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In light of the known Higgs mass and the current constraints on the quark-lepton Higgs coupling,
we derive conditions for extracting upper limits on the lepton-nucleon Higgs coupling from light
atoms and ions, assuming the availability of locally precise two- and three-body methods might be
beneficial. A recent work has proposed to extract these limits in heavy atoms where the Higgs term
is enhanced by ≈ 103AZ, due to both the large coupling modifier and large A, Z, and assuming
sufficiently precise relativistic electron wave functions. We first revisit the old idea of using the
Lamb shift in light muonic ions where the coupling is enhanced by about 2013AZ3 primarily due to
the concentration of the muon wave function at the origin, the muon coupling modifier already being
close to 1. For the muonic helium an experimental precision below 0.1 ppm is required to reach the
constraints on Higgs couplings. However, theoretical uncertainty is large due to nuclear potential
dependence of the finite size terms enhanced by the small muon orbit, and their elimination by using
several states is precluded due to the Lamb shift being the only precisely measurable state. In normal
(electronic) light systems transitions between low-lying states lie near the optical region allowing
precise experiments, and extraction may be possible by eliminating the finite-size, polarization and
Zemach moment terms from a set of transitions, e.g. 1S−2S and improved 23S−23P and 21S−23S
in He+, while isotope shifts could be used if additional transitions are measured as precisely.

PACS numbers: 14.80.Bn, 14.60.Ef, 36.10.Ee, 31.15.ac, 31.15.xj

I. INTRODUCTION

There has been a proposal to extract limits on Higgs
nucleon-lepton coupling constant from valence electron
transitions in heavy atoms [1–3]. In the present paper we
examine the conditions for extracting these limits from
transitions in light muonic or normal atoms or ions. The
advantages and disadvantages of the two proposals are
as follows.

The heavy-atom proposal [1–3] is based on the coupling
enhancement due to the large atomic number A; the sta-
bility of systems with large A allowing the experiment to
reach precision of the order of 1 Hz in atomic clock tran-
sitions; and the relatively small other corrections like the
weak force, despite the fact that it may mask the Higgs
contribution. Due to the large number of precisely mea-
surable transitions available, uncertainties in theoretical
corrections depending on total charge Z can be conve-
niently avoided [1, 2] by the use of isotope shifts, i.e.
the deviations from linearity in the King’s plots [4], as
the change in A affects the transitions via nuclear recoil,
electron correlations and nuclear charge radius indepen-
dently of the transition measured. Disadvantages are the
approximate nature of the factorization of the screened,
relativistic electron wave function entering the transition
matrix element, and the reliance on the existence of new
physics via the relatively large current value (of the order
of 103) of the coupling modifier κe for the electron-Higgs
coupling constant ye relative to its Standard Model (SM)
value, ye = κey

SM
e .

The light-system proposal seems attractive as even
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for the three-body system eµ4He locally precise nonrel-
ativistic wave functions can be calculated by e.g. the
Correlation-function Hyperspherical Harmonic Method
(CFHHM) [5], while for two-body ions like µ4He+ both
relativistic and non-perturbative methods are available.
(In heavier muonic systems, electron screening of muonic
orbits remains weak but scaling of nuclear structure ef-
fects strongly amplifies theoretical uncertainties.)

We start by applying the known Higgs mass to the
old estimates [6], which used a much smaller mass, of
the Higgs contribution to the muonic 4He Lamb shift.
This is measured by the CREMA collaboration [7] to a
10−5 level using laser spectroscopy. Different muon and
electron reduced masses resulting in small muonic orbits
provide a large coupling enhancement (mµA/meA)

3. A
disadvantage is the 2S state lifetime of the order of 1 µs
[8, 9], a result of the finite muon lifetime of 2.2 µs, the
1S − 2S two photon decay time of 8 µs and the colli-
sional quenching rate in gas. It prevents detecting effects
below 1 MHz (10−6 meV) and complicates preparation
of states. Another disadvantage is that while the sum
of QED corrections (1813.02 meV for µ4He+ [6]) is well
known and can be improved, the finite nuclear size and
polarization corrections also scale with the lepton mass,
amplifying the uncertainties in the nuclear charge radii.

