

Evidence for D^0 - $\overline{D^0}$ **mixing**

Marko Starič J. Stefan Institute, Ljubljana, Slovenia

March 17-24 2007 XLII Rencontres de Moriond, La Thuile, Italy

- D^0 mixing in the SM governed by box diagrams
- Effective GIM suppression \rightarrow mixing in D^0 system rare process
- Non-perturbative effects difficult to predict
- Mixing: flavor eigenstates not mass eigenstates: $|D_{1,2}^0\rangle = p|D^0\rangle \pm q|\overline{D^0}\rangle$ with masses m_1, m_2 and widths Γ_1, Γ_2 .
- Mixing governed by

$$x = \frac{\Delta m}{\Gamma}$$
 $y = \frac{\Delta \Gamma}{2\Gamma}$

Time integrated mixing rate

$$R_M = \frac{x^2 + y^2}{2}$$

Measurements at Belle ____

Measurements to be presented in this talk

- $\ \, \blacklozenge \ \ \, D^0 \to K^+\pi^-$
- ♦ $D^0 \rightarrow K_s^0 \pi^+\pi^-$ Dalitz (preliminary)
- $D^0 \rightarrow K^+ K^-, \ \pi^+ \pi^-$ (preliminary)

 $_ D^0 \to K\pi$ (Belle, 400 fb⁻¹) $_$

Wrong sign (WS) final state:
 via doubly Cabibbo suppressed decay (DCS) or
 via mixing

 Proper decay time distribution of WS events (assuming negligible CPV)

$$\frac{dN}{dt} \propto \left[\frac{R_D}{R_D} + y'\sqrt{R_D}(\Gamma t) + \frac{x'^2 + y'^2}{4}(\Gamma t)^2\right]e^{-\Gamma t}$$

DCS interference mixing

 R_D ratio of DCS/CF decay rates $x' = x \cos \delta + y \sin \delta$ $y' = y \cos \delta - x \sin \delta$ δ strong phase between DCS and CF

$$D^{0} \to K\pi \text{ (Belle, 400 fb^{-1})}$$
Unbinned fit to time distribution

• Assuming CP conservation
$$R_{D} = (0.364 \pm 0.017)\%$$

$$x'^{2} = (0.18^{+0.21}_{-0.23}) \times 10^{-3}$$

$$y' = (0.6^{+4.0}_{-3.9}) \times 10^{-3}$$
• No assumption on CP conservation, fit separately D^{0} and \bar{D}^{0}
 \to no evidence for CPV
$$A_{D} = \frac{R_{D}^{+} - R_{D}^{-}}{R_{D}^{+} + R_{D}^{-}}: (-0.995, 1.000) @ 95\% C.L.$$

$$A_{M} = \frac{R_{M}^{+} - R_{M}^{-}}{R_{M}^{+} + R_{M}}: (-0.995, 1.000) @ 95\% C.L.$$

$$y': (-28, 21) \times 10^{-3} @ 95\% C.L.$$

$$R_{M} < 0.40 \times 10^{-3} @ 95\% C.L.$$

.....

$D^0 \rightarrow K\pi$, contours, comparison

_ $D^0 \to K_s^0 \pi^+ \pi^-$ Dalitz (Belle, 540 fb⁻¹) _

- 3-body decay modes: amplitudes $A(D^0 \to f)$ and $\overline{A}(\overline{D^0} \to \overline{f})$ depend on Dalitz variables. Dalitz space dependent matrix element is for negligible CPV $M(m_{-}^{2}, m_{+}^{2}, t) = A(m_{-}^{2}, m_{+}^{2}) \frac{e_{1}(t) + e_{2}(t)}{2} + A(m_{+}^{2}, m_{-}^{2}) \frac{e_{1}(t) - e_{2}(t)}{2}$ where m_+ is defined with the D^* tag $m_{\pm} = \begin{cases} m(K_s, \pi^{\pm}) & D^{*+} \to D^0 \pi^+ \\ m(K_s, \pi^{\mp}) & D^{*-} \to \bar{D}^0 \pi^- \end{cases}$ and time dependent functions with $e_{1,2}(t) = e^{-i(m_{1,2} - i\Gamma_{1,2}/2)t}$
- $|M(m_{-}^2, m_{+}^2, t)|^2$ thus includes x and y
- The only measurement sensitive directly to x

