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Abstract

This paper presents a code for solving the 8dimger equation for non singular as well as very singulaemptals using a revised
and generalized quasilinearization method (QLM). Due ilability of alternative methods quantum mechanics isitable test
bed for improving the numerical aspects of OLM. QLM is apgli®y rewriting the Schiidinger equation as a Riccatifidirential
equation for the inverse of the logarithmic derivative of thdial wave function. QLM is also an extremeRi@ent resummation

of the WKB series, and the first QLM iteration is an exact soltof some problems. The mathematical conditions on the
convergence of QLM in the functional space in physics havenlgeneralized beyond the original Bellman-Kalaba propasa
particular regarding the absence of a guarantee of quad@tivergence in that work. In fact, the WKB initial approxima has
been shown by the author to be dfstient condition for immediate onset of QLM quadratic coigesrce. This, together with the
fact that QLM does not require a small parameter and congezgen where the perturbation theory or th&l xpansion fail,
enabled the extension of QLM to supersingular potentials.

Keywords: quasilinearization; QLM; quadratic convergence; $cimger equation; nonlinearftitrential equations; supersingular
potentials

PROGRAM SUMMARY [3] R. E. Bellman and R. E. KalabaQuasilinearization and Nonlinear
Program Title: SEM4 Boundary-Value ProblemsElsevier Publishing Company, New York,
Licensing provisions(please choose one): GPLv3.0 1965.

Programming languageFortran

Nature of problem:QLM is a quasilinearization method for problems
in physics, generalized [1] to work for regular and singular potentialsl Introduction
alike, and guarantee [2] immediate quadratic, possibly monotonic;”
convergence, for both energies and wave functions, and does not

require expansion in a small parameter. QLM is applied here to the Many calculations in physics rely on approximation tech-
Schidinger equation rewritten as a Riccati equation for the inverse ofiques that lend themselves tiieient numerical implemen-
the logarithmic derivative of the radial wave function. tation. Typically they involve perturbation expansionsimall
Solution method: QLM is implemented as an iterative sequence parameters within a region of the parameter space. TheHaict t
of ordinary linear dfiferential equations. The ftierential equations many equations of physics are nonlinear or could be rewritte

are solved as initial value problems by integration from origin to 455 such brings forward additional, potentially vefiigent it-
matching point and from a large abscissa to the matching point. I%rative approximations in function:’;ll space

the first step the integration parameters are optimized by repeating h hod i i L hereb i
integration and iteration without performing the matching, then One such method is quasilinearization, whereby a nonlinear

matching is carried out with optimized parameters. Al iterations aréProblem is converted to an iterative sequence of linearinit
integrated at the same time [3]. value problems, for whichfcient algorithms exist. Quasi-

Additional comments including Restrictions and Unusual featureslinearization does not rely on the smallness of some parame-
Included are optional filter scripts for selective source conversiorter for convergence. Moreover, the quasilinearizatioratten
to quadruple precision; requires a double-precision NAG Librarymay provide quadratic convergence, i.e., add the same mumbe
installation. of significant digits to the result in every iteration. Theagi
linearization method was initially developed in connectigth
the theory of linear programming by Bellman and Kalaba [1, 2]

References as a generalization of the Newton-Raphson method [3, 4] for
systems of nonlinear ordinary and partidfeiential equations,
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The generalizations required to make quasilinearizatg®m u and the boundary condition at infinity for potentials fadjioff
ful in a wide range of physical problems have been carriedat larger is
out in the work [6] and extended in Refs. [7, 8]. Affeir-

Kl
ent proof of convergence was provided which extended the ap- x(r) € E<O, ()
plicability of the method to realistic forces defined on iitén ] 7l
intervals with singularities at some points. The iteratesav x)  x sinkr - = +6), E>0. (6)

shown to converge quadratically past the iteration whicst fir
exhibits quadratic convergence, and to often converge mon
tonically. The proof did not predict at which iteration thene
vergence would start to be be quadratic. The new method V) ~ o[ VIRF/Rdr )
was subsequently implemented computationally in the gaper r—oo

