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Radiative B decays

Example: b → sγ transition

B → Xsγ = inclusive radiative decay
B → K ∗γ = exclusive radiative decay

FCNCs are loop suppressed in Standard Model

◮ B → Xsγ “standard candle” for new physics



Motivation for studying B → Vγ

Inclusive B → Xsγ has received much attention

◮ Calculable using OPE and heavy-quark expansion

◮ Branching fraction known to NNLO in perturbation theory
(Misiak +16 others 2006)

◮ Also known to NNLO with cut on photon energy
(Becher, Neubert 2006)

Exclusive B → Vγ decays (V = K ∗, ρ, ω, . . . ) also useful

◮ Exclusive b → dγ (V = ρ, ω) will be well measured at LHC

◮ Provide independent checks on shape of unitarity triangle

◮ Calculable in QCD factorization approach



Idea of QCD factorization

65856 = 12 × 56 × 98



QCD factorization and today’s talk

QCD Factorization:

Branching fraction obtained as a series in (αs, ΛQCD/mb) ≪ 1

B(B̄ → Vγ) = BLO
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◮ ζV⊥
and φB,V are non-perturbative (but universal)

◮ Hard-scattering kernels t I and t II are perturbative

t I = 1 + O(αs) + . . . t II = O(αs) + . . .

◮ The kernels t I , t II known at NLO (O(αs)) for some time

Today’s talk: Hard-scattering kernels at NNLO (O(α2
s))



Why higher-orders?

QCD factorization is limited by:

◮ Hadronic uncertainties, especially in ζV⊥

◮ Power corrections (although hard to quantify)

Why bother with higher-order perturbative corrections?

1) Practical reasons

◮ In some ratios hadronic uncertainties tend to cancel

◮ NLO for branching fractions is LO for CP asymmetries

2) Theoretical reasons

◮ Check factorization at NNLO

◮ Study connection between QCDF and SCET (next slide)



What is SCET and why use it?

What: SCET = soft-collinear effective theory
(Bauer, Pirjol, Fleming, Stewart 2000)

Why: Allows to discuss factorization in EFT language

◮ hard-scattering kernels = matching (Wilson) coefficients

◮ non-perturbative functions = hadronic matrix elements

Advantages of SCET approach:

◮ Mass scales m2
b ≫ mbΛQCD ≫ Λ2

QCD are clearly separated

◮ RG evolution of matching functions “resums” large logs

◮ All-orders factorization proof possible
(Becher, Hill, Neubert 2005)
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Outline of factorization discussion

1) QCD factorization

◮ Introduce effective weak Hamiltonian

◮ QCD factorization formula for matrix elements of weak
Hamiltonian

2) Derivation of QCD factorization formula with SCET



Effective weak Hamiltonian

QCD effects at µ ∼ mb described by effective weak
Hamiltonian:

Heff =
GF√

2

∑

p=u,c

V ∗

pqVpb

[

C1Qp
1 + C2Qp

2 +

8
∑

i=3

CiQi

]

; (q = s, d)

◮ The Ci are Wilson coefficients depending on MW , MZ , mt

◮ The Qi are operators built from QCD and photon fields

The Wilson coefficients are known in RG-improved perturbation
theory to NNLO (α2

s) (Csakon, Gorbahn, Haisch, Misiak, others ...)

This part is the same for inclusive and exclusive decays



Operators in effective weak Hamiltonian

Example: b → sγ

Heff =
GF√

2

∑

p=u,c

V ∗

psVpb

[

C1Qp
1 + C2Qp

2 +

8
∑

i=3

CiQi

]

Most important operators for b → sγ:

Qp
1 = (s̄ p)V−A (p̄ b)V−A (p = u, c)

Q7 = −e mb(µ)

8π2 s̄ σµν [1 + γ5] bFµν

Q8 = −g mb(µ)

8π2 s̄ σµν [1 + γ5] T a bGa
µν

For b → dγ replace s → d



Hadronic matrix elements of weak Hamiltonian

Branching fraction:

