Dvodelčni razpadi mezonov *B* v SCET/ Charmless 2-body *B* decays in SCET

Jure Zupan

University of Ljubljana and Josef Stefan Institute

J. Zupan

Charmless 2-body B decays...

B decays/motivation

- B decays probe flavor dynamics of SM (or extensions)
- an abundance of information available from B-factories and Tevatron ($b \rightarrow s\gamma$, $b \rightarrow sl^+l^-$, $B_s \rightarrow \mu^+\mu^-$, ...)
- the weak dynamics folded with the QCD effects
 - to use $B \to MM$ decays: needs a reliable calculation + realistic estimate of errors

Charmless B decays

- *B* decays into two light mesons: $B \to \pi \pi, B \to \pi K, ...$
- \checkmark the outgoing mesons look like 2 energetic jets with $p^2 \sim \Lambda_{\rm QCD}$

- can use SCET to treat QCD effects
- already used to calculate $B \rightarrow \text{nonisosinglets} (\pi \pi, ...)$ Bauer, Pirjol, Rothstein, Stewart 2004, 2005
- many useful observable sensitive to NP in decays to isosinglet states $B \rightarrow K_S \eta', K_S \phi, \ldots$ Williamson, JZ 2006

J. Zupan

Charmless 2-body B decays...

Outline

- brief introduction to SCET
 - application to 2-body charmless B decays
 - extension to isosinglet final states
- phenomenology
 - $B \rightarrow \pi K$ puzzle
 - $B^0 \to \eta' K \text{ VS. } B \to \eta K$
 - S parameters in penguin dominated modes
- if time permits...
 - B_s decays
 - semiinclusive hadronic decays
- conclusions

J. Zupan

Charmless 2-body *B* decays...

Introduction to SCET

Bauer, Fleming, Luke, Pirjol, Stewart 2000,2001

- effective theory appropriate for jet-like events in QCD
- jet in z direction \Rightarrow use light-cone coord.

$$p^{\mu} = (E + p_3, E - p_3, \vec{p}_{\perp}) = (p_+, p_-, \vec{p}_{\perp})$$

Note: $p^2 = p_+ p_- - \vec{p}_{\perp}^2$

- introduce expansion parameter $\lambda = \Lambda/m_b$
 - collinear gluon, quark: $p \sim m_b(1, \lambda^2, \lambda)$
 - soft gluon, quark: $p \sim m_b(\lambda, \lambda, \lambda)$

Scales in charmless 2-body B decay

Bauer, Pirjol, Stewart 2002

- \checkmark outgoing states are jet-like with $p^2 = \Lambda^2$
- the "brown muck" in B is soft
- a typical configuration

• intermediate hard-collinear modes: $p^2 = m_B^2 \lambda = m_B \Lambda$

- assume ordering $\Lambda \ll \sqrt{m_B\Lambda} \ll m_B$
- two step matching
 - $\textbf{QCD} {\rightarrow} \textbf{SCET}_I$
 - \leftarrow expan. param. $\sqrt{\lambda}$

SCET_I
$$\rightarrow$$
 SCET_{II} \leftarrow expan. param. λ

J. Zupan

Charmless 2-body B decays...

Effective theories in 2-body B decays

Bauer, Pirjol, Rothstein, Stewart 2004 Bauer, Rothstein, Stewart 2005 a sequence of effective theories Williamson, JZ 2006 \blacksquare $H_{\text{off}}^{\text{weak}}$ in terms of four quark SM operators $O_i \sim (\bar{q}\Gamma_i q')(\bar{q}''\Gamma_i' q''')$ M_{weak} and magnetic operators H_{eff}^{weak} • in SCET_I at LO in $1/m_B$ factorization of collinear m_h modes in opposite directions SCET_I $O_i \sim (\bar{q}_n \Gamma_i q'_n) \times (\bar{q}''_n \Gamma'_i q'''_n)$ $(m_b \Lambda_{QCD})^{1/2}$ SCET_{II} these then match to nonlocal operators in $SCET_{II}$

Charmless 2-body B decays...

J. Zupan

Matching examples

 \checkmark example of SCET $_{I} \rightarrow$ SCET $_{II}$ matching

J. Zupan

Charmless 2-body *B* decays...