[9, 10, 11, 12, 13, 14, 15, 16, 17]. In particular, in Ref. [#1] or

was shown that the-th QLM iteration is a sum of 2WKB 2 poa
terms, and that the first QLM iteration provides exact solu-  X(r) ~ €72 .
tions for a variety of quantum mechanical potentials. Hynal
it was shown in Ref. [12] that if the Langer WKB solution is
used as the initial approximation (zeroth iterate) for tHeM)
iteration, the quadratic convergence sets in immediat€he
guarantee of immediate onset of quadratic convergencesdpen
up more possibilities, in particular in the works [16, 17] on
supersingular potentials that exhibit the Klauder phenmwne x(r)

[23, 24, 25, 26, 27, 28], where a numerical QLM implementa- ¢ = KX’(r)’ ©)
tion was devised that was able to solve the problem eventhoug . . . )

a perturbation series does not even exist. This was achievetrisfies the Riccati equations

by employing adaptive integration point distributionsséd on ¢'(X) = 1 - (1+W(X)p%(X), E <0 (10)
the first term of the nonanalytical expansion of the solutiear

the singularity, as well as the logarithmic representatidarge ~ and
values of potentials, with the result that the same comjauntalt

4or potentials behaving at larg@sA? Inr /R or 2%rP with pos-
itive R, p andAa the boundary conditions at infinity are

(8)

Eq. (8) withr changed tdr| applies at = +co in the one dimen-
sional problem for the double-well potentiaf - 16)/128 in
Ref. [29] where we look for both the ground and the first extite
state solutions.

The inverse of the logarithmic derivative pf

scheme could be used for all problems, without resort to vari ¢'09 = 1+ (1= We* (0, E>0, 11)
able substitution. wherex = «r andW(x) = U(x/«)/k*. As ¢(xX) has poles at
the bound state energies, it is convenient to define [6, 7] ne
2. Quasilinearization of the Schibdinger equation functionu(x)
#(X) = —tanu(x). (12)
The generalization to partial fiérential equations being L.
satisfying

straightforward [8], we limit ourselves to quantum mechani
cal calculations with a central potentM(r) and the associated U(X) = -1+ (2+W(X)sirfu(x), E <0 (13)

radial Schodinger equation
and

V(r) + %]X(r) = Ex(r) Q) u'(x) = -1+ W(X) sirf u(x), E > 0. (14)

}—ZZ
“omt (O *
Similar equations were derived earlier [30, 31, 32, 33, ¥, 3

wherey(r) = rR(r) andR s the radial wave function. With the 36, 18, 37]. The boundary conditions for the functig) are
notation’ = 1, ¥* = 2mlE|, andU(r) = 2mV(r) + I(l + 1)/r%,  then

we obtain the dferential equations for negative and positive X
energies ux T (15)
X' = (@ +U@O() =0, E<O0 @) uy ~ Z-nmE<O (16)
and and
X () + (@ -U@))x(r)=0, E>O0. (©)] u(x) + X ~ %l -46,E>0. a7)

Limiting ourselves to regular or fliciently weakly singular  The boundary conditions corresponding to Egs. (7) and ) ar
potentials for the moment, the boundary condition at thgilori  derived via those fog(x)
is
K

() ~ - -0, (18)

1+1 X—00
ry ~r 4 x
x() ~ ) AN &



and
~p/2

¢ ~ ——— =0, 19)
and have the form

u(x) ~ —nn. (20)

X—00

Finally, for the spiked harmonic oscillator

V(@) =r?+ ria (21)

as a representative of the supersingular potentials, thedzoy
condition at the origin is derived in Ref. [16]:

Gl

Here and in Eq. (16 is the number of the excited state with

X

K

K
ux) ~ —
( x—0

(22)

n = 1 corresponding to the ground state. The minus sign re

flects the fact that in the regions ofwhereV(r) < E in view
of Egs. (13) and (14) the derivativ&(x) is negative andi(x) is
decreasing; since its value at the origin is zefx) stays nega-
tive.

