$B \rightarrow V \gamma$ at NNLO in SCET

Ben Pecjak

DESY
Ljubljana Seminar
September 20, 2007

Based on work with Ahmed Ali (DESY) and Christoph Greub (Bern)

Outline

- Motivation
- QCD Factorization and SCET as applied to $B \rightarrow V \gamma$
- Matching calculations and hard-scattering kernels
- Numerical results and comparison with experiment

Radiative B decays

Example: $b \rightarrow s \gamma$ transition
$B \rightarrow X_{s} \gamma=$ inclusive radiative decay
$B \rightarrow K^{*} \gamma=$ exclusive radiative decay

FCNCs are loop suppressed in Standard Model

- $B \rightarrow X_{s} \gamma$ "standard candle" for new physics

Motivation for studying $B \rightarrow V_{\gamma}$

Inclusive $B \rightarrow X_{s} \gamma$ has received much attention

- Calculable using OPE and heavy-quark expansion
- Branching fraction known to NNLO in perturbation theory (Misiak +16 others 2006)
- Also known to NNLO with cut on photon energy (Becher, Neubert 2006)

Exclusive $B \rightarrow V \gamma$ decays ($V=K^{*}, \rho, \omega, \ldots$) also useful

- Exclusive $b \rightarrow \boldsymbol{d} \gamma(V=\rho, \omega)$ will be well measured at LHC
- Provide independent checks on shape of unitarity triangle
- Calculable in QCD factorization approach

Idea of QCD factorization
$65856=12 \times 56 \times 98$

QCD factorization and today's talk

QCD Factorization:
Branching fraction obtained as a series in $\left(\alpha_{s}, \Lambda_{\mathrm{QCD}} / m_{b}\right) \ll 1$

$$
\mathcal{B}\left(\bar{B} \rightarrow V_{\gamma}\right)=\mathcal{B}^{\mathrm{Lo}}\left|t^{\mathrm{I}} \zeta_{V_{\perp}}+t^{\mathrm{II}} \star \phi_{\perp}^{v} \star \phi_{+}^{B}+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}\right) \cdots\right|^{2}
$$

- $\zeta_{V_{\perp}}$ and $\phi^{B, V}$ are non-perturbative (but universal)
- Hard-scattering kernels t^{l} and t^{II} are perturbative

$$
t^{\mathrm{I}}=1+\mathcal{O}\left(\alpha_{s}\right)+\ldots \quad t^{\mathrm{II}}=\mathcal{O}\left(\alpha_{s}\right)+\ldots
$$

- The kernels $t^{1 \mathrm{l}}, t^{\mathrm{II}}$ known at $\operatorname{NLO}\left(\mathcal{O}\left(\alpha_{s}\right)\right)$ for some time

Today's talk: Hard-scattering kernels at NNLO $\left(\mathcal{O}\left(\alpha_{s}^{2}\right)\right)$

Why higher-orders?

QCD factorization is limited by:

- Hadronic uncertainties, especially in $\zeta_{v_{\perp}}$
- Power corrections (although hard to quantify)

Why bother with higher-order perturbative corrections?

1) Practical reasons

- In some ratios hadronic uncertainties tend to cancel
- NLO for branching fractions is LO for CP asymmetries

2) Theoretical reasons

- Check factorization at NNLO
- Study connection between QCDF and SCET (next slide)

What is SCET and why use it?

What: SCET = soft-collinear effective theory
(Bauer, Pirjol, Fleming, Stewart 2000)
Why: Allows to discuss factorization in EFT language

- hard-scattering kernels = matching (Wilson) coefficients
- non-perturbative functions = hadronic matrix elements

Advantages of SCET approach:

- Mass scales $m_{b}^{2} \gg m_{b} \Lambda_{\mathrm{QCD}} \gg \Lambda_{\mathrm{QCD}}^{2}$ are clearly separated
- RG evolution of matching functions "resums" large logs
- All-orders factorization proof possible (Becher, Hill, Neubert 2005)

Outline

- Motivation
- QCD Factorization and SCET as applied to $B \rightarrow V \gamma$
- Matching calculations and hard-scattering kernels
- Numerical results and comparison with experiment

Outline of factorization discussion

1) QCD factorization

- Introduce effective weak Hamiltonian
- QCD factorization formula for matrix elements of weak Hamiltonian

2) Derivation of QCD factorization formula with SCET

Effective weak Hamiltonian

QCD effects at $\mu \sim m_{b}$ described by effective weak Hamiltonian:

$$
\mathcal{H}_{\mathrm{eff}}=\frac{G_{F}}{\sqrt{2}} \sum_{p=u, c} V_{p q}^{*} V_{p b}\left[C_{1} Q_{1}^{p}+C_{2} Q_{2}^{p}+\sum_{i=3}^{8} c_{i} Q_{i}\right] ; \quad(q=s, d)
$$

- The C_{i} are Wilson coefficients depending on M_{W}, M_{z}, m_{t}
- The Q_{i} are operators built from QCD and photon fields

The Wilson coefficients are known in RG-improved perturbation theory to NNLO (α_{s}^{2}) (Csakon, Gorbahn, Haisch, Misiak, others ...)
This part is the same for inclusive and exclusive decays

Operators in effective weak Hamiltonian

Example: $b \rightarrow \boldsymbol{s} \gamma$

$$
\mathcal{H}_{\mathrm{eff}}=\frac{G_{F}}{\sqrt{2}} \sum_{p=u, c} V_{p s}^{*} V_{p b}\left[C_{1} Q_{1}^{p}+C_{2} Q_{2}^{p}+\sum_{i=3}^{8} C_{i} Q_{i}\right]
$$

Most important operators for $b \rightarrow \boldsymbol{s} \gamma$:

$$
\begin{aligned}
& Q_{1}^{p}=(\bar{s} p)_{v-A}(\bar{p} b)_{v-A} \quad(p=u, c) \\
& Q_{7}=-\frac{e \bar{m}_{b}(\mu)}{8 \pi^{2}} \bar{s} \sigma^{\mu \nu}\left[1+\gamma_{5}\right] b F_{\mu \nu} \\
& Q_{8}=-\frac{g \bar{m}_{b}(\mu)}{8 \pi^{2}} \bar{s} \sigma^{\mu \nu}\left[1+\gamma_{5}\right] T^{a} b G_{\mu \nu}^{a}
\end{aligned}
$$