B(B → Vγ) =
τBmB

4π

(

1 − m2
V

m2
B

)

|A|2

Amplitude:
A ∼ 〈Vγ|Heff|B̄〉 ∼

∑

i

〈Vγ|Qi |B̄〉

Main challenge : evaluate 〈Vγ|Qi |B̄〉 = hadronic matrix elements

◮ QCD factorization is a method for doing this



QCD factorization formula I

Hadronic matrix elements factorize in heavy-quark limit
(Ali, Parkhomenko; Beneke, Feldmann, Seidel; Bosch, Buchalla 2001)

〈

Vγ |Qi | B̄
〉

= F B→V⊥ T I
i +

∫

dω du φB
+(ω)φV

⊥(u) T II
i (ω, u)+O

(

ΛQCD

mb

)

Non-perturbative pieces: (from QCD sum rules, lattice)

◮ F B→V⊥ is a hadronic form factor in QCD

◮ φB,V⊥ are light-cone distributions amplitudes (LCDAs)

Perturbative pieces: (as a series in αs)

◮ T I
i are “vertex corrections”

◮ T II
i are “hard spectator corrections”



QCD factorization formula II

The QCD form factor itself obeys a factorization formula
(Beneke, Feldmann 2001)

F B→V⊥ = T I
V⊥

ζV⊥
+

∫

dω du φB
+(ω)φV

⊥(u) T II
V⊥

(ω, u) + O
(

ΛQCD

mb

)

◮ the soft function ζV⊥
is purely non-perturbative

◮ Equivalent forms of factorization formula

〈

Vγ |Qi | B̄
〉

= F B→V⊥ T I
i +

∫

dω du φB
+(ω)φV

⊥
(u) T II

i (ω, u)

〈

Vγ |Qi | B̄
〉

= ζV⊥
t I
i +

∫

dω du φB
+(ω)φV

⊥(u) t II
i (ω, u)

Second form more useful for SCET



The hard-scattering kernels and factorization

Interested in hadronic matrix elements

〈Qi〉had =
〈

Vγ |Qi | B̄
〉

Instead calculate partonic matrix elements (Feynman Diagrams)

〈Qi〉part = 〈(qq̄′)γ |Qi | (bq̄′)〉

If the partonic matrix element satisfies (to all orders)

〈Qi〉part = ζV⊥,part t I
i +

∫

dω du φB
+,part(ω)φV

⊥,part(u) t II
i (ω, u)

Then assume

〈Qi〉had = ζV⊥
t I
i +

∫

dω du φB
+(ω)φV

⊥
(u) t II

i (ω, u)



Vertex corrections

ζ
(0)
V⊥ tI(1) ζ

(0)
V⊥ tI(2)

These are virtual corrections to matrix elements in B → Xsγ

◮ QCD graphs almost completely known at NNLO

◮ Can obtain t I to same accuracy



Hard spectator corrections

O(α2

s)O(αs)

pb

k (1 − u)p

up

Complications:

1) Integrals depend on two different perturbative scales:

(2p · pb ∼ m2
b) ≫ (2p · k ∼ mbΛQCD ∼ (1.5 GeV)2)

”hard” ”hard collinear”

◮ Large perturbative logs of form ln(mb/ΛQCD) in t II
i

⇒ Need resummation

2) Individual graphs can contribute to both t I and t II

Dealing with both points easiest in SCET



SCET factorization formula

In soft-collinear effective theory:

〈

Vγ |Qi | B̄
〉

= ∆iC
AζV⊥

+

∫

dω du φB
+(ω)φV

⊥(u) t II
i (ω, u)

Spectator term is subfactorized:

t II
i (u, ω) =

∫ 1

0
dτ∆i CB1(τ)j⊥(τ, u, ω) ≡ ∆iCB1 ⋆ j⊥

◮ ∆iC i contain physics at the hard scale m2
b

◮ j⊥ contains physics at the jet scale mbΛQCD

◮ ζV⊥
, φi are matrix elements of SCET operators

⇒ Distinguish vertex and spectator terms at operator level

⇒ Resum logs with RG evolution



Two-step matching: QCD→ SCETI → SCETII

mb ≫
√

mbΛQCD ≫ ΛQCD

QCD −→ SCETI SCETI −→ SCETII

µh ∼ mb µi ∼
√

mbΛQCD µf & ΛQCD

match −→ RG evol. −→ match −→ RG evol.

