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Baryogenesis: Basics

Observation

Our Universe is baryon asymmetric. 

BAU is measured in CMB and BBN. Perfect agreement with each other.

Theory

Sakharov Conditions for successful baryogenesis

‣ B violation

‣ C & CP violation

‣ Departure from thermal equilibrium

nB

s
≡ nb − nb̄

s
# 10−11

τp ! 1032 yrs



One of the great successes of SM is to explain why Baryon and Lepton numbers 
are conserved perturbatively.

But at the non perturbative level, B and L are no more conserved due to EW 
anomaly.

EW Sphalerons

3.2 Baryon number violation in the SM: Sphalerons 31

In an expanding Universe, this is such provided the rate of particle interactions given

by Γint ! 〈nσv〉, where n is the number density, σ is the interaction cross section,

and v is the velocity of particles, is faster than the Hubble rate.

3.2 Baryon number violation in the SM: Sphalerons

One of the great successes of the standard model of strong and electroweak interac-

tions is its ability to explain why baryon and lepton number (B and L) are conserved.

Indeed, perturbatively (and at the renormalizable level), the SM has 4 conserved

quantum numbers: Le, Lµ, Lτ -leptonic numbers and B the baryon number. These

quantum numbers happen to be conserved accidentally. Their conservation can be

tracked to the conservation of the baryonic and leptonic current defined as
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However, due to the quantum anomaly
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where nf is the number of families, baryon and lepton numbers are violated. From

the above equation, it is clear that the combination B − L is still conserved, while

B + L is not. Integrating the above equation and discarding the surface term, we

obtain

NB = NL ∝ nfNCS, (3.8)

where NCS is a Chern-Simmons topological charge, that labels the vacuum. Figure

(3.1) shows schematically how this configuration looks like. The system can pass

from one vacuum to the other by tunneling. Due to non perturbative nature of

this configuration (called sphaleron), the rate at which B and L are violated at zero

temperature is very small. However at non zero temperature, this rate can be bigger.

One can compute such a rate, it is given by [60]
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where msph ∼ mW /αW is the sphaleron mass and TC is the critical temperature at

which the electroweak phase transition takes place. Sphaleron interactions are in
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Figure 3.1: A Schematic behavior of the energy dependence on the configuration of

the gauge and Higgs fields [A(x),ϕ(x) ]. The minima correspond to topologically

distinct vacua with different baryon Chern-Simmons number (NCS)

.

equilibrium at temperatures ranging from 1012 GeV down to the electroweak scale.

As a result, any baryon number produced in this range of temperature is inevitably

erased. This is one of the main drawbacks of GUT baryogenesis.

Since the SM describes perfectly the fundamental interactions at low energies,

the sphaleron configuration is inherent of any model of baryogenesis. Owing to its

minimality, electroweak baryogenesis [126] is one of the most popular models for

generating the baryon asymmetry of the Universe. The necessary ingredients are

built-in: the sphalerons provide the baryon number violating interactions, the C and

CP violation are naturally present in the SM (and even more in the supersymmetric

version), and finally the out-of-equilibrium condition is satisfied provided the elec-

troweak phase transition is of the strongly first order. Unfortunately electroweak

baryogenesis requires the lightest Higgs particle to be unacceptably light (See [130]

for an update). In the next section, we will be interested in an alternative baryogene-

sis scenario: leptogenesis, where lepton number is converted into a baryon asymmetry

through sphalerons.

3.3 See-Saw Phenomenology and Leptogenesis

In this section, we introduce our notation for the SUSY see-saw and outline its low-

energy implications. The aim is to make contact between realistic see-saw models,
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Rate of B+L violation is given by

=> Sphalerons are in equilibrium for  
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GUT Baryogenesis
B violation mediated by X and Y bosons present in GUTs

The scenario works however it is disfavoured because of the required high 

reheat temperature to produce X and Y => gravitinos, monopoles, ...

18 J. M. Cline
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Fig. 5. GUT couplings

where α = g2/(4π) or ∼ (y + h)2/(4π), for Xµ or Y , resepctively, m is the

mass, N is the number of decay channels, and the Lorentz gamma factor can be

roughly estimated at high temperature as

γ =
〈E〉
m

∼= (1 = 9T 2/m2)1/2 (3.2)

considering that 〈E〉 ∼= 3T for highly relativistic particles. The γ factor will
actually not be necessary for us, because we are interested in cases where the

particle decays at low temperatures compared to its mass, so that the decays will

occur out of equilibrium. Thus we can set γ = 1. The age of the universe is
τ ≡ 1/H = 1/ΓD at the time of the decay, so we set

ΓD = H ∼=
√

g∗
T 2

Mp
= αmN

−→ (αNmMp/
√

g∗)
1/2 ( m (3.3)

where g∗ is the number of relativistic degrees of freedom at the given tempera-
ture. Therefore we need α ( (m/Mp)(

√
g∗/N). Let us first consider the decays

of theX gauge boson. Since it couples to everything, the number of decay chan-

nelsN is of the same order as g∗, and we get

g2

4π
(

m

Mp
√

g∗
(3.4)

But unification occurs at the scale m ∼= 1016 GeV, for values of g2 such that

α ∼= 1/25, so this condition cannot be fulfilled. On the other hand, for the Higgs



Affleck-Dine Baryogenesis
-In SUSY, there exists plenty of flat directions (F=D=0). 

-Their flatness is only lifted by SUSY or non-renormalizable operators. 

-Furthermore during inflation, SUSY is broken since V=0. 

Example

                        

This flat direction carries lepton number

During inflation                       => 

/

44 4. Leptogenesis at low scale

even dominate the over the SUSY contribution depending on the value of the soft

parameters. This means that CP violation may completely originate from the soft

SUSY breaking sector, like in the Affleck-Dine case. However, besides enhancing the

amount of CP violation, the soft SUSY breaking interactions could bring the RHNs

decay at equilibrium, erasing considerably the produced lepton number. A more

accurate analysis, requiring the integration of Boltzmann equations, is necessary to

reach a firm conclusion.

Finally, it is worth noticing from Eqt. (4.2) that gravitinos could no more con-

stitute a sizable amount of dark matter in our scenario. Indeed, Ω3/2 h2 = 0.01 − 1,

requires the gravitino to be lighter and/or the gluinos masses to be heavier.

4.4 Affleck-Dine leptogenesis with TeV scale RHNs

Now, we turn to investigate the Affleck-Dine mechanism [36, 37] in the presence of

TeV scale RHNs. Consider the LHu MSSM flat direction given by 2

Li =
1√
2

(
ϕ

0

)
, Hu =

1√
2

(
0

ϕ

)
(4.17)

This flat direction is lifted by the non-renormalizable operator WNR = λ(LHu)2/M =

λϕ4/4M . This operator can be generated via the see-saw mechanism when integrating-

out the heavy RHNs. The evolution of the scalar condensate ϕ in the expanding

background is dictated by the classical equation of motion

ϕ̈ + 3Hϕ̇ +
∂V (ϕ)

∂ϕ∗ = 0 (4.18)

where V (ϕ) is the full potential, including the soft masses, the Hubble induced masses

and the A-terms (both from SUSY breaking and the Hubble induced ones)3.

V (ϕ) = (m2
3/2 − cHH2)|ϕ|2 + aHH

ϕ4

4M

+amm3/2
ϕ4

4M
+ h.c. +

|λ|2

M2
|ϕ|6. (4.19)

The constants cH and aH depend on the detailed structure of the Kahler potential.

In particular the sign of cH is crucial for the validity of the AD scenario. We assume

throughout the chapter that it is positive (cH > 0). The evolution of the scalar

condensate follows three phases. During inflation, when H # m3/2 the field ϕ is

over-damped and it settles away from the origin at a distance

|ϕ0| $
(

cHM2H2

|λ|2

)1/4

. (4.20)

2The factor
√

2 is necessary to have a canonical kinetic term for ϕ (The Kahler potential is
K = HuH†

u + LL† = ϕϕ†).
3Here, we are simply ignoring thermal effects [56].

W = λ
(LHu)2

M

44 4. Leptogenesis at low scale

even dominate the over the SUSY contribution depending on the value of the soft

parameters. This means that CP violation may completely originate from the soft

SUSY breaking sector, like in the Affleck-Dine case. However, besides enhancing the

amount of CP violation, the soft SUSY breaking interactions could bring the RHNs

decay at equilibrium, erasing considerably the produced lepton number. A more

accurate analysis, requiring the integration of Boltzmann equations, is necessary to

reach a firm conclusion.

Finally, it is worth noticing from Eqt. (4.2) that gravitinos could no more con-

stitute a sizable amount of dark matter in our scenario. Indeed, Ω3/2 h2 = 0.01 − 1,

requires the gravitino to be lighter and/or the gluinos masses to be heavier.

4.4 Affleck-Dine leptogenesis with TeV scale RHNs

Now, we turn to investigate the Affleck-Dine mechanism [36, 37] in the presence of

TeV scale RHNs. Consider the LHu MSSM flat direction given by 2

Li =
1√
2

(
ϕ

0

)
, Hu =

1√
2

(
0

ϕ

)
(4.17)

This flat direction is lifted by the non-renormalizable operator WNR = λ(LHu)2/M =

λϕ4/4M . This operator can be generated via the see-saw mechanism when integrating-

out the heavy RHNs. The evolution of the scalar condensate ϕ in the expanding

background is dictated by the classical equation of motion

ϕ̈ + 3Hϕ̇ +
∂V (ϕ)

∂ϕ∗ = 0 (4.18)

where V (ϕ) is the full potential, including the soft masses, the Hubble induced masses

and the A-terms (both from SUSY breaking and the Hubble induced ones)3.