Next we look at normal (electronic) light systems
where the precisely measured transitions (near the op-
tical region) are those between low-lying nS states, los-
ing the enhancement by the muon but benefitting from
smaller nuclear structure corrections and measurements
at the 10−12 − 10−15 level, related to the extraction of
electronic charge radii [7] and the Rydberg constant.

A common disadvantage of light systems is that the
perturbation theory in (αZ), where α is the fine struc-
ture constant, has been well studied only up to (αZ)6,
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as appropriate for charge radii extraction [10, 11]. For
muonic systems the nonrelativistic and relativistic ex-
pansions give identical results [10] while for electronic
systems relativistic treatment is required [12, 13].
In the next section we calculate the current orders of

magnitude of the Higgs coupling parameters for light sys-
tems. This is followed by an overview of the current light
ion physics and the bottlenecks for reducing its uncer-
tainty. The last section gives requirements on theoretical
terms appearing in the expression for the coupling con-
stant based on the isotope shifts when only two transi-
tions are available.

II. BOUNDS ON THE HIGGS TERM

Higgs exchange between a nucleus and a bound elec-
tron or muon results in a potential of the Yukawa type,

VH(r) = −gHµA
e−mHr

r
, (1)

where gHµA is proportional to the muon and nuclear cou-
pling constants,

gHµA =
yµyA
4π

. (2)

The SM fermion-Higgs coupling constants are propor-
tional to the fermion (F ) mass according to the assumed
hierarchy leading to fermion masses, as well as to the
coupling modifiers based on experimental upper bounds
on couplings which allow for the existence of new physics:

yF = κF
mF

v
, v = 246GeV. (3)

For the electron,

ye = κe × 2.1× 10−6. (4)

Ref. [1] uses ye at the upper bound set by the LHC data
on H → e+e− [14–16], where κe < 611 [16],

ye < 611× 2.1× 10−6 ≈ 1.3× 10−3. (5)

This κe value corresponds to the lowest new physics scale,
5.8 TeV [16], but the bounds are likely to improve, low-
ering the ye value and reducing the feasibility of the pro-
posal [1, 2].
For the muon, κµ = 0.2+1.2

−0.2 in Table 15 of Ref. [17]
so we do not get the advantage of a weak experimental
upper bound, resulting practically in the SM coupling
value,

yµ . 1.4× 207× ySMe ≈ 0.6× 10−3, (6)

using the upper bound of κµ.
The nuclear coupling is approximately proportional to

the atomic number A,

yA = (A− Z)yn + Zyp ≈ AyN , (7)

where yn ≈ yp ≈ yN are the neutron and proton coupling
constants which are linear combinations of the quark and
gluon coupling constants. In more detail [1, 18–21] and
neglecting the cg term [22],

yn ≈ 7.7yu + 9.4yd + 0.75ys,

yp ≈ 11yu + 6.5yd + 0.75ys. (8)

The weakest bounds on individual quark couplings are
yq . 0.3 [23–25], where yq is one of yu, yd, ys, or yc,
resulting in yN . 3 due to suppression of light quarks.
LHC and electroweak data give a medium bound yq .
1.6 × 10−2 [24, 26, 27], resulting in yN . 0.2. Indirect
bounds may be even lower, yq . 5×10−3 [1, 28] resulting
in yN . 10−3. These results translate to the following
range of current upper bounds on the nuclear coupling
yA in muonic hydrogen,

y1 ≈ {10−3, 0.2, 3}, (9)

and in muonic 4He:

y4 ≈ 4× {10−3, 0.2, 3}. (10)