Factorization formula

Bauer, Pirjol, Rothstein, Stewart 2004

- for start only nonisosinglet final states (such as $B \to \pi\pi$)
- $\textbf{ SCET}_{I} \rightarrow \textbf{SCET}_{II} \text{ matching}$

• a) type diagrams have endpoint singularities \Rightarrow introd. matrix el. ζ^{BM}

b) type diagrams, $\alpha_S(\sqrt{\Lambda, m_B})$ expansion of function $\zeta_J^{BM}(z)$

• at LO in $1/m_B$ $A(B \to M_1M_2) \propto f_{M_1}\phi_{M_1}(u) \otimes T_{1J}(u,z) \otimes \zeta_J^{BM_2}(z)$ $+f_{M_1}\phi_{M_1}(u) \otimes T_{1\zeta}(u)\zeta^{BM_2} + 1 \leftrightarrow 2 + \lambda_c^{(f)}A_{cc}^{M_1M_2}$

J. Zupan

Charmless 2-body B decays...

At LO in $\alpha_S(m_b)$

- hard kernels $T_{1(J),2(J)}(u,z)$ are calculable in $\alpha_S(m_b)$ expansion
- at LO in $\alpha_S(m_b)$
 - $T_{1,2}$ are constants
 - $T_{1J,2J}$ only functions of u
- this simplifies the factorization formula

$$A_{B \to M_1 M_2} \propto f_{M_1} \phi_{M_1}(u) \otimes T_{1J}(u) \zeta_J^{BM_2}$$
$$+ f_{M_1} T_{1\zeta} \zeta^{BM_2} + 1 \leftrightarrow 2 + \lambda_c^{(f)} A_{cc}^{M_1 M_2}$$

• coefficients ζ^{BM} , ζ^{BM}_J are fit from data

J. Zupan

Charmless 2-body B decays...

Connection to form factors

- ζ^{BM} , ζ^{BM}_J are related to $B \to M$ form factors
- at LO in $\alpha_S(m_b)$ for decays into pseudoscalars

$$f_{+}^{BP}(0) = \zeta^{BP} + \zeta_{J}^{BP}$$
$$f_{+}^{BP}(0) + f_{-}^{BP}(0) = 2\zeta_{J}^{BP}$$

- at higher orders in $\alpha_S(m_b)$ more complicated hard kernels
- these nonperturbative inputs could be
 - obtained from lattice (+ exp. data on $B \rightarrow \pi l \nu$)
 - from sum rules
 - in our analysis will be fit from $B \rightarrow PP$ data

J. Zupan

Charmless 2-body B decays...

Charming penguins

since $2m_c \sim m_b$ there are configurations with almost on-shell charm quarks

- BBNS: charming penguins perturbative
- **PRS:** nonpert., NRQCD counting $\alpha_S(2m_c)f(2m_c/m_b)v$
- most conservative introduce new nonpert. parameters $A_{cc}^{M_1M_2}$ that are fit from data (with isospin or SU(3) used)
- ✓ for isosinglets also "gluonic charming penguins" ⇒ in SU(3) limit one additional parameter A_{ccg}

J. Zupan

Charmless 2-body B decays...

Isosinglet final states

■ additional operators in SCET_I → SCET_{II} matching, that contribute only for η, η'

• at $\alpha_S(m_b)$ also operators (at this order only from O_{8g})

J. Zupan

Charmless 2-body B decays...

Factorization including isosinglets

extended factorization formula

 $\begin{aligned} A(B \to M_1 M_2) &\propto f_{M_1} \phi_{M_1}(u) \otimes T_{1J}(u, z) \otimes \zeta_J^{BM_2}(z) \\ &+ f_{M_1} \phi_{M_1}(u) \otimes T_{1\zeta}(u) \zeta^{BM_2} + 1 \leftrightarrow 2 + \lambda_c^{(f)} A_{cc}^{M_1 M_2} \\ &+ \delta_{M_1, \eta^{(\prime)}} \left[f_{M_1}^1 \bar{\Phi}_{M_1}^g(u) \otimes [T_{1J}^g(u, z) \otimes \zeta_J^{BM_2}(z) + T_{1\zeta}^g(u) \zeta^{BM_2}] \right. \\ &+ \left(f_{M_1} \phi_{M_1}(u) \otimes \zeta_3^{BM_2}(u) + f_{M_1}^1 \bar{\Phi}_{M_1}^g(u) \otimes \zeta_{3g}^{BM_2}(u) \right) \right] \end{aligned}$

• $\zeta^{B\eta^{(\prime)}}$, $\zeta^{B\eta^{(\prime)}}_J$ receive contribs. from gluonic operators

• for isosinglets also "gluonic charming penguins" \Rightarrow in SU(3) limit one additional parameter A_{ccg}

J. Zupan

Charmless 2-body B decays...