V (ϕ) = (m2
3/2 − cHH2)|ϕ|2 + aHH

ϕ4

4M

+amm3/2
ϕ4

4M
+ h.c. +

|λ|2

M2
|ϕ|6. (4.19)

The constants cH and aH depend on the detailed structure of the Kahler potential.

In particular the sign of cH is crucial for the validity of the AD scenario. We assume

throughout the chapter that it is positive (cH > 0). The evolution of the scalar

condensate follows three phases. During inflation, when H # m3/2 the field ϕ is

over-damped and it settles away from the origin at a distance

|ϕ0| $
(

cHM2H2

|λ|2

)1/4

. (4.20)

2The factor
√

2 is necessary to have a canonical kinetic term for ϕ (The Kahler potential is
K = HuH†

u + LL† = ϕϕ†).
3Here, we are simply ignoring thermal effects [56].

44 4. Leptogenesis at low scale

even dominate the over the SUSY contribution depending on the value of the soft

parameters. This means that CP violation may completely originate from the soft

SUSY breaking sector, like in the Affleck-Dine case. However, besides enhancing the

amount of CP violation, the soft SUSY breaking interactions could bring the RHNs

decay at equilibrium, erasing considerably the produced lepton number. A more

accurate analysis, requiring the integration of Boltzmann equations, is necessary to

reach a firm conclusion.

Finally, it is worth noticing from Eqt. (4.2) that gravitinos could no more con-

stitute a sizable amount of dark matter in our scenario. Indeed, Ω3/2 h2 = 0.01 − 1,

requires the gravitino to be lighter and/or the gluinos masses to be heavier.

4.4 Affleck-Dine leptogenesis with TeV scale RHNs

Now, we turn to investigate the Affleck-Dine mechanism [36, 37] in the presence of

TeV scale RHNs. Consider the LHu MSSM flat direction given by 2

Li =
1√
2

(
ϕ

0

)
, Hu =

1√
2

(
0

ϕ

)
(4.17)

This flat direction is lifted by the non-renormalizable operator WNR = λ(LHu)2/M =

λϕ4/4M . This operator can be generated via the see-saw mechanism when integrating-

out the heavy RHNs. The evolution of the scalar condensate ϕ in the expanding

background is dictated by the classical equation of motion

ϕ̈ + 3Hϕ̇ +
∂V (ϕ)

∂ϕ∗ = 0 (4.18)

where V (ϕ) is the full potential, including the soft masses, the Hubble induced masses

and the A-terms (both from SUSY breaking and the Hubble induced ones)3.

V (ϕ) = (m2
3/2 − cHH2)|ϕ|2 + aHH

ϕ4

4M

+amm3/2
ϕ4

4M
+ h.c. +

|λ|2

M2
|ϕ|6. (4.19)

The constants cH and aH depend on the detailed structure of the Kahler potential.

In particular the sign of cH is crucial for the validity of the AD scenario. We assume

throughout the chapter that it is positive (cH > 0). The evolution of the scalar

condensate follows three phases. During inflation, when H # m3/2 the field ϕ is

over-damped and it settles away from the origin at a distance

|ϕ0| $
(

cHM2H2

|λ|2

)1/4

. (4.20)

2The factor
√

2 is necessary to have a canonical kinetic term for ϕ (The Kahler potential is
K = HuH†

u + LL† = ϕϕ†).
3Here, we are simply ignoring thermal effects [56].

44 4. Leptogenesis at low scale

even dominate the over the SUSY contribution depending on the value of the soft

parameters. This means that CP violation may completely originate from the soft

SUSY breaking sector, like in the Affleck-Dine case. However, besides enhancing the

amount of CP violation, the soft SUSY breaking interactions could bring the RHNs

decay at equilibrium, erasing considerably the produced lepton number. A more

accurate analysis, requiring the integration of Boltzmann equations, is necessary to

reach a firm conclusion.

Finally, it is worth noticing from Eqt. (4.2) that gravitinos could no more con-

stitute a sizable amount of dark matter in our scenario. Indeed, Ω3/2 h2 = 0.01 − 1,

requires the gravitino to be lighter and/or the gluinos masses to be heavier.

4.4 Affleck-Dine leptogenesis with TeV scale RHNs

Now, we turn to investigate the Affleck-Dine mechanism [36, 37] in the presence of

TeV scale RHNs. Consider the LHu MSSM flat direction given by 2

Li =
1√
2

(
ϕ

0

)
, Hu =

1√
2

(
0

ϕ

)
(4.17)

This flat direction is lifted by the non-renormalizable operator WNR = λ(LHu)2/M =

λϕ4/4M . This operator can be generated via the see-saw mechanism when integrating-

out the heavy RHNs. The evolution of the scalar condensate ϕ in the expanding

background is dictated by the classical equation of motion

ϕ̈ + 3Hϕ̇ +
∂V (ϕ)

∂ϕ∗ = 0 (4.18)

where V (ϕ) is the full potential, including the soft masses, the Hubble induced masses

and the A-terms (both from SUSY breaking and the Hubble induced ones)3.

V (ϕ) = (m2
3/2 − cHH2)|ϕ|2 + aHH

ϕ4

4M

+amm3/2
ϕ4

4M
+ h.c. +

|λ|2

M2
|ϕ|6. (4.19)

The constants cH and aH depend on the detailed structure of the Kahler potential.

In particular the sign of cH is crucial for the validity of the AD scenario. We assume

throughout the chapter that it is positive (cH > 0). The evolution of the scalar

condensate follows three phases. During inflation, when H # m3/2 the field ϕ is

over-damped and it settles away from the origin at a distance

|ϕ0| $
(

cHM2H2

|λ|2

)1/4

. (4.20)

2The factor
√

2 is necessary to have a canonical kinetic term for ϕ (The Kahler potential is
K = HuH†

u + LL† = ϕϕ†).
3Here, we are simply ignoring thermal effects [56].

44 4. Leptogenesis at low scale

even dominate the over the SUSY contribution depending on the value of the soft

parameters. This means that CP violation may completely originate from the soft

SUSY breaking sector, like in the Affleck-Dine case. However, besides enhancing the

amount of CP violation, the soft SUSY breaking interactions could bring the RHNs

decay at equilibrium, erasing considerably the produced lepton number. A more

accurate analysis, requiring the integration of Boltzmann equations, is necessary to

reach a firm conclusion.

Finally, it is worth noticing from Eqt. (4.2) that gravitinos could no more con-

stitute a sizable amount of dark matter in our scenario. Indeed, Ω3/2 h2 = 0.01 − 1,

requires the gravitino to be lighter and/or the gluinos masses to be heavier.

4.4 Affleck-Dine leptogenesis with TeV scale RHNs

Now, we turn to investigate the Affleck-Dine mechanism [36, 37] in the presence of

TeV scale RHNs. Consider the LHu MSSM flat direction given by 2

Li =
1√
2

(
ϕ

0

)
, Hu =

1√
2

(
0

ϕ

)
(4.17)

This flat direction is lifted by the non-renormalizable operator WNR = λ(LHu)2/M =

λϕ4/4M . This operator can be generated via the see-saw mechanism when integrating-

out the heavy RHNs. The evolution of the scalar condensate ϕ in the expanding

background is dictated by the classical equation of motion

ϕ̈ + 3Hϕ̇ +
∂V (ϕ)

∂ϕ∗ = 0 (4.18)

where V (ϕ) is the full potential, including the soft masses, the Hubble induced masses

and the A-terms (both from SUSY breaking and the Hubble induced ones)3.

V (ϕ) = (m2
3/2 − cHH2)|ϕ|2 + aHH

ϕ4

4M

+amm3/2
ϕ4

4M
+ h.c. +

|λ|2

M2
|ϕ|6. (4.19)

The constants cH and aH depend on the detailed structure of the Kahler potential.

In particular the sign of cH is crucial for the validity of the AD scenario. We assume

throughout the chapter that it is positive (cH > 0). The evolution of the scalar

condensate follows three phases. During inflation, when H # m3/2 the field ϕ is

over-damped and it settles away from the origin at a distance

|ϕ0| $
(

cHM2H2

|λ|2

)1/4

. (4.20)

2The factor
√

2 is necessary to have a canonical kinetic term for ϕ (The Kahler potential is
K = HuH†

u + LL† = ϕϕ†).
3Here, we are simply ignoring thermal effects [56].

4.4 Affleck-Dine leptogenesis with TeV scale RHNs 45

From the last equation, one sees that ϕ is displaced farther as the neutrino Yukawa

coupling λ is smaller. That is why Li in Eqt. (4.17) is usually chosen as the neutrino

with the smallest Yukawa coupling, L1 say. When H ≈ m3/2, the A-terms enter

into play and the condensate begins to oscillate. In general, when taking into account

thermal effects, the condensate begins to oscillate when the decreasing expansion rate

reaches a certain value denoted Hosc, determined when the thermal contributions are

taken into account [56]. At later times when H " m3/2, the lepton number is

essentially conserved. The evolution of the lepton number, nL defined as

nL =
i

2
(ϕ∗ϕ̇ − ϕϕ̇∗), (4.21)

follows the equation

ṅL + 3HnL = Im

[
ϕ

∂V (ϕ)

∂ϕ

]
(4.22)

The generated lepton asymmetry can be approximated by integrating the equation

(4.22). This gives

nL ≈
m3/2

2M
Im(amϕ4)t (4.23)

In a matter dominated Universe, the expansion rate scales with time as H = 2/3t.

