\nu} = \frac{M_W^2}{M_R}$$

$$m_{\nu} \sim 0.01 eV$$

$$m_{\nu} \sim 0.01 eV$$
 $M_R \sim 10^{13} GeV$

An intermediate scale would be convenient (not indispensable)

0.06 0.07 0.00 0.06 0.04 0.08 0.02 0.07-0.00 0.06-0.04 0.08

SUSY: ONE-STEP UNIFICATION

$$\frac{1}{\alpha_i(M_W)} = \frac{1}{\alpha_U} - \frac{b_i}{2\pi} \ln(M_G/M_W)$$

$$M_G \sim 10^{16} GeV$$

NON-SUSY: INTERMEDIATE SCALE

$$\frac{1}{\alpha_i(M_W)} = \frac{1}{\alpha_U} - \frac{b_i}{2\pi} \ln(M_R/M_W)$$
$$-\frac{b_i'}{2\pi} \ln(M_G/M_R)$$

Metermined by the particle content

SO(10) symmetry

SO(10)

Many possible intermediate scales

$$M_X \Downarrow \langle p \rangle$$

GUT scale

$$SU(4)_C \times SU(2)_L \times SU(2)_R$$

$$M_{PS} \Downarrow \langle a \rangle$$

$$SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$$

$$M_R \Downarrow \langle \sigma \rangle$$
 see-saw scale

$$SU(3)_C \times SU(2)_L \times U(1)_Y$$

three types of see-saw

TYPE I (renormalizable version)

 $\bullet \mbox{An } SU(2)_R \mbox{ triplet with } (B-L)=2 \mbox{ gets a vev at a large scale } M_R$

 $\langle \Delta^c \rangle \Rightarrow \nu^c \; {
m mass} \sim M_R$ gives a mass to the right-handed neutrino

At EW scale, neutrino gets a Dirac mass

$$m_D$$

$$\begin{pmatrix} 0 & m_D \\ m_D & M_R \end{pmatrix} \longrightarrow m_{\nu} \sim \frac{m_D^2}{M_R} \sim \frac{M_W^2}{M_R}$$

Senjanovic, Mohapatra 1980

TYPE II

In Left-Right theories, terms like:

$$\Delta H^2 \Delta^c + m_\Delta \Delta^2$$

H: bidoublet

△ : Left-handed triplet

 Δ^c : Right-handed triplet

Provide a small vev for the Left-handed triplet after EW breaking

$$\langle \Delta \rangle \sim \frac{\langle H \rangle^2 \langle \Delta^c \rangle}{m_\Delta^2} \sim \frac{M_W^2}{M_R}$$
 Mass for ν from $L^T \tau_2 \langle \Delta \rangle L$

vev of $\triangle^{c'}$ induces a small vev for \triangle after EW breaking

In SUSY SO(10), triplets are in 126: mixing with 54 or 210 can give such terms in the potential.

TWO TYPES OF SEE-SAW ARE OF SAME MAGNITUDE:
BUT VERY DIFFERENT PARAMETERS INVOLVED

Yukawa sector

- All fermions in one (spinorial) representation
- Couple to:

$$\Psi C \Gamma^a \Psi H_a$$
 $\underline{10}$ $\Psi C \Gamma^a \Gamma^b \Gamma^c \Psi D_{abc}$ $\underline{120}$ (antisym.) $\Psi C \Gamma^a \Gamma^b \Gamma^c \Gamma^d \Gamma^e \Psi \Sigma_{abcde}$ $\underline{126}$

$SU(4)c \times SU(2)L \times SU(2)R$ Decomposition

$$H_{10} = (6, 1, 1) + (1, 2, 2)$$

$$D_{120} = (\overline{10}, 1, 1) + (10, 1, 1) + (6, 3, 1) + (6, 1, 3) + (1, 2, 2) + (15, 2, 2)$$

$$\overline{\Sigma}_{\overline{126}} = (10, 1, 3) + (\overline{10}, 3, 1) + (6, 1, 1) + (15, 2, 2)$$

$$\Delta_R \qquad \Delta_L$$

- 126 can give type I and type II see-saw
- (15,2,2) in 126 can contain the SM Higgs

• is 126 enough for all fermion masses? no..