For $b \rightarrow d \gamma$ replace $s \rightarrow d$

Hadronic matrix elements of weak Hamiltonian

Branching fraction:

$$
\mathcal{B}(B \rightarrow V \gamma)=\frac{\tau_{B} m_{B}}{4 \pi}\left(1-\frac{m_{V}^{2}}{m_{B}^{2}}\right)|\mathcal{A}|^{2}
$$

Amplitude:

$$
\mathcal{A} \sim\left\langle V_{\gamma}\right| \mathcal{H}_{\mathrm{eff}}|\bar{B}\rangle \sim \sum_{i}\left\langle V_{\gamma}\right| Q_{i}|\bar{B}\rangle
$$

Main challenge: evaluate $\left\langle V_{\gamma}\right| Q_{i}|\bar{B}\rangle=$ hadronic matrix elements

- QCD factorization is a method for doing this

QCD factorization formula I

Hadronic matrix elements factorize in heavy-quark limit
(Ali, Parkhomenko; Beneke, Feldmann, Seidel; Bosch, Buchalla 2001)
$\left\langle V_{\gamma}\right| Q_{i}|\bar{B}\rangle=F^{B \rightarrow v_{\perp}} T_{i}^{\mathrm{I}}+\int d \omega d u \phi_{+}^{B}(\omega) \phi_{\perp}^{V}(u) T_{i}^{\mathrm{II}}(\omega, u)+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}\right)$

Non-perturbative pieces: (from QCD sum rules, lattice)

- $F^{B \rightarrow V_{\perp}}$ is a hadronic form factor in QCD
- $\phi^{B, V_{\perp}}$ are light-cone distributions amplitudes (LCDAs)

Perturbative pieces: (as a series in α_{s})

- T_{i}^{I} are "vertex corrections"
- T_{i}^{II} are "hard spectator corrections"

QCD factorization formula II

The QCD form factor itself obeys a factorization formula (Beneke, Feldmann 2001)

$$
F^{B \rightarrow V_{\perp}}=T_{V_{\perp}}^{\mathrm{I}} \zeta_{v_{\perp}}+\int d \omega d u \phi_{+}^{B}(\omega) \phi_{\perp}^{V}(u) T_{V_{\perp}}^{\mathrm{N}}(\omega, u)+\mathcal{O}\left(\frac{\Lambda_{\mathrm{CCD}}}{m_{b}}\right)
$$

- the soft function $\zeta_{v_{\perp}}$ is purely non-perturbative
- Equivalent forms of factorization formula

$$
\begin{gathered}
\left\langle v_{\gamma}\right| Q_{i}|\bar{B}\rangle=F^{B \rightarrow v_{\perp}} T_{i}^{\mathrm{I}}+\int d \omega d u \phi_{+}^{B}(\omega) \phi_{\perp}^{V}(u) T_{i}^{\mathrm{I}}(\omega, u) \\
\left\langle V_{\gamma}\right| Q_{i}|\bar{B}\rangle=\zeta v_{\perp} t_{i}^{\mathrm{I}}+\int d \omega d u \phi_{+}^{B}(\omega) \phi_{\perp}^{V}(u) t_{i}^{\mathrm{I}}(\omega, u)
\end{gathered}
$$

Second form more useful for SCET

The hard-scattering kernels and factorization

Interested in hadronic matrix elements

$$
\left\langle Q_{i}\right\rangle_{\text {had }}=\left\langle V_{\gamma}\right| Q_{i}|\bar{B}\rangle
$$

Instead calculate partonic matrix elements (Feynman Diagrams)

$$
\left\langle Q_{i}\right\rangle_{\text {part }}=\left\langle\left(q \bar{q}^{\prime}\right) \gamma\right| Q_{i}\left|\left(b \bar{q}^{\prime}\right)\right\rangle
$$

If the partonic matrix element satisfies (to all orders)

$$
\left\langle Q_{i}\right\rangle_{\mathrm{part}}=\zeta v_{\perp, \text { part }} t_{i}^{\mathrm{I}}+\int d \omega d u \phi_{+, \mathrm{part}}^{B}(\omega) \phi_{\perp, \mathrm{part}}^{v}(u) t_{i}^{\mathrm{II}}(\omega, u)
$$

Then assume

$$
\left\langle Q_{i}\right\rangle_{\mathrm{had}}=\zeta v_{\perp} t_{i}^{\mathrm{I}}+\int d \omega d u \phi_{+}^{B}(\omega) \phi_{\perp}^{V}(u) t_{i}^{\mathrm{II}}(\omega, u)
$$

Vertex corrections

$$
\zeta_{V_{\perp}}^{(0)} t^{I(1)}
$$

\qquad
$\int_{V_{\perp}}^{(0)} t^{\mathrm{I}(2)}$

These are virtual corrections to matrix elements in $B \rightarrow X_{s} \gamma$

- QCD graphs almost completely known at NNLO
- Can obtain t^{I} to same accuracy

Hard spectator corrections

Complications:

1) Integrals depend on two different perturbative scales:

$$
\begin{aligned}
&\left(2 p \cdot p_{b} \sim m_{b}^{2}\right) \gg \\
& \text { "hard" }\left(2 p \cdot k \sim m_{b} \Lambda_{\mathrm{QCD}} \sim(1.5 \mathrm{GeV})^{2}\right) \\
& \text { "hard collinear" }
\end{aligned}
$$

- Large perturbative logs of form $\ln \left(m_{b} / \Lambda_{\mathrm{QCD}}\right)$ in t_{i}^{II} \Rightarrow Need resummation

2) Individual graphs can contribute to both t^{I} and $t^{I I}$

Dealing with both points easiest in SCET

SCET factorization formula

In soft-collinear effective theory:

$$
\left\langle V_{\gamma}\right| Q_{i}|\bar{B}\rangle=\Delta_{i} C^{A} \zeta v_{\perp}+\int d \omega d u \phi_{+}^{B}(\omega) \phi_{\perp}^{V}(u) t_{i}^{\mathrm{I}}(\omega, u)
$$