For scattering length calculation [9], we define a function
a(r) with the dimension of length by the relatigifx) = «(r +
a(r)) and substitute it into Egs. (10) and (11) to obtain

ar)=-(®+U@)r+alr)? E<O (23)
and

ar) = -u@)(r+a(r)’ E>D0, (24)
which are very similar to the Calogero equation

a(r) = —2mv(r) (r + a(r))?, (25)

wherea(r) has the meaning of the variabsewave scattering
length [18]. These equations are obviously a generalizaifo
the Calogero Eq. (25) for arbitrary valuesl@&ndx and reduce
to it whenl andk are equal to zero.

The k+1)-th QLM iterationuy,1(X) [6, 7, 8, 1, 2] is obtained
via the ordinary diterential equation (ODE) in one variable

U(x) = u'(x) = f(u(x),x), ul0)=0 (26)
as

U1 () = F (Ui X) + (U2 (X) = k(X)) fu(u, ),

u+1(0) = 0, (27)
where fy(u,X) = 9f(u,x)/du is a functional derivative of
f(u(x), X), with the solution

et = [ d((9. 9~ (). Iu(9)

0
X exp f dt fy(uk(t), t). (28)

Introducing the functionalsF (u(x), x) fu(u(x),x) and
G(u(x), X)=f (u(x), X) — u(x) fu(u(x), ), Egs. (27) and (28) be-
come

Uir1(X) = U s (Y F (U(x), X) = G(U(X), X), (29)

and

X X

a9 = [ dsatu(9.9exp [ dFU@.D.  (30)
S

w(x), k = 0,1,2,... converge uniformly and quadratically to
u(x) of Eg. (26) once an iteration is a flgiently close ap-
proximation ofu(x). It was shown in Ref. [12] that using the
Langer WKB solution as the initial QLM guess fulfills this con-
dition, making the QLM numerically predictable. In additio
monotonic convergence, or theffdirenceuy,;(X) — uk(x) be-
ing strictly positive (negative) is obtained for strictlprvex
(concave) functional$(u(x), X). The precise conditions for the
convergence and monotonicity for realistic physical ctods
on infinite intervals with possible singularities are désed in
Ref. [6]. Also, the QLM energy satisfies the Rayleigh-Ritdva
ational principle ensuring its quadratic convergence.[18]
ForE < 0 the functionald (u(x), X), F(u(x), X) andG(u(x), X)
follow from Eq. (13):

fUX),X) = -1+ (2+W(X)sir®u(x), (31
Fu),x) = (2+W(X))sin2(x), (32)
GUu(X),x) = =1+ (2+W(X) sinu(x)

X [sinu(x) — 2u(x) cosu(x)]. (33)

For E > 0 W(X) is replaced by 2 W(X) as per Eq. (14).

3. Numerical method

We use the dierential formulation of QLM of Egs. (27, 29)
rather than the integral formulation of Egs. (28, 30), asasw
realized early in the QLM development [9] that it is fasteheT
numerical approach is described in most detail in Refs. 164,
Each iteration involves two integrations in stable direas:
one fromx = x to X = Xy, wherex, > X is the matching
point, and one fronx = x,, wherex, > Xn, is the finite upper
limit approximation to infinity, tox = Xn.

A complete QLM iteration is typically performed in several
passes where each pass is defined by a set of quadrature pa-
rameters, e.g. the maximum QLM iteration numkgr Xy, Xm
andN, the number of subdivisions ok xm] and [Xm, X,] (in
some casehl differs between the two intervals). For each pass,
the parameter that is estimated to have caused the largest er
in the latest few results is adjusted in the direction erealuc-
tion, thus creating an approximate optimum path in paramete
space. Convergence of the solution is observed along this pa
and not simply based onftiérencesi, (X)—ux, -1(X) for a single
kmn [14]. After the norm of the subsequent solutiofféiences
is deemed small enough, the energy is calculated by a match-
ing process at the last parameter space point. The quagratur
point density is uniform for regular potentials, but in these
of supersingular potentials the program can generate dyhigh
nonlinear point distribution which is very dense in the mity
of the singularity [16, 17].