$- D^0 \rightarrow K_s^0 \pi^+ \pi^-$ Dalitz (Belle, 540 fb⁻¹) _

Dalitz fit

Resonance	Amplitude	Phase (deg)	Fit fraction
$K^{*}(892)^{-}$	1.629 ± 0.005	134.3 ± 0.3	0.6227
$K_0^*(1430)^-$	2.12 ± 0.02	-0.9 ± 0.5	0.0724
$K_2^*(1430)^-$	0.87 ± 0.01	-47.3 ± 0.7	0.0133
$K^*(1410)^-$	0.65 ± 0.02	111 ± 2	0.0048
$K^{*}(1680)^{-}$	0.60 ± 0.05	147 ± 5	0.0002
$K^{*}(892)^{+}$	0.152 ± 0.003	-37.5 ± 1.1	0.0054
$K_0^*(1430)^+$	0.541 ± 0.013	91.8 ± 1.5	0.0047
$K_2^*(1430)^+$	0.276 ± 0.010	-106 ± 3	0.0013
$K^*(1410)^+$	0.333 ± 0.016	-102 ± 2	0.0013
$K^*(1680)^+$	0.73 ± 0.10	103 ± 6	0.0004
$\rho(770)$	1 (fixed)	0 (fixed)	0.2111
$\omega(782)$	0.0380 ± 0.0006	115.1 ± 0.9	0.0063
$f_0(980)$	0.380 ± 0.002	-147.1 ± 0.9	0.0452
$f_0(1370)$	1.46 ± 0.04	98.6 ± 1.4	0.0162
$f_2(1270)$	1.43 ± 0.02	-13.6 ± 1.1	0.0180
$ \rho(1450) $	0.72 ± 0.02	40.9 ± 1.9	0.0024
σ_1	1.387 ± 0.018	-147 ± 1	0.0914
σ_2	0.267 ± 0.009	-157 ± 3	0.0088
NR	2.36 ± 0.05	155 ± 2	0.0615

- Dalitz model: 13 different (BW) resonances and a non-resonant contribution
- Results with this refined model consistent with the analysis performed for the Belle ϕ_3 measurement, PRD73, 112009 (2006)
- To test the scalar $\pi\pi$ contributions, K-matrix formalism is also used

Event Selection

- Reconstruction
 - \triangleright *K* and π selection \triangleright vertex fits

▷ $p^*(D^{*+}) > 2.5$ GeV/c

- Analysis cuts
 - $\triangleright \Delta m$, Δq , σ_t
 - optimized on tuned Monte Carlo
 - \triangleright figure of merit: statistical error on y_{CP}

σ_t/ au_{PDG}	$\Delta m/\sigma_m$	Δq (MeV)
0.90	2.30	0.80

- Background estimated from sidebands in m
 side band position optimized
- Signal yields (purities) entering the measurement

channel	KK	$K\pi$	$\pi\pi$
signal	110K	1.2M	50K
purity	98%	99%	92%

$_ D^0 \rightarrow K^+ K^-, \ \pi^+ \pi^-$ (Belle, 540 fb⁻¹) $_$

.