Counting of parameters

- \checkmark assuming only isospin at LO in $1/m_b$ and $\alpha_S(m_b)$
 - $B \to \pi \pi$: 4 real parameters $\zeta_{(J)}^{B\pi}$, $A_{cc}^{\pi\pi}$ vs. 8 observables (6 measured)

• $B \to \pi \eta^{(')}$: 14 new parameters $\zeta_{(J)}^{B\eta_{q,s}}$, $\zeta_{3(g)}^{B\pi(\eta_{q,s})}$, $A_{cc}^{\pi\eta_{q,s}}$ beyond $B \to \pi \pi$ vs. 19 observables (4 measured)

• similarly $B \to \pi K$ vs. $B \to K \eta^{(')}$

- at present in the analysis of isosinglets SU(3) needs to be used (this can be relaxed with more data)
- in the SU(3) limit 14 real parameters: ζ, ζ_J, A_{cc} and the "gluonic" $\zeta_g, \zeta_{Jg}, A_{ccg}, 4 \times \zeta_{3,i}$ (these only for isosinglets)
- compare with 18 complex reduced matrix elements in most general SU(3) decomposition

J. Zupan

Charmless 2-body *B* decays...

Comments about diagrammatic approach

- the color suppression is lifted in SCET
- in "diagrammatic" SU(3) fits dynamical assump.: "annihilation-like" ampl. neglected for η, η' final states
 - 4 additional reduced matrix elements for isosinglets, only one (s) taken nonzero
 - in SCET counting all 4 LO in $1/m_b$: keeping only *s* corresponds to $\zeta_{(J)g} \ll \zeta_{(J)}$ limit not to $m_b \to \infty$ limit

J. Zupan

Charmless 2-body B decays...

Phenomenology

J. Zupan

Charmless 2-body B decays...

Overview

Williamson, JZ 2006

- will focus on $B \to PP$, work at LO in $1/m_b$ and $\alpha_S(m_b)$
- isosinglets included, at present SU(3) imposed on SCET parameters
- LO factorized amplitude $A_{B \to M_1 M_2} \propto f_{M_1} \phi_{M_1}(u) \otimes T_{1J}(u) \zeta_J^{BM_2}$ $+ f_{M_1} T_{1\zeta} \zeta^{BM_2} + 1 \leftrightarrow 2 + \lambda_c^{(f)} A_{cc}^{M_1 M_2}$
- two subsequent fits determine SCET parameters
 - $\zeta_{(J)}$, A_{cc} from $B \to \pi \pi, \pi K$
 - $\zeta_{(J)g}, A_{ccg}, (\zeta_{3i} \to 0) \text{ from } B \to \eta^{(')}\pi, \eta^{(')}K$
- in predictions SU(3) and $1/m_b$ errors included with parametrically expected sizes

J. Zupan

Charmless 2-body B decays...

$B \rightarrow \pi K$ "puzzle"

J. Zupan

Charmless 2-body B decays...

Br ratios

• $\Delta S = 1$ decay (i.e. $b \to sq\bar{q}$)

define "tree" and "penguin" according to CKM factors

$$A_{\bar{B}\to f} = \lambda_u^{(s)} T_{\bar{B}\to f} + \lambda_c^{(s)} P_{\bar{B}\to f}$$
$$\lambda_u^{(s)} = V_{ub} V_{us}^*, \lambda_c^{(s)} = V_{cb} V_{cs}^*$$

- large hierarchy between T, P since $|\lambda_u^{(3)}| \sim 0.02 |\lambda_c^{(3)}|$
- the dominant term: $A_{cc}^{K\pi}$ since $\lambda_c^{(s)}/\lambda_u^{(s)}$ enhanced \Rightarrow

J. Zupan

Charmless 2-body B decays...