Plugging this into the last equation, we get

nL

s
≈ 1

12

(
TRH

Hosc

)(
m3/2

M∗

)(
M

M∗

)
δeff

|λ|2 , (4.24)

where M∗ ≡ MPlanck/
√

8π & 2.4× 1018 GeV is the reduced Planck mass and we have

dropped constants of O(1). The effective CP-violating parameter δeff is defined as

δeff & sin (4 arg ϕ + arg am) (4.25)

Now, specializing to the low scale see-saw models [46, 45], where Yukawa couplings

come-out naturally suppressed as λ ∼ |Y eff |2 ∼ m3/2/M∗, we get

nL

s
≈ 1

12

(
TRH

Hosc

)
δeff (4.26)

Usually the effective CP-violating parameter is assumed to be maximal i.e. δeff & 1.

In our case there is no need to do so, since the reheating temperature can be as

low as m3/2 so TeV mass RHNs are produced thermally, while the gravitinos are

not. Typically, the condensate begins to oscillate at Hosc ! m3/2. In the extreme

case when TRH & Hosc & m3/2, only a small amount of CP is sufficient to reproduce

the observed value, namely δeff & 10−9 − 10−10. Up to now, we did not specify the

transmission mechanism of SUSY breaking. We just assumed that some hidden sector

will produce the soft breaking scalar masses and A-terms. In the gravity-mediated

scenario the A-terms are known to be of the form am3/2W + h.c.. This means that
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ṅL + 3HnL = Im

[
ϕ

∂V (ϕ)

∂ϕ

]
(4.22)

The generated lepton asymmetry can be approximated by integrating the equation

(4.22). This gives

nL ≈
m3/2

2M
Im(amϕ4)t (4.23)

In a matter dominated Universe, the expansion rate scales with time as H = 2/3t.

Plugging this into the last equation, we get

nL

s
≈ 1

12

(
TRH

Hosc

)(
m3/2

M∗

)(
M

M∗

)
δeff

|λ|2 , (4.24)

where M∗ ≡ MPlanck/
√

8π & 2.4× 1018 GeV is the reduced Planck mass and we have

dropped constants of O(1). The effective CP-violating parameter δeff is defined as

δeff & sin (4 arg ϕ + arg am) (4.25)

Now, specializing to the low scale see-saw models [46, 45], where Yukawa couplings

come-out naturally suppressed as λ ∼ |Y eff |2 ∼ m3/2/M∗, we get

nL

s
≈ 1

12

(
TRH

Hosc

)
δeff (4.26)

Usually the effective CP-violating parameter is assumed to be maximal i.e. δeff & 1.

In our case there is no need to do so, since the reheating temperature can be as

low as m3/2 so TeV mass RHNs are produced thermally, while the gravitinos are

not. Typically, the condensate begins to oscillate at Hosc ! m3/2. In the extreme

case when TRH & Hosc & m3/2, only a small amount of CP is sufficient to reproduce

the observed value, namely δeff & 10−9 − 10−10. Up to now, we did not specify the

transmission mechanism of SUSY breaking. We just assumed that some hidden sector

will produce the soft breaking scalar masses and A-terms. In the gravity-mediated

scenario the A-terms are known to be of the form am3/2W + h.c.. This means that

⇒



Spontaneous Baryo/Leptogenesis
Important Caveat: CPT is assumed to be conserved.

If CPT, then  Baryogenesis can proceed in equilibrium.

Baryon or lepton number can couple through

If             Poincare’ is broken => CPT (Greenberg Theorem).

The evolution of baryon number will follow: 

E.g. coupling with Ricci                  , .......

=> model dependent predictions

L ⊃ Jµ
B∂µφ→ nB φ̇

φ̇ != 0

∂µJµ
B ∝ ∂2φ→ ṅB + 3HnB ∝ φ̈

∂µR∂µφ



• The existence of a heavy right handed (RH) explains the smallness of neutrino masses 

• The decay of RH neutrinos leads to a L asymmetry which is converted to a baryon asymmetry 
through SM sphalerons.

Type I See-saw & leptogenesis

CP violation washout factor
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• Lepton number produced through L decay of Right handed neutrino                           

• Exploits EW sphalerons to transform L to B.

• CP violation: interference of tree + 1-loop (vertex and self energy)

with

In this scenario, the RHNs must decay out-of-equilibrium. A measure of the departure
from thermal equilibrium is given by the parameter K defined as

K ≡
ΓN

2 H

∣∣∣
T=MN

, (6)

where ΓN is the decay rate of RHNs and H is the expansion rate of the Universe. The
decay is out-of-equilibrium when K ! 1. The final baryon asymmetry reprocessed by
sphalerons is given by [26]

YB ≡
nB

s
=

(
8ng + 4nH

22ng + 13nH

)
nL

s
, (7)

where ng and nH counts the number of fermion generations and Higgses respectively.
The lepton asymmetry produced by the CP-violating out-of-equilibrium decay of

the RHNs can be computed using

nL

s
= κ

ε

g∗
, (8)

where g∗ is the effective degrees of freedom and κ is the dilution factor, computed by
integrating the relevant set of Boltzmann equations [27, 28]. The parameter ε char-
acterizing CP violation in the RHNs decay, can be defined for each RHN separately
as [29]

εi ≡
∑

j Γ(Ni → #jhu) −
∑

j Γ(Ni → #̄j h̄u)∑
j Γ(Ni → #jhu) +

∑
j Γ(Ni → #̄j h̄u)

= −
1

8π

1

(Y Y †)ii

∑

k "=i

Im
[
{(Y Y †)ik}2

] [
FV

(
M2

k

M2
i

)
+ FS

(
M2

k

M2
i

)]
(9)

where FV and FS are the contributions of the vertex and self-energy respectively.
They are given by

FV (x) =
√

x ln

(
1 +

1

x

)
, FS(x) =

2
√

x

x − 1
(10)

Now, applying the above formulae to TeV mass RHNs, one immediately sees that,
due to the smallness of the Yukawa couplings, the decay of RHNs is automatically
out-of-equilibrium. In addition to the decay processes, there can be other competing
processes that might bring the RHNs to thermal equilibrium, depleting any pre-
existing lepton number. These processes have to be out-of-equilibrium too, i.e. Γ %
〈nσv〉 ( H . The first such process is the ∆L = 2 scattering #hu ↔ #̄h̄u, via both
s and t channel. Other competing processes may involve the t-(s)quark, such as
Nt(b̄) ↔ #b(t̄). It turns out that due to the Yukawa coupling suppression all these
processes are out-of-equilibrium. Finally, it has been noted [30] that the process
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Consider hierarchical RH neutrino masses => B is created through decay of 

Departure from thermal equilibrium =>

On the other hand, thermal production of RH neutrinos =>

In general, one invokes the presence of B-L gauge bosons, which are in equilibrium 

for 

Departure from thermal equilibrium vs. thermal production

ΓDecay < H

ΓProd > H

Γ(T = 0)
H(T = M)

=
(Y †Y )11 · M

8π

/ (
g1/2
∗

M2

MP

2π3/2

√
45

)
≡ m̃1

1.1× 10−3eV
< 1,

ΓProd = 〈nσv〉 # g∗(Y †Y )11T > g1/2
∗ T 2/MP

∣∣∣
T=M

⇒ m̃1 > 10−5 eV

10−5 eV ! m̃1 ! 10−3 eV

⇓

This condition excludes the possibility of the most efficient leptogenesis with K < 1.

However, even if m1 is somewhat smaller than the value indicated by eq. (54), a sufficient

number of N1 can be produced. Indeed, for m1
>
∼ 10−5 eV, values of ε >

∼ 10−5 can

give rise to the observed baryon asymmetry. In the case of supersymmetric models,

the constraint can be even less stringent [30], and values ε >
∼ 10−5 are sufficient for

m1
>
∼ 10−6 eV.

The constraint on m1 from thermalization can be evaded if new interactions, different

from the ordinary Yukawa forces, bring N1 in thermal equilibrium at high temperatures.

For instance, one could use the extra U(1) gauge interactions included in SO(10) GUTs.

These interactions can produce a thermal population of N1 if, at T = TRH ,

Γ(f̄f → Z ′ → NN) =
169 α2

GUT T 5

3π M4
Z′

> H. (55)

This requires that the mass of the extra gauge boson MZ′ should be close to TRH and

significantly lower than the GUT scale,

MZ′ <
(

TRH

1010 GeV

)3/4

4 × 1011 GeV. (56)

3.2 Production at Reheating

Since it is very likely that the short period of preheating does not fully extract all

of the energy density from the inflaton field, the Universe will enter a long period of

matter domination after preheating where the dominant contribution to the energy

density of the Universe is provided by the residual small amplitude oscillations of the

classical inflaton field and/or by the inflaton quanta produced during the back-reaction

processes. This period will end when the age of the Universe becomes of the order of

the perturbative lifetime of the inflaton field. At this point the Universe will go through

a period of reheating with a reheat temperature TRH given by the perturbative result

in eq. (2).