Spectator term is subfactorized:

$$
t_{i}^{I I}(u, \omega)=\int_{0}^{1} d \tau \Delta_{i} C^{B 1}(\tau) j_{\perp}(\tau, u, \omega) \equiv \Delta_{i} C^{B 1} \star j_{\perp}
$$

- $\Delta_{i} C^{i}$ contain physics at the hard scale m_{b}^{2}
- j_{\perp} contains physics at the jet scale $m_{b} \wedge_{\text {ecd }}$
- $\zeta_{v_{\perp}}, \phi^{i}$ are matrix elements of SCET operators
\Rightarrow Distinguish vertex and spectator terms at operator level
\Rightarrow Resum logs with RG evolution

Two-step matching: $\mathrm{QCD} \rightarrow \mathrm{SCET}_{\mathrm{I}} \rightarrow \mathrm{SCET}_{\mathrm{II}}$

$$
m_{b} \gg \sqrt{m_{b} \Lambda_{\mathrm{QCD}}} \gg \Lambda_{\mathrm{QCD}}
$$

QCD \longrightarrow	SCET $_{\text {I }}$	SCET $_{\text {I }} \longrightarrow$	SCET $_{\text {II }}$	
$\mu_{h} \sim m_{b}$		$\mu_{i} \sim \sqrt{m_{b} \Lambda_{\mathrm{QCD}}}$		$\mu_{f} \gtrsim \Lambda_{\mathrm{QCD}}$
match \longrightarrow	RG evol. \longrightarrow	match \longrightarrow	RG evol.	
$\Delta_{i} C^{B 1}\left(\mu_{h}\right) \times$	$U_{\mathrm{I}}\left(\mu_{h}, \mu_{i}\right) \times$	$j_{\perp}\left(\mu_{i}\right) \times$	$U_{\mathrm{II}}\left(\mu_{i}, \mu_{f}\right) \times$	$\left\{\phi_{i}\left(\mu_{f}\right)\right\}$

- $\Delta_{i} C^{B 1}\left(\mu_{h}\right)$ and $j_{\perp}\left(\mu_{i}\right)$ are free of large logarithms
- RG evolution of matching functions is resummation

First matching step: $\mathrm{QCD} \rightarrow \mathrm{SCET}_{\mathrm{I}}$

Match the operators Q_{i} onto $\mathrm{SCET}_{\mathrm{I}}$:

$$
Q_{i} \rightarrow \Delta_{i} C^{A} J^{A}+\Delta_{i} C^{B 1} \star J^{B 1}+\Delta_{i} C^{B 2} \star J^{B 2}+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}\right)
$$

J^{i} are current operators in $\mathrm{SCET}_{\mathrm{I}}$:

$$
\begin{aligned}
J^{A} & =\bar{\chi}_{h c} Ł_{\perp}\left(1+\gamma_{5}\right) h_{v} \\
J^{B 1} & =\bar{\chi}_{h c} \varepsilon_{\perp} \mathcal{A}_{h c_{\perp}}\left(1+\gamma_{5}\right) h_{v} \\
J^{B 2} & =\bar{\chi}_{h c} \mathcal{A}_{h c_{\perp}} छ_{\perp}\left(1+\gamma_{5}\right) h_{v}
\end{aligned}
$$

Important points about " $\mathrm{SCET}_{\mathrm{I}}$ "

- Fluctuations at m_{b} are integrated out and encoded in the $\Delta_{i} C^{i}$
- Matrix elements of $\mathrm{SCET}_{\mathrm{I}}$ operators depend on the hard-collinear scale $m_{b} \Lambda_{\mathrm{QCD}}$ and hadronic scale Λ_{QCD}

Example: $\mathrm{QCD} \rightarrow \mathrm{SCET}_{\mathrm{I}}$ for $Q_{8} \sim \bar{b} G^{\mu \nu} s$

Integrating out $m_{b} \Lambda_{\mathrm{QCD}}: \mathrm{SCET}_{\mathrm{I}} \rightarrow \mathrm{SCET}_{\mathrm{II}}$

Hard-collinear (intermediate) scale:

$$
m_{b} \Lambda_{\mathrm{QCD}} \sim(1.5 \mathrm{GeV})^{2}=\text { perturbative }
$$

Would like to integrate this out $\left(\mathrm{SCET}_{\mathrm{I}} \rightarrow \mathrm{SCET}_{\mathrm{II}}\right)$

$$
J^{i} \rightarrow j_{i}\left(m_{b} \Lambda_{\mathrm{QCD}}\right) \star O^{i, \text { SCET }_{\mathrm{II}}}\left(\Lambda_{\mathrm{QCD}}\right)
$$

- For $J^{B i}$ will do this and define hard-spectator term
- For J^{A} can't do this because convolution diverges

But: $\langle\boldsymbol{V} \gamma| J^{A}|\bar{B}\rangle \sim \zeta_{\nu_{\perp}}$

- J^{A} maps onto vertex term

The vertex corrections in SCET

From previous slide

$$
Q_{i} \rightarrow \Delta_{i} C^{A} J^{A}+\ldots
$$

Matrix element of J^{A} defines the soft function:

$$
\langle V \gamma| J^{A}|\bar{B}\rangle \sim \zeta_{v_{\perp}}
$$

Therefore

$$
\langle V \gamma| Q_{i}|\bar{B}\rangle=\Delta_{i} C^{A} \zeta_{v_{\perp}}+\ldots
$$

and

$$
\Delta_{i} C^{A}=t_{i}^{\mathrm{I}}
$$

SCET matching coefficient $=$ hard-scattering kernel SCET matrix element = non-perturbative function

Second matching step: $\mathrm{SCET}_{\mathrm{I}} \rightarrow \mathrm{SCET}_{\text {II }}$

$$
Q_{i} \rightarrow \cdots+\Delta_{i} C^{B 1} \star J^{B 1}+\Delta_{i} C^{B 2} \star J^{B 2}
$$