Br ratios

• $\Delta S = 1 \text{ decay (i.e. } b \rightarrow sq\bar{q})$

define "tree" and "penguin" according to CKM factors

$$A_{\bar{B}\to f} = \lambda_u^{(s)} T_{\bar{B}\to f} + \lambda_c^{(s)} P_{\bar{B}\to f}$$
$$\lambda_u^{(s)} = V_{ub} V_{us}^*, \lambda_c^{(s)} = V_{cb} V_{cs}^*$$

- large hierarchy between T, P since $|\lambda_u^{(3)}| \sim 0.02 |\lambda_c^{(3)}|$
- the dominant term: $A_{cc}^{K\pi}$ since $\lambda_c^{(s)}/\lambda_u^{(s)}$ enhanced \Rightarrow

J. Zupan

Charmless 2-body *B* decays...

CP asymmetries

- from χ^2 -fit to $B \to \pi\pi, K\pi \Rightarrow \zeta, \zeta_J$, $|A_{cc}|$ and $\arg(A_{cc})$
- $\zeta \sim \zeta_J$ as expected from SCET counting
- **strong phase in** A_{cc} **is nonzero:**

J. Zupan

 $\arg(A_{cc}) = 156^{\circ} \pm 6^{\circ}$

- $\chi^2/d.o.f. = 44.6/(13-4) \Rightarrow \chi^2/d.o.f. = 8.9/(13-4)$ if theory errors included

CP asymmetries

- from χ^2 -fit to $B \to \pi\pi, K\pi \Rightarrow \zeta, \zeta_J$, $|A_{cc}|$ and $\arg(A_{cc})$
- **strong phase in** A_{cc} **is nonzero**:

 $\arg(A_{cc}) = 156^{\circ} \pm 6^{\circ}$

- $\chi^2/d.o.f. = 44.6/(13-4) \Rightarrow \chi^2/d.o.f. = 8.9/(13-4)$ if theory errors included
- the largest discrepancies are $\mathcal{A}_{\pi^0 K^-}^{CP}$, $\mathcal{A}_{\pi^+ K^-}^{CP}$

J. Zupan

Charmless 2-body B decays...

R ratios

- \bullet many errors cancel in the ratios of Br
- 4 ratios usually defined (3 independent)

J. Zupan

Charmless 2-body B decays...

R ratios

- \bullet many errors cancel in the ratios of Br
- 4 ratios usually defined (3 independent)

J. Zupan

Charmless 2-body B decays...

R ratios

- especially interesting is the difference $R_n R_c$
- expanding in tree/penguin and EWP/(charm. peng.) one gets

$$R_n = R_c + \cdots$$

up to corrections of second order in small parametersnumerically

$$(R_c - R_n) \stackrel{\text{Exp.05}}{=} 0.18 \pm 0.13 \stackrel{\text{Exp.06}}{\Rightarrow} 0.12 \pm 0.10$$

 $(R_c - R_n) \stackrel{\text{Th.}}{=} 0.018 \pm 0.013$

J. Zupan

Charmless 2-body *B* decays...

$B \to \pi \eta^{(\prime)}$ and $B \to K \eta^{(\prime)}$ decays

J. Zupan

Charmless 2-body *B* decays...

Determination of SCET parameters

- use ζ, ζ_J and A_{cc} from $B \to \pi \pi, \pi K$ fit
- ζ_g , ζ_{Jg} and A_{ccg} are obtained from fit to $B \to \eta^{(')} \pi, \eta^{(')} K$ data on Br and $A_{CP} \Leftarrow$ no use of S parameters is made
- 2 solutions obtained that differ by

$$\arg(A_{ccg}) = -109^{\circ} \pm 3^{\circ}$$
$$\arg(A_{ccg}) = -68^{\circ} \pm 4^{\circ}$$

- the two solutions can be resolved by future measurm. of $A_{CP}(\eta K^-)$ and $A_{CP}(\eta \bar{K}^0)$
- we get $\zeta_{(J)g} \sim \zeta_{(J)}$ and $|A_{ccg}| \sim |A_{cc}|$ as expected from SCET counting

J. Zupan

Charmless 2-body *B* decays...