Let us suppose that the inflaton couples to N1, either directly or through exchange

of other particles. In this case, the inflaton decay process can generate a right-handed

neutrino primordial population. The condition in eq. (53) is replaced by the weaker

constraint

M1 < mφ, (57)

where mφ is the inflaton mass.
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Thermal production of      => 

On the other hand, in the SUSY version of leptogenesis

No overproduction of gravitinos =>                             .

Possible solutions

‣Either the gravitino is very heavy or very light.

‣Gravitino is dark matter.

‣Non-thermal production (preheating, inflaton decay, ...)

‣Low reheat temperature.

4.2 The gravitino problem vs. thermal leptogenesis 39

density are given by [40]

Y3/2 = 1.1 × 10−10

(
TRH

1010 GeV

)(
100 GeV

m3/2

)2 ( mg̃

1 TeV

)2

, (4.1)

Ω3/2 h2 = 0.21

(
TRH

1010 GeV

)(
100 GeV

m3/2

) ( mg̃

1 TeV

)2

, (4.2)

where mg̃ denotes the gluino mass. The requirement that, if unstable, their late

decay do not disrupt the successful BBN predictions, and if stable, their energy density

do not overclose the Universe, put tight constraints on their relic abundance. It has

been noted that if m3/2 >10 TeV or m3/2 < keV, then there is no gravitino problem

[41, 42]. These requirements can be relaxed if there is a period of inflation and

the constraints apply only on post-inflation abundances. From the expression (4.1),

one sees that the gravitino abundance scales linearly with the reheat temperature,

therefore the bound on Y3/2 translates onto the following bound on the maximum

allowed reheat temperature TRH [43]

TRH ! (106 − 109) GeV for m3/2 = 100 GeV − 1 TeV . (4.3)

There exists however more stringent bounds on TRH from non-thermal production.

For generic supersymmetric inflation models, the bound can be as tight as [39] TRH !
105(V 1/4/1015 GeV), where V 1/4 is the height of the inflationary potential. Let us

now see the constraints on the reheat temperature coming from leptogenesis. In the

original see-saw model [32] the mass scale of RHNs is typically of O(1010−1015) GeV.

In addition, the bound on the CP parameter [69] for hierarchical RHN’s in thermal

leptogenesis implies a lower bound on the mass of the lightest RHN MN1 " 1010 GeV.

Consequently, if the thermal leptogenesis scenario is truly the mechanism responsible

for the the generation of the Baryon Asymmetry of the Universe (BAU), RHNs of this

mass have to be produced after inflation. This means a high reheat temperature, at

least as high as the mass of the lightest RHN, i.e. 1010 GeV, potentially conflicting

with the gravitino bound discussed above. A possible way out to get around this

problem is to produce RHNs non-thermally, that is during an efficient preheating

phase [44]. Non-thermal production, however, can lead in some cases to even more

stringent bounds on the reheat temperature. Indeed, for typical hybrid inflation

models, the upper bound on the reheat temperature can be as low as 1 TeV [38].

From the above discussion, it is clear that any compelling solution to this problem

will, in one way or another, involve low reheat temperatures. After all, we dont know

the thermal history of our Universe before BBN. All we know experimentally is that

TRH ≥ TBBN ∼ MeV. In this chapter, we will consider a rather exotic solution to this

problem, namely the case for leptogenesis when RHNs have a low scale mass. The

first benefit of such an approach is that RHNs can be produced thermally with a low

reheat temperature TRH ∼ O(TeV), avoiding thus the creation of dangerous relics, like

The gravitino problem in leptogenesis
N1 TRH > MN1 ! 109 GeV

TRH < 109 GeV



Low Scale Leptogenesis

• Thermal production                                             Gravitinos       

• Proposed solution: RH neutrinos could have masses ~ TeV.  Then         ~TeV.

➡New sources de CP and L violation.

LB, hep-ph/0208003

LB,  T. Hambye &  G. Senjanović, PRL ’04.

TRH > 109 GeV TRH < 109 GeV

spontaneous breaking of B−L symmetry. It is quite nat-
ural to expect that it survives the spontaneous breaking
of supersymmetry.

Regarding the lower limit on the mass of rhd neutrinos
in the standard leptogenesis scenario, one could imagine
that the situation could change dramatically due to a
natural presence of the SU(2)L triplet superfields (nec-
essarily present in the LR symmetric theories). It turns
out though that the situation is very similar to the stan-
dard one [20], and thus the soft supersymmetry breaking
terms are really indispensable.

Going to the sneutrino mass basis N̂I (I = 1, · · · , 6)
resulting from the diagonalization of the 6 by 6 mass
matrix containing the three types of mass term in Eqs. (1)
and (2), and rephasing the N̂I so that they are real fields,
the Lagrangian reduces to the compact form

L
Ñ

= M2
N̂I

N̂2
I + µα

IjN̂I L̃jφα + µα∗
Ij N̂I L̃

∗
jφ

∗
α , (3)

where φ1,2 ≡ HU , H∗
D. The µα

Ij are related to the initial

soft parameter AU
ij , A′U

ij , AD
ij and A′D

ij through the rhd
sneutrino mixing matrix.

C. Leptogenesis. Since, due to neutrino mass con-
straints, low scale rhd neutrinos must generally have tiny
Yukawa couplings the rhd neutrino asymmetries will be
highly suppressed. One possibility to compensate this
suppression is to consider a highly degenerate spectrum
of rhd neutrinos. In this case the asymmetry can be
highly resonantly enhanced. We will not consider this
possibility here and assume that the various rhd neu-
trinos and sneutrinos have a hierarchical mass spectrum
(for a low energy model based on degeneracy also in the
framework of supersymmetry breaking theories see [13]).
An other possibility we could think of is to invoke a hier-
archy between the couplings of the virtual and real parti-
cles entering in the leptogenesis diagrams. This consists
in taking small couplings for the particle decaying in or-
der to satisfy the out-of-equilibrium condition ΓD < H
and to take larger couplings for the (heavier) virtual par-
ticle, since those couplings are not constrained by this
condition. This at a scale as low as few TeV doesn’t work
for the rhd neutrinos due to the neutrino constraints (for
more details see [5] and [3,4]). However for the sneutrinos
this simple possibility could work because they are not
inducing neutrino masses directly through the see-saw
mechanism but only at the one loop level.

N̂I

L̃m

φβ

N̂K

φα

L̃j

N̂I

L̃m

φβ

N̂K

φα

L̃j

Fig. 1: Scalar vertex and self-energy contributing to εI .

The diagrams for the decay of the sneutrinos which
can lead to successful leptogenesis in this way are given
in Fig 1. They involve only scalar fields. From Eq. (3)
these diagrams give the following CP asymmetry:

εI ≡
Γ(N̂I → L̃jφα) − Γ(N̂I → L̃∗

jφ
∗
α)

Γ(N̂I → L̃jφα) + Γ(N̂I → L̃∗
jφ

∗
α)

= εV
I + εS

I , (4)

where as εV
I and εS

I (self-energy and vertex diagrams re-
spectively) are given by

εV
I =

−1

8πM2
N̂I

1

|µα
Ij |

2

∑

K #=I

Im
[
µβ

Imµβ∗
Kjµ

α∗
Kmµα

Ij

]
FV (xK), (5)

εS
I =

−1

4πM2

N̂I

1

|µα
Ij |

2

∑

K #=I

Im
[
µβ

Imµβ∗
Kmµα∗

Kjµ
α
Ij

]
FS(xK), (6)

with xK = M2

N̂I

/M2

N̂K

. The loop functions FV,S(x) can

be calculated easily. They are given by

FV (x) = ln(1 + x), FS(x) = x/(1 − x). (7)

As we did already in the denominator of the CP asymme-
try, in the following we will assume for simplicity that the
Yukawa couplings are negligible. These couplings are not
essential in our scenario, neither for leptogenesis, nor for
the neutrino masses. The suppression effects they can in-
duce if they are not negligible will be studied in a further
publication. Now, since we have assumed a hierarchi-
cal spectrum of sneutrino masses in Eq. (1), it is a very
good approximation to neglect the asymmetry produced
from the decay of the 4 heaviest eigenstates. Furthermore
for simplicity, in order to show that sufficient leptogene-
sis can be created easily, without loss of generality, one
can consider only the asymmetry produced by the light-
est eigenstate N̂1 which at lowest order in M2
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where we have neglected the terms where α %= β again
for the sake of simplicity. To have successful leptogenesis
from Eq. (8) there are essentially three constraints:
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In the following, we will assume that this condition is
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from these couplings.
• The couplings of the virtual sneutrino eigenstate
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We investigate the possibility of low-scale leptogenesis in the minimal supersymmetric standard
model extended with right-handed (s)neutrinos. We demonstrate that successful leptogenesis can
be easily achieved at a scale as low as ∼ TeV where lepton number and CP violation comes from
soft supersymmetry breaking terms. The scenario is shown to be compatible with neutrino masses
data.

A. Introduction. The experimental observations of
neutrinos oscillations gave overwhelming evidence for
small neutrino masses. The see-saw mechanism [1] can
explain elegantly such small masses from the existence of
right-handed (rhd) neutrinos. Furthermore, in the lepto-
genesis scenario [2], the out-of-equilibrium decay of these
rhd neutrinos can lead to a lepton asymmetry, that is
partly converted to a baryon number through sphalerons,
providing in this way a simple and attractive explanation
of the baryon asymmetry of the universe.

