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Abstract

This paper presents a code for solving the Schrödinger equation for non singular as well as very singular potentials using a revised
and generalized quasilinearization method (QLM). Due to availability of alternative methods quantum mechanics is a suitable test
bed for improving the numerical aspects of OLM. QLM is applied by rewriting the Schr̈odinger equation as a Riccati differential
equation for the inverse of the logarithmic derivative of the radial wave function. QLM is also an extremely efficient resummation
of the WKB series, and the first QLM iteration is an exact solution of some problems. The mathematical conditions on the
convergence of QLM in the functional space in physics have been generalized beyond the original Bellman-Kalaba proposal, in
particular regarding the absence of a guarantee of quadratic convergence in that work. In fact, the WKB initial approximation has
been shown by the author to be a sufficient condition for immediate onset of QLM quadratic convergence. This, together with the
fact that QLM does not require a small parameter and converges even where the perturbation theory or the 1/N expansion fail,
enabled the extension of QLM to supersingular potentials.

Keywords: quasilinearization; QLM; quadratic convergence; Schrödinger equation; nonlinear differential equations; supersingular
potentials

PROGRAM SUMMARY
Program Title:SEM4
Licensing provisions(please choose one): GPLv3.0
Programming language:Fortran
Nature of problem:QLM is a quasilinearization method for problems
in physics, generalized [1] to work for regular and singular potentials
alike, and guarantee [2] immediate quadratic, possibly monotonic,
convergence, for both energies and wave functions, and does not
require expansion in a small parameter. QLM is applied here to the
Schr̈odinger equation rewritten as a Riccati equation for the inverse of
the logarithmic derivative of the radial wave function.
Solution method: QLM is implemented as an iterative sequence
of ordinary linear differential equations. The differential equations
are solved as initial value problems by integration from origin to a
matching point and from a large abscissa to the matching point. In
the first step the integration parameters are optimized by repeating
integration and iteration without performing the matching, then
matching is carried out with optimized parameters. All iterations are
integrated at the same time [3].
Additional comments including Restrictions and Unusual features:
Included are optional filter scripts for selective source conversion
to quadruple precision; requires a double-precision NAG Library
installation.
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1. Introduction

Many calculations in physics rely on approximation tech-
niques that lend themselves to efficient numerical implemen-
tation. Typically they involve perturbation expansions insmall
parameters within a region of the parameter space. The fact that
many equations of physics are nonlinear or could be rewritten
as such brings forward additional, potentially very efficient it-
erative approximations in functional space.

One such method is quasilinearization, whereby a nonlinear
problem is converted to an iterative sequence of linear initial
value problems, for which efficient algorithms exist. Quasi-
linearization does not rely on the smallness of some parame-
ter for convergence. Moreover, the quasilinearization iteration
may provide quadratic convergence, i.e., add the same number
of significant digits to the result in every iteration. The quasi-
linearization method was initially developed in connection with
the theory of linear programming by Bellman and Kalaba [1, 2]
as a generalization of the Newton-Raphson method [3, 4] for
systems of nonlinear ordinary and partial differential equations,
and subsequently applied to different fields [5]. However, in
the early works little attention was paid to the systematic de-
velopment of convergence criteria. Convergence was proven
under restricted conditions of small intervals and bounded, non
singular forces. Consequently the method was seldom used in
physics [18, 19, 20, 21, 22].
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The generalizations required to make quasilinearization use-
ful in a wide range of physical problems have been carried
out in the work [6] and extended in Refs. [7, 8]. A differ-
ent proof of convergence was provided which extended the ap-
plicability of the method to realistic forces defined on infinite
intervals with singularities at some points. The iterates were
shown to converge quadratically past the iteration which first
exhibits quadratic convergence, and to often converge mono-
tonically. The proof did not predict at which iteration the con-
vergence would start to be be quadratic. The new method
was subsequently implemented computationally in the papers
[9, 10, 11, 12, 13, 14, 15, 16, 17]. In particular, in Ref. [11]it
was shown that then-th QLM iteration is a sum of 2n WKB
terms, and that the first QLM iteration provides exact solu-
tions for a variety of quantum mechanical potentials. Finally,
it was shown in Ref. [12] that if the Langer WKB solution is
used as the initial approximation (zeroth iterate) for the QLM
iteration, the quadratic convergence sets in immediately.The
guarantee of immediate onset of quadratic convergence opened
up more possibilities, in particular in the works [16, 17] on
supersingular potentials that exhibit the Klauder phenomenon
[23, 24, 25, 26, 27, 28], where a numerical QLM implementa-
tion was devised that was able to solve the problem even though
a perturbation series does not even exist. This was achieved
by employing adaptive integration point distributions, based on
the first term of the nonanalytical expansion of the solutionnear
the singularity, as well as the logarithmic representationof large
values of potentials, with the result that the same computational
scheme could be used for all problems, without resort to vari-
able substitution.