 $B \to K\eta \text{ vs } B \to K\eta'$

- is $\Delta S = 1$ so A_{cc} and A_{ccg} dominate
- Iarge disparity between $BR(B → K\eta') \simeq 60 \times 10^{-6}$ and $Br(B → K\eta) \simeq 2 \times 10^{-6}$
- Lipkin '91: constructive and destructive interf.

$$A_{\bar{B}\to\bar{K}\eta'} = \cos\phi A_{\bar{B}\to\bar{K}\eta_s} + \sin\phi A_{\bar{B}\to\bar{K}\eta_q}$$
$$A_{\bar{B}\to\bar{K}\eta} = -\sin\phi A_{\bar{B}\to\bar{K}\eta_s} + \cos\phi A_{\bar{B}\to\bar{K}\eta_q}$$

with $\phi = (39.3 \pm 1.0)^{\circ}$, so that $\cos \phi \simeq \sin \phi$

$$If A_{\bar{B}\to\bar{K}\eta_q}\simeq A_{\bar{B}\to\bar{K}\eta_s}$$

- \Rightarrow a constructive interference in $A_{\bar{B}\to\bar{K}\eta'}$
- \Rightarrow a destructive interference in $A_{\bar{B}\to\bar{K}\eta}$

J. Zupan

Charmless 2-body *B* decays...

 $B \to K \eta^{(\prime)}$ in SCET

this very natural in SCET

$$A_{B^- \to \eta K^-} \propto \left(\sqrt{2} - \tan\phi\right) A_{ccg} + \left(\frac{1}{\sqrt{2}} - \tan\phi\right) A_{cc} + \cdots$$
$$= 0.59A_{ccg} - 0.11A_{cc} + \cdots$$
$$A_{B^- \to \eta' K^-} \propto \left(1 + \sqrt{2}\tan\phi\right) A_{ccg} + \left(1 + \frac{\tan\phi}{\sqrt{2}}\right) A_{cc} + \cdots$$
$$= 2.16A_{ccg} + 1.59A_{cc} + \cdots$$

- no cancelation between A_{cc} and A_{ccg} needed $Br(B \to \eta' K) \gg Br(B \to \eta K)$ for most $\arg(A_{cc(g)}/A_{cc})$
- the suppression is much larger for A_{cc} than for A_{ccg}

• if
$$A_{ccg} = 0 \Rightarrow Br(B \to \eta K) \sim O(10^{-7})$$
 and not $\sim O(10^{-6})$

J. Zupan

Charmless 2-body B decays...

Ehancement of $B \to \eta' K$

- $Br(B \to \eta' K)$ enhanced over $Br(B \to \pi K)$ almost entirely due to A_{ccg}
- in SU(3) limit

$$\frac{A_{B^- \to \eta' K^-}}{A_{\bar{B}^0 \to \pi^+ K^-}} \simeq \left(\cos\phi + \frac{\sin\phi}{\sqrt{2}}\right) \frac{A_{cc}}{A_{cc}} + \left(\cos\phi + \sqrt{2}\sin\phi\right) \frac{A_{ccg}}{A_{cc}} + \cdots \\ \simeq 1.22 + 1.67 \frac{A_{ccg}}{A_{cc}}$$

part of the enhancement could come from SU(3) breaking

J. Zupan

Charmless 2-body B decays...

Further predictions

- we give predictions for observables in all $B \to \eta^{(')} \eta^{(')}$, $B \to \pi \eta^{(')}$
- with observables measured so far the combination $\zeta_g \zeta_{Jg}$ poorly constrained
- Predictions for $\bar{B}^0 → \pi^0 \eta^{(')}$ and $\bar{B}^0 → \eta^{(')} \eta^{(')}$ fairly uncertain
- measurements in some of these modes will greatly improve on the knowledge of SCET parameters

J. Zupan

Charmless 2-body B decays...

S parameters in penguin dominated modes

$$S_f = 2 \frac{\mathcal{I}m\left[e^{-i2\beta}\bar{A}_f/A_f\right]}{1 + |\bar{A}_f|^2/|A_f|^2}$$

- interested in $\Delta S = 1$ where $A_f \propto \lambda_c^{(s)} P_{\bar{B} \to f} + \cdots \Rightarrow$ $S_f \simeq -\eta_f^{\rm CP} \sin 2\beta$
- more precisely

$$\Delta S_f \equiv -\eta_f^{\rm CP} S_f - \sin 2\beta = r_f \cos \delta_f \cos 2\beta + O(r_f^2)$$

$$r_f e^{i\delta_f} = -2\mathcal{I}m\left(\frac{\lambda_u^{(s)}}{\lambda_c^{(s)}}\right)\frac{T_{\bar{B}\to f}}{P_{\bar{B}\to f}}$$

with $-2\mathcal{I}m\left(\lambda_u^{(s)}/\lambda_c^{(s)}\right) \simeq 0.037$

J. Zupan

Charmless 2-body B decays...