The corresponding bounds on gHµA are linear in A:

gHµ1 . {0.5× 10−7, 1× 10−5, 0.1× 10−3} (11)

for µH and

gHµ4 . {2× 10−7, 4× 10−5, 0.6× 10−3} (12)

for µ4He+/eµ4He.
Due to the large Higgs mass, the Higgs term is given

by the leading order of perturbation in (1/mH)2, unlike
Ref. [6] where mH ranged from 0.15 MeV to 750 MeV.
It is negligible in states with orbital angular momentum
l > 0. For the Lamb shift, at the principal quantum
number n = 2, the Higgs term in the transition energy
∆ELS comes from the 2S state matrix element,

δH(∆ELS) ≈ gHµA

∣

∣R20(0)
∣

∣

2 1

m2
H

, (13)

where R20 is the n = 2, l = 0 radial wave function Rnl

of the lepton x,

∣

∣Rn0(0)
∣

∣

2
= 4

(αZmxA

n

)3

. (14)

In general, for transition i,

δH(∆Ei) ≈ gHxA
4

m2
H

(

αZmxA

)3

∆i, (15)

where ∆i = δli1,0/n
3
i1 − δli2,0/n

3
i2.

The 2013-fold enhancement of the muonic Higgs term
relative to electronic transitions at the same n due to the
smaller muon reduced Bohr radius together with the ≈
AZ3 scaling results in total enhancement ≈ 2013 ×AZ3.
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For comparison, the coupling in the proposal [1–3]
is enhanced relative to single nucleon-electron coupling
through yA by way of large A, and through the electron
wave function squared at origin, |ψe(0)|

2, by way of large
Z (screening in heavy atoms precludes enhancement by
Z3 by an unperturbed electron wave function, resulting
in enhancement by Z instead [1]). At the current cou-
pling modifier their total enhancement is ≈ 611×AZ.

TABLE I: Requirements for extracting the Higgs contribu-
tion δH(∆ELS) from the Lamb shift of µ4He+ and µH for
the known Higgs mass (except row 5, see below). δHν are
the corresponding frequencies. Bounds on the nucleon-Higgs
coupling yA are from Ref. [1]. ηH = 106|δH(∆ELS)/∆ELS |
is the required precision in ppm. Rows 4 and 5 correspond to
the precision defined as the discrepancy between theory and
experiment in Ref. [6]: row 4 shows the extrapolated gHµ4

needed for observation of 125 GeV Higgs at that ηH , and row
5 is for an old 200 ppm experiment using the Higgs mass 0.75
GeV as dicussed in Ref. [6] alos for lower masses. The µH
result (row 6) is for upper bound on Higgs coupling.

system ∆ELS gHµA δH(∆ELS) δHν ηH

(meV) (meV) (Hz) (ppm)

µ4He+ 1664 2× 10−7 2× 10−8 5× 103 10−5

4× 10−5 4× 10−6 1× 106 3× 10−3

0.6× 10−3 0.6× 10−4 2× 107 < 0.1

36 4 1.0× 1012 3× 103

1.3× 10−3 4 1.0× 1012 3× 103

µH 202 0.1× 10−3 1× 10−6 3× 105 < 0.01

Table I gives experimental accuracy requirements for
extracting the Higgs term from Lamb shift for µ4He+ or
eµ4He and µH. Errors due to uncertainties of the funda-
mental constants are of the order of 10−5 meV [29]. The
Higgs term lies above the muon decay limit and within
the upper range of gHµ4 only in muonic helium or heav-
ier systems. The Z3 transition energy scaling also fa-
vors heavier systems as the required relative accuracy is
smaller.
For fixed coupling modifiers, the Higgs coupling scales

to the normal (electronic) light systems as gHeA ≈
2.2 gHµA for the same A, n, and the Higgs term scales
as gHeA (meA/mµA)

3 ≈ 0.27× 10−6.