In the standard thermal leptogenesis scenario the mass
of rhd neutrinos must lie above 109 GeV or so [3–8].
(here, we are not considering the case where rhd neutri-
nos are quasi-degenerate [5,8–13]). In supergravity, this
implies the well known gravitino problem [14]. To avoid
this gravitino problem and also, independently of it, in
order to be as close to experiment as possible, it would
be nice to have leptogenesis at the lowest possible scale,
i.e. near the Fermi scale. Low rhd neutrino masses can oc-
cur naturally in realistic supersymmetric theories such as
the minimal Pati-Salam model [15] or if the rhd neutrino
masses themselves come from supersymmetry breaking
[16].

Building such a low energy leptogenesis model is how-
ever difficult for a number of reasons (see [5] for a detailed
discussion). The main reason is that if all L-violating in-
teractions come from the see-saw then the asymmetry is
proportional to Yukawa couplings which to explain the
small neutrino masses have to be tiny, leading to a far
too small asymmetry. We need therefore other sources
of L-violation which do not give rise to see-saw neutrino
masses. The most natural and simple framework leading
to such interactions is low-energy supersymmetry. By
transferring the notion of lepton number to scalar part-
ners, supersymmetry introduces new sources of lepton
number violation through soft supersymmetry breaking
[17]. Being pure scalar, these interactions are less con-
strained by the neutrino masses (since they lead to neu-
trino masses only at one loop, as we will see) and there-
fore allow to get much larger asymmetries at low scale,
leading to successful leptogenesis. This is the central
point of this letter.

B. Soft SUSY breaking terms. Let us consider the R-
conserving MSSM extended by a singlet rhd neutrino for

each generation Ni. The model is described by the usual
SUSY see-saw superpotential

W = WMSSM + YijLiHUNj +
1

2
MiN

2
i , (1)

where we have rotated the Ni’s into the basis where
the rhd neutrino mass matrix is real and diagonal. We
are interested in the situation where the mass of rhd
(s)neutrinos is above but not too far from the scale of
the supersymmetry breaking. Following a bottom-up ap-
proach, we consider the most general soft SUSY break-
ing terms compatible with gauge invariance and R-parity
conservation. The relevant L and CP violating terms in
the Lagrangian are given by

L
Ñ

= (m2

Ñ
)ijÑ∗

i Ñj + BijÑiÑj + AU
ijL̃iHUÑj

+ A′U
ij L̃iHU Ñ∗

j + AD
ij L̃iH∗

DÑj + A′D
ij L̃iH∗

DÑ∗
j + h.c. (2)

The first line of Eq. (2) represents the usual soft masses,
B-term and holomorphic A-terms, generally present in
gravity mediated scenarios. The additional terms are the
so-called non-holomorphic A-terms, and they are highly
suppressed in supergravity. Although they are not essen-
tial for our discussion, we include them for the sake of
completeness.

Note the important role R-parity is playing here. In
general, R-parity is invoked in order to prevent a too
fast proton decay. It also provides a natural dark matter
candidate (LSP). In our case, R-parity makes Eq. (2) the
most general renormalizable, B−L violating superpoten-
tial with this field content. Furthermore, and due to the
presence of a singlet in the model, R-parity prevents the
occurrence of dangerous tadpoles that induce quadratic
divergences. Indeed, if we relax R-parity, we would have
λijkÑiÑjÑ∗

k as a soft term, that would induce a tadpole

for the operator L̃iHU .
It is remarkable that the B − L symmetry leads auto-

matically to R-parity conservation [18]. After the subse-
quent spontaneous breaking of B−L, which leads to non-
vanishing rhd neutrino masses, exact R-parity survives as
a discrete Z2 symmetry. This is true at all energy scales
[19]. In other words, R-parity is inherent in this picture
of the see-saw mechanism and leptogenesis through the
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Going to the diagonal basis

The CP asymmetry reads

With                               and 

Numerical example: 

gives                         and 

spontaneous breaking of B−L symmetry. It is quite nat-
ural to expect that it survives the spontaneous breaking
of supersymmetry.

Regarding the lower limit on the mass of rhd neutrinos
in the standard leptogenesis scenario, one could imagine
that the situation could change dramatically due to a
natural presence of the SU(2)L triplet superfields (nec-
essarily present in the LR symmetric theories). It turns
out though that the situation is very similar to the stan-
dard one [20], and thus the soft supersymmetry breaking
terms are really indispensable.

Going to the sneutrino mass basis N̂I (I = 1, · · · , 6)
resulting from the diagonalization of the 6 by 6 mass
matrix containing the three types of mass term in Eqs. (1)
and (2), and rephasing the N̂I so that they are real fields,
the Lagrangian reduces to the compact form

L
Ñ

= M2
N̂I

N̂2
I + µα

IjN̂I L̃jφα + µα∗
Ij N̂I L̃

∗
jφ

∗
α , (3)

where φ1,2 ≡ HU , H∗
D. The µα

Ij are related to the initial

soft parameter AU
ij , A′U

ij , AD
ij and A′D

ij through the rhd
sneutrino mixing matrix.

C. Leptogenesis. Since, due to neutrino mass con-
straints, low scale rhd neutrinos must generally have tiny
Yukawa couplings the rhd neutrino asymmetries will be
highly suppressed. One possibility to compensate this
suppression is to consider a highly degenerate spectrum
of rhd neutrinos. In this case the asymmetry can be
highly resonantly enhanced. We will not consider this
possibility here and assume that the various rhd neu-
trinos and sneutrinos have a hierarchical mass spectrum
(for a low energy model based on degeneracy also in the
framework of supersymmetry breaking theories see [13]).
An other possibility we could think of is to invoke a hier-
archy between the couplings of the virtual and real parti-
cles entering in the leptogenesis diagrams. This consists
in taking small couplings for the particle decaying in or-
der to satisfy the out-of-equilibrium condition ΓD < H
and to take larger couplings for the (heavier) virtual par-
ticle, since those couplings are not constrained by this
condition. This at a scale as low as few TeV doesn’t work
for the rhd neutrinos due to the neutrino constraints (for
more details see [5] and [3,4]). However for the sneutrinos
this simple possibility could work because they are not
inducing neutrino masses directly through the see-saw
mechanism but only at the one loop level.
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Fig. 1: Scalar vertex and self-energy contributing to εI .

The diagrams for the decay of the sneutrinos which
can lead to successful leptogenesis in this way are given
in Fig 1. They involve only scalar fields. From Eq. (3)
these diagrams give the following CP asymmetry:

εI ≡
Γ(N̂I → L̃jφα) − Γ(N̂I → L̃∗

jφ
∗
α)

Γ(N̂I → L̃jφα) + Γ(N̂I → L̃∗
jφ

∗
α)

= εV
I + εS

I , (4)

where as εV
I and εS

I (self-energy and vertex diagrams re-
spectively) are given by

εV
I =

−1

8πM2
N̂I

1

|µα
Ij |

2

∑

K #=I

Im
[
µβ

Imµβ∗
Kjµ

α∗
Kmµα

Ij

]
FV (xK), (5)

εS
I =

−1

4πM2

N̂I

1

|µα
Ij |

2

∑

K #=I

Im
[
µβ

Imµβ∗
Kmµα∗

Kjµ
α
Ij

]
FS(xK), (6)

with xK = M2

N̂I

/M2

N̂K

. The loop functions FV,S(x) can

be calculated easily. They are given by

FV (x) = ln(1 + x), FS(x) = x/(1 − x). (7)

As we did already in the denominator of the CP asymme-
try, in the following we will assume for simplicity that the
Yukawa couplings are negligible. These couplings are not
essential in our scenario, neither for leptogenesis, nor for
the neutrino masses. The suppression effects they can in-
duce if they are not negligible will be studied in a further
publication. Now, since we have assumed a hierarchi-
cal spectrum of sneutrino masses in Eq. (1), it is a very
good approximation to neglect the asymmetry produced
from the decay of the 4 heaviest eigenstates. Furthermore
for simplicity, in order to show that sufficient leptogene-
sis can be created easily, without loss of generality, one
can consider only the asymmetry produced by the light-
est eigenstate N̂1 which at lowest order in M2

N̂1

/M2
N̂K

is

given by:

ε1 $ −
3

8π

1

M2
N̂K

1

|µα
1j |

2

∑

K #=1

Im
[
(µαµα†)21K

]
, (8)

where we have neglected the terms where α %= β again
for the sake of simplicity. To have successful leptogenesis
from Eq. (8) there are essentially three constraints:
• The out of equilibrium condition for N̂1 eigenstate