Can further match $J^{B i}$ onto 4-quark operators in $\operatorname{SCET}_{\text {II }}$

$$
\begin{aligned}
& J^{B 1} \rightarrow \int d u \int d \omega j_{\perp}\left(\tau, u, \frac{m_{b} \omega}{\mu^{2}}\right) O^{B 1}(u, \omega) \\
& J^{B 2} \rightarrow \int d u \int d \omega j_{\|}\left(\tau, u, \frac{m_{b} \omega}{\mu^{2}}\right) O^{B 2}(u, \omega)
\end{aligned}
$$

Important points about " $\mathrm{SCET}_{\text {II }}$ "

- Scale $m_{b} \Lambda_{\text {QCD }}$ is integrated out and encoded in jet functions j_{i}
- Matrix elements of the $\mathrm{SCET}_{\text {II }}$ operators depend Λ_{QCD}
- The matrix elements of the $\mathrm{SCET}_{\text {II }}$ operators factorize into soft and collinear parts (no $\mathcal{L}_{\text {eff }}^{S+c}$)

$\mathrm{SCET}_{\mathrm{I}} \rightarrow \mathrm{SCET}_{\mathrm{II}}$

LCDAs:

$$
\begin{gathered}
\Phi_{\alpha \beta}^{B}(\tilde{\omega})=\int \frac{d t}{2 \pi} e^{i \tilde{\omega}}\langle 0| \bar{q}_{s \beta}^{\prime}\left(t n_{-}\right)\left[t n_{-}, 0\right] h_{v \alpha}(0)|\bar{B}\rangle \\
\Phi_{\gamma \delta}^{v}(u)=\int \frac{d s}{2 \pi} e^{-i s u n_{+} p}\langle V(p)| \bar{\xi}_{c, \delta}\left(s n_{+}\right)\left[s n_{+}, 0\right] \xi_{c, \gamma}^{\prime}(0)|0\rangle
\end{gathered}
$$

The hard spectator term in SCET

Hadronic matrix elements of $\mathrm{SCET}_{\text {II }}$ operators:

$$
\begin{aligned}
\langle V \gamma| O^{B 1}|\bar{B}\rangle & \sim \phi_{+}^{B}(\omega) \phi_{\perp}^{V}(u) \\
\langle V \gamma| O^{B 2}|\bar{B}\rangle & =0
\end{aligned}
$$

- ϕ_{+}^{B} is matrix element of soft (HQET) operator
- ϕ_{\perp}^{V} is a matrix element of a collinear operator
- Proving that soft and collinear sectors factorize is complicated (Becher, Hill, Neubert 2005)
Put together to define spectator term in SCET

$$
\begin{aligned}
\langle V \gamma|\left(\Delta_{i} C^{B 1} \star J^{B 1}\right)|\bar{B}\rangle & =\left(\Delta_{i} C^{B 1} \star j_{\perp}\right) \star \phi^{B} \star \phi_{\perp}^{V} \\
& \equiv t_{i}^{I I} \star \phi^{B} \star \phi_{\perp}^{V}
\end{aligned}
$$

RG evolution from μ_{h} to μ_{i}

$$
\Delta_{i} C^{B 1}\left(\mu_{h}\right) \times U_{\mathrm{I}}\left(\mu_{h}, \mu_{i}\right) \times j_{\perp}\left(\mu_{i}\right) \times U_{\mathrm{II}}\left(\mu_{i}, \mu_{f}\right) \times\left\{\phi_{i}\left(\mu_{f}\right)\right\}
$$

The RG-improved hard coefficients read
(Becher, Hill, Lee, Neubert 2004)

$$
\Delta_{i} C^{B 1}\left(u, \mu_{i}\right)=\left(\frac{m_{b}}{\mu_{h}}\right)^{a\left(\mu_{h}, \mu_{i}\right)} e^{S\left(\mu_{h}, \mu_{i}\right)} \int_{0}^{1} d v U_{\perp}\left(u, v, \mu_{h}, \mu_{i}\right) \Delta_{i} C^{B 1}\left(v, \mu_{h}\right)
$$

The evolution factor U_{\perp} obeys integro-differential equation

$$
\mu \frac{d}{d \mu} U_{\perp}\left(u, v, \mu_{h}, \mu\right)=\int_{0}^{1} d y \gamma_{\perp}(y, u) U_{\perp}\left(y, v, \mu_{h}, \mu_{i}\right)
$$

The solution is found numerically

RG evolution from μ_{f} to μ_{i}

$$
\Delta_{i} C^{B 1}\left(\mu_{h}\right) \times U_{\mathrm{I}}\left(\mu_{h}, \mu_{i}\right) \times j_{\perp}\left(\mu_{i}\right) \times U_{\text {II }}\left(\mu_{i}, \mu_{f}\right) \times\left\{\phi_{+}^{B}\left(\mu_{f}\right) \phi_{\perp}^{V}\left(\mu_{f}\right)\right\}
$$

The evolution factor $U_{\text {II }}\left(\mu_{i}, \mu_{f}\right)$ is product of:

- Evolution of ϕ_{\perp}^{V} (Brodsky-Lepage kernel)
- Evolution of ϕ_{+}^{B} (Neubert, Lange 2003)

Effect of this resummation on branching ratios is small

- No details today (no time)

SCET factorization summary

SCET factorization formula:

$$
\langle V \gamma| Q_{i}|\bar{B}\rangle=\Delta_{i} C^{A} \zeta_{V_{\perp}}+\left(\Delta C^{B 1} \star j_{\perp}\right) \star \phi_{\perp}^{V} \star \phi_{+}^{B}
$$

- Physics at hard scale m_{b} in the ΔC^{i}
- Physics at hard-collinear scale $m_{b} \Lambda_{\mathrm{QCD}}$ in j_{\perp}
- SCET matching coefficients are the hard-scattering kernels

$$
\begin{aligned}
t_{i}^{I} & =\Delta_{i} C^{A} \\
t_{i}^{I I} & =\Delta_{i} C^{B 1} \star j_{\perp}
\end{aligned}
$$

- $\zeta v_{\perp}, \phi_{\perp}^{V}, \phi_{+}^{B}$ are matrix elements in SCET
- RG evolution is resummation

Outline

- Motivation
- QCD Factorization and SCET as applied to $B \rightarrow V \gamma$
- Matching calculations and hard-scattering kernels
- Numerical results and comparison with experiment