2. Quasilinearization of the Schr̈odinger equation

The generalization to partial differential equations being
straightforward [8], we limit ourselves to quantum mechani-
cal calculations with a central potentialV(r) and the associated
radial Schr̈odinger equation

−
~

2

2m
χ′′(r) +

[

V(r) +
l(l + 1)~2

2mr2

]

χ(r) = Eχ(r) (1)

whereχ(r) = rR(r) andR is the radial wave function. With the
notation~ = 1, κ2 = 2m|E|, andU(r) = 2mV(r) + l(l + 1)/r2,
we obtain the differential equations for negative and positive
energies

χ′′(r) − (κ2 + U(r))χ(r) = 0, E < 0 (2)

and

χ′′(r) + (κ2 − U(r))χ(r) = 0, E > 0. (3)

Limiting ourselves to regular or sufficiently weakly singular
potentials for the moment, the boundary condition at the origin
is

χ(r) ∼
r→0

r l+1 (4)

and the boundary condition at infinity for potentials falling off
at larger is

χ(r) ∼
r→∞

e−κr , E < 0, (5)

χ(r) ∼
r→∞

sin(κr − πl
2
+ δl), E > 0. (6)

For potentials behaving at larger asλ2 ln r/Ror λ2r p with pos-
itive R, p andλ the boundary conditions at infinity are

χ(r) ∼
r→∞

e−λ
∫ r √

ln r/Rdr (7)

or

χ(r) ∼
r→∞

e−
2λ
p+2 r p/2+1

. (8)

Eq. (8) withr changed to|r | applies atr = ±∞ in the one dimen-
sional problem for the double-well potential (r2 − 16)2/128 in
Ref. [29] where we look for both the ground and the first excited
state solutions.

The inverse of the logarithmic derivative ofχ,

φ(x) = κ
χ(r)
χ′(r)

, (9)

satisfies the Riccati equations

φ′(x) = 1− (1+W(x))φ2(x), E < 0 (10)

and

φ′(x) = 1+ (1−W(x))φ2(x), E > 0, (11)

where x = κr and W(x) = U(x/κ)/κ2. As φ(x) has poles at
the bound state energies, it is convenient to define [6, 7] a new
functionu(x)

φ(x) = − tanu(x). (12)

satisfying

u′(x) = −1+ (2+W(x)) sin2 u(x), E < 0 (13)

and

u′(x) = −1+W(x) sin2 u(x), E > 0. (14)

Similar equations were derived earlier [30, 31, 32, 33, 34, 35,
36, 18, 37]. The boundary conditions for the functionu(x) are
then

u(x) ∼
x→0
− x

l + 1
, (15)

u(x) ∼
x→∞

π

4
− nπ, E < 0 (16)

and

u(x) + x ∼
x→∞

πl
2
− δl ,E > 0. (17)

The boundary conditions corresponding to Eqs. (7) and (8) are
derived via those forφ(x)

φ(x) ∼
x→∞
−

κ

λ
√

ln x
κR

→ 0, (18)
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and

φ(x) ∼
x→∞
−

x−p/2

λ
→ 0, (19)

and have the form

u(x) ∼
x→∞
−nπ. (20)

Finally, for the spiked harmonic oscillator

V(r) = r2 +
λ

rα
(21)

as a representative of the supersingular potentials, the boundary
condition at the origin is derived in Ref. [16]:

u(x) ∼
x→0
− κ√
λ

(

x
κ

)α/2

. (22)

Here and in Eq. (16)n is the number of the excited state with
n = 1 corresponding to the ground state. The minus sign re-
flects the fact that in the regions ofr whereV(r) < E in view
of Eqs. (13) and (14) the derivativeu′(x) is negative andu(x) is
decreasing; since its value at the origin is zerou(x) stays nega-
tive.