TABLE II: As in Table I, but for the normal (electronic) sys-
tems and for the corresponding upper bounds (proportional
to A) on the Higgs coupling; relative accuracy is omitted.

system transition ∆E gHeA δH(∆E) δHν

(meV) (meV) (Hz)

4He+ Lamb shift 0.05 1.3× 10−3 2× 10−11 4

23S − 23P 1.15× 103 2× 10−11 4

1S − 2S 40× 103 1× 10−10 30

H 1S − 2S 10× 103 3× 10−4 3× 10−12 0.8

In electronic systems the Lamb shift is not in the opti-
cal range and not very precisely measured. In the helium
ion it is 14GHz ± 348 kHz or 0.05 meV [30] (Table II),
the Higgs term is 4 Hz (1.7 × 10−11 meV) at saturated
coupling, and the uncertainty would have to be decreased
by 105, more than in muonic systems. Better precision
is achieved in the near-optical transitions, the centroid
23S − 23P transition having 2.4 kHz uncertainty (10−8

meV) [31], and in the 1S − 2S transition [30]. For com-
parison we give the hydrogen 1S − 2S transition [7].
The current uncertainities in the above transitions and

the required increase in precision is discussed in the next
section.

III. CURRENT UNCERTAINTIES

Experiments in light systems focus on the extraction
of charge radii and the Rydberg constant. We identify
suitable transitions for Higgs term extraction and the
bottlenecks for reducing their uncertainties.
The 2S1/2−2P3/2 and 2S1/2−2P1/2 transitions used for

calculating [32, 33] the µ4He+ Lamb shift were measured
long ago at about 1528 meV and 1381 meV, respectively
[34, 35]. At the time of the proposal [6] based on the light
Higgs, the discrepancy between theory and experiment as
given by the uncertainty of the finite-size (−288.9 ± 4.1
meV) and nuclear polarization terms (3.1 ± 0.6 meV)
was an order of magnitude larger than the experimental
uncertainties, ±0.3 meV (±0.5 meV) or 200 ppm (330
ppm), respectively. (The electron scattering 4He radius
used was 1.674± 0.012 fm [36].)
Improved calculations [29] reduced the uncertainty of

the non-nuclear contributions to the Lamb shift to 10−3

meV (240 MHz, 0.6 ppm) for µ4He+, but that of the
finite-size correction (−295.848±2.8 meV) was still large
(relative error 1 × 10−2), double the error of the charge
radius [29], and that of the nuclear polarization term of
the two-photon exchange correction remained 0.6 meV.
The uncertainty of the 4He charge radius was 1.676(8)
fm (5 × 10−3 relative error) [37, 38]. The charge radius
puzzle in the proton [39–41] spurred new measurements;
it has recently been confirmed in µD [42]. The electron
scattering 4He charge radius is known to 2× 10−3 accu-
racy (1.681± 0.004 fm) [43, 44].
As the current Lamb shift experiments aim to resolve

the charge radius problem [7, 45], theoretical work is ded-
icated solely to improving the polarization terms but not
the finite-size terms. (The complementary measurements
of the electronic 1S− 2S transition in 4He+ serve to test
the QED part [30].) Laser spectroscopy of µ3He+ and
µ4He+ at “moderate” precision of 50 ppm [8, 43] yielded
the charge radius to 1×10−3 accuracy [8]. The 2013-2014
µ3He+ and µ4He+ 40 ppm measurements [9, 46] yielded
the 4He and 3He charge radii to about 3× 10−4 [9].