Matching Calculations I: Vertex Corrections

$$
\left\langle V_{\gamma}\right| Q_{i}|\bar{B}\rangle=\Delta_{i} C^{A} \zeta_{\perp}+\left(\Delta C^{B 1} \star j_{\perp}\right) \star \phi_{\perp}^{V} \star \phi_{+}^{B}
$$

Strategy for the matching calculations

$$
Q_{i} \rightarrow \Delta_{i} C^{A} J^{A}+\Delta_{i} C^{B 1} \star J^{B 1}+\Delta_{i} C^{B 2} \star J^{B 2}
$$

To find matching coefficients:

- Equate renormalized Green's functions in QCD and SCET

Matching coefficients independent of external states.
Simplest:

- Partonic matrix elements (Feynman diagrams)
- Use dim. reg. (scaleless integrals vanish)
- On-shell (many loop diagrams in SCET vanish in dim. reg.)
- To extract $\Delta_{i} C^{A}$ choose states that don't overlap with $J^{B i}$

Vertex corrections

$$
\begin{gathered}
Q_{i} \rightarrow \Delta_{i} C^{A} J^{A}+\Delta_{i} C^{B 1} \star J^{B 1}+\ldots \\
J^{A}=\bar{\chi}_{h c} \xi_{\perp}\left(1+\gamma_{5}\right) h_{v} ; \quad J^{B 1}=\bar{\chi}_{h c} \xi_{\perp} A_{h c_{\perp}}\left(1+\gamma_{5}\right) h_{v}
\end{gathered}
$$

Observation: The B-type current has an extra gluon field $\mathcal{A}_{h c_{\perp}}$

- To match onto J^{A} use partonic states with no external gluons

$$
\left\langle Q_{i}\right\rangle \equiv\langle q(p) \gamma(q)| Q_{i}\left|b\left(p_{b}\right)\right\rangle
$$

- For on-shell matching the only kinematic invariants $\sim m_{b}^{2}$

$$
p_{b}^{2}=m_{b}^{2} ; \quad p^{2}=0 ; \quad 2 p \cdot p_{b}=m_{b}^{2}
$$

Matching conditions for vertex corrections

Matching condition:

$$
\left\langle Q_{i}\right\rangle_{\mathrm{QCD}, \mathrm{ren}}=\left\langle Q_{i}\right\rangle_{\mathrm{SCET}, \mathrm{ren}}
$$

QCD matrix element:

- $\left\langle Q_{i}\right\rangle_{\mathrm{QCD}, \text { ren }}$ are the virtual corrections to inclusive $B \rightarrow X_{s} \gamma$
- Can take them from known calculations

SCET matrix element:

- For on-shell matching no hard-collinear scale
- SCET $_{\text {I }}$ loop integrals are scaleless and vanish in dim. reg.

$$
\Rightarrow\left\langle Q_{i}\right\rangle_{\mathrm{SCET}, \text { ren }}=\Delta_{i} C^{A} Z_{J}\left\langle J_{\text {tree }}^{A}\right\rangle
$$

- Z_{J} is the renormalization factor for the J^{A} operator

Matching conditions for vertex corrections: II

Write the QCD amplitude as

$$
\left\langle Q_{i}\right\rangle_{\mathrm{QCD}, \text { ren }} \equiv D_{i}\left\langle Q_{7, \text { tree }}\right\rangle
$$

In dim. reg. $(d=4-2 \epsilon)$ the matching condition is

$$
\Delta_{i} C^{A}\left(m_{b}, m_{c}, \mu\right)=\Delta_{7} C^{A(0)} \lim _{\epsilon \rightarrow 0} Z_{J}^{-1}\left(\epsilon, m_{b}, \mu\right) D_{i}\left(\epsilon, m_{b}, m_{c}, \mu\right)
$$

- Tree level coefficient

$$
\Delta_{7} C^{A(0)}=-\frac{e \bar{m}_{b} 2 E_{\gamma}}{4 \pi^{2}} \approx-\frac{e \bar{m}_{b} m_{b}}{4 \pi^{2}}
$$

- The renormalization factor Z_{J} determined order by order by requiring that $\Delta_{i} C^{A}$ finite as $\epsilon \rightarrow 0$

Results for vertex corrections

The coefficients are obtained as a series in α_{s} :

$$
\Delta_{i} C^{A}=\Delta_{7} C^{A(0)}\left[\delta_{i 7}+\frac{\alpha_{s}(\mu)}{4 \pi} \Delta_{i} C^{A(1)}+\left(\frac{\alpha_{s}(\mu)}{4 \pi}\right)^{2} \Delta_{i} C^{A(2)}\right]
$$

- For Q_{7} and Q_{8} we obtained exact results to $\operatorname{NNLO}\left(\alpha_{s}^{2}\right)$
- For Q_{1} we obtained the NNLO results only in large- β_{0} limit

Checks on results:

- No IR poles in matching coefficients (factorization)
- J^{A} also appears in SCET treatment of $B \rightarrow X_{s} \gamma$ with cut on E_{γ} \Rightarrow Checked Q_{7} with Becher and Neubert 2006 (results agree)

The coefficients for Q_{7} and Q_{8} to NNLO

($\left.L=\ln \mu / m_{b}\right)$

$$
\begin{aligned}
\Delta_{7} C^{A(1)}= & C_{F}\left[-2 L^{2}-7 L-6.8225\right] \\
\Delta_{7} C^{A(2)}= & C_{F}^{2}\left(2 L^{4}+14 L^{3}+38.1449 L^{2}+56.14711 L+7.8159\right) \\
& +C_{F} C_{A}\left(-4.8889 L^{3}-33.9758 L^{2}-92.3415 L-83.8866\right) \\
& +C_{F} n_{l}\left(0.8889 L^{3}+6.8889 L^{2}+19.9050 L+23.8254\right) \\
& +C_{F} n_{h}\left(-1.3333 L^{2}+2.8889 L-0.810288\right)
\end{aligned}
$$

$$
\begin{aligned}
\Delta_{8} C^{A(1)}= & C_{F}[2.6667 L+1.4734+2.0944 i] \\
\Delta_{8} C^{A(2)}= & -C_{F}^{2}\left[5.3333 L^{3}+32.2802 L^{2}+50.9612 L+1.8875\right. \\
& \left.+i\left(4.1888 L^{2}+31.4159 L+29.8299\right)\right] \\
& +C_{F} C_{A}\left[15.1111 L^{2}+31.6617 L+2.3833+i(23.7365 L+28.0745)\right] \\
& -C_{F} n_{l}\left[1.7778 L^{2}+4.0386 L+1.7170+i(2.7925 L+4.4215)\right] \\
& +C_{F} n_{h}\left[1.7778 L^{2}-2.0741 L+0.8829\right]
\end{aligned}
$$