The present program uses most of the subprograms of the
original program used in the works [9, 10, 11, 12, 13, 14, 15,



16, 17] and referred to aglmmr=(), but difers in the imple- 4. Program description
mentation of the QLM iteration, i.e., in the way stored func-
tion values ofu(x) are reused in the quadrature fag1(X). The program package can be unpacked in a directory (instal-
The original program used interpolation to obtain interiatel  lation directory) and should create the following initjafiartly
values of the previous iteration for the predictor-coroeéh-  populated or empty subdirectoriesin (run and compilation
tegrator. It was found [14] that the minimum total number of helper scripts and executablesjp (input files and run scripts),
quadrature points required for the given accuracy was eghch pd (double-precision sources and their automatically prepro
(in 128-bit precision arithmetic mode) when the fourthard cessed (filtered) versionspg (optional automatically gener-
Runge-Kutta method was used as it required only one intermeated higher precision sourcesht (output files),gnup (plots
diate point. The latter was provided by a five-point Lagrangeand automatically generated plot scriptsjb, 1ibq (third-
interpolation [38] whose estimated error is one order ip ste party source packages), aedamples (top of directory tree
smaller [39] than the estimated solver error. In additionsu- ~ containing run, input and output files and plots for exanmjples
persingular potentials, it was observed [16] that a nomunif ~ Third-party source packages were selected for their whiit
point density was morefiective than low-order implicit meth- be automatically converted to quadruple precision; otrsw
ods. they could be replaced by other routines or libraries. Thekpa
ages areode (www.netlib.org/ode, by Shampine and Gor-
don),odepack (computation.llnl.gov/casc/odepack, in
public domain) anéspline (www.netlib.no/netlib/sfmm,
rom Ref. [41]) for double and quadruple precision, respec-
tively. Some of these programs are used optionally.

The program is written in a simple but strict style with inden
tation and annotations, for readability and easy autontrais-
formation by included filters using standard Unix shell stal

Suficiently accurate interpolation did not seem to apprecia
bly impede the speed of the QLM iteration when using th
Runge-Kutta fourth-order order method. Partly this is tbe-c
sequence of the intrinsic numerical stability against nucaé
noise, or the self-correcting property of the QLM. The prése
program was originally written as an independent verifarati

program, avoiding the interpolation step by implementing a quadruple precision. There are also pre-filters that insest

old idea [2] of sqlvmg all iterations s_|multaneously n them main array dimension parameters to the source code, speci-
of a system of linear ODE. Removing the need for interpola-

i I Kes it ble t ODE sol includi fied in the run script. None of the filters overwrites the orig-
lon &iSo Makes 1t possIbie 10 USE any 4 SOIVET, INCIUdING, 51 sources. Instead, they write to source files which have a
faster high order ones (included is an implementation of th

Tapital-letter string\NN andor DP or QP) inserted between the
Adams predictor-corrector methoede.) Let us note that the P 9X d ar)

h of seti lized point density is alfa original file root name and extension. The filtered files are in
f\pf{)r:oaochE) sel ing l_JI_F;]a Zpeug 'ZE ?(;I:n er:zl 3(/j|s i#dt 'teh ut to the compiler in place of their original files. In additj
0 the VDL Solver. The drawback ot the method IS that It hag, quadruple-precision filtered sources are put in a sepdira
to be decided in advance how many iterations are necessa

h th teed drati hich _dryéctory fq). All alterations should be done exclusively in the
owever he guaranteed quadratic convergence which [Esvl original source files (with unmodified names) in the diregtor
several significant digits in each iteration makes this aisen