Γ
N̂1

=
1

4π

|µα
1j |

2

M
N̂1

< H(T = M
N̂1

) (9)

translates into a bound on its couplings µα
1j

<
∼ 10−7 M

N̂1

,

if M
N̂1

∼ 1 TeV or µα
1j

<
∼ 4 · 10−7 M

N̂1

if M
N̂1

∼ 10 TeV.
In the following, we will assume that this condition is
satisfied in order to avoid wash-out suppressions coming
from these couplings.
• The couplings of the virtual sneutrino eigenstate

must be large enough to give sufficient CP -asymmetry.
In order to reproduce the experimental value from CMB,
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be calculated easily. They are given by
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As we did already in the denominator of the CP asymme-
try, in the following we will assume for simplicity that the
Yukawa couplings are negligible. These couplings are not
essential in our scenario, neither for leptogenesis, nor for
the neutrino masses. The suppression effects they can in-
duce if they are not negligible will be studied in a further
publication. Now, since we have assumed a hierarchi-
cal spectrum of sneutrino masses in Eq. (1), it is a very
good approximation to neglect the asymmetry produced
from the decay of the 4 heaviest eigenstates. Furthermore
for simplicity, in order to show that sufficient leptogene-
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can consider only the asymmetry produced by the light-
est eigenstate N̂1 which at lowest order in M2
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where we have neglected the terms where α %= β again
for the sake of simplicity. To have successful leptogenesis
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Regarding the lower limit on the mass of rhd neutrinos
in the standard leptogenesis scenario, one could imagine
that the situation could change dramatically due to a
natural presence of the SU(2)L triplet superfields (nec-
essarily present in the LR symmetric theories). It turns
out though that the situation is very similar to the stan-
dard one [20], and thus the soft supersymmetry breaking
terms are really indispensable.
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matrix containing the three types of mass term in Eqs. (1)
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C. Leptogenesis. Since, due to neutrino mass con-
straints, low scale rhd neutrinos must generally have tiny
Yukawa couplings the rhd neutrino asymmetries will be
highly suppressed. One possibility to compensate this
suppression is to consider a highly degenerate spectrum
of rhd neutrinos. In this case the asymmetry can be
highly resonantly enhanced. We will not consider this
possibility here and assume that the various rhd neu-
trinos and sneutrinos have a hierarchical mass spectrum
(for a low energy model based on degeneracy also in the
framework of supersymmetry breaking theories see [13]).
An other possibility we could think of is to invoke a hier-
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cles entering in the leptogenesis diagrams. This consists
in taking small couplings for the particle decaying in or-
der to satisfy the out-of-equilibrium condition ΓD < H
and to take larger couplings for the (heavier) virtual par-
ticle, since those couplings are not constrained by this
condition. This at a scale as low as few TeV doesn’t work
for the rhd neutrinos due to the neutrino constraints (for
more details see [5] and [3,4]). However for the sneutrinos
this simple possibility could work because they are not
inducing neutrino masses directly through the see-saw
mechanism but only at the one loop level.
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Fig. 1: Scalar vertex and self-energy contributing to εI .
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where we have neglected the terms where α %= β again
for the sake of simplicity. To have successful leptogenesis
from Eq. (8) there are essentially three constraints:
• The out of equilibrium condition for N̂1 eigenstate

Γ
N̂1

=
1

4π

|µα
1j |

2

M
N̂1

< H(T = M
N̂1

) (9)
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2 · 10−10g"/η where g" ∼ 200 is the number of active de-
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η = 1 if the asymmetry is not washed-out by any ther-
mal equilibrium processes). For example assuming for
simplicity that only one virtual sneutrino is contributing
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∼ few TeV, this requires that some of
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2j couplings are at least of order 10−3 M

N̂2

. So the
typical hierarchy needed between the µα

1j and µα
2j cou-

plings is of order 10−4 which is the strongest assumption
we have to make here in order that this mechanism work.
This might seem a large hierarchy, but after all it is of
order the ratio of tau to electron Yukawa couplings.
• In order to avoid that the soft interactions of the

virtual N̂2 could wash out the asymmetry it is necessary
that the potentially dangerous scattering L̃+H ↔ N̂2 ↔
L̃∗ + H∗ be under control. This scattering is not present
in the Boltzmann equation for the N̂1 number density but
rather in the one for the lepton number. For T ∼ M
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because with µα
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and M
N̂2
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). For M
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) this can induce a sizable wash-out
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times smaller than H(M
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) the asymmetry will be pro-
duced at smaller temperature when this suppression is
further Boltzmann suppressed and negligible. Similarly
the off-shell contribution to this scattering can have an
effect, especially for low temperatures. However this ef-
fect will be fastly Boltzmann suppressed and negligible at
temperatures below the threshold s0 = (mH + mL̃)2. It
is therefore easy to avoid large wash-out from this scat-
tering as we have checked by considering explicitly the
corresponding Boltzmann equations.

Note that if our scenario is to be embedded into a
theory where B −L is gauged, such as in say Pati-Salam
theory or SO(10), wash-out constraints require that the
corresponding gauge boson mass to be much heavier than
M

N̂1

. This happens naturally if the Yukawa couplings
giving mass to rhd neutrinos are small.

Altogether for example with M
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mH +mL̃ = 700 GeV, one can check that a large enough
asymmetry can be created. It gives ε1 ∼ 10−7, and
from the Boltzmann equations we get nB/nγ ∼ 6 · 10−10

(in agreement with data [21]). The neutrino mass con-
straints can be easily accommodated with this set of val-
ues (see below). There is a large range of parameters
in the parameter space which leads to successful lepto-
genesis. Note however that it appears to be difficult to
generate a large enough asymmetry before the sphalerons

gets out-of-equilibrium around T ∼ 100 − 200 GeV for
M

N̂1

below one TeV and M
N̂2

below 3-4 TeV. Finite tem-
perature effects can change the produced asymmetry by
effects of order unity [7] which we didn’t take into ac-
count here. Note that all constraints can be relaxed by
scaling up all masses.

The impact of our results on the original basis in
Eq. (2) is worth studying in well defined theories of super-
symmetry breaking, and we plan to return to this issue
elsewhere. This requires typically similar hierarchies be-
tween some of the couplings of different generations of
rhd sneutrinos. In addition, their mixings has not to be
larger that ∼ 10−4 in order that the decay rate of the
lightest sneutrino remains sufficiently suppressed. This
implies in particular an alignment of the B terms, i.e.
they should be almost diagonal.

D. Neutrino Masses. In our scenario, neutrinos masses
originate from two sources.

1. See-saw contribution. The first one, which occurs
at tree level, is the usual see-saw given by:
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In order that this doesn’t induce too large neutrino
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∼ 10−7 − 10−6.
As said above, here for simplicity we assume all effects of
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neutrino masses is the radiative one-loop contribution of
Fig. 2 coming from the sneutrinos soft term sector (see
also Ref. [16]). The resulting radiative neutrino mass in
the limit m

N̂I
# mν̃i

, mχ is

(mrad
ν )jk %

α

4π

µα
Ij µβ

Ik

M2
N̂I

mχ

m2
ν̃j

− m2
ν̃k

〈φα〉〈φβ〉

×

[
m2

ν̃j

m2
ν̃j

− m2
χ

ln
mν̃j

2

m2
χ

− j → k

]

. (11)

The estimate of the above contribution depends cru-
cially on the masses of rhd sneutrinos m
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, and for m
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large enough it is negligible. However we have seen in
the previous section that m
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can be as low as TeV from

the leptogenesis discussion, and for such value the in-
duced masses turns out to be not negligible. Plugging
in the values of µα
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Fig. 2: Diagram contributing to neutrino masses.
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➡New contributions to light neutrino masses

For our numerical example with                              and                              gives 

                             Degenerate spectrum for light neutrinos
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nB/nγ = (6.1+0.3
−0.2)·10−10 [21] we need ε1 ∼ (nL/s)g"/η ∼

2 · 10−10g"/η where g" ∼ 200 is the number of active de-
grees of freedom at the epoch of the decay and where η is
the efficiency factor due to wash out suppressions (with
η = 1 if the asymmetry is not washed-out by any ther-
mal equilibrium processes). For example assuming for
simplicity that only one virtual sneutrino is contributing
significantly to the asymmetry (e.g. N̂2), for η ∼ 1 and
M

N̂2

∼ few M
N̂1

∼ few TeV, this requires that some of

the µα
2j couplings are at least of order 10−3 M

N̂2

. So the
typical hierarchy needed between the µα

1j and µα
2j cou-

plings is of order 10−4 which is the strongest assumption
we have to make here in order that this mechanism work.
This might seem a large hierarchy, but after all it is of
order the ratio of tau to electron Yukawa couplings.
• In order to avoid that the soft interactions of the

virtual N̂2 could wash out the asymmetry it is necessary
that the potentially dangerous scattering L̃+H ↔ N̂2 ↔
L̃∗ + H∗ be under control. This scattering is not present
in the Boltzmann equation for the N̂1 number density but
rather in the one for the lepton number. For T ∼ M

N̂2

the on-shell contribution to this scattering is quite fast
because with µα

2j ∼ 10−3M
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and M
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have Γ
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). For M
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contribution, even if Boltzmann suppressed, remains fast
down to a temperature of order M
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or few times less. If
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N̂1

) this can induce a sizable wash-out
suppression of the asymmetry. However for Γ

N̂1

a few

times smaller than H(M
N̂1

) the asymmetry will be pro-
duced at smaller temperature when this suppression is
further Boltzmann suppressed and negligible. Similarly
the off-shell contribution to this scattering can have an
effect, especially for low temperatures. However this ef-
fect will be fastly Boltzmann suppressed and negligible at
temperatures below the threshold s0 = (mH + mL̃)2. It
is therefore easy to avoid large wash-out from this scat-
tering as we have checked by considering explicitly the
corresponding Boltzmann equations.