∆iCB1(µh) × UI(µh, µi) × j⊥(µi) × UII (µi , µf ) × {φi(µf )}

◮ ∆iCB1(µh) and j⊥(µi) are free of large logarithms

◮ RG evolution of matching functions is resummation



First matching step: QCD→ SCETI

Match the operators Qi onto SCETI:

Qi → ∆iC
AJA + ∆iC

B1 ⋆ JB1 + ∆iC
B2 ⋆ JB2 + O

(

ΛQCD

mb

)

J i are current operators in SCETI :

JA = χ̄hc /ε⊥(1 + γ5)hv

JB1 = χ̄hc /ε⊥ /Ahc⊥(1 + γ5)hv

JB2 = χ̄hc /Ahc⊥ /ε⊥(1 + γ5)hv

Important points about “SCETI”

◮ Fluctuations at mb are integrated out and encoded in the ∆iC i

◮ Matrix elements of SCETI operators depend on the
hard-collinear scale mbΛQCD and hadronic scale ΛQCD



Example: QCD→ SCETI for Q8 ∼ b̄Gµνs

JB1

→
Q8

JA

→
Q8

QCD SCETI

hc

b



Integrating out mbΛQCD: SCETI → SCETII

Hard-collinear (intermediate) scale:

mbΛQCD ∼ (1.5 GeV)2 = perturbative

Would like to integrate this out (SCETI → SCETII )

J i → ji (mbΛQCD) ⋆ O i,SCETII (ΛQCD)

◮ For JBi will do this and define hard-spectator term

◮ For JA can’t do this because convolution diverges

But: 〈Vγ|JA|B̄〉 ∼ ζV⊥

◮ JA maps onto vertex term



The vertex corrections in SCET

From previous slide

Qi → ∆iC
AJA + . . .

Matrix element of JA defines the soft function:

〈Vγ|JA|B̄〉 ∼ ζV⊥

Therefore
〈Vγ|Qi |B̄〉 = ∆iC

A ζV⊥
+ . . .

and
∆iC

A = t I
i

SCET matching coefficient = hard-scattering kernel
SCET matrix element = non-perturbative function



Second matching step: SCETI → SCETII

Qi → · · · + ∆iCB1 ⋆ JB1 + ∆iCB2 ⋆ JB2

Can further match JBi onto 4-quark operators in SCETII

JB1
→

Z

du
Z

dω j⊥

„

τ, u,
mbω

µ2

«

OB1(u, ω)

JB2
→

Z

du
Z

dω j‖

„

τ, u,
mbω

µ2

«

OB2(u, ω)

Important points about “SCETII ”

◮ Scale mbΛQCD is integrated out and encoded in jet functions ji

◮ Matrix elements of the SCETII operators depend ΛQCD

◮ The matrix elements of the SCETII operators factorize into soft
and collinear parts (no Ls+c

eff )



SCETI → SCETII

hc

→

SCETI SCETII

J
B1

OB1

c

s

hv

c

LCDAs :

ΦB
αβ(ω̃) =

Z

dt
2π

eitω̃ ˙

0
˛

˛q̄′
sβ(tn−) [tn−, 0] hvα(0)

˛

˛ B̄
¸

ΦV
γδ(u) =

Z

ds
2π

e−isun+p ˙

V (p)
˛

˛ξ̄c,δ(sn+) [sn+, 0] ξ′c,γ(0)
˛

˛ 0
¸



The hard spectator term in SCET

Hadronic matrix elements of SCETII operators:

〈Vγ|OB1|B̄〉 ∼ φB
+(ω)φV

⊥(u)

〈Vγ|OB2|B̄〉 = 0

◮ φB
+ is matrix element of soft (HQET) operator

◮ φV
⊥

is a matrix element of a collinear operator

◮ Proving that soft and collinear sectors factorize is complicated
(Becher, Hill, Neubert 2005)

Put together to define spectator term in SCET

〈Vγ|(∆i CB1 ⋆ JB1)|B̄〉 = (∆i CB1 ⋆ j⊥) ⋆ φB ⋆ φV
⊥

≡ t II
i ⋆ φB ⋆ φV

⊥



RG evolution from µh to µi

∆iCB1(µh) × UI(µh, µi) × j⊥(µi) × UII (µi , µf ) × {φi(µf )}

The RG-improved hard coefficients read
(Becher, Hill, Lee, Neubert 2004)