) d, otherwise they get overwritten. The list of these files $oal
ble approach. In fact, it has been shown [16, 17] that even fogrovided by the run scrigiin/sem4 C1.csh if its second pa-
supersingular potentials typically only of the order of 1€r4 rameter isList
ations are required for very precise results (over 20 sigpnifi ’

o : . The program has worked with diverse compilers and to the
digits). Due to the descnb_ed m_ethod of testing fpr CONLEE — hest of our knowledge it should work on most. Helper scripts
one can also let the algorithm incredggas required, starting

with a small value. Conversell, can also be fixed by setting gszgilggyégzt;n;mcally generate plotting commands fuz t
iterl to —kn. The input files contain names of variables to the right ofrthei
values for readability. Variable names and other text are ig
Working in quadruple precision (128-bit) requires compile nored by the program, except the first line which is read into a
support. Some subprograms make use of the NAG librargharacter variable.
[40], in particular some special function evaluators usethe The package contains filter scripts that optionally autemat
Langer WKB solution calculation, but only optionally for the ically convert source syntax for use with quadruple-piieais
ODE integration. The former may be replaced by other pro{128-bit) arithmetic if available. Again, all programming
cedures, but the program behavior may change unless suithanges in the code are to be performed in the original double
able wrappers are written that mimic the definition intesval precision sources only (directopd), and the quadruple preci-
and the error detecting and reporting algorithms of the NAGsion modified sources are filtered and placed in a separate di-
procedures. Such replacement has not yet been successfutBctory fpq), where any manual changes are overwritten. The
completed by the author. However, in the case the codscripts may require some adherence to clean code writing and
should be run in and is converted to quadruple precision by inthe output sources should be verified against the origirstgu
cluded scripts, a double-precision NAG library idfitient, as  thediff program, or equivalent.
it only pertains to the calculation of the Langer WKB function  In the following program variables are used interchangeabl
The scripts leave the corresponding code isolated in deublevith the corresponding mathematical symbols, exg.andN.
precision and also provide proper variable conversion. Program unit names are distinguished from variable names by



appending ).
The main program input and related variables are listed be-
low approximately in the order they appear in the input file.
Most of the names are the same across the sources to facilitat
searching, and documented where they are used.

xi, xm, xf Interval boundaries;, Xm, Xu.

nx NumberN of points on interval i, xy]; if ixdist # O,
the input value is used initially; ifxdist = 0, nx is ini-
tially calculated from input value of stép This is used for
E-dependent initial approximations which are later inter-

polated, and does not prescribe the number of ODE steps,; ¢

h Point separation onx},, x,] and on [, Xn] when ixdist
= 0. If ixdist # 0, h can be kept of the order of the last
[Xi, Xm] point spacing (neax = xy) independently ofix.

itolr, itola, itolna, irelab Negative base 10 loga-

inxl Minimum number of , x,) convergence passes. Need

not account for initial passes. A positive value used in
cases when Aitken method does not work initially.

inxu Maximum number ofl{, x,) convergence passes. Need

not account for initial passes.

fninc, fxinc, iaep Erroroptimizationin parameter space:

N increaseX reduction) factor¥ 1); x increase value de-
fined like fxconv in qlmmrx(); negative base 10 loga-
rithm of error tolerance0, sem4() in parameter space.

Type of initial solution. Cf.sei0() (values may be cal-
culated byseiO() at separate points as called from the
ODE callback routines. Cf.iinit (qlmmrx()). iis
= 220: calculate and use the Langer WKB solution as ze-
roth iteration.

rithms of the relative and absolute tolerance pair for ODEvpar0 - vpar6 PotentialV(x) parameters. For interpretation

solution for the Netlib solver, and the tolerance and rel-
ative/absolute error method of NAG solvers. The error
method is translated for NAG calls as follows: 1 to ‘A,
2 to ‘B’, any other number to ‘M’.

itolr0, itolal, ixerrp Negative base 10 logarithms of
the relative and absolute tolerances and the ugpinit
of interval for x-dependent error control igeem0 () : rel-
ative tolerances increase from 12 to 107t°!r on
(0, 1071*er7P] if ixerrp # O, and similarly for the abso-

lute tolerances.
ngw

iodes ODE solver type: 1 - normal, 2 - §j 3 - Runge-Kutta.

jt Jacobian type indicator for Netlib ODE solver routine
dlsoda().

lnag, lnagpd Use the NAG ODE solver; use the NAG rou-
tine that requires one to supply the Jacobian explicitly.

ixdist Point distribution type andx, h precedence:

0 : linear point distribution on LHS, RH%, takes prece-
dencepnx (input) is ignored.