The transitions actually measured for the Lamb shift
[33] are 2S1/2 − 2P3/2 and 2S1/2 − 2P1/2 in µ4He+; the
six transitions between the HFS-split 2S and 2P states
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planned in Ref. [8, 43] in µ3He+; and the 2SF=1
1/2 −2PF=2

3/2

and 2SF=0
1/2 − 2PF=1

3/2 [9, 32, 33] in µH. These are com-

bined with the theoretical 2P3/2 − 2P1/2 fine splittings
and with the hyperfine splitting (HFS) of the ground
state for nonzero-spin nuclei, or the electron-muon HFS
for high precision [5], The latter also allows the determi-
nation of the Zemach radius from the nuclear polariza-
tion or vice versa. The HFS precision, 4465.004(29) MHz
(1.8 × 10−3 meV), was 6.5 ppm [47], while the CREMA
collaboration is aiming at 1 ppm [9]. (These experiments
are also used to check some terms in the Lamb shift: a
contribution from the nuclear polarization term cancels
the third Zemach moment 〈r3〉(2) in µ4He+ [48] like it
was observed earlier for µD [49, 50].) The current results
are reviewed in Ref. [11] up to µ4He+ and in Ref. [51]
for µH. The vacuum polarization (VP) term contains
the following uncertainties [11, 52–56]. The relativistic
perturbative Uehling term in µH is modified by finite-
size effects by about 0.0079 meV and 0.0082 meV for the
two proton radii involved in the proton radius problem,
0.842 fm and 0.875 fm, respectively. The µ4He+ finite-
size effect in VP is −0.3297 〈r2α〉 meV fm−2 implying a
similar uncertainty of 0.0016 meV for the current 5×10−3

4He radius uncertainty. Neglecting finite nuclear size in
muon-electron VP causes moderately increasing shifts of
up to 0.0001 meV for µ4He+. Uncertainties of the “light-
by-light” corrections reach 0.0006 meV for µ4He+, while
the sixth-order VP uncertainties reach 0.003 meV. The
largest uncertainty within the VP terms is the hadronic
VP, reaching an estimated 5% uncertainty in the 0.225
meV value for µ4He+, or estimated 0.012 meV [11]. The
relativistic recoil amounts to about 0.001 meV [52–56].
To return to the nuclear structure terms, the finite-size

term proportional to the charge radius squared 〈r2p〉 in µH
has uncertainty 0.064 meV for the spectroscopic radius
0.875 fm and 0.010 meV for the Lamb shift radius 0.842
fm; however, the corresponding values −3.978 meV and
−3.6855 meV differ by 8%, or 0.3 meV. The situation in
µ4He+ is worse due to the scaled contribution, amounting
to 1.4− 2.8 meV uncertainty depending on which radius
is taken [11, 29].
The Lamb shift is usually parametrized in terms of

charge distribution moments as A + B〈r2〉 + C(〈r2〉)3/2

which is suitable at current precision; it also has the con-
sequence that the measured Lamb shift itself is rarely
quoted [57]. For µ4He+, B = −106.344 meV fm−2 [11],
and consists of six contributions, the largest being the
leading term

ba = −
2αZ

3

(αZmµA

n

)3

(16)

in Eq. (5) of Ref. [10], amounting to −105.319 〈r2α〉 meV
fm−2. (The total includes the finite-size VP correction
−0.3297 〈r2α〉 meV fm−2 quoted above.) In 4He+, the
nonleading contributions bb + . . . + be amount to about
a percent. Some depend on the assumed analytic charge
distribution via terms e.g. ba(αZ)

2〈ln(αZmµAr)〉 (Ref.
[11], Appendix B, and Ref. [10]). C involves a model-

dependent transformation between the third Zemach mo-
ment 〈r3〉(2) and (〈r2〉)3/2 via a factor fZem which for