For scattering length calculation [9], we define a function
a(r) with the dimension of length by the relationφ(x) = κ(r +
a(r)) and substitute it into Eqs. (10) and (11) to obtain

a′(r) = −(κ2 + U(r))(r + a(r))2, E < 0 (23)

and

a′(r) = (κ2 − U(r))(r + a(r))2, E > 0, (24)

which are very similar to the Calogero equation

a′(r) = −2mV(r) (r + a(r))2, (25)

wherea(r) has the meaning of the variables-wave scattering
length [18]. These equations are obviously a generalization of
the Calogero Eq. (25) for arbitrary values ofl andκ and reduce
to it whenl andκ are equal to zero.

The (k+1)-th QLM iterationuk+1(x) [6, 7, 8, 1, 2] is obtained
via the ordinary differential equation (ODE) in one variable

u′(x) = u′(x) = f (u(x), x), u(0) = 0 (26)

as

u′k+1(x) = f (uk, x) + (uk+1(x) − uk(x)) fu(uk, x),

uk+1(0) = 0, (27)

where fu(u, x) = ∂ f (u, x)/∂u is a functional derivative of
f (u(x), x), with the solution

uk+1(x) =
∫ x

0
ds( f (uk(s), s) − fu(uk(s), s)uk(s))

×exp
∫ x

s
dt fu(uk(t), t). (28)

Introducing the functionalsF(u(x), x) ≡ fu(u(x), x) and
G(u(x), x)≡ f (u(x), x) − u(x) fu(u(x), x), Eqs. (27) and (28) be-
come

u′k+1(x) − uk+1(x)F(uk(x), x) = G(uk(x), x), (29)

and

uk+1(x) =
∫ x

0
dsG(uk(s), s) exp

∫ x

s
dtF(uk(t), t). (30)

uk(x), k = 0,1,2, ... converge uniformly and quadratically to
u(x) of Eq. (26) once an iteration is a sufficiently close ap-
proximation ofu(x). It was shown in Ref. [12] that using the
Langer WKB solution as the initial QLM guess fulfills this con-
dition, making the QLM numerically predictable. In addition,
monotonic convergence, or the differenceuk+1(x) − uk(x) be-
ing strictly positive (negative) is obtained for strictly convex
(concave) functionalsf (u(x), x). The precise conditions for the
convergence and monotonicity for realistic physical conditions
on infinite intervals with possible singularities are described in
Ref. [6]. Also, the QLM energy satisfies the Rayleigh-Ritz vari-
ational principle ensuring its quadratic convergence [18].

ForE < 0 the functionalsf (u(x), x), F(u(x), x) andG(u(x), x)
follow from Eq. (13):

f (u(x), x) = −1+ (2+W(x)) sin2 u(x), (31)

F(u(x), x) = (2+W(x)) sin 2u(x), (32)

G(u(x), x) = −1+ (2+W(x)) sinu(x)

× [sinu(x) − 2u(x) cosu(x)]. (33)

For E > 0 W(x) is replaced by 2+W(x) as per Eq. (14).

3. Numerical method

We use the differential formulation of QLM of Eqs. (27, 29)
rather than the integral formulation of Eqs. (28, 30), as it was
realized early in the QLM development [9] that it is faster. The
numerical approach is described in most detail in Refs. [14,16].
Each iteration involves two integrations in stable directions:
one fromx = xi to x = xm, wherexm > xi is the matching
point, and one fromx = xu, wherexu > xm is the finite upper
limit approximation to infinity, tox = xm.