Winter 2003

J. Zupan

Charmless 2-body B decays...

Summer 2006

	sin(2	β^{eff}) = sin	$(2\phi_1^{\text{eff}}) \stackrel{\text{HFAG}}{\stackrel{\text{DFf/JPS 2006}}{\stackrel{\text{PRELIMINARY}}}$
b→ccs	World Average	2	0.68 ± 0.03
¢ ک	BaBar	<u>⊷+</u>	$0.12 \pm 0.31 \pm 0.10$
	Belle		0.50 ± 0.21 ± 0.06
	Average		0.39 ± 0.18
ר, א 'ר	BaBar		$0.58 \pm 0.10 \pm 0.03$
	Belle		0.64 ± 0.10 ± 0.04
	Average		0.61 ± 0.07
K K K S K	BaBar	B	$0.66 \pm 0.26 \pm 0.08$
	Belle		$0.30 \pm 0.32 \pm 0.08$
	Average		0.51 ± 0.21
π ⁰ K	BaBar	l P <mark>ON</mark> T	$0.33 \pm 0.26 \pm 0.04$
	Belle		$0.33 \pm 0.35 \pm 0.08$
	Average	E E	0.33 ± 0.21
× °	BaBar		$0.20 \pm 0.52 \pm 0.24$
്പ	Average		0.20 ± 0.57
е Қ К	BaBar	e e e e e e e e e e e e e e e e e e e	$0.62^{+0.25}_{-0.30} \pm 0.02$
	Belle		$0.11 \pm 0.46 \pm 0.07$
	Average		0.48 ± 0.24
fo Ko	BaBar		0.62 ± 0.23
	Belle	• • • • • • • • • • • • • • • • • • • •	$0.18 \pm 0.23 \pm 0.11$
	Average	Ež	0.42 ± 0.17
	BaBar	<u> </u>	$-0.84 \pm 0.71 \pm 0.08$
⊨ ≍	Average		-0.84 ± 0.71
	BaBar Q2B		$0.41 \pm 0.18 \pm 0.07 \pm 0.11$
	Belle		$0.68 \pm 0.15 \pm 0.03 \begin{array}{c} +0.21 \\ -0.13 \end{array}$
<u> </u>	Average		0.58 ± 0.13
-3	-2 -	-1 0	1 2 3

J. Zupan

Charmless 2-body B decays...

S parameters in $B \to \eta' K_S, \pi^0 K_S$

using SCET parameters obtained from fit

$$\Delta S_{\eta'K_{S,L}} \stackrel{\text{Th.}}{=} \begin{cases} -0.019 \pm 0.008 \\ -0.010 \pm 0.010 \\ \equiv & -0.064 \pm 0.075 \end{cases}$$

$$\Delta S_{\eta K_{S,L}} \stackrel{\text{Th.}}{=} \begin{cases} -0.03 \pm 0.17 \\ 0.07 \pm 0.14 \\ \vdots & - \end{cases}$$

$$\Delta S_{\pi^0 K_{S,L}} \stackrel{\text{Th.}}{=} (7.7 \pm 3.0) \times 10^{-2}$$
$$\stackrel{\text{Exp.}}{=} -0.34 \pm 0.21$$

- S parameters not used in fit \Rightarrow pure predictions
- if strong phases δ_f are taken to be arbitrary, largest ΔS_f given by

$$r_{\eta'K_S} \simeq 0.03 \pm 0.01$$

$$r_{\eta K_S} \simeq 0.2 \pm 0.2$$

 $r_{\pi^0 K_S} = 0.14 \pm 0.05$

J. Zupan

Charmless 2-body B decays...

 B_s decays

J. Zupan

Charmless 2-body B decays...

B_s decays

• the time dependent decay $\Gamma(B_q^0(t) \to f) = e^{-\Gamma t} \overline{\Gamma}(B_q \to f) \Big[\cosh\left(\frac{\Delta\Gamma t}{2}\right) + H_f \sinh\left(\frac{\Delta\Gamma t}{2}\right) - \mathcal{A}_f^{\text{CP}} \cos(\Delta m t) - S_f \sin(\Delta m t) \Big]$

- in SM: $(\Delta\Gamma/\Gamma)_{B_s} \stackrel{\text{Th.}}{=} -0.12 \pm 0.05$ $(\Delta\Gamma/\Gamma)_{B_s} \stackrel{\text{PDG'06}}{=} -0.31_{-0.10}^{+0.11}$
- H_f can be measured even in untagged B_s decays

$$(H_f)_{B_s} = 2 \frac{\mathcal{R}e\left[e^{+i2\epsilon}\bar{A}_f(A_f)^*\right]}{|\bar{A}_f|^2 + |A_f|^2}$$

J. Zupan

Charmless 2-body *B* decays...