Lifetime fit
Parameterization of proper decay time distribution

 $\frac{dN}{dt} = \frac{N}{\tau}e^{-t/\tau} * R(t) + B(t)$

Resolution function
 constructed from normalized distribution

- of event proper time uncertainty σ_t
- \triangleright ideally, σ_t of event represents uncertainty with Gaussian p.d.f
- \triangleright examining pulls \rightarrow p.d.f.=sum of 3 Gauss.

$$R(t) = \sum_{i=1}^{n} f_i \sum_{k=1}^{3} w_k G(t; \sigma_{ik}, t_0) , \qquad \sigma_{ik} = s_k \sigma_k^{pull} \sigma_i$$

 σ_t distribution

• R(t) studied in details with $D^0 \rightarrow K\pi$ and special MC samples - also in changing running conditions (two different SVD, small misalignments)

$_ D^0 \rightarrow K^+ K^-, \ \pi^+ \pi^-$ (Belle, 540 fb⁻¹) $_$

Cross-checks

- MC: $y_{CP}(\text{out}) y_{CP}(\text{input}) < 0.04\%$ for large range of input values
- y_{CP} independent of resolution function parameterization:

R(t) = single Gaussian: $\Delta \tau =$ 3.5%, $\Delta y_{CP} =$ 0.01%

• Exchanging data side band with signal window background from tuned MC: $\Delta y_{CP} = -0.04\%$

Systematics

source	y_{CP}	A_{Γ}
acceptance	0.12%	0.07%
equal t_0 assumption	0.14%	0.08%
mass window position	0.04%	0.003%
difference btw. background and side bands	0.09%	0.06%
difference btw. final states in opening angle	0.02%	
background parameterization	0.07%	0.07%
resolution function	0.01%	0.01%
analysis cuts	0.11%	0.05%
binning	0.01%	0.01%
total	0.25%	0.15%

Conclusions

- Several measurements of D^0 mixing parameters presented
- Best sensitivity on x from t-dependent Dalitz analysis:

 $x = 0.80 \pm 0.29 \pm 0.17 \%$ (2.4 σ)

• First evidence of non-zero y_{CP} :

 $y_{CP} = 1.31 \pm 0.32 \pm 0.25$ % (3.2 σ including syst.)

Backup slide: X-checks for y_{CP}

Background

A comparison of timing distributions

side bands DATA - side bands tuned MC

◆ Difference to result, if using background from tuned MC *KK* ππ *KK* + ππ

 $\Delta y_{CP} = -0.10\% + 0.09\% = -0.04\%$

Run periods

420

415

410

405

400

W.A.

1

 $\tau_{K\pi}(fs)$

$$P(t) = \frac{1}{\tau} e^{-t/\tau} * R(t) \qquad \Rightarrow \qquad < t > = \tau + t_0$$

By inspecting < t > of $K\pi$, four run periods with different resolution function offsets (t_0) found

Attributed to small SVD misalignments -

fitted $K\pi$ lifetimes

2

408.7±0.6 fs

Belle preliminary

4

run period

3

 t_0 (fs)

5

0

-5

-10

run period

Backup slide: X-checks for y_{CP}

Test for equal t_0 assumption

BELLE

Backup slide: X-checks for y_{CP}

BELLE

Statistical method

- y_{CP} and A_{Γ} can be determined from mean of the timing distributions (e.g. without fitting the data), and the error from r.m.s
- Assumptions:

b timing distribution is a convolution of exponential with some resolution function + some background

> resolution function offsets of final states are the same and small

$$P(t) = p\frac{1}{\tau}e^{-t/\tau} * R_s(t) + (1-p)B(t) \quad \Rightarrow \quad < t > = p(\tau + t_0) + (1-p) < t >_b$$

$$\tau + t_0 = \frac{\langle t \rangle - (1 - p) \langle t \rangle_b}{p} = \langle t \rangle_s$$

• In lifetime difference t_0 cancels, thus if $t_0 \ll \tau$

$$y_{CP} = \frac{\langle t \rangle_{KK} - \langle t \rangle_{K\pi}}{\langle t \rangle_{K\pi}}$$

Result from this method

$$y_{CP} = 1.35 \pm 0.33_{stat}$$
 %