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Overview

@ The Problem of motion. PN expansion.

@ Divergences. EFT for extended objects.
@ NR 2-body problem in GR, matching into NRGR.
@ Extension to spinning bodies.

@ Power counting, LO & finite size effects and
effacement.

@ New results at 3PN. Algebraic structure.

® Conclusions and much more...



The problem of motion

@ The size scale (finite extension) B o/,
@ The orbit scale (Internal problem) &k ~ 1/r

@ The radiation scale (External problem) K ~ U/T



PN expansion
@ Point particle, slow motion approximation.
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® Weak gravity. Pertubatively solve Einstein egs.
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@ At 3PN the expansion blows up (iterative Green
functions give rise to divergent integrals).

@ Unsystematic regularization, ‘non-traditional’ dim. reg.
methods. Unclear whether can be extended to higher
orders.

@ Decoupling of the internal structure not fully
understood.

@ From the point of view of EFT, decoupling naturally
leads to a tower of gravitational theories with a
systematic power counting scheme: Feynman diagrams.

@ Consistent fo all order. Divergences are handled by
standard procedures.



Feynman Diagrams. Intuitive idea.
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General Procedure
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Regularization & Renormalization.
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We need to regularize the theory, e.g. add counter terms.
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Consistent with Ward identities (gauge invariance).
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EFT for extended non-spinning objects

(I. Rothstein & W. Goldberger Phys Rev D73, 104029, 2006)

Main Idea: Insertion of non minimal terms in the action to handle
divergences and thus account for the finite size of the constituents
(decoupling). Unknown parameters describing the internal structure are
fixed by *matching* observables in the one-particle sector such as
scattering amplitudes.

= Z/dTa (ma N C(a)R(xa) H C§/)R,ul/vgva + .. )

Other possible /dTR2, /dTRW/RW/a etc

extra terms

Later on spin will give us more degrees of freedom fo play with



NR 2-body problem in GR:
Matching into NRGR

We need to treat one scale at the time: separate the orbit scale
(internal) from the radiation scale (external). In order to do that we
need manifest power counting in the PN expansion parameter.
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Off-shell modes responsible for Coulumb-like interaction ( 1/r )
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Long wave-length radiation (on-shell) modes



Introduce into the action:
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The LO contribution to the effective action
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Lesson:

By integrating out the potential modes one gets an ET of pp
coupled to radiation modes (treated as a background field). In the
process we will obtain the effective gravitational potential for the
motion of the system (Real part of S_eff), and calculate the power

spectrum (Imaginary part of S_eff). By treating the bodies as
external sources we thus solve the problems of freating gravity as
an ET where the masses involved are larger than the Planck mass.
The perturbative expansion is in powers of Lv'n. It is possible to
show quantum (loop) effects are suppressed by 1/L.
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NLO (2PN) EIH action

(For a toy model, see RAP & R. Sturani gr-qc/070106. Proc. Les Houches
summer school)
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Order v~ 6: Divergences & Effacement

As we showed, this diagram in the potential diverges and
renormalizes ¢_R and c_V. However, these coefficients can be washed
away by field redefinition (conformal transformation).
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New divergences do not show up until O(v"10) (Riemann”2 terms).
The Effacement is thus proven up to 5PN for
non-spinning bodies.




Coupling to Radiation

To retain manifest power counting we need to multipole expand
around a reference point X
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Gauge invariant Lagrangian of pp coupled fo radiation modes.
Conserved quantities do not radiate, only the quadruple piece
will serve as a source.



Quadrupole Formula
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Spinning up in NRGR
( RAP, Phys Rev D73, 104031 (2006) )

tetrad €% in

Rotational degrees of freedom — SRR s
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angular velocity

Define spin and momentum as

1
0L = — (p"oz,, S500)

by RPI the spin part of the action reads:
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Equations of motion
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Constraints (SSC)
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Non-canonical Dirac algebra
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Choice of CM, Newton-Wigner SSC
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Coordinate transformation which
leads to a canonical algebra (at LO)
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Power counting and spin-gravity coupling
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Spin will be a sub-leading effect. It will now change the
previous power counting rules.
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Feynman Rules
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1.5PN Spin-Orbit

in the NW SSC
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Spin-Spin at 2PN (SSC independent at LO)
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Divergences with spin insertion & finite size

effects

Tidal effects have a non trivial running and do not contribute
to the one point function. For spin insertions they start out
formally at 3PN, and 5PN for maximally rotating bodies
through higher dimensional operators such as
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Self induced effects do not get renormalized and show up at
leading order
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Naive power counting

1 oy V5" vim, T
ITs p 2 2d
mgs+nm—1 (mp> m'gs \/Z rdv \/ZU
d=2mabn, 1 g8 d. 95

d = 0F e =% No logarithmic divergences

d=1—j = 2(1), n.,, =0(2) No logarithmic divergences

S

Finite size effects. Notice naive
= 2= = A1), T power counting breaks down
At higher orders we encounter ~due fo the cutoff scale r_s
tidal effects, they first start at
v"10 and the effacement is proven



The Hyperfine EIH potential at 3PN
the Newton-Wigner SSC

( RAP & I. Rothstein, Phys Rev Lett97, 021101 (2006) )

one graviton exchange

Non-linear terms
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Includes first non-linear corrections to the spin-spin interaction



The SS Equations of Motion up to 3PN.

(RAP, gr-qc/0701105. Proc. MG11)

Before the SSC we have the algebra
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After the SSC is imposed the Dirac
algebra emerges

{xi,Pj}=5;—|—..., {aji,:pj} =
[P Pl S T J 4 gt ST
{P?, S0 . T k= e 7" 5"

'... represents a set of higher dimensional curvature x Spin terms. In
principle we should worry about this terms. However, by power
counting it is possible to show they do not play a role until 4PN.

Intuitive argument: To get a correction to the S_1*S_2
EOM coming from the algebra one needs to consider the

S_2 piece of the SO Hamiltonian (1.5PN). The EOM are
unaltered at LO so the algebra correction starts at 2.5PN



next fo Intuitive argument:

Let us consider for instance the bracket {Qj‘i7 :Uj}

S

This commutator receives corrections scaling as ~ R.CC2 5 |
m™m

Remember in the covariant SSC this bracket goes like (at LO)
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Which accounts for a 1.5PN shift in the EOM.

The extra piece scales (at LO) as  ()? ho()ilﬁz

In the weak gravity approx. hoo ~ v and the
algebra corrections effectively start at 2.5PN



Yet another approach: the Routhian
in the covariant SSC
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To obtain PN corrections one calculates R perturbatively, and only
imposes the SSC after the EOM are obtained from the algebra.

{82, SI0% — fuBgEt — (880l ghd,

For instance, the spin dynamics from the SO Hamiltonian reads
dS m G el > meG
d—tl_2<1+mj>’ur2N(n><v)><Sl ;N(Slxn)xvl

]. e ]_ =

it agrees with the & — (1 — —¢%)5; + =& (7, - S1).
known result after 2 2




Conclusions
@ The problem of motion reduced fo a tower of EFTs.

® World-line operators encoding finite size structure. Tidal
effects start formally at 3PN and 5PN for maximally rotating
compact objects. Self induced effects show up already at 2PN.

@ Systematic method to calculate to all orders in the PN
expansion. Textbook renormalization. No ambiguities.
Divergences absorbed into short distance parameters. Matching.

@ NRGR for spinning bodies. New results at 3PN.

@ Absorption, self-force, finite size and spin radiation easy to
handle with EFT techniques. Also applicable to other kinematical
scenarios (large-small mass ratio).

@ Work in progress....