One doublet is not enough:

Lazarides, Shafi Wetterich 1981

Clark, Kuo Nakagawa 1982

$$M_U = y_{10} \langle 1, 2, 2 \rangle_{10}^u + y_{126} \langle 15, 2, 2 \rangle_{126}^u$$

$$M_D = y_{10} \langle 1, 2, 2 \rangle_{10}^d + y_{126} \langle 15, 2, 2 \rangle_{126}^d$$

$$M_E = y_{10} \langle 1, 2, 2 \rangle_{10}^d - 3 y_{126} \langle 15, 2, 2 \rangle_{126}^d$$

at the GUT scale, for all generations

- 126 required for neutrino mass but what else?
 - is there a difference between choosing 10 or 120?

Notice: same question for SUSY or non-SUSY models

non-susy: 126 + 10

Bajc, A.M, Vissani, Senjanovic 2005

(2nd and 3rd generations only)

$$M_{U} = y_{10} \langle 1, 2, 2 \rangle_{10}^{u} + y_{126} \langle 15, 2, 2 \rangle_{126}^{u}$$

$$M_{D} = y_{10} \langle 1, 2, 2 \rangle_{10}^{d} + y_{126} \langle 15, 2, 2 \rangle_{126}^{d}$$

$$M_{E} = y_{10} \langle 1, 2, 2 \rangle_{10}^{d} -3 y_{126} \langle 15, 2, 2 \rangle_{126}^{d}$$

$$M_{\nu_{D}} = y_{10} \langle 1, 2, 2 \rangle_{10}^{u} -3 y_{126} \langle 15, 2, 2 \rangle_{126}^{u}$$

$$M_{\nu_L} = y_{126} \langle \overline{10}, 3, 1 \rangle_{126}^d$$

$$M_{\nu_R} = y_{126} \langle 10, 1, 3 \rangle_{126}^d$$

see-saw, type I and II:

$$M_N = -M_{\nu_D} M_{\nu_R}^{-1} M_{\nu_D} + M_{\nu_L}$$

approx.

$$\theta_q = V_{cb} = 0$$

$$\frac{\langle 2, 2, 1 \rangle_{10}^u}{\langle 2, 2, 1 \rangle_{10}^d} = \frac{m_c(m_\tau - m_b) - m_t(m_\mu - m_s)}{m_s m_\tau - m_\mu m_b} \approx \frac{m_t}{m_b}$$

- real IO: $m_t = m_b$
- need a complex IO PQ symmetry
 axion as Dark Matter

$$10^{10} \text{GeV} \le M_{PQ} \le 10^{13} \text{GeV}$$

$$16 \rightarrow e^{i\alpha}16$$

$$10 \rightarrow e^{-2i\alpha} 10$$

$$\overline{\mathbf{126}} \rightarrow e^{-2i\alpha}\overline{\mathbf{126}}$$

Breaks PQ at the right-handed neutrino mass scale...

But cannot break completely: combination $U(1)_{PQ}, U(1)_{B-L}, T_{3R}$

$$U(1)_{PQ}, U(1)_{B-L}, T_{3P}$$

remains

SUSY or not: 126 + 10

Bajc, Vissani, Senjanovic 2002

$$M_D = y_{10} \langle 1, 2, 2 \rangle_{10}^d + y_{126} \langle 15, 2, 2 \rangle_{126}^d$$

$$M_E = y_{10} \langle 1, 2, 2 \rangle_{10}^d - 3 y_{126} \langle 15, 2, 2 \rangle_{126}^d$$