∆iCB1(u, µi) =

(

mb

µh

)a(µh,µi )

eS(µh,µi )

∫ 1

0
dv U⊥(u, v , µh, µi)∆iCB1(v , µh)

The evolution factor U⊥ obeys integro-differential equation

µ
d

dµ
U⊥(u, v , µh, µ) =

∫ 1

0
dy γ⊥(y , u)U⊥(y , v , µh, µi)

The solution is found numerically



RG evolution from µf to µi

∆iCB1(µh) × UI(µh, µi) × j⊥(µi) × UII (µi , µf ) × {φB
+(µf )φ

V
⊥

(µf )}

The evolution factor UII (µi , µf ) is product of:

◮ Evolution of φV
⊥

(Brodsky-Lepage kernel)

◮ Evolution of φB
+ (Neubert, Lange 2003)

Effect of this resummation on branching ratios is small
◮ No details today (no time)



SCET factorization summary

SCET factorization formula:
〈

Vγ |Qi | B̄
〉

= ∆iC
AζV⊥

+
(

∆CB1 ⋆ j⊥
)

⋆ φV
⊥ ⋆ φB

+

◮ Physics at hard scale mb in the ∆C i

◮ Physics at hard-collinear scale mbΛQCD in j⊥

◮ SCET matching coefficients are the hard-scattering kernels

t I
i = ∆i CA

t II
i = ∆i C

B1 ⋆ j⊥

◮ ζV⊥
, φV

⊥
, φB

+ are matrix elements in SCET

◮ RG evolution is resummation
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Matching Calculations I: Vertex Corrections

〈

Vγ |Qi | B̄
〉

= ∆iC
AζV⊥

+
(

∆CB1 ⋆ j⊥
)

⋆ φV
⊥ ⋆ φB

+



Strategy for the matching calculations

Qi → ∆iC
AJA + ∆i C

B1 ⋆ JB1 + ∆iC
B2 ⋆ JB2

To find matching coefficients:

◮ Equate renormalized Green’s functions in QCD and SCET

Matching coefficients independent of external states.

Simplest:

◮ Partonic matrix elements (Feynman diagrams)

◮ Use dim. reg. (scaleless integrals vanish)

◮ On-shell (many loop diagrams in SCET vanish in dim. reg.)

◮ To extract ∆iCA choose states that don’t overlap with JBi



Vertex corrections

Qi → ∆iC
AJA + ∆iC

B1 ⋆ JB1 + . . .

JA = χ̄hc /ε⊥(1 + γ5)hv ; JB1 = χ̄hc /ε⊥ /Ahc⊥(1 + γ5)hv

Observation: The B-type current has an extra gluon field Ahc⊥

◮ To match onto JA use partonic states with no external gluons

〈Qi〉 ≡ 〈q(p)γ(q)|Qi |b(pb)〉

◮ For on-shell matching the only kinematic invariants ∼ m2
b

p2
b = m2

b; p2 = 0; 2p · pb = m2
b



Matching conditions for vertex corrections

Matching condition:

〈Qi〉QCD,ren = 〈Qi〉SCET,ren

QCD matrix element:

◮ 〈Qi〉QCD,ren are the virtual corrections to inclusive B → Xsγ

◮ Can take them from known calculations

SCET matrix element:

◮ For on-shell matching no hard-collinear scale

◮ SCETI loop integrals are scaleless and vanish in dim. reg.

⇒ 〈Qi〉SCET,ren = ∆i CAZJ 〈JA
tree〉

◮ ZJ is the renormalization factor for the JA operator



Matching conditions for vertex corrections: II

Write the QCD amplitude as

〈Qi〉QCD,ren ≡ Di〈Q7,tree〉

In dim. reg. (d = 4 − 2ǫ) the matching condition is

∆iCA(mb, mc , µ) = ∆7CA(0) lim
ǫ→0

Z−1
J (ǫ, mb, µ) Di(ǫ, mb, mc , µ)

◮ Tree level coefficient

∆7CA(0) = −e mb 2Eγ

4π2 ≈ −e mb mb

4π2

◮ The renormalization factor ZJ determined order by order
by requiring that ∆iCA finite as ǫ → 0