The coefficients for Q_{1} to NNLO

$$
\begin{aligned}
\Delta_{1} C^{A(1)} & =\frac{m_{b}}{\bar{m}_{b}} C_{F}\left[-3.8519 L+r^{(1)}\left(\frac{m_{c}^{2}}{m_{b}^{2}}\right)\right] \\
\Delta_{1} C^{A(2)} & =-\frac{3 \beta_{0}}{2} \frac{m_{b}}{\bar{m}_{b}} C_{F}\left[2.47 L^{2}+I^{(2)}\left(\frac{m_{c}^{2}}{m_{b}^{2}}\right) L+r^{(2)}\left(\frac{m_{c}^{2}}{m_{b}^{2}}\right)\right]
\end{aligned}
$$

- $r^{(i)}$ and $I^{(2)}$ calculated as an expansion in m_{c}^{2} / m_{b}^{2}
- NNLO result is only known in large- β_{0} limit $\left(n_{f} \rightarrow-3 \beta_{0} / 2\right)$
- Deviations from large- β_{0} limit can be important (discussed later)

Matching Calculations II: Hard spectator corrections

$$
\left\langle V_{\gamma}\right| Q_{i}|\bar{B}\rangle=\Delta_{i} C^{A} \zeta v_{\perp}+\left(\Delta C^{B 1} \star j_{\perp}\right) \star \phi_{\perp}^{V} \star \phi_{+}^{B}
$$

Plan:

- Review lowest-order (α_{s}) results
- Explain structure of α_{s}^{2} results
- Explain our calculation of α_{s}^{2} corrections from Q_{8}

The structure of t^{II} at $\mathcal{O}\left(\alpha_{s}\right)$

The leading contributions are $\mathcal{O}\left(\alpha_{s}\right)$:

$$
t_{i}^{\prime \prime(0)}(u, \omega)=\int_{0}^{1} d \tau \Delta_{i} C^{B 1(0)}(\tau) j_{\perp}^{(0)}(\tau, u, \omega)
$$

The hard coefficients $\Delta_{i} C^{B 1}$ depend on the operator

$$
\begin{aligned}
& \Delta_{7} C^{B 1(0)}(\tau)=\frac{e \bar{m}_{b}}{4 \pi^{2}}, \quad \Delta_{8} C^{B 1(0)}(\tau)=\frac{1-\tau}{\tau} \frac{1}{3} \frac{e \bar{m}_{b}}{4 \pi^{2}} \\
& \Delta_{1} C^{B 1(0)}(\tau)=\frac{1}{3} \frac{e \bar{m}_{b}}{4 \pi^{2}} f\left(\frac{m_{c}^{2}}{m_{b}^{2}}, \tau\right)
\end{aligned}
$$

The jet function j_{\perp} is universal

$$
j_{\perp}^{(0)}(\tau, u, \omega)=-\frac{4 \pi C_{F} \alpha_{s}}{N_{c}} \frac{1}{m_{b} \omega \bar{u}} \delta(\tau-u)
$$

The structure of $t^{I I}$ at $\mathcal{O}\left(\alpha_{s}^{2}\right)$

The $\mathcal{O}\left(\alpha_{s}^{2}\right)$ corrections take the form

$$
t_{i}^{\mathrm{II}(1)}(u, \omega)=\Delta_{i} C^{B 1(1)} \star j_{\perp}^{(0)}+\Delta_{i} C^{B 1(0)} \star j_{\perp}^{(1)}
$$

Status of $\mathcal{O}\left(\alpha_{s}^{2}\right)$ corrections:

- The one-loop jet function $j_{\perp}^{(1)}$ known (Beneke and Yang, Becher and Hill 2004)
- The one-loop hard coefficient $\Delta_{7} C^{B 1(1)}$ known (Becher, Hill, Neubert 2005)
- The hard coefficient $\Delta_{8} C^{B 1(1)}$ known (our work)
- $\Delta_{1} C^{B 1(1)}$ remains unknown (requires two loops)

The calculation of t_{8}^{II} at $\mathcal{O}\left(\alpha_{s}^{2}\right)$

$$
t_{8}^{\mathrm{II}(1)}=\Delta_{8} C^{B 1(1)} \star j_{\perp}^{(0)}+\Delta_{8} C^{B 1(0)} \star j_{\perp}^{(1)}
$$

Calculate $t_{8}^{\text {II }}$ directly in QCD factorization, but:

- Evaluate partonic matrix elements using "method of regions" (Beneke and Smirnov 1997)
- Show $t_{8}^{\text {II }}$ depends on only hard and hard-collinear regions. The correspondence with SCET is:

$$
\begin{aligned}
A_{h, \text { fin }}^{(1)} & =\Delta_{8} C^{B 1(1)} \star j_{\perp}^{(0)} \\
A_{h c, \text { fin }}^{(1)} & =\Delta_{8} C^{B 1(0)} \star j_{\perp}^{(1)}
\end{aligned}
$$

Since $j_{\perp}^{(0)}$ is a δ-function, get $\Delta_{8} C^{B 1(1)}(\tau)$ from the convolution

One loop graphs for Q_{8}

($\times=$ photon emission)

Calculating $t_{8}^{\text {II }}$ in QCD factorization

Isolate the one-loop graphs whose Dirac structure matches $O^{B 1}$

$$
\mathcal{A}_{8}^{(1)}=A^{(1)}\left(\ell_{\perp} \gamma_{\nu_{\perp}} \otimes \gamma_{\perp}^{\nu}\right)+\ldots
$$