A complete QLM iteration is typically performed in several
passes where each pass is defined by a set of quadrature pa-
rameters, e.g. the maximum QLM iteration numberkm, xu, xm

andN, the number of subdivisions of [xi , xm] and [xm, xu] (in
some casesN differs between the two intervals). For each pass,
the parameter that is estimated to have caused the largest error
in the latest few results is adjusted in the direction error reduc-
tion, thus creating an approximate optimum path in parameter
space. Convergence of the solution is observed along this path
and not simply based on differencesukm(x)−ukm−1(x) for a single
km [14]. After the norm of the subsequent solution differences
is deemed small enough, the energy is calculated by a match-
ing process at the last parameter space point. The quadrature
point density is uniform for regular potentials, but in the case
of supersingular potentials the program can generate a highly
nonlinear point distribution which is very dense in the vicinity
of the singularity [16, 17].

The present program uses most of the subprograms of the
original program used in the works [9, 10, 11, 12, 13, 14, 15,
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16, 17] and referred to asqlmmr∗(), but differs in the imple-
mentation of the QLM iteration, i.e., in the way stored func-
tion values ofuk(x) are reused in the quadrature foruk+1(x).
The original program used interpolation to obtain intermediate
values of the previous iteration for the predictor-corrector in-
tegrator. It was found [14] that the minimum total number of
quadrature points required for the given accuracy was reached
(in 128-bit precision arithmetic mode) when the fourth-order
Runge-Kutta method was used as it required only one interme-
diate point. The latter was provided by a five-point Lagrange
interpolation [38] whose estimated error is one order in step h
smaller [39] than the estimated solver error. In addition, for su-
persingular potentials, it was observed [16] that a nonuniform
point density was more effective than low-order implicit meth-
ods.

Sufficiently accurate interpolation did not seem to apprecia-
bly impede the speed of the QLM iteration when using the
Runge-Kutta fourth-order order method. Partly this is the con-
sequence of the intrinsic numerical stability against numerical
noise, or the self-correcting property of the QLM. The present
program was originally written as an independent verification
program, avoiding the interpolation step by implementing an
old idea [2] of solving all iterations simultaneously in theform
of a system of linear ODE. Removing the need for interpola-
tion also makes it possible to use any ODE solver, including
faster high order ones (included is an implementation of the
Adams predictor-corrector method,ode.) Let us note that the
approach of setting up a specialized point density is also helpful
to the ODE solver. The drawback of the method is that it has
to be decided in advance how many iterations are necessary;
however the guaranteed quadratic convergence which provides
several significant digits in each iteration makes this a sensi-
ble approach. In fact, it has been shown [16, 17] that even for
supersingular potentials typically only of the order of 10 iter-
ations are required for very precise results (over 20 significant
digits). Due to the described method of testing for convergence,
one can also let the algorithm increasekm as required, starting
with a small value. Conversely,km can also be fixed by setting
iterl to −km.

Working in quadruple precision (128-bit) requires compiler
support. Some subprograms make use of the NAG library
[40], in particular some special function evaluators used in the
Langer WKB solution calculation, but only optionally for the
ODE integration. The former may be replaced by other pro-
cedures, but the program behavior may change unless suit-
able wrappers are written that mimic the definition intervals
and the error detecting and reporting algorithms of the NAG
procedures. Such replacement has not yet been successfully
completed by the author. However, in the case the code
should be run in and is converted to quadruple precision by in-
cluded scripts, a double-precision NAG library is sufficient, as
it only pertains to the calculation of the Langer WKB function.
The scripts leave the corresponding code isolated in double-
precision and also provide proper variable conversion.

4. Program description

The program package can be unpacked in a directory (instal-
lation directory) and should create the following initially partly
populated or empty subdirectories:bin (run and compilation
helper scripts and executables),inp (input files and run scripts),
pd (double-precision sources and their automatically prepro-
cessed (filtered) versions),pq (optional automatically gener-
ated higher precision sources),out (output files),gnup (plots
and automatically generated plot scripts),lib, libq (third-
party source packages), andexamples (top of directory tree
containing run, input and output files and plots for examples).
Third-party source packages were selected for their ability to
be automatically converted to quadruple precision; otherwise
they could be replaced by other routines or libraries. The pack-
ages are:ode (www.netlib.org/ode, by Shampine and Gor-
don),odepack (computation.llnl.gov/casc/odepack, in
public domain) andspline (www.netlib.no/netlib/sfmm,
from Ref. [41]) for double and quadruple precision, respec-
tively. Some of these programs are used optionally.