 $(H_f)_{B_s}$

• for
$$\Delta S = 1$$
 decays

$$(S_f)_{B_s} = \eta_f^{\text{CP}} \sin 2\epsilon - \eta_f^{\text{CP}} r_f \cos \delta_f \cos 2\epsilon + O(r_f^2)$$
$$(H_f)_{B_s} = \eta_f^{\text{CP}} \cos 2\epsilon + \eta_f^{\text{CP}} \sin 2\epsilon r_f \cos \delta_f + O(r_f^2),$$

• $\epsilon \sim 1^{\circ}$ in SM $\Rightarrow 1 - (H_f)_{B_s} \sim O(r_f^2)$

- even cleaner than $S_{B \to \phi K_S, \eta' K_S}$
- for $\bar{B}_s^0 \to \eta \eta, \eta \eta', \eta' \eta' \Rightarrow |1 (H_f)_{B_s}| \sim 10^{-3}$
- for $\bar{B}_s^0 \to K^- K^+, K_S K_S \Rightarrow |1 (H_f)_{B_s}| \sim 10^{-2}$
- $(S_f)_{B_s}$ and order of magnitude larger
- **Solution BSM:** same ops. important as in $B \to \phi K_S, \eta' K_S, \pi^0 K_S$
- $1 (H_f)_{B_s}$ could be O(1)

Charmless 2-body B decays...

Semiinclusive hadronic decays

J. Zupan

Charmless 2-body B decays...

Kinematics

Chay, Leibovich, Kim, JZ, hep-ph/0607004

 \blacksquare B decays to M and inclusive jet X back-to-back

- factorization as in 2-body B decays
- these decays simpler than 2-body B decays if
 - spectator does not end up in $M \Rightarrow$ matching to SCET_{II} trivial
 - work in endpoint region $p_X^2 \sim m_b \Lambda \Rightarrow SCET_I$
- no dependence on ζ, ζ_J , the same shape and jet function as in $B \to X_s \gamma$, even this cancels in A_{CP}
- very clean probes of sizes of charming penguins

J. Zupan

Charmless 2-body B decays...

First measurement

- BaBar, ICHEP06: $Br(B \to K^+X)$ and $Br(B \to K^0X)$, with $E_K > 2.34$ GeV
- points to a large charming penguin
- work in progress, one result (without charming penguins):

Soni, JZ 2005

 $A_{CP}(B \to K_S X_{d+s}^-) = -0.28 \pm 0.23\%$

can be used as null test of new physics

J. Zupan

Charmless 2-body B decays...

Conclusions

- the LO SCET analysis has been extended to decays with η,η'
- πK and $S_{\eta' K_S, \pi^0 K_S}$ "puzzles" only at $\sim 1\sigma$ level
- enhancement of $Br(\eta' K)$ is naturally explained in SCET

Charmless 2-body B decays...

Backup slides

J. Zupan

Charmless 2-body B decays...

Gluonic contributions

- $\zeta_{3(g)}, A_{ccg}$ not known from anywhere else
- in QCD factorization (Beneke, Neubert):
 - at LO in $\alpha_S(\sqrt{\Lambda m_b})$: $\zeta_3^{BM}(u) = \zeta_3/(u\bar{u})$, ζ_{3g}^{BM} const.
 - ζ_g , ζ_3 varied in some (reasonable) range, ζ_{Jg} , ζ_{3g} set to zero
- in SCET analysis (Williamson, JZ):
 - SU(3) used, $\zeta_{(J)g}$, A_{ccg} determined from data (fit)
 - ζ_3 omitted, even so $\zeta_{(J)g}$ poorly determ., 2 solutions
- measuring Br, A_{CP} for more modes with η, η' in the final state can help a lot!

IJS, 15.2.07 – p. 42

J. Zupan

Charmless 2-body B decays...