Results for vertex corrections

The coefficients are obtained as a series in αs:

∆iC
A = ∆7CA(0)

[

δi7 +
αs(µ)

4π
∆iC

A(1) +

(

αs(µ)

4π

)2

∆iC
A(2)

]

◮ For Q7 and Q8 we obtained exact results to NNLO (α2
s)

◮ For Q1 we obtained the NNLO results only in large-β0 limit

Checks on results:

◮ No IR poles in matching coefficients (factorization)

◮ JA also appears in SCET treatment of B → Xsγ with cut on Eγ

⇒ Checked Q7 with Becher and Neubert 2006 (results agree)



The coefficients for Q7 and Q8 to NNLO
(L = ln µ/mb)

∆7CA(1) = CF

h

−2L2
− 7L − 6.8225

i

,

∆7CA(2) = C2
F

“

2L4 + 14L3 + 38.1449L2 + 56.14711L + 7.8159
”

+CF CA

“

−4.8889L3
− 33.9758L2

− 92.3415L− 83.8866
”

+CF nl

“

0.8889L3 + 6.8889L2 + 19.9050L + 23.8254
”

+CF nh

“

−1.3333L2 + 2.8889L− 0.810288
”

∆8CA(1) = CF [2.6667L + 1.4734 + 2.0944i] ,

∆8CA(2) = −C2
F

ˆ

5.3333L3 + 32.2802L2 + 50.9612L + 1.8875

+i(4.1888L2 + 31.4159L + 29.8299)
˜

+CF CA
ˆ

15.1111L2 + 31.6617L + 2.3833 + i(23.7365L + 28.0745)
˜

−CF nl
ˆ

1.7778L2 + 4.0386L + 1.7170 + i(2.7925L + 4.4215)
˜

+CF nh
ˆ

1.7778L2
− 2.0741L + 0.8829

˜



The coefficients for Q1 to NNLO

∆1CA(1) =
mb

mb
CF

»

−3.8519L + r (1)

„

m2
c

m2
b

«–

∆1CA(2) = −

3β0

2
mb

mb
CF

»

2.47L2 + l (2)

„

m2
c

m2
b

«

L + r (2)

„

m2
c

m2
b

«–

◮ r (i) and l(2) calculated as an expansion in m2
c/m2

b

◮ NNLO result is only known in large-β0 limit (nf → −3β0/2)

◮ Deviations from large-β0 limit can be important
(discussed later)



Matching Calculations II:
Hard spectator corrections

〈

Vγ |Qi | B̄
〉

= ∆iC
AζV⊥

+
(

∆CB1 ⋆ j⊥
)

⋆ φV
⊥ ⋆ φB

+

Plan:

◮ Review lowest-order (αs) results

◮ Explain structure of α2
s results

◮ Explain our calculation of α2
s corrections from Q8



The structure of t II at O(αs)

The leading contributions are O(αs):

t II(0)
i (u, ω) =

∫ 1

0
dτ ∆iCB1(0)(τ)j(0)

⊥
(τ, u, ω)

The hard coefficients ∆iCB1 depend on the operator

∆7CB1(0)(τ) =
emb

4π2 , ∆8CB1(0)(τ) =
1 − τ

τ

1
3

emb

4π2

∆1CB1(0)(τ) =
1
3

emb

4π2 f
(

m2
c

m2
b

, τ

)

The jet function j⊥ is universal

j(0)
⊥

(τ, u, ω) = −4πCFαs

Nc

1
mbωū

δ(τ − u)



The structure of t II at O(α2
s)

The O(α2
s) corrections take the form

t II(1)
i (u, ω) = ∆iCB1(1) ⋆ j(0)

⊥
+ ∆iCB1(0) ⋆ j(1)

⊥

Status of O(α2
s) corrections:

◮ The one-loop jet function j(1)
⊥

known
(Beneke and Yang, Becher and Hill 2004)

◮ The one-loop hard coefficient ∆7CB1(1) known
(Becher, Hill, Neubert 2005)

◮ The hard coefficient ∆8CB1(1) known (our work)
◮ ∆1CB1(1) remains unknown (requires two loops)



The calculation of t II
8 at O(α2

s)

t II(1)
8 = ∆8CB1(1) ⋆ j(0)