> 0 : nonlinear point distribution on LHS, determined by
the value ofixdist (which is translated txnsi
for qlmmr= () routines); linear point distribution on
RHS;ixdist also determines the type of regulariza-
tion: this behavior is likexns1 which also encodes

both point distribution and regularization.

z1,

ixdist is modified in special cases to make sure the ODE

output routine uses points calculated in advance instead 6fiw,

propagating using. (Propagation algorithm may not be

ixeps

see the corresponding subroutine returning values and
derivatives oV(x). In particular:

vpar0 type of potential. Translated tasel of the
gqlmmrx () package (normally for WKB only). Se-
lects the subroutine hard coded to evaluate a particu-
lar V(x) and derivatives; som¥(x) physical param-
eters may be input variables.

vpar2 initial value of« for parameter optimization.

The number of iterations to output for plotting. Solutions
above the maximum iteration are repeated in order to be
able to plot using a general filmgw enables to keep the
number of solutions written below nd. In fact it can be 0
as then the actual number of iterations is output.

ixregl Negative base 10 logarithm afgregl, exponential

regularization if no other regularization is present. If 0,
this regularization is ignored.

Base 10 logarithm of smallegtseparation in nonuni-
form point distributions {xdist # 0, glmxs=()).

z2 Search limits irk for the QLM E after the QLM itera-
tion.

iabsxd, iabsfd One term of the negative base 10 logarithms

of zero search abscissa and function tolerances; the other
term isiaep.

z2w Search limits in for the Langer WKB solutior.

the same as used by the WKB wrapper-called routines.) iwkber Negative base 10 logarithm of Langer WKB solution

ix Point counter.

iter Maximum QLM iterationky,.

iterl Lowestiter in the convergence (parameter space
path) loops. Negative value indicateser is fixed.

relative accuracy.

iwabsx, iwabsf Negative base 10 logarithms of one set of

zero search abscissa and function tolerances for Langer
WKB energy zero search; the smaller bfiabsx and
iabsxd + iaep is taken, and similarly foiwabsf.



xbcinf Use interpolated value between initial approximation During the initialization stage, for supersingular poiaist
value and exact boundary condition at infinity as boundaryfor which anE-independent initial approximation is employed
condition atx, for higher iterations. This is a plausible [16], the main program calculates the integration poinritis-
option because the QLM iterations do not approach theion by calling the subroutinglmxs5(). If the Langer WKB
exact solution very fast like they do gimmr= (). solution is employed, this task is performed in the nextestag

_ ) ) qlmxs7 () which is called from the Langer WKB subroutine.

lignrh Ignore RHS solution (even if calculated) an.d use the |, the next stage, the parameter optimization loop starts fo
solution value ak = xn as convergence criteriodignrh o anproximate value & given by the input parametepar2.
is set byxm < 0. In each loop pass, the subroutisemm4 () performs a com-

plete QLM iteration for up to iteratiotiter, callingwkb9d0 ()

to calculate the Langer WKB solution argqlm4 () twice

for each iteration to perform the LHS and RHS integrations

lumidp Use precalculated midpoint initial solution values (4th towards the matching point (no matching is performed at this
order Runge-Kutta only).lumidp overrideslsplin if stage).seqlm4 () contains the selector of integration methods

1splin Use cubic spline interpolation of initial solution.
lumidp overridesSlsplin if iodes = 3.

iodes = 3. corresponding the the input value bédes, in each case ex-
o cept the Runge-Kutta caséfering the choice between a NAG
1zero E search after parameter optimization. subroutine or an alternative (parameterg), the latter being

. . . invoked via wrapperalode1 () andodep1().

ipoptv Select convergence variable to use in parameter opti- . i .
mization: In the third, optional pass (flagzero), the QLM E value is

determined by the zero search for the LHS and RHS final QLM
0,1 : highest iteration solution fference at matching iteration mismatch, calling the zero-search subroutingsa ()
point; with the subroutineemm4 () as function evaluator. The param-

eters optimized in the previous stage for the approximaietin

E value are used.

3 : value of LHS solution at matching point at highest  selected auxiliary subroutines are as follows.