Relation to diagrammatic approach

• in SU(3) limit, for $\Delta S = 0$ decay (at LO in $\alpha_S(m_b)$)

$$t \propto V_{ub}V_{ud}^* \Big[\Big(C_1 + \frac{C_2}{N} \big(1 + \langle x^{-1} \rangle \big) \Big) \zeta_J + \Big(C_1 + \frac{C_2}{N} \Big) \zeta \Big] + \dots$$
$$c \propto V_{ub}V_{ud}^* \Big[\Big(C_2 + \frac{C_1}{N} \big(1 + \langle x^{-1} \rangle \big) \Big) \zeta_J + \Big(C_2 + \frac{C_1}{N} \Big) \zeta \Big] + \dots$$
$$p \propto V_{cb}V_{cd}^* A_{cc} + V_{ub}V_{ud}^* F(\zeta, \zeta_J) + \dots$$

 \checkmark at LO in $1/m_b$ no annihilation and exchange amplitudes

- at LO in $1/m_b$ and $\alpha_S(m_b)$ strong phase only in $p(A_{cc})$
- no color suppression (in SCET counting $\zeta \sim \zeta_J$)

$$t \propto V_{ub}V_{ud}^* \Big[0.77\zeta_J + 1.03\zeta \Big] + \dots, \qquad c \propto V_{ub}V_{ud}^* \Big[1.23\zeta_J + 0.12\zeta \Big] + \dots$$

J. Zupan Charmless 2-body *B* decays... IJS, 15.2.07 – p. 43

Relation to diagrammatic approach II

- there are 4 additional reduced matrix elements in SU(3) decomposition
- usually in diagrammatic approach only $p_s = 3s$ was taken to be nonzero
- in SCET counting all 4 are of LO in $1/m_b$
 - t_s , c_s are "gluonic" tree and color suppressed amplitudes (depend on ζ_g, ζ_{Jg})
 - $p_s \propto V_{cb} V_{cd}^* A_{ccg} + F(\zeta_{(J)}, \zeta_{(J)g})$
 - s_0 enters only $B_{(s)} \rightarrow \eta_0 \eta_0$ decays
- keeping only p_s corresponds to $\zeta_{(J)g} \ll \zeta_{(J)}$ limit not to
 $m_b \to \infty$ limit

J. Zupan

Charmless 2-body B decays...

Values for form factors

from our analysis

$$10^3 |V_{ub}| f_+^{B\pi}(0) = 0.69 \pm 0.03 \pm 0.14$$

• from exp. data on $B \rightarrow \pi l \nu$ (Becher, Hill '05)

 $10^3 |V_{ub}| f_+^{B\pi}(0) = 0.92 \pm 0.11 \pm 0.03$

J. Zupan

Charmless 2-body *B* decays...

Other tests in $B \to K\pi$

similarly the Lipkin sum rule

 $\Delta L = R_{00} - R + R_c - 1 \stackrel{\text{Exp.}}{=} 0.19 \pm 0.14 \stackrel{\text{Th.}}{=} 0.020 \pm 0.012$

is only of second order in the same expansion

• even more precise is $\Delta_{\Sigma} = 2\Delta\Gamma(B^{-} \to K^{-}\pi^{0}) - \Delta\Gamma(B^{-} \to \bar{K}^{0}\pi^{-}) + 2\Delta\Gamma(\bar{B}^{0} \to \bar{K}^{0}\pi^{0}) - \Delta\Gamma(\bar{B}^{0} \to K^{-}\pi^{+})$

that does no depend on A_{cc}

- $\Delta_{\Sigma} = 0$ in the limit of exact isospin and no EWP
- for EWP ≠ 0 still $\Delta_{\sum} = 0$ at LO in $1/m_B$ and $\alpha_S(m_b)$ since no relative strong phases

J. Zupan

Charmless 2-body B decays...

Example: CKM extraction from $B \to \pi \pi$

Bauer, Pirjol, Rothstein, Stewart 2004

IJS, 15.2.07 – p. 47

- utilize the fact that t, c carry no strong phase at LO in $1/m_b$ and $\alpha_S(m_b)$
- take $\mathcal{I}m(T/C) < 0.2$ as an input instead of C_{00}
- using 2004 data $\Rightarrow \gamma = 74.9^{\circ + 2^{\circ}}_{-5.4^{\circ}}$

Charmless 2-body B decays...