The program is written in a simple but strict style with inden-
tation and annotations, for readability and easy automatictrans-
formation by included filters using standard Unix shell tools to
quadruple precision. There are also pre-filters that inserttwo
main array dimension parameters to the source code, speci-
fied in the run script. None of the filters overwrites the orig-
inal sources. Instead, they write to source files which have a
capital-letter string (NNN and/or DP or QP) inserted between the
original file root name and extension. The filtered files are in-
put to the compiler in place of their original files. In addition,
the quadruple-precision filtered sources are put in a separate di-
rectory (pq). All alterations should be done exclusively in the
original source files (with unmodified names) in the directory
pd, otherwise they get overwritten. The list of these files is also
provided by the run scriptbin/sem4 C1.csh if its second pa-
rameter islist.

The program has worked with diverse compilers and to the
best of our knowledge it should work on most. Helper scripts
optionally automatically generate plotting commands for the
gnuplot program.

The input files contain names of variables to the right of their
values for readability. Variable names and other text are ig-
nored by the program, except the first line which is read into a
character variable.

The package contains filter scripts that optionally automat-
ically convert source syntax for use with quadruple-precision
(128-bit) arithmetic if available. Again, all programming
changes in the code are to be performed in the original double
precision sources only (directorypd), and the quadruple preci-
sion modified sources are filtered and placed in a separate di-
rectory (pq), where any manual changes are overwritten. The
scripts may require some adherence to clean code writing and
the output sources should be verified against the originals using
thediff program, or equivalent.

In the following program variables are used interchangeably
with the corresponding mathematical symbols, e.g.nx andN.
Program unit names are distinguished from variable names by
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appending “()”.
The main program input and related variables are listed be-

low approximately in the order they appear in the input file.
Most of the names are the same across the sources to facilitate
searching, and documented where they are used.

xi, xm, xf Interval boundariesxi , xm, xu.

nx NumberN of points on interval [xi , xm]; if ixdist , 0,
the input value is used initially; ifixdist = 0, nx is ini-
tially calculated from input value of steph. This is used for
E-dependent initial approximations which are later inter-
polated, and does not prescribe the number of ODE steps.

h Point separation on [xm, xu] and on [xi , xm] when ixdist

= 0. If ixdist , 0, h can be kept of the order of the last
[xi , xm] point spacing (nearx = xm) independently ofnx.

itolr, itola, itolna, irelab Negative base 10 loga-
rithms of the relative and absolute tolerance pair for ODE
solution for the Netlib solver, and the tolerance and rel-
ative/absolute error method of NAG solvers. The error
method is translated for NAG calls as follows: 1 to ‘A’,
2 to ‘B’, any other number to ‘M’.

itolr0, itola0, ixerrp Negative base 10 logarithms of
the relative and absolute tolerances and the upperx limit
of interval for x-dependent error control inseem0(): rel-
ative tolerances increase from 10−itolr0 to 10−itolr on
(0,10−ixerrp] if ixerrp , 0, and similarly for the abso-
lute tolerances.

iodes ODE solver type: 1 - normal, 2 - stiff, 3 - Runge-Kutta.

jt Jacobian type indicator for Netlib ODE solver routine
dlsoda().

lnag, lnagpd Use the NAG ODE solver; use the NAG rou-
tine that requires one to supply the Jacobian explicitly.

ixdist Point distribution type andnx, h precedence:

0 : linear point distribution on LHS, RHS,h takes prece-
dence,nx (input) is ignored.

> 0 : nonlinear point distribution on LHS, determined by
the value ofixdist (which is translated toxns1
for qlmmr∗() routines); linear point distribution on
RHS;ixdist also determines the type of regulariza-
tion: this behavior is likexns1 which also encodes
both point distribution and regularization.

ixdist is modified in special cases to make sure the ODE
output routine uses points calculated in advance instead of
propagating usingh. (Propagation algorithm may not be
the same as used by the WKB wrapper-called routines.)

ix Point counter.

iter Maximum QLM iterationkm.

iterl Lowest iter in the convergence (parameter space
path) loops. Negative value indicatesiter is fixed.

inxl Minimum number of (N, xu) convergence passes. Need
not account for initial passes. A positive value used in
cases when Aitken method does not work initially.