2 : average square solutionfidirence at matching point;

iteration; sede4 () calculates the right hand side of Egs. (13) and (14).
4 : value of RHS solution at matching point at highest It also performs regularization for supersingular potatias
iteration. described in Refs. [16, 17].

, Values ofV(x) and optionally its derivatives for a class of
lpopta Use absolute value of convergence function SeleCte‘fBotentials are provided by writing simple dedicated sutines
by ipoptv. that accept/(x) codficients (currently up to fiveypar1 and
vpar3 - vpar6, and optionally return results in the logarithmic
computer floating point representation. Several such subro

laitkn Use Aitken scheme instead of simple error evaluatiorfines are included: thé(r) parameters are set up fymx0c (),
(difference of last two values similar gammr* ()) for pa- ~ based orisel translated from input parametegar0, V(r) and

1lnoopt Skip parameter optimization (cfzero).

rameter optimization. V’(r) are calculated bylmvaa () and theV”(r) by qlmv2a().
These three subroutines need to be updated to include new po-
literx Bail outif oniter increase errors increase. tentialsV(r).

fmzcc Fny > 1, codficient of minorizing function at smak

for supersingular potentials [17]. 5. Examples

ixi State number (usually principal quantum number).

The example inputs in the beginning of the file
inp/sem4_C1.i calculate low-precision solutions for the
ixoff Base 10 logarithm of the multiplier of the machine pre- harmonic oscillator and the Woods-Saxon potentials of Ref.

cision for some error tolerances for Langer WKB solution[12, 17]. The file contains sample inputs for other systems
in wkbch9 () ; typically 2. which are activated by moving them to the beginning of the

ips Step for point output, typically 100.

file.
zprecp Tolerance in radians for detecting which state the so- The directoryexamples has the same structure as the instal-
lution belongs to (cfwkbch9 (). lation directory and contains ASCII text output files as vl

o plots obtained by the author for the test examples, for tirec
xewkb E for Langer WKB function if it is not requested to be comparison with test runs.

calculated by zero search, i.e.1#ukb = . false.. To run the examples, the run scrigitn/sem4 _C1.csh in the

installation directory should be modified to reflect the cderp
and library locations, as well as the main dimension parame-
it999 Print additional output, according to a nonzero value. ters for automatic source filters. The input filep/sem4 C1.1

6

lewkb CalculateE for Langer WKB function by zero search.
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Figure 1: The parameter space optimization passes as itketby the vari-
ation of the initial Langer WKB approximation in the harmonicitiator test

run.
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Figure 2: The initial Langer WKB approximation and the QLM &8ons 1-
6 for the inverse of logarithmic derivative of the radial wduaction of the

harmonic oscillator test run.

should be edited by moving the desired input block to the be-
ginning of the file. Then the run script can be run from any di-
rectory, for example as./bin/sem4 Cl.csh D 2 TEST 6,

as it recognizes its own location. This command will leave
the sources in double precision, compile the program with op
mization level 2 £02), add the strin@EST to executable name,
create a unique output file root name including a unique numbe
atend ifxunum is set to 1, and run the program. To avoid recom-
pilation, the program can be rerun as/bin/sem4 _C1.csh

D -2 TEST 0 to use the previously compiled executable. The
script will also display plots up to the number of iteraticpec-
ified by the 4th argument (6), and show most interesting lines
from the output file in the terminal. (unum = 1 and the run
script breaks, and if it fails to remove the numbering lock fil
bin/semd C1_1ck, that file can be removed from another ter-
minal before or during a repeat run, while the script is vagj)

The original input and output files are saved in ¢x@mples
directory.

Figs. 1 and 2 are a subset of figureeiamples/gnup. Fig.

1 shows the initial parameter optimization by the prograisy, v
ible is the upper integration limit adjustment to minimitest
highest iteration LHARHS solution diference {poptv = 0).

In Fig. 2 the initial approximation is discontinuous due he t
discontinuity of the derivative of the Langer WKB function;
see the discussion in Ref. [12]. However, already the firdtiQL
iteration is continuous and indistinguishable from higiera-
tions.
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