Type II see-saw: $M_N=M_{
u_L}=y_{126}\,\langle 10,1,3\rangle_{126}^d$

$$\theta_D=0 \text{ (small mixing in } M_D)$$
 $m_s=m_\mu=0$ $M_N \propto \left(egin{array}{cc} 0 & 0 \ 0 & m_b-m_ au \end{array}
ight)$

unless $m_b = m_{\tau}$, neutrino mixing vanishes

large $\theta_{atm} \leftrightarrow b - \tau$ unification

Full 3-gen. analysis: - connection still true θ_{13} close to exp. limit

Matsuda, Koide, Fukuyama, Nishiura 2002

Goh, Mohapatra, Ng, 2003

non-susy: 126 + 120

(2nd and 3rd generations only)

$$M_{U} = y_{120}(\langle 1, 2, 2 \rangle_{120}^{u} + \langle 15, 2, 2 \rangle_{120}^{u}) + y_{126} \langle 15, 2, 2 \rangle_{126}^{u}$$

$$M_{D} = y_{120}(\langle 1, 2, 2 \rangle_{120}^{d} + \langle 15, 2, 2 \rangle_{120}^{d}) + y_{126} \langle 15, 2, 2 \rangle_{126}^{d}$$

$$M_{E} = y_{120}(\langle 1, 2, 2 \rangle_{120}^{d} - 3\langle 15, 2, 2 \rangle_{120}^{d}) - 3y_{126} \langle 15, 2, 2 \rangle_{126}^{d}$$

$$M_{\nu_{D}} = y_{120}(\langle 1, 2, 2 \rangle_{120}^{u} - 3\langle 15, 2, 2 \rangle_{120}^{u}) - 3y_{126} \langle 15, 2, 2 \rangle_{126}^{u}$$

y₁₂₀ antisymmetric

$$\frac{\langle 1, 2, 2 \rangle_{120}^u + \langle 15, 2, 2 \rangle_{120}^u}{\langle 1, 2, 2 \rangle_{120}^d + \langle 15, 2, 2 \rangle_{120}^d} \sim \frac{m_t}{m_b}$$

- real 120: $m_t = m_b$
- complex 120: interesting connections with neutrino masses and mixings

SUSY or not: 126 + 120

Bajc, A.M, Vissani, Senjanovic 2005

Most general charged fermion matrix:

(2nd and 3rd generations only)

$$M_f = \mu_f \begin{pmatrix} \sin^2 \theta & i \sin \theta \cos \theta + i \epsilon_f \\ -i \sin \theta \cos \theta - i \epsilon_f & \cos^2 \theta \end{pmatrix}$$

$$|\epsilon_f| \propto m_2^f / m_3^f \ll 1$$

to leading order in $|\epsilon_f|$

$$|\mu_f| = m_3^f$$
$$\sin 2\theta |\epsilon_f| = m_2^f / m_3^f$$

- •neutrino masses
- •relation $m_b, m_ au$
- •quark mixing V_{cb}

•neutrino masses

$$M_N^{II} \propto Y_{126} \propto \begin{pmatrix} \sin^2 \theta \\ \cos^2 \theta \end{pmatrix}$$