Note that if our scenario is to be embedded into a
theory where B −L is gauged, such as in say Pati-Salam
theory or SO(10), wash-out constraints require that the
corresponding gauge boson mass to be much heavier than
M

N̂1

. This happens naturally if the Yukawa couplings
giving mass to rhd neutrinos are small.
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from the Boltzmann equations we get nB/nγ ∼ 6 · 10−10

(in agreement with data [21]). The neutrino mass con-
straints can be easily accommodated with this set of val-
ues (see below). There is a large range of parameters
in the parameter space which leads to successful lepto-
genesis. Note however that it appears to be difficult to
generate a large enough asymmetry before the sphalerons

gets out-of-equilibrium around T ∼ 100 − 200 GeV for
M

N̂1

below one TeV and M
N̂2

below 3-4 TeV. Finite tem-
perature effects can change the produced asymmetry by
effects of order unity [7] which we didn’t take into ac-
count here. Note that all constraints can be relaxed by
scaling up all masses.

The impact of our results on the original basis in
Eq. (2) is worth studying in well defined theories of super-
symmetry breaking, and we plan to return to this issue
elsewhere. This requires typically similar hierarchies be-
tween some of the couplings of different generations of
rhd sneutrinos. In addition, their mixings has not to be
larger that ∼ 10−4 in order that the decay rate of the
lightest sneutrino remains sufficiently suppressed. This
implies in particular an alignment of the B terms, i.e.
they should be almost diagonal.

D. Neutrino Masses. In our scenario, neutrinos masses
originate from two sources.

1. See-saw contribution. The first one, which occurs
at tree level, is the usual see-saw given by:
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and a somewhat smaller mχ ≈ 100 GeV as in the numer-
ical example above), it is easy to show that mrad

ν ≈ 1 eV!
A nice feature of our scenario is therefore the fact that
the sets of parameters leading to successful leptogenesis
also lead to a maximal neutrino mass in agreement with
data within one or two orders of magnitude (although
close to the upper experimental limit). The correct neu-
trino flavor structure can be then obtained by considering
flavor hierarchies between the µα

Ij couplings.
Taken at face value, this would imply degenerate neu-

trino masses (especially for large gaugino masses), which
interestingly enough is in the sensitivity region of present
experiments [22]. However, there can be accidental
(unnatural) cancellations with the see-saw contribution.
Moreover, one could use easily the freedom of choosing
appropriately tanβ (and taking µ1

Ij couplings slightly
smaller than µ2

Ij couplings) and thus easily getting the
appropriate suppression in the case of hierarchical neu-
trino masses. Barring these mild fine tunings for a low
B − L scale, we generically expect degenerate neutrinos.
Although not a hard prediction, it would indicate a pos-
sible low scale leptogenesis scenario discussed here.

E. Lepton flavor violation. As in any low-energy super-
symmetric framework with soft supersymmetric breaking
terms, in our scenario we expect an appreciable amount
of lepton flavor violation. In fact, rare processes like
µ → eγ are used to set stringent limits on slepton
masses and mixings. In our case, due to the smallness
of µα

Ij/m
N̂I

, and to the alignment of the B-terms, it is
easy to see that the contributions to these processes com-
ing from Eq. (3) are well below experimental limits.

F. Collider signatures. The real test of this scenario
would be of course the production of rhd (s)neutrinos in
the 1 - 10 TeV region. Due to their tiny couplings, this
will be a very hard task for the rhd neutrinos. But it is
worth noting that one expects to produce rhd sneutrino
much more efficiently than their fermionic partners, since
the coefficients of the soft terms (i.e. µα

2j in the example
given above) are necessarily much bigger than the Dirac
Yukawa couplings. This provides a unique opportunity
to test directly the origin of both neutrino masses and
leptogenesis at the same time.

In conclusion, in addition of providing a simple solution
to the hierarchy problem and protecting the flatness of
the inflationary potential, supersymmetry could also lead
to the generation of the baryon asymmetry at a scale of
order the Fermi scale.
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912 (1980).

[2] M. Fukugita and T. Yanagida, Phys. Lett. B 174 (1986)
45; M. A. Luty, Phys. Rev. D45 (1992) 455.

[3] S. Davidson and A. Ibarra, Phys. Lett. B 535 (2002) 25.
[4] K. Hamaguchi, H. Murayama and T. Yanagida, Phys.

Rev. D65 (2002) 043512.
[5] T. Hambye, Nucl. Phys. B 633 (2002) 171.
[6] W. Buchmüller, P. Di Bari and M. Plümacher,
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Mechanism N Yukawa h N mass φ-N coupling

Thermal 10−5eV < m̃1 < 10−3eV 109GeV <∼ M1 <∼ TRH irrelevant

Affleck–Dine 10−9eV < mν1
< 10−4eV Mi < Hinfl

{

Meff
i < Hinfl

(

Meff
i

)2
< 0

Pert.φ
decay

}

ΓLV < H(τi)

{

Mi < mφ/2
Mi > mφ/2

}

BR(φ → NiNi) ∼ 1
BR(φ → N∗

i N∗
i ) ∼ 1

N preheating
eq. (14)

ΓLV < H(τi) Mi >∼ 1014 GeV gi >∼ 0.03

Ñ preh./resc.
eq. (19)

ΓLV < H(τi) Mi <∼ gi 1017 GeV gi >∼
√

λ

TABLE I: Summary of parameters for which leptogenesis could work, for different r.h. (s)neutrino production mechanisms.
In (s)neutrino production mechanisms which do not require the Yukawa coupling (non-thermal mechanisms), the constraint
on the Yukawa matrix is that lepton number violating interactions in the thermal soup be out of equilibrium after the r.h.
(s)neutrinos decay at τi. This also implies Mi > T (τi), and possibly additional constraints on L violating processes mediated
by Nj , j $= i. Recall m̃i parametrises the Ni decay rate, and is defined after eqn. (12). The Affleck–Dine mechanism proceeds
through generation of large expectation values either for a small [68] or a tachyonic [24] effective mass of sneutrinos Meff during
inflation. The asymmetry made by the perturbative decay of the inflaton can be generated by the on-shell r.h. (s)neutrinos [56],
which subsequently decay, or by the decay via off-shell r.h. (s)neutrinos (N∗

i ) to Higgses and leptons [57]. The properties of
nonperturbative (s)neutrino production analysed in the present paper is summarized in the last two lines (λ is the inflaton self-
coupling). Other scenarios for nonperturbative production after the end of inflation can be envisaged, with model–dependent
results.

nearly degenerate r.h. (s)neutrinos [11, 38, 39] (i.e. we
assume that the difference of neutrino masses is of order
their mass).

The lepton asymmetry produced in the decay of Ni

can be written

YL ≡
NL − NL̄

s
= εi

NNi

s
κi, (2)

where NNi
is the total number density of the ith heavy

(s)neutrino species prior to its decay, s is the entropy
density at decay [81], κi parametrises washout effects due
to subsequent lepton number violating interactions, and
εi arises from the CP violation of the Ni decay. It is
given by [39]

εi ≡
Γ (Ni → L H) − Γ

(

Ni → L̄ H̄
)

Γ (Ni → L H) + Γ
(

Ni → L̄ H̄
)

=
1

8π (hh†)ii

∑

j

Im
[

(

hh†
)2

ij

]

f

(

M2
j

M2
i

)

(3)

where f(x) =
√

x[2/(x−1)+ ln(1/x+1)] for hierarchical
r.h. neutrino masses.

We suppose for the moment that some number density
of Ni is produced in the early Universe, and concentrate
on how large an asymmetry can be generated. The asym-
metry εi is determined by the masses and couplings of the
r.h. (s)neutrinos, which are given in eqn. (1). However,
it can be related to, and therefore constrained by, low
energy observables.

The CP asymmetry produced in the decay of a r.h.
(s)neutrino can conveniently be parameterized as

εi =
3

8 π

Mi m3

〈H〉2
δCP

' 10−6

(

Mi

1010GeV

)

( m3

0.05 eV

)

δCP. (4)

By using eqs. (6) and (3), it is possible to show [13, 14, 15]
that for the case ε1, δCP satisfies the upper bound [82]

|δCP| ≤ 1 . (5)

By combining the two last expressions, one finds an upper
bound on the parameter ε1 which scales linearly with
the r.h. (s)neutrino mass M1 . We will shortly see that
this implies a lower bound on M1 for leptogenesis to be
viable. The mass m3 in equation (4) denotes the mass
of the heaviest left-handed neutrino. The light neutrino
mass matrix is obtained by integrating out the heavy r.h.
neutrinos to give the see-saw formula

mν = −hT M−1 h 〈H0
u〉2 . (6)

We will assume that the light neutrino masses mi are
hierarchical, so m3 '

√

∆m2
atm [8].