UV renormalized amplitude:

$$
A^{(1)} \rightarrow A^{(1)}+A_{\mathrm{c} . \mathrm{t}}^{(1)}=A^{(1)}+\left(Z_{\alpha}^{(1)}+Z_{m}^{(1)}+Z_{88}^{(1)}-\frac{u}{\bar{u}} \frac{Z_{87}^{(1)}}{Q_{d}}\right) A^{(0)}
$$

Extract t_{8}^{II} from renormalized amplitude:
$\phi^{b \bar{q}^{\prime}(0)} \star t_{8}^{I(1)} * \phi^{q \sigma^{\prime}(0)}=A^{(1)}+A_{\text {c.t. }}^{(1)}-\phi^{b \sigma^{\prime}(1)} * t_{8}^{I(0)} * \phi^{\sigma^{\prime}(0)}-\phi^{b \bar{q}^{\prime}(0)} \star t_{8}^{1(0)} * \phi^{q \sigma^{\prime}(1)}$
IR poles in amplitude subtracted by renormalized LCDAs:

- t_{8}^{II} is free of IR physics
- Factorization

Results for t_{8}^{II}

$$
\begin{gathered}
\Delta_{8} C^{B 1(1)} \star j_{\perp}^{(0)}=A_{\mathrm{h}, \mathrm{fin}}^{(1)}=\frac{\alpha_{s}}{4 \pi}\left[C_{F} h_{F}+C_{A} h_{A}\right] t_{8}^{I /(0)} \\
\left(L_{h c}=\ln \left(m_{b} \omega / \mu^{2}\right)\right) \\
h_{A}=\left(4-2 \ln u-\frac{2 \ln u}{\bar{u}^{2}}+2 \ln \bar{u}\right) L_{h c}+i \pi\left(1-\frac{1}{\bar{u}}-\frac{2 \ln u}{\bar{u}^{2}}\right)+2-\frac{\pi^{2}}{3}+\frac{3}{\bar{u}} \\
-\frac{\ln \bar{u}}{\bar{u}}+\left(-1+\frac{2}{\bar{u}}-\frac{1}{\bar{u}^{2}}\right) \ln u+\left(1-\frac{3}{2 \bar{u}}-\frac{1}{2(2-\bar{u})}\right) \ln \bar{u} \ln u-\ln ^{2} \bar{u} \\
+\left(1+\frac{1}{\bar{u}^{2}}\right) \ln ^{2} u+\left(2-\frac{1}{4 \bar{u}}-\frac{1}{2 \bar{u}^{2}}-\frac{1}{4(2-\bar{u})}\right) \operatorname{Li}_{2}(\bar{u}) \\
+\left(-\frac{5}{2 \bar{u}}+\frac{3}{\bar{u}^{2}}-\frac{1}{2(2-\bar{u})}\right) g(\bar{u})+\left(-\frac{1}{2 \bar{u}}+\frac{1}{2(2-\bar{u})}\right) h(\bar{u}) \\
h_{F}=\ldots
\end{gathered}
$$

with

$$
\begin{aligned}
& g(u)=\int_{0}^{1} d y \frac{\ln [1-u y(1-y)]}{y}=\ldots \\
& h(u)=\int_{0}^{1} d y \frac{\ln [1-u y(1-y)]}{1-u y}=\ldots
\end{aligned}
$$

Outline

- Motivation
- QCD Factorization and SCET as applied to $B \rightarrow V \gamma$
- Matching calculations and hard-scattering kernels
- Numerical results and comparison with experiment

The vertex and hard spectator amplitudes

The branching fraction for $B \rightarrow K^{*} \gamma$ decays is

$$
\mathcal{B}\left(B \rightarrow K^{*} \gamma\right)=\frac{\tau_{B} m_{B}}{4 \pi}\left(1-\frac{m_{K^{*}}^{2}}{m_{B}^{2}}\right)\left|\mathcal{A}_{\mathrm{v}}+\mathcal{A}_{\mathrm{hs}}\right|^{2}
$$

The vertex (v) and hard-spectator (hs) amplitudes are

$$
\begin{aligned}
\mathcal{A}_{\mathrm{v}} & =\frac{G_{F}}{\sqrt{2}} V_{c S}^{*} V_{c b} \sum_{i} C_{i}\left(\mu_{\mathrm{QCD}}\right) \Delta_{i} C^{A}\left(m_{b}, \mu_{\mathrm{QCD}}, \mu\right) \zeta_{K_{\perp}^{*}}(\mu) \\
\mathcal{A}_{\mathrm{hs}} & =\frac{G_{F}}{\sqrt{2}} V_{c S}^{*} V_{c b} \sum_{i} C_{i}\left(\mu_{\mathrm{QCD}}\right) t_{i}^{\prime \prime}\left(\mu_{\mathrm{QCD}}, \mu\right) \star\left(\phi_{B} \star \phi_{K_{\perp}^{*}}\right)(\mu)
\end{aligned}
$$

- A_{v} and $A_{h s}$ are separately RG invariant
- Can study their contribution to the amplitudes separately

Vertex corrections to NNLO

The ratio of NNLO to LO is:

$$
\frac{\mathcal{A}_{v}^{\mathrm{NLLO}}}{\mathcal{A}_{v}^{\mathrm{LO}}}=1+(0.096+0.057 i)\left[\alpha_{s}\right]+(-0.007+0.030 i)\left[\alpha_{s}^{2}\right]
$$

In terms of individual contributions

$$
\begin{aligned}
& 1+\left((0.264+0.034 i)\left[Q_{1}\right]-(0.184)\left[Q_{7}\right]+(0.016+0.023 i)\left[Q_{8}\right]\right)\left[\alpha_{s}\right] \\
& +\left((0.073+0.022 i)\left[Q_{1}\right]-(0.081)\left[Q_{7}\right]+(0.002+0.008 i)\left[Q_{8}\right]\right)\left[\alpha_{s}^{2}\right]
\end{aligned}
$$

- NNLO correction is small because of large cancellation between Q_{1} and Q_{7}
- That Q_{1} is only large- β_{0} limit result can be significant (See branching fractions)