inxu Maximum number of (N, xu) convergence passes. Need
not account for initial passes.

fninc, fxinc, iaep Error optimization in parameter space:
N increase (h reduction) factor (> 1); x increase value de-
fined like fxconv in qlmmr∗(); negative base 10 loga-
rithm of error tolerancee0, sem4() in parameter space.

iis Type of initial solution. Cf.sei0() (values may be cal-
culated bysei0() at separate points as called from the
ODE callback routines. Cf.iinit (qlmmr∗()). iis

= 220: calculate and use the Langer WKB solution as ze-
roth iteration.

vpar0 - vpar6 PotentialV(x) parameters. For interpretation
see the corresponding subroutine returning values and
derivatives ofV(x). In particular:

vpar0 type of potential. Translated toisel of the
qlmmr∗() package (normally for WKB only). Se-
lects the subroutine hard coded to evaluate a particu-
lar V(x) and derivatives; someV(x) physical param-
eters may be input variables.

vpar2 initial value ofκ for parameter optimization.

ngw The number of iterations to output for plotting. Solutions
above the maximum iteration are repeated in order to be
able to plot using a general file.ngw enables to keep the
number of solutions written below nd. In fact it can be 0
as then the actual number of iterations is output.

ixreg1 Negative base 10 logarithm ofxgreg1, exponential
regularization if no other regularization is present. If 0,
this regularization is ignored.

ixeps Base 10 logarithm of smallestx separation in nonuni-
form point distributions (ixdist , 0, qlmxs∗()).

z1, z2 Search limits inκ for the QLM E after the QLM itera-
tion.

iabsxd, iabsfd One term of the negative base 10 logarithms
of zero search abscissa and function tolerances; the other
term isiaep.

z1w, z2w Search limits inκ for the Langer WKB solutionE.

iwkber Negative base 10 logarithm of Langer WKB solution
relative accuracy.

iwabsx, iwabsf Negative base 10 logarithms of one set of
zero search abscissa and function tolerances for Langer
WKB energy zero search; the smaller ofiwabsx and
iabsxd + iaep is taken, and similarly foriwabsf.
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xbcinf Use interpolated value between initial approximation
value and exact boundary condition at infinity as boundary
condition atxu for higher iterations. This is a plausible
option because the QLM iterations do not approach the
exact solution very fast like they do inqlmmr∗().

lignrh Ignore RHS solution (even if calculated) and use the
solution value atx = xm as convergence criterion.lignrh
is set byxm < 0.

lsplin Use cubic spline interpolation of initial solution.
lumidp overrideslsplin if iodes = 3.

lumidp Use precalculated midpoint initial solution values (4th
order Runge-Kutta only).lumidp overrideslsplin if
iodes = 3.

lzero E search after parameter optimization.

ipoptv Select convergence variable to use in parameter opti-
mization:

0, 1 : highest iteration solution difference at matching
point;

2 : average square solution difference at matching point;

3 : value of LHS solution at matching point at highest
iteration;

4 : value of RHS solution at matching point at highest
iteration.

lpopta Use absolute value of convergence function selected
by ipoptv.

lnoopt Skip parameter optimization (cf.lzero).

laitkn Use Aitken scheme instead of simple error evaluation
(difference of last two values similar toqlmmr∗()) for pa-
rameter optimization.

literx Bail out if oniter increase errors increase.

fmzcc Fm > 1, coefficient of minorizing function at smallx
for supersingular potentials [17].

ixi State number (usually principal quantum number).

ips Step for point output, typically 100.

ixoff Base 10 logarithm of the multiplier of the machine pre-
cision for some error tolerances for Langer WKB solution
in wkbch9(); typically 2.

zprecp Tolerance in radians for detecting which state the so-
lution belongs to (cf.wkbch9()).

xewkb E for Langer WKB function if it is not requested to be
calculated by zero search, i.e., iflewkb = .false..

lewkb CalculateE for Langer WKB function by zero search.

it999 Print additional output, according to a nonzero value.

During the initialization stage, for supersingular potentials
for which anE-independent initial approximation is employed
[16], the main program calculates the integration point distribu-
tion by calling the subroutineqlmxs5(). If the Langer WKB
solution is employed, this task is performed in the next stage by
qlmxs7() which is called from the Langer WKB subroutine.