⊥
+ ∆8CB1(0) ⋆ j(1)

⊥

Calculate t II
8 directly in QCD factorization, but:

◮ Evaluate partonic matrix elements using “method of regions”
(Beneke and Smirnov 1997)

◮ Show t II
8 depends on only hard and hard-collinear regions. The

correspondence with SCET is:

A(1)
h,fin = ∆8CB1(1) ⋆ j(0)

⊥

A(1)
hc,fin = ∆8CB1(0) ⋆ j(1)

⊥

Since j(0)
⊥

is a δ-function, get ∆8CB1(1)(τ) from the convolution



One loop graphs for Q8

(× = photon emission)



Calculating t II
8 in QCD factorization

Isolate the one-loop graphs whose Dirac structure matches OB1

A(1)
8 = A(1) (ǫ/⊥γν⊥

⊗ γν
⊥) + . . .

UV renormalized amplitude:

A(1) → A(1) + A(1)
c.t. = A(1) +

(

Z (1)
α + Z (1)

m + Z (1)
88 − u

ū
Z (1)

87

Qd

)

A(0)

Extract t II
8 from renormalized amplitude:

φbq̄′(0)⋆t II(1)
8 ⋆φqq̄′(0) = A(1)+A(1)

c.t.−φbq̄′(1)⋆t II(0)
8 ⋆φqq̄′(0)−φbq̄′(0)⋆t II(0)

8 ⋆φqq̄′(1)

IR poles in amplitude subtracted by renormalized LCDAs:

◮ t II
8 is free of IR physics

◮ Factorization



Results for t II
8

∆8CB1(1) ⋆ j (0)
⊥ = A(1)

h,fin =
αs

4π
[CF hF + CAhA]t II(0)

8

(Lhc = ln(mbω/µ2))

hA =

„

4 − 2 ln u −
2 ln u

ū2
+ 2 ln ū

«

Lhc + iπ
„

1 −
1

ū
−

2 ln u

ū2

«

+ 2 −
π2

3
+

3

ū

−
ln ū

ū
+

„

−1 +
2

ū
−

1

ū2

«

ln u +

„

1 −
3

2ū
−

1

2(2 − ū)

«

ln ū ln u − ln2 ū

+

„

1 +
1

ū2

«

ln2 u +

„

2 −
1

4ū
−

1

2ū2
−

1

4(2 − ū)

«

Li2(ū)

+

„

−
5

2ū
+

3

ū2
−

1

2(2 − ū)

«

g(ū) +

„

−
1

2ū
+

1

2(2 − ū)

«

h(ū)

hF = . . .

with

g(u) =

Z 1

0
dy

ln [1 − uy(1 − y)]

y
= . . .

h(u) =

Z 1

0
dy

ln [1 − uy(1 − y)]

1 − uy
= . . .
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◮ QCD Factorization and SCET as applied to B → Vγ

◮ Matching calculations and hard-scattering kernels
◮ Numerical results and comparison with experiment



The vertex and hard spectator amplitudes

The branching fraction for B → K ∗γ decays is

B(B → K ∗γ) =
τBmB

4π

(

1 − m2
K∗

m2
B

)

|Av + Ahs|2

The vertex (v) and hard-spectator (hs) amplitudes are

Av =
GF√

2
V ∗

csVcb

∑

i

Ci(µQCD)∆iC
A(mb, µQCD, µ)ζK∗

⊥
(µ)

Ahs =
GF√

2
V ∗

csVcb

∑

i

Ci(µQCD) t II
i (µQCD, µ) ⋆

(

φB ⋆ φK∗

⊥

)

(µ)

◮ Av and Ahs are separately RG invariant
◮ Can study their contribution to the amplitudes separately



Vertex corrections to NNLO

The ratio of NNLO to LO is:

ANNLO
v

ALO
v

= 1 + (0.096 + 0.057i) [αs] + (−0.007 + 0.030i)
[

α2
s

]

In terms of individual contributions

1 +

(

(0.264 + 0.034i) [Q1] − (0.184) [Q7] + (0.016 + 0.023i) [Q8]

)

[αs]

+

(

(0.073 + 0.022i) [Q1] − (0.081) [Q7] + (0.002 + 0.008i) [Q8]

)

[α2
s ]