Hard spectator corrections to NNLO

Total corrections:

$$
\frac{\mathcal{A}_{h}^{\mathrm{NNLO}}}{\mathcal{A}_{v}^{\mathrm{L}}}=(0.11+0.05 i)\left[\alpha_{s}\right]+(0.03+0.01 i)\left[\alpha_{s}^{2}\right]
$$

In terms of individual operators:

$$
\begin{aligned}
& =\left((0.023+0.046 i)\left[Q_{1}\right]+0.074\left[Q_{7}\right]+0.010\left[Q_{8}\right]\right)\left[\alpha_{s}\right] \\
& \left.+\left((0.004+0.003 i)\left[Q_{1}\right]+0.025\left[Q_{7}\right]+0.003+0.005 i\right)\left[Q_{8}\right]\right)\left[\alpha_{s}^{2}\right] \\
\left(\left[Q_{1}\right]\right. & \left.=\Delta_{1} C^{B 1(0)} \star j_{\perp}^{(1)}\right)
\end{aligned}
$$

- The NNLO corrections are individually small
\Rightarrow Errors associated this term are small
\Rightarrow Resummation effects $\sim 10 \%$ (but stabilize μ-dependence)

Determining $\zeta_{v_{\perp}}$ from the QCD form factor

Results depend strongly on $\zeta_{\nu_{\perp}}$. To determine it:

- Require that $\left\langle V_{\gamma}\right| Q_{7}|\bar{B}\rangle \propto F^{B \rightarrow V_{\perp}}$
- Use the QCD factorization formula for $F^{B \rightarrow V_{\perp}}$
- Use recent sum rule results $F^{B \rightarrow V_{\perp}}=0.31 \pm 0.4$ (Ball, Jones, Zwicky ’05)

At NNLO:

$$
\zeta_{v_{\perp}}\left(\mu=m_{b}\right) \simeq 0.35 \pm 0.05
$$

The vertex corrections dominate the spectator ones:

$$
\frac{F^{B \rightarrow v_{\perp}}}{\zeta v_{\perp}}=\left(1-0.15\left[\alpha_{s}\right]-0.06\left[\alpha_{s}^{2}\right]\right)[\mathrm{v}]+\left(0.07\left[\alpha_{s}\right]+0.03\left[\alpha_{s}^{2}\right]\right)[\mathrm{hs}]
$$

Branching Fractions at NNLO

Results at NNLO in units of 10^{-5}

$$
\begin{aligned}
\mathcal{B}\left(B^{+} \rightarrow K^{*+} \gamma\right) & =4.6 \pm 1.2\left[\zeta_{K^{*}}\right] \pm 0.4\left[m_{c}\right] \pm 0.2\left[\lambda_{B}\right] \pm 0.1[\mu] \\
\mathcal{B}\left(B^{0} \rightarrow K^{* 0} \gamma\right) & =4.3 \pm 1.1\left[\zeta_{K^{*}}\right] \pm 0.4\left[m_{c}\right] \pm 0.2\left[\lambda_{B}\right] \pm 0.1[\mu] \\
\mathcal{B}\left(B_{s} \rightarrow \phi \gamma\right) & =4.3 \pm 1.1\left[\zeta_{\phi}\right] \pm 0.3\left[m_{c}\right] \pm 0.3\left[\lambda_{B}\right] \pm 0.1[\mu]
\end{aligned}
$$

Matching not complete because of Q_{1} :

- 100% uncertainty to NNLO vertex correction in large- β_{0} limit: $\Rightarrow \Delta \mathcal{B} \approx \pm 0.5$
- 100\% uncertainty to NLO hard-spectator correction: $\Rightarrow \Delta \mathcal{B} \approx \pm 0.1$
- Results beyond large- β_{0} limit would reduce errors (but 3 loops)

Comparison with experiment

Compared to current experimental numbers (HFAG, LP 2007):

$$
\begin{gathered}
\frac{\mathcal{B}\left(B^{+} \rightarrow K^{*+} \gamma\right)_{\mathrm{SM}, \mathrm{NNLO}}}{\mathcal{B}\left(B^{+} \rightarrow K^{*+} \gamma\right)_{\text {expt }}}=1.1 \pm 0.35 \text { [theory] } \pm 0.07 \text { [expt.] } \\
\frac{\mathcal{B}\left(B^{0} \rightarrow K^{* 0} \gamma\right)_{\mathrm{SM}, \mathrm{NNLO}}}{\mathcal{B}\left(B^{0} \rightarrow K^{* 0} \gamma\right)_{\text {expt }}}=1.1 \pm 0.35 \text { [theory] } \pm 0.06 \text { [expt.] } \\
\frac{\mathcal{B}\left(B_{S} \rightarrow \phi \gamma\right)_{\mathrm{SM}, \mathrm{NNLO}}}{\mathcal{B}\left(B_{s} \rightarrow \phi \gamma\right)_{\text {expt }}}=0.8 \pm 0.2[\text { theory }] \pm 0.3 \text { [expt.] }
\end{gathered}
$$

- Theory errors about 30\%
- Dominant error is in ζv_{\perp}

Limitations of QCD factorization approach to $B \rightarrow V_{\gamma}$

1) Power corrections in $\Lambda_{Q C D} / m_{b}$:

- Some power corrections factorize, some don't
- While SCET has potential to deal with power corrections, no serious attempt so far
- Treatment of these may rely on QCD sum rules (Ball, Zwicky, Jones 2007)

2) Hadronic uncertainties:

- The branching fractions are very sensitive to $\zeta_{\nu_{\perp}}$
- The soft function $\zeta_{v_{\perp}}$ has large uncertainties

$$
\zeta v_{\perp}\left(\mu=m_{b}\right) \simeq 0.35 \pm 0.05
$$

Theory errors in branching fractions stuck at 20-30\% until these improve.

Conclusions

$B \rightarrow V \gamma$ decays are interesting and will probe $b \rightarrow d \gamma$.
The branching fractions obey a QCD factorization formula.
Improving it requires:

- NNLO perturbative corrections
- More precise knowledge of $\zeta_{v_{\perp}}$
- Treatment of power corrections

We obtained most of the NNLO perturbative corrections.
The other points must be addressed for precise branching fractions.

But: can look for ratios where hadronic uncertainties drop out