In the next stage, the parameter optimization loop starts for
an approximate value ofE given by the input parametervpar2.
In each loop pass, the subroutinesemm4() performs a com-
plete QLM iteration for up to iterationiter, callingwkb9d0()
to calculate the Langer WKB solution andseqlm4() twice
for each iteration to perform the LHS and RHS integrations
towards the matching point (no matching is performed at this
stage).seqlm4() contains the selector of integration methods
corresponding the the input value ofiodes, in each case ex-
cept the Runge-Kutta case offering the choice between a NAG
subroutine or an alternative (parameterlnag), the latter being
invoked via wrappersnlode1() andodep1().

In the third, optional pass (flaglzero), the QLM E value is
determined by the zero search for the LHS and RHS final QLM
iteration mismatch, calling the zero-search subroutinezli3a()

with the subroutinesemm4() as function evaluator. The param-
eters optimized in the previous stage for the approximate input
E value are used.

Selected auxiliary subroutines are as follows.
sede4() calculates the right hand side of Eqs. (13) and (14).

It also performs regularization for supersingular potentials as
described in Refs. [16, 17].

Values ofV(x) and optionally its derivatives for a class of
potentials are provided by writing simple dedicated subroutines
that acceptV(x) coefficients (currently up to five,vpar1 and
vpar3 - vpar6, and optionally return results in the logarithmic
computer floating point representation. Several such subrou-
tines are included: theV(r) parameters are set up byqlmx0c(),
based onisel translated from input parametervpar0, V(r) and
V′(r) are calculated byqlmvaa() and theV′′(r) by qlmv2a().
These three subroutines need to be updated to include new po-
tentialsV(r).

5. Examples

The example inputs in the beginning of the file
inp/sem4 C1.i calculate low-precision solutions for the
harmonic oscillator and the Woods-Saxon potentials of Ref.
[12, 17]. The file contains sample inputs for other systems
which are activated by moving them to the beginning of the
file.

The directoryexamples has the same structure as the instal-
lation directory and contains ASCII text output files as wellas
plots obtained by the author for the test examples, for direct
comparison with test runs.

To run the examples, the run scriptbin/sem4 C1.csh in the
installation directory should be modified to reflect the compiler
and library locations, as well as the main dimension parame-
ters for automatic source filters. The input fileinp/sem4 C1.i
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Figure 1: The parameter space optimization passes as illustrated by the vari-
ation of the initial Langer WKB approximation in the harmonic oscillator test
run.
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Figure 2: The initial Langer WKB approximation and the QLM iterations 1−
6 for the inverse of logarithmic derivative of the radial wavefunction of the
harmonic oscillator test run.

should be edited by moving the desired input block to the be-
ginning of the file. Then the run script can be run from any di-
rectory, for example as../bin/sem4 C1.csh D 2 TEST 6,
as it recognizes its own location. This command will leave
the sources in double precision, compile the program with opti-
mization level 2 (-O2), add the stringTEST to executable name,
create a unique output file root name including a unique number
at end ifxunum is set to 1, and run the program. To avoid recom-
pilation, the program can be rerun as../bin/sem4 C1.csh

D -2 TEST 0 to use the previously compiled executable. The
script will also display plots up to the number of iterationsspec-
ified by the 4th argument (6), and show most interesting lines
from the output file in the terminal. (Ifxunum = 1 and the run
script breaks, and if it fails to remove the numbering lock file
bin/sem4 C1 lck, that file can be removed from another ter-
minal before or during a repeat run, while the script is waiting.)
The original input and output files are saved in theexamples

directory.
Figs. 1 and 2 are a subset of figures inexamples/gnup. Fig.

1 shows the initial parameter optimization by the program; vis-
ible is the upper integration limit adjustment to minimize the
highest iteration LHS/RHS solution difference (ipoptv = 0).
In Fig. 2 the initial approximation is discontinuous due to the
discontinuity of the derivative of the Langer WKB function;
see the discussion in Ref. [12]. However, already the first QLM
iteration is continuous and indistinguishable from higheritera-
tions.
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