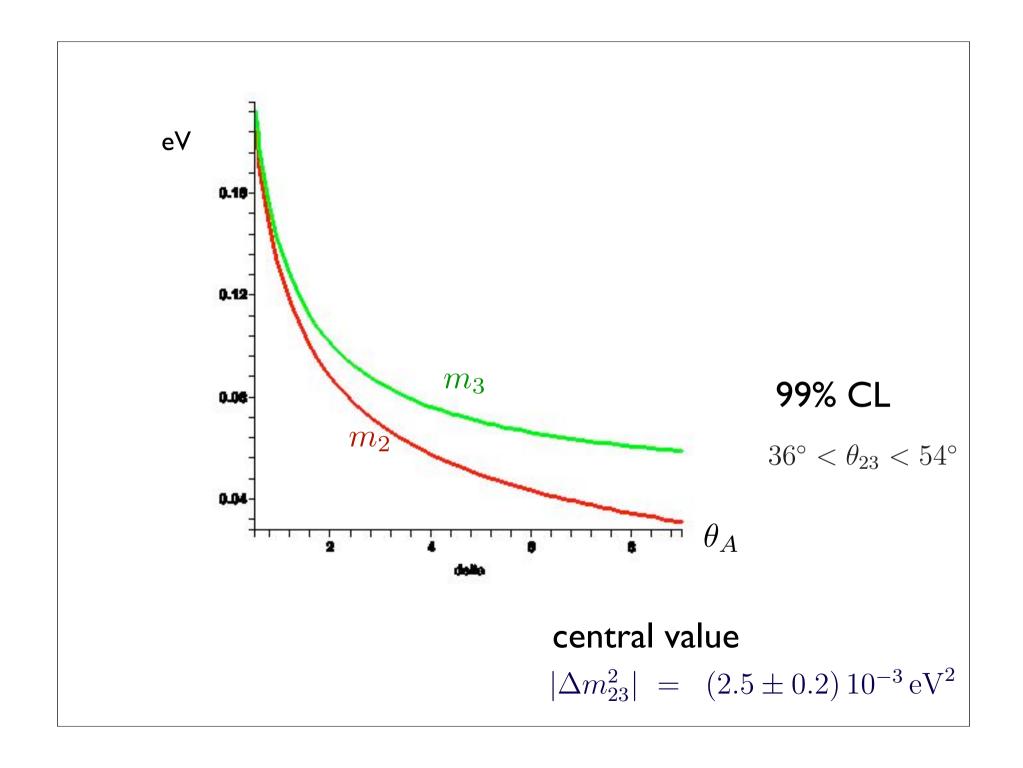
$$M_N^{I} \propto (Y_{126} + cY_{120})^T Y_{126}^{-1} (Y_{126} + cY_{120}) \propto \begin{pmatrix} \sin^2 \theta \\ \cos^2 \theta \end{pmatrix}$$

So $heta \sim heta_A$ to leading order in $|\epsilon_E|$

and for neutrino masses:

$$\frac{m_3^2 - m_2^2}{m_3^2 + m_2^2} = \frac{\cos 2\theta_A}{1 - \sin^2 2\theta_A/2} + \mathcal{O}(|\epsilon|)$$

lacktriangledown large $heta_A$ gives degenerate neutrinos



•relation $m_b, m_ au$

at the GUT scale

$$\frac{m_{\tau}}{m_b} = 3 + 3\sin 2\theta_A \operatorname{Re}[\epsilon_E - \epsilon_D] + \mathcal{O}(|\epsilon^2|)$$

) but $m_{ au} \sim 2 m_b$ include

- -running (large Yukawa coupling)
- -correction of higher order in $\ \epsilon$
- -3 generations

quark mixing

$$|V_{cb}| = |\Re(\xi) - i\cos 2\theta_A \Im(\xi)| + \mathcal{O}(|\epsilon^2|)$$

$$\xi = \cos 2\theta_A (\epsilon_D - \epsilon_U)$$
 since:
$$\sin 2\theta |\epsilon_f| = m_2^f/m_3^f$$

$$\sin 2\theta_A \simeq 1 \quad \cos 2\theta_A \simeq 0$$

then:
$$\epsilon_D \simeq \frac{m_s}{m_b} \gg \frac{m_c}{m_t} \simeq \epsilon_U$$
 $|V_{cb}| \simeq \cos 2\theta_A \, \frac{m_s}{m_b}$

- large neutrino mixing implies small quark mixing
- even too small...

$$|V_{cb}| \sim 1/25$$

$$m_s/m_b < 1/20$$

$$\cos 2\theta_A < 1/3$$

126 + 10 or 126 + 120?