µ4He is about 3.5, but depends on the charge distribution
already on the second digit [11]. In µ4He the uncertainty
of the C term is one-third the uncertainty of the polar-
ization term. The relativistic corrections start at (αZ)6

as verified in Ref. [10] using perturbation theory based
on both the Schrödinger and the Dirac wave functions.
Radius-independent corrections for µH are summarized
in Table 1 of Ref. [51].
Reduction of the charge radius uncertainty to the level

of the parameter dependence of the effective nuclear po-
tentials has been achieved in recent ab-initio calculations
of the inelastic term in the two-photon exchange correc-
tion in light muonic atoms using state of the art nuclear
potentials (AV18 and χEFT) and the hyperspherical har-
monic EIHH method [48, 58, 59]. The nuclear problem
was solved separately and the polarization terms evalu-
ated in second-order perturbation theory in terms of the
residual Coulomb potential for point nucleons. A 5×10−2

accuracy is required for determining the 3He and 4He
charge radii squared to 3× 10−4 [9, 43, 48, 58], ensuring
the same absolute errors in both terms. The new value
of the nuclear polarization term −2.47(14) meV [48] has
6 × 10−2 accuracy (absolute error is misquoted as 0.015
meV in Ref. [11]) compared with the old [6] value 3.1±0.6
meV (2 × 10−1 accuracy). The AV18 and χEFT poten-
tials are tuned to the 3He binding energy but they give
different charge radii. Uncertainty of the polarization
term may be further reduced using the 4He charge ra-
dius to constrain the nuclear potential models [48], but
beyond that any improvement seems unlikely.

TABLE III: Coefficients of the µH Lamb shift parametrization
A+B〈r2p〉+C(〈r2p〉)

3/2 for perturbative [11] and nonperturba-
tive calculations. Higher terms from Ref. [60] are not quoted.

Ref. A (meV) B (meV fm−2) C (meV fm−3/2)

[11] 206.0611(60) -5.22718 0.0365(18)

[61] 206.0604 -5.2794 0.0546

[60] 206.0465137 -5.226988356 0.03530609322

Current nonperturbative calculations also suffer from
the nuclear model dependence via the assumed charge
distributions. They have been performed for muonic hy-
drogen (and could be extended to helium). The work
[61] solves the Dirac equation to 500 neV accuracy but
describes recoil only via the reduced mass of the muon
leaving further corrections to perturbation theory. The
charge distributions were given in terms of moments, i.e.
〈r2p〉, to express results in the conventional form. Also,
a number of corrections were not calculated [11] (two-
and three-loop VP, muon self-energy, muon and hadron
VP, and nuclear polarization). The terms differ from
the perturbation theory to the order of 0.03 meV. The
work [60] using the proton dipole form factor, Gaussian,
uniform, Fermi and experimentally fitted charge distribu-
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tions seems better converged, listing the calculated terms
to better than 0.001 meV accuracy, but the charge dis-
tribution dependence was of the order of 0.004 meV in
the Coulomb and VP terms. Methods are compared in
Table III, with the differences up 0.05 meV.

In summary, the uncertainty of the nuclear structure
terms in light muonic systems is 3−4 orders of magnitude
larger than the requirements in Table I and cannot be
reduced further. The Zemach moment term has about
0.2 meV uncertainty in muonic helium [11].

In the normal (electronic) light systems the precision is
higher and corrections must be based on the Dirac wave
functions. The extensive literature [7, 12, 30, 31, 62, 63]
is reviewed e.g. in CODATA [64].

The highest precision is achieved in H which is less fa-
vorable for Higgs term extraction than He (Table II). The
1S−2S transition in hydrogen used for deducing the Ry-
dberg constant is currently measurable with 4×10−15 (1
Hz) uncertainty [7]. This almost meets the requirement
of Table II, but it is overshadowed by the uncertainty of
the nuclear structure corrections, as the relative size of
the nuclear contributions to transition energy is 4×10−10,
or about 1 MHz, therefore they should be known to bet-
ter than 6 places for direct extraction of the Higgs term,
clearly not achievable as the charge radius uncertainty (a
decade ago) was 44 kHz and the B60 and B7i terms of
the two-loop QED corrections [65] are −8 kHz [30].