◮ NNLO correction is small because of large cancellation between
Q1 and Q7

◮ That Q1 is only large-β0 limit result can be significant
(See branching fractions)



Hard spectator corrections to NNLO

Total corrections:

ANNLO
hs

ALO
v

=
(

0.11 + 0.05i
)

[αs] +
(

0.03 + 0.01i
)

[α2
s ]

In terms of individual operators:

=

(

(0.023 + 0.046i) [Q1] + 0.074 [Q7] + 0.010 [Q8]

)

[αs]

+

(

(0.004 + 0.003i) [Q1] + 0.025 [Q7] + 0.003 + 0.005i) [Q8]

)

[α2
s ]

([Q1] = ∆1CB1(0) ⋆ j (1)
⊥ )

◮ The NNLO corrections are individually small
⇒ Errors associated this term are small
⇒ Resummation effects ∼ 10% (but stabilize µ-dependence)



Determining ζV⊥
from the QCD form factor

Results depend strongly on ζV⊥
. To determine it:

◮ Require that
〈

Vγ |Q7| B̄
〉

∝ F B→V⊥

◮ Use the QCD factorization formula for F B→V⊥

◮ Use recent sum rule results F B→V⊥ = 0.31 ± 0.4
(Ball, Jones, Zwicky ’05)

At NNLO:
ζV⊥

(µ = mb) ≃ 0.35 ± 0.05

The vertex corrections dominate the spectator ones:

F B→V⊥

ζV⊥

=
(

1 − 0.15[αs] − 0.06[α2
s ]
)

[v] +
(

0.07[αs] + 0.03[α2
s ]
)

[hs]



Branching Fractions at NNLO

Results at NNLO in units of 10−5

B(B+ → K ∗+γ) = 4.6 ± 1.2 [ζK∗ ] ± 0.4 [mc ] ± 0.2 [λB ] ± 0.1 [µ]

B(B0 → K ∗0γ) = 4.3 ± 1.1 [ζK∗ ] ± 0.4 [mc ] ± 0.2 [λB ] ± 0.1 [µ]

B(Bs → φγ) = 4.3 ± 1.1 [ζφ] ± 0.3 [mc] ± 0.3 [λB ] ± 0.1 [µ]

Matching not complete because of Q1:

◮ 100% uncertainty to NNLO vertex correction in large-β0 limit:
⇒ ∆B ≈ ±0.5

◮ 100% uncertainty to NLO hard-spectator correction:
⇒ ∆B ≈ ±0.1

◮ Results beyond large-β0 limit would reduce errors (but 3 loops)



Comparison with experiment

Compared to current experimental numbers (HFAG, LP 2007):

B(B+ → K ∗+γ)SM,NNLO

B(B+ → K ∗+γ)expt
= 1.1 ± 0.35 [theory]± 0.07[expt.]

B(B0 → K ∗0γ)SM,NNLO

B(B0 → K ∗0γ)expt
= 1.1 ± 0.35 [theory]± 0.06[expt.]

B(Bs → φγ)SM,NNLO

B(Bs → φγ)expt
= 0.8 ± 0.2 [theory]± 0.3 [expt.]

◮ Theory errors about 30%
◮ Dominant error is in ζV⊥



Limitations of QCD factorization approach to B → Vγ

1) Power corrections in ΛQCD/mb:

◮ Some power corrections factorize, some don’t

◮ While SCET has potential to deal with power corrections, no
serious attempt so far

◮ Treatment of these may rely on QCD sum rules
( Ball, Zwicky, Jones 2007)

2) Hadronic uncertainties:

◮ The branching fractions are very sensitive to ζV⊥

◮ The soft function ζV⊥
has large uncertainties

ζV⊥
(µ = mb) ≃ 0.35 ± 0.05

Theory errors in branching fractions stuck at 20-30% until
these improve.



Conclusions

B → Vγ decays are interesting and will probe b → dγ.

The branching fractions obey a QCD factorization formula.

Improving it requires:

◮ NNLO perturbative corrections

◮ More precise knowledge of ζV⊥

◮ Treatment of power corrections

We obtained most of the NNLO perturbative corrections.

The other points must be addressed for precise branching
fractions.

But: can look for ratios where hadronic uncertainties drop out
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