- In non-supersymmetric models, both posible in principle
 - ▶ 10 and 120 need to be complex
 - can have a PQ symmetry axion as DM
- ullet SUSY requires 126 + 10 for $m_b=m_ au$
- Type II (even Type I) see-saw can give relations between neutrino and charged fermions masses and mixings
- Detailed models can be even more predictive: symmetry breaking and unification constraints
- 10 + 120 ? radiative see-saw works for split-SUSY

Unification: non-SUSY

Deshpande, Keith, Pal 1993

 $m_{\nu} \ge m_t^2/M_R \implies M_R \ge 10^{13} \text{ GeV}$

 $\log(M_R/GeV)$

I :	$SO(10) \xrightarrow{210} \{2_L 2_R 4_C\} \xrightarrow{45} \{2_L 2_R 1_X 3_c\} \xrightarrow{h} \{2_L 1_Y 3_c\}$	8.2-10.6
II:	$SO(10) \xrightarrow{54} \{2_L 2_R 4_C P\} \xrightarrow{210} \{2_L 2_R 1_X 3_c P\} \xrightarrow{h} \{2_L 1_Y 3_c\}$	8.6 - 13.6
III:	$SO(10) \xrightarrow{54} \{2_L 2_R 4_C P\} \xrightarrow{45} \{2_L 2_R 1_X 3_c\} \xrightarrow{h} \{2_L 1_Y 3_c\}$	8.0 - 13.6
IV:	$SO(10) \xrightarrow{54} \{2_L 2_R 1_X 3_c P\} \xrightarrow{210} \{2_L 2_R 1_X 3_c\} \xrightarrow{h} \{2_L 1_Y 3_c\}$	8.2-10.8
V :	$SO(10) \xrightarrow{210} \{2_L 2_R 4_C\} \xrightarrow{45} \{2_L 1_R 4_C\} \xrightarrow{h} \{2_L 1_Y 3_c\}$	11.0-11.2
VI:	$SO(10) \xrightarrow{54} \{2_L 2_R 4_C P\} \xrightarrow{45} \{2_L 1_R 4_C\} \xrightarrow{h} \{2_L 1_Y 3_c\}$	12.2 - 13.6
VII:	$SO(10) \xrightarrow{54} \{2_L 2_R 4_C P\} \xrightarrow{210} \{2_L 2_R 4_C\} \xrightarrow{h} \{2_L 1_Y 3_c\}$	11.3 - 13.6
VIII:	$SO(10) \xrightarrow{45} \{2_L 2_R 1_X 3_c\} \xrightarrow{45} \{2_L 1_R 1_X 3_c\} \xrightarrow{h} \{2_L 1_Y 3_c\}$	2.0-7.7
IX:	$SO(10) \xrightarrow{54} \{2_L 2_R 1_X 3_c P\} \xrightarrow{45} \{2_L 1_R 1_X 3_c\} \xrightarrow{h} \{2_L 1_Y 3_c\}$	2.0-10.0
X:	$SO(10) \xrightarrow{210} \{2_L 2_R 4_C\} \xrightarrow{210} \{2_L 1_R 1_X 3_c\} \xrightarrow{h} \{2_L 1_Y 3_c\}$	-
XI:	$SO(10) \xrightarrow{54} \{2_L 2_R 4_C P\} \xrightarrow{210} \{2_L 1_R 1_X 3_c\} \xrightarrow{h} \{2_L 1_Y 3_c\}$	2.0-13.5
XII:	$SO(10) \xrightarrow{45} \{2_L 1_R 4_C\} \xrightarrow{45} \{2_L 1_R 1_X 3_c\} \xrightarrow{h} \{2_L 1_Y 3_c\}$	2.0-5.3