In 4He+, The 1S − 2S transition at 9.9 × 1016 Hz is
already predictable with 0.35 MHz uncertainty which is
4 orders of magnitude worse that the requirement of Ta-
ble II [30], the largest uncertainties stemming from the
charge radius and the B60 and B7i terms. The accuracy
of the 1S − 2S transition could be improved to 10−16

(1 Hz) [30], which would be 30 times better than the
requirement of Table II. Other suitable transitions, for
example the 23S − 23P at 1.1 eV, are currently at the
10−10 uncertainty or 2 kHz level [31], which is 3 orders
of magnitude short of requirements of Table II. The nu-
clear structure contributions are amplified with respect
to hydrogen. They are given in detail in Ref. [63]. The
nonlogarithmic relativistic correction ffs depends on the
assumed nuclear charge distribution model in the leading
digit, and its relative contribution (Zα)2ffs to the finite
nuclear size term is 4× 10−5.

In transitions between 2S and 2P states of the normal
(electronic) helium the finite-size terms, which scale as
Z4m3

xA, can be estimated to be at the 0.4×10−4 meV (9
MHz) level so direct extraction of the Higgs terms is ruled
out here as well. The Zemach moment term is 4 × 10−5

times the finite-size term [63], or 1.6 × 10−9 meV, so a
typical one percent nuclear uncertainty would appear at
the 10−11 meV level. This is close to the requirement of
Table II so this term cannot be a priori excluded. (The
uncertainty in the Rydberg constant, known to 2×10−11

[7], cancels out in the Higgs extraction.)

IV. EXTRACTION OF THE HIGGS TERM

In normal heavy atoms of proposal [1–3] isotope shifts
are the most promising method of extracting the Higgs
term, by looking for the departure from the linearity of
the King’s plots [2, 4] for a pair of transitions. For large
A, A′, the coefficient of 〈r2〉A − 〈r2〉A′ in the A−A′ iso-
tope shift is essentially independent of A, A′. For exam-
ple, the relative isotope shift of electron reduced masses
for A = 100, A′ = 101 is 5 × 10−8 and that of the lead-
ing term of the finite-size coeffficient is three times that.
A similar argument regarding the King’s plot linearity is
made in Ref. [1]. Using isotope shifts of two measured
transitions we can eliminate the 〈r2〉A − 〈r2〉A′ terms.
The validity across several isotope pairs A, A′ of the re-
sulting linear relation between the two isotope shifts can
then be studied. This requires at least two transitions
measured for three different A, but there are many suit-
able transitions in heavy atoms.
In light systems we have a similar parametrization of

transition energies but with the additional term (Zemach
moment term) C′〈r3〉(2) that needs to be eliminated to-

gether with B〈r2〉 (the Zemach moment has to be used to
avoid the model-dependent transformation factor fZem

[11, 63]). To reduce the number of required transitions,
one could presumably do this without isotope shifts using
three transitions (i = 1, 2, 3) of a fixed isotope, provided
Ai, Bi, C

′

i are known:

∆Ei = Ai + Bi〈r
2〉+ C′

i〈r
3〉(2) + cAHi (17)

where

c = gHµ1 =
yµyN
4π

< 3× 10−4, (18)

Hi =
4

m2
H

(

αZmxA

)3

∆i. (19)

(We leave out the weak interaction term [1, 2].) Assum-
ing for simplicity that ∆3 = 0 (see below),

c =
1

A

(e1B23 − e2B13)− (C′

1B2 − C′

2B1)e3/C
′

3

H1B23 −H2B13
(20)

where

ei = Ei −Ai, Bij = Bi −
C′

i

C′

j

Bj . (21)

In this case measurements on a different isotope A′ if
available would be used independently to improve c.
Isotope shifts in light systems introduce yet more terms

requiring more transitions to eliminate them. The iso-
tope shift of the leading contribution ba (Eq. (16)) to B
is 3 percent for A = 3, A′ = 4 due to muon reduced mass
shift. bb, bc, . . . [11] also depend on A via mµA starting
at order (αZ)6. In electronic light systems the relative
isotope shift of B is 10−4 (negligible [11] for the charge
radius determination but not for the Higgs extraction).
If we denote the isotope shift of a by [a]AA′ = aA − aA′ ,
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we have for the transition energy ∆Ei (leaving out the
AA′ suffix for brevity):

[∆Ei] = [Ai]+ Bi[〈r
2〉] + [Bi]〈r

2〉A′ + (22)

C′

i[〈r
2〉3/2] + [C′

i]〈r
3〉(2)A′

+ c[AHi].