If h is written in the charged lepton mass eigenstate
basis (neutrino flavour basis), then mν is diagonalised
by the MNS matrix U [40], which can be written U =
V · diag(e−iφ/2, e−iφ′/2, 1), with



• RH neutrinos are produced through the coupling

• Rescattering is important

• Eventough RHN are produced at lower temperture, also gravitinos could be 
produced. 
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the inflaton, although in the next section we will comment on differences and simi-

larities with the Affleck-Dine mechanism. The strength of this interaction, relative to

the inflaton coupling to other degrees of freedom, is a free parameter; for appropriate

values, a lepton asymmetry of the correct magnitude can be produced. The number

density of r.h. (s)neutrinos will also depend on the evolution of the inflaton between

the end of inflation and reheating. If the inflaton decays perturbatively, right-handed

neutrinos with masses less than half the inflaton mass could be produced in the decay

[108]. For heavier r.h. neutrinos, one can also envisage the possibility that a sufficient

leptogenesis is generated in processes in which they mediate a perturbative inflaton

decay [109]. In both cases, the final lepton asymmetry will be proportional to the

branching ratio of the inflaton into (either on- or off-shell) neutrinos. A branching

ratio of order one is typically required. Right-handed neutrinos with masses greater

than that of the inflaton can be produced at preheating, if their interaction with the

inflaton is strong enough. The production of heavy fermions (sneutrinos are discussed

in the next section) in an expanding Universe was first discussed in ref. [44] (fermionic

production in the conformal case was first studied in [110]), where a direct Yukawa

coupling to the inflaton φ was considered, and the simplest chaotic inflationary sce-

nario with a massive inflaton, V (φ) = m2
φ φ2/2 , mφ ! 1013 GeV, was assumed. The

relevant part of the lagrangian is

LN, φ = N̄ (M + g φ) N , (5.3)

where N is any one of the r.h. neutrinos. We assume that only one r.h. neutrino

generation plays an important role in the generation of a lepton asymmetry, and

therefore we drop the r.h. neutrino generation index for the remainder of this section.

The generalization of the following analysis to three generations is straightforward,

at least as long as the r.h. neutrino–inflaton coupling matrix g is diagonal in the

r.h. neutrino mass basis (otherwise, the formalism of [111] should be used). After

the end of inflation, the inflaton condensate φ oscillates about the minimum of its

potential with amplitude of a fraction of the Planck mass MP ! 1.22 ·1019 GeV . The

total effective mass of the fermion M + g φ (t) varies non adiabatically in time, and

this leads to a (non perturbative) production of quanta of N . In particular, fermion

production at preheating occurs whenever the total effective mass crosses zero. As a

consequence, fermions with a mass up to

Mmax ! 5
( q

1010

)1/2

× 1017 GeV, q ≡ g2φ2
0

4m2
φ

! 3g2 1010 (5.4)

can be produced [44], irrespective of the value of the reheating temperature of the

thermal bath which is formed at later times. The abundance of neutrinos produced

at preheating has been computed analytically [87], and it is most conveniently given
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when the gravitino production we are discussing can be effective), we find numerically√
〈X2〉 ∼ (10−2 − 10−1) φ0/a . As a consequence, mg̃ ∼ (102 − 103) p , and these scat-

terings are forbidden. One is immediately led to consider processes with an additional

Xi ψj g̃ vertex and in which the heavy gaugino is off-shell. Their cross section can

be roughly estimated as σ ∼ 10−2 (α/MP )2 (p/mg̃)
2 , which is comparable or smaller

than the cross section for the process X X → ψ3/2 ψ3/2 considered above. Finally,

there is the possibility that the second vertex comes from the superpotential term

(5.15), also responsible for the Dirac mass term for the neutrinos. This can lead to

processes of the kind ÑR X → xψ3/2 or X X → NR ψ3/2 (x denoting the fermionic

partner of X ; all processes have in the propagator the fermionic partner of one of

the incoming scalars). The cross sections for these processes are roughly estimated

as 3 σ ∼ h2/M2
P & 10−13 h̃/M2

P . Thus, unless of a very small coupling h , the last

class of scatterings has the highest cross section and dominates the production of the

transverse gravitinos. In particular, processes with one incoming NR quantum are

dominant if Nc,X starts to saturate at a smaller value than Nc,N . Viceversa, scatter-

ings of the kind X X → NR ψ3/2 will dominate. Numerical results indicate that the

former situation is more often realized. The cases in which the opposite was found

are characterized by a relatively high coupling h̃ , so that the light degrees of freedom

are quickly amplified to values Nc,XγNc,N . Anyhow, in these cases the cross sections

of the two type of processes are clearly of the same order of magnitude. Hence, for

brevity of exposition we will only refer to the processes with an incoming r.h. sneu-

trino, although both the two possibilities have been considered in our estimates. The

integrated Boltzmann equation reads

dN3/2

dt
+ 3 H N3/2 & 〈σ|v|〉NXNN , (A-2)

where the “friction term” due to the expansion of the Universe can be neglected in

the estimate of the order of magnitude of gravitinos produced. The whole production

time can be then divided in a series of time intervals of duration H− 1 (ti) each. During

each interval, quanta of gravitinos are generated with a density of

δN i
3/2 ∼

h2

M2
P

Nc,X (ηi)

a (ηi)
3

Nc,N (ηi)

a (ηi)
3 H−1 (ηi) (A-3)

(notice the presence of the scale factor, since the physical and not the comoving

occupation number has to be used in the integrated Boltzmann equation). The func-

tion (Nc,X Nc,N H−1 a−6) (η) amounts to zero at the end of inflation, and it reaches

a maximum at a time η∗ , which can be determined numerically and which roughly

3In this estimate it is assumed that the exchanged momentum p is higher or at most comparable
with the mass of the r.h. neutrinos. This is certainly true when most of the gravitinos are produced,
i.e. when the distributions of light quanta X are about to saturate.
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Figure 5.6: Contour plot for the quantity ζ̃/h̃ , where ζ̃ is defined in eqn. (5.22). The

contour lines range from ζ̃/h̃ = 3 · 10−12 to ζ̃/h̃ = 1.1 · 10−10 (darker region).

see that the ratio ζ has to satisfy

ζ ! 3 × 106

δCP

(
1010 GeV

M

) (
0.05 eV

m3

)
N3/2 (η∗)

NN (η∗)
< 10−3 . (5.21)

It is important to stress that, unlike the limit (5.18), this bound cannot be ame-

liorated by an eventual entropy release which may occur between the decay of the

r.h. sneutrinos and nucleosynthesis, since both the gravitino and the baryon num-

ber densities would be diluted in the same amount. For this reason, we find in the

present context the bound (5.21) more significant than the limit (5.18) involving the

gravitino abundance alone. We wanted to verify whether the condition (5.21) is re-

spected for the choice M = 1011 GeV considered in the previous sections, and for

several values of the couplings g and h (defined in the potential (5.17)) in the range

g̃ ∈ [30, 5000] , h̃ ∈ [2000, 200000] (we remind that g̃ ≡ g2/λ, and analogously for

h ). To do so, we have defined

ζ ≡ 1

δCP

(
0.05 eV

m3

)
ζ̃ , (5.22)

and in figure 5.6 we have plotted the quantity ζ̃/h̃. In this way, we factor out the

explicit dependence of ζ on h̃ coming from the cross section of the dominant 2 → 2

Rescattering term



Inhomogeneous Leptogenesis

• See-saw with couplings depending on a light field 

• RH neutrinos will decay differently in different places => curvature fluctuations.

• Non-Gaussianity due to    .

➡Constraints on       => Light neutrinos have hierarchical or inverse hierarchical spectrum.

➡Constraints on the dynamics of      =>                      ,   

LB & P. Creminelli, PRD ‘06

L = LSM + Yij

(
χ

MP

)
LiHNj + Mi

(
χ

MP

)
NiNi + (∂χ)2

have to correspondingly increase the fluctuations δm̃1/m̃1. This implies that second order correc-

tions become more and more relevant. This is an example of a quite generic correlation between

the“inefficiency” of the mechanism producing density perturbations and the level of non-Gaussianity

[17]. The non-linearity parameter fNL will be of the order of the inverse of the fraction of energy

density in the RH neutrino at decay:

|fNL| ∼ g∗

√
m̃1

m̃∗
. (18)

In Fig. 2 we plot fNL as a function of m̃1 from eq. (17).
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Figure 2: The non-Gaussianity parameter fNL as a function of m̃1.

In the discussion we assumed that the ratio δm̃1/m̃1 is distributed as a Gaussian. This will not

be the case in general; the dependence m̃1(φ) will induce additional non-linearities similarly to what

happened in the relation ζ(m̃1). It is easy to realize that also these non-linearities will be enhanced

by the “inefficiency” of the mechanism when the RH neutrino does not dominate. The coefficient

f ′ in eq. (16) becomes small in this limit and second order terms in the expansion of m̃1(φ) give a

contribution to fNL enhanced by f ′−1. We conclude that although the plot of Fig. 2 should not be

taken as a sharp prediction we do not expect, barring unlikely cancellations, a smaller value for fNL

(6).

In addition to the non-linearities we discussed the statistics of φ itself may be non-Gaussian as a

consequence of its self-interactions. The leading effect will be given by the non-linear superhorizon

evolution, which gives a non-Gaussianity of the form (15) [17]. Also this contribution is quite model

dependent and again enhanced by the “inefficiency” f ′−1.

The most stringent experimental limits on the parameter fNL come from the analysis of WMAP

data [18, 19]. The allowed 2σ range −27 < fNL < 121 can be converted into an approximate (given

6Note that even the negative sign for fNL in Fig. 2 can be flipped by second order effects from m̃1(φ).

7

χ
ds2 = −dt2 + e2ζ("x)a(t)2d!x2

fNL

χ M(χ/MP ) Y (χ/MP )

χ



‣ In general baryogenesis probes physics beyond the standard model.

‣ Leptogenesis is a typical working example. Links neutrinos to BAU.

‣ Gravitino overproduction => low scale models.

‣ Gravitino overproduction => preheating and rescattering.

‣ Inhomogeneous leptogenesis could be responsible for CMB 
temperature anisotropies.

‣ Good opportunity to test ideas.

Conclusions