Unification: non-SUSY

Deshpande, Keith, Pal 1993

 $m_{\nu} \ge m_t^2/M_R \implies M_R \ge 10^{13} \text{ GeV}$

 $\log(M_R/GeV)$

_ I:	$SO(10) \{2_L 2_R 4_C\} \{2_L 2_R 1_X 3_c\} \{2_L 1_Y 3_c\}$	8.2-10.6
II:	$SO(10) \xrightarrow{54} \{2_L 2_R 4_C P\} \xrightarrow{210} \{2_L 2_R 1_X 3_c P\} \xrightarrow{h} \{2_L 1_Y 3_c\}$	8.6 - 13.6
III:	$SO(10) \xrightarrow{54} \{2_L 2_R 4_C P\} \xrightarrow{45} \{2_L 2_R 1_X 3_c\} \xrightarrow{h} \{2_L 1_Y 3_c\}$	8.0 - 13.6
IV:	$SO(10) \longrightarrow \{2_L 2_R 1_X 3_c P\} \longrightarrow \{2_L 2_R 1_X 3_c\} \longrightarrow \{2_L 1_Y 3_c\}$	8.2-10.8
V:	$SO(10) \{2_L 2_R 4_C\} \{2_L 1_R 4_C\} \{2_L 1_Y 3_c\}$	11.0-11.2
VI:	$SO(10) \xrightarrow{54} \{2_L 2_R 4_C P\} \xrightarrow{45} \{2_L 1_R 4_C\} \xrightarrow{h} \{2_L 1_Y 3_c\}$	12.2 - 13.6
VII:	$SO(10) \xrightarrow{54} \{2_L 2_R 4_C P\} \xrightarrow{210} \{2_L 2_R 4_C\} \xrightarrow{h} \{2_L 1_Y 3_c\}$	11.3 - 13.6
VIII:	$SO(10) \{2_L 2_R 1_X 3_c\} \{2_L 1_R 1_X 3_c\} \{2_L 1_Y 3_c\}$	2.0-7.7
IX:	$SO(10) \{2_L 2_R 1_X 3_c P\} \{2_L 1_R 1_X 3_c\} \{2_L 1_Y 3_c\}$	2.0-10.0
X:	$SO(10) \xrightarrow{210} \{2_L 2_R 4_C\} \xrightarrow{210} \{2_L 1_R 1_X 3_c\} \xrightarrow{\iota} \{2_L 1_V 3_c\}$	
XI:	$SO(10) \xrightarrow{54} \{2_L 2_R 4_C P\} \xrightarrow{210} \{2_L 1_R 1_X 3_c\} \xrightarrow{\mathbf{n}} \{2_L 1_Y 3_c\}$	2.0-13.5
XII:	$SO(10) \{2_L 1_R 4_C\} \{2_L 1_R 1_X 3_c\} \{2_L 1_Y 3_c\}$	2.0-5.3

Unification: SUSY

- One-step: no intermediate scales
 - $igwedge m_
 u \propto M_W^2/M_{GUT}$ can be too small
- Potentials very constrained: no survival principle
 - calculate all the masses
- See-saw + SUSY = MSSM with R-parity
 - ▶ R-parity is in the center of SO(10)
 - R-parity \equiv Matter parity $= (-1)^{3(B-L)}$
 - See-saw: break (B-L) with a (B-L)-even field in order to give α_R mass

...get R-parity preserved and the stable LSP is a DM candidate

Aulakh, A.M, Rasin, Senjanovic 1998

What is the minimal renormalizable SUSY- GUT?