The term corresponding to [Bi]AA′〈r2〉A′ is claimed suf-
ficiently small for heavy atoms [1]. The Zemach moment
term ([C′

i]AA′〈r3〉(2)A′
) may also turn out to be small

enough (e.g. in 4He+, above), permitting the use of four
instead of five transitions. Obviously we cannot look for
King’s plot-type linearity here as we are likely to have
only 2 isotopes. Also, and the coefficients Bi and C′

i may
depend on A appreciably in higher orders of (αZ).

In µHe, even if the precision of the Lamb shift proper
could be improved (Table I), there is no suitable second
transition; the 1S − 2S (or the appropriate centroid en-
ergy [12, 63]) at 8 keV lies in the X-ray region where the
experimental precision is smaller but the required rela-
tive precision is 103 times larger than for the Lamb shift.
(We cannot take the two transitions to be a pair of the
separate transitions measured for the Lamb shift as their
Higgs terms cancel and, for isotope shifts, quantum num-
bers have no counterparts beteen A = 4, A′ = 3.)
In 4He+ measurements of sufficient precision for at

least three transitions seem possible in principle as per
above: 1 Hz accuracy has already been suggested for
1S−2S [30], and we assume the missing 3 orders of mag-
nitude improvement in 23S − 23P to be possible. These
two transitions have nonvanishing Higgs terms which dif-
fer in ∆i (Eq. (15)). Theoretical

4He - 3He isotope shifts
(with the precision required for extracting the charge
radii) for both the 23S−23P and for the 21S−23S tran-
sition at 0.8 eV have been calculated [63]. The Higgs con-
tribution vanishes in the latter but it provides the third
equation (17), making it possible to eliminate the nuclear
structure terms. It has been measured to 8×10−12 or 1.8
kHz [66]. Like in muonic experiments, current precision
is geared to the extraction of charge radii from isotope
shifts.
The denominator of Eq. (17) of course vanishes in the

leading order in (αZ). The A dependence of Bi starts at
order (αZ)6.

V. CONCLUSION

Current upper bounds on both the muon-nucleon and
electron-nucleon Higgs coupling constrain the possibility
of Higgs term extraction from the Lamb shift to muonic
helium and heavier systems. The Z4 scaling of the nu-
clear structure corrections, existing experimental work on
light muonic systems, as well as more difficult control of
the number of ejected electrons during the muon cascade
in heavier systems, all favor lighter systems, making the
muonic and electronic helium ion the prferred system.
Direct extraction of the Higgs term is not viable because
of too large nuclear structure terms, which exhibit un-
certainties too large by 3 − 4 orders of magnitude. Due
to their dependence on either the effective nuclear poten-
tials or on assumed charge distributions, this uncertainty
cannot be reduced. Instead, (i) availability of several
transitions is required to eliminate these terms, and (ii)
uncertainty has to be reduced a few orders of magnitude
below the current which is geared towards extracting the
charge radii. In muonic helium the Lamb shift exper-
imental precision should be at least 0.1 ppm, possibly
requiring the evaluation of small effects [67], but there is
no other suitable, precisely measurable transition. The
normal (electronic) helium ion is more promising, offering
the lowest-lying transition measurable to 1 Hz accuracy
and several states currently measured to kHz precision.
We give required elevated precision (above that of the
Rydberg constant) which may allow elimination of nu-
clear structure terms. The resolution of the charge ra-
dius puzzle which is the current focus of the light muonic
and electronic ion physics does not require this level of
precision.
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