- Based on SO(10)
- With a see-saw for neutrino mass: 126 (+ 126)
- Yukawa sector: 10 + 126 needed: the light Higgs must be a combination of doublets in 10 and 126
 - lacktrianger need a mixing $\langle \Phi
 angle \, H_{10} \, \overline{\Sigma}_{\overline{126}}$ can use 210
- Symmetry breaking down to LR (126, 126 break down to MSSM)

Babu, Mohapatra, 1993

$$\Phi_{210}$$
, H_{10} , $\overline{\Sigma}_{\overline{126}}$, Σ_{126}

▶ 210 can do that too

minimal SO(10)

Clark, Kuo, Nakagawa,1982

Aulakh, Bajc, A.M, Vissani, Senjanovic,2003

$$\Psi_{16}, H_{10}, \Sigma_{126}, \overline{\Sigma}_{\overline{1}26}, \Phi_{210}$$

$$W_{H} = m_{\Phi}\Phi^{2} + m_{\Sigma}\Sigma\overline{\Sigma} + \lambda\Phi^{3} + \eta\Phi\Sigma\overline{\Sigma} + m_{H}H^{2} + \Phi H(\alpha\Sigma + \bar{\alpha}\overline{\Sigma})$$

+ $y_{10}\Psi C\Gamma\Psi H + y_{126}\Psi C\Gamma^{5}\Psi\overline{\Sigma}$

- 26 real parameters: same as MSSM
- light Higgs made up of 126, 10 and 210 doublets
 - rich enough Yukawa structure
- Type I and II see-saw
 - lacktriangle possibility of connecting large θ with b —unification
- symmetry can be broken down to MSSM (+R-parity)
 - stable LSP

symmetry breaking

SO(10)

$$M_X \Downarrow \langle p \rangle$$
 in 210

$$SU(4)_C \times SU(2)_L \times SU(2)_R$$

$$M_{PS} \Downarrow \langle a \rangle$$
 in 210

$$SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$$

$$M_R \Downarrow \langle \sigma \rangle$$
 in 126

$$SU(3)_C \times SU(2)_L \times U(1)_Y$$

symmetry breaking

$$\begin{array}{lll} H\equiv {\bf 10}=(6,1,1)+(1,2,2) & \text{doublets:} \\ \Phi\equiv {\bf 210}&=&(15,1,1)+(1,1,1)+(15,1,3) & \text{vev} & \sim M_W \\ &+&(15,3,1)+(6,2,2)+(10,2,2)+(\overline{10},2,2) \\ \Sigma\equiv {\bf 126}&=&(\overline{10},1,3)+(10,3,1)+(6,1,1)+(15,2,2) \\ \overline{\Sigma}\equiv \overline{{\bf 126}}&=&(10,1,3)+(\overline{10},3,1)+(6,1,1)+(15,2,2) \\ \end{array}$$
 SM singlets: vev $\sim M_{GUT}$ vev $\sim M_{W}^2/M_{GUT}$

- Find the symmetry breaking conditions
- Calculate masses for all states
- Find the composition of the light Higgs doublets

Bajc, A.M, Vissani, Senjanovic 2004

Aulakh, Girdaar, 2004

Fukuyama, et. al. 2004

An overconstrained model

After fine-tune of the SM Higgs mass: 8 parameters left in the heavy Higgs sector

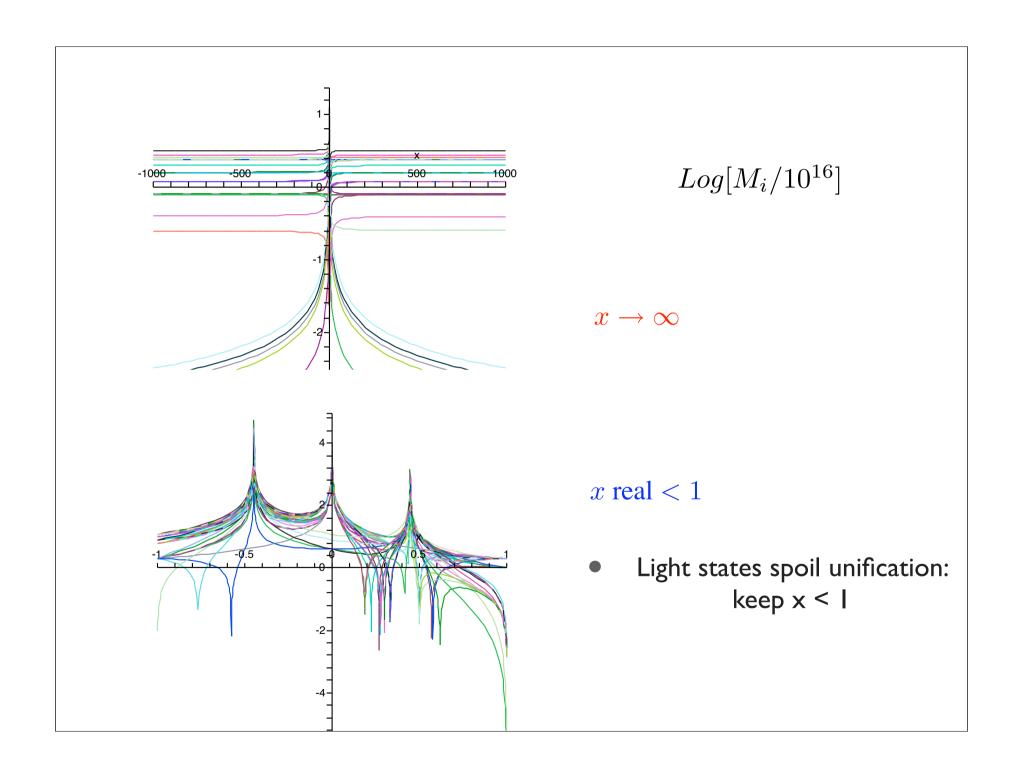
$$m, \alpha, \overline{\alpha}, |\lambda|, |\eta|, \phi = \arg \lambda = -\arg \eta$$
 $x = \Re(x) + i\Im(x)$

$$x = \Re(x) + i\Im(x)$$
ratio of masses

Vevs and masses of all states have form:

$$\sim \frac{m}{\lambda} f(x)$$
$$\frac{m}{\sqrt{\lambda \eta}} f(x)$$

- variation with parameters quite smooth, with x non-trivial



Fermion mass fitting

• The light Higgs is a combination no longer arbitrary

$$H_{u,d} = r_{u,d}^{10} H_{u,d}^{10} + r_{u,d}^{\overline{126}} H_{u,d}^{\overline{126}} + r_{u,d}^{\overline{126}} H_{u,d}^{\overline{126}} + r_{u,d}^{\overline{210}} H_{u,d}^{\overline{210}}$$

- $ightharpoonup r_{u,d}^{\mathbf{I}}$ known functions of the parameters
- Assume type II see-saw

$$m_{\nu} = y_{126} v_{\Delta}$$
 $v_{\Delta} = \frac{(\alpha r_u^{10} + \sqrt{6} \eta r_u^{126}) r_u^{210}}{m_{\Delta}}$

neutrino mass depends on the same parameters

General analysis (type I and II)

Bertolini, Frigerio, Malinsky, 2005-2006

Aulakh,Garg, Girdaar, 2005-2006

Mohapatra, Goh, Ng, Dutta, Mimura...

- Do the complete fit with all fermion masses and all parameters
- Include unification constrains, threshold effects even worse

Babu, Macesanu Wang, Yang

 Parameter space for type I and type II getting smaller

too small neutrino mass: model seems to be ruled out!

Summary

- SO(10): ideal framework for small neutrino mass
- Models can provide connections between fermion masses and mixings, for example
 - $b \tau$ unification \Rightarrow large θ_{atm} (10+126)
 - large neutrino small quark mixings (120+126)
 - large θ_{atm} degenerate neutrinos (120+126)
- Non supersymmetric models are alive and well
- Minimal SUSY GUT is in trouble
 - * lack of intermediate scales
- Next-to-minimal SUSY GUT may not be predictive ...
 - *but work is in progress