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There has been some controversy in recent papers on the possible existence of the Klauder phe-
nomenon in the square well potential with the sinusoidal bottom. We attempt a quasilinearization
method (QLM) approach to this problem, in view of our past application of QLM to the calculation
of supersingular potentials where the Klauder effect is clearly present.
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I. INTRODUCTION

There has been controversy in recent papers [1, 2] re-
garding the existence of the Klauder phenomenon in the
square well potential with the sinusoidal bottom. The
Klauder phenomenon concerns the behavior of the solu-
tion as the coupling constant approaches zero and is well
established in supersingular potentials [3–8].
One example of supersiongual potential exhibiting the

Klauder phenomenon is the spiked harmonic oscillator

V = r2 +
λ

rα
(1)

There is no perturbation series for this potential. Various
specialized, combined analytical and numerical methods
have been proposed, therefore numerical results in the
literature tend to be limited to a single value of α, most
commonly the critical value α = 5/2. Aguilera et al.
[9] combined difference approximation with Richardson
extrapolation. The work Ref. [10] used analytic con-
tinuation, but for α > 2, when the solution acquires
an essential singularity, either the potential had to be
approximated or the leading term of the solution used
for some r < Rc. The specialized method of Ref. [11]
aims to provide the solution at the origin in addition
to energies, and lists converged values for α = 5/2 and
0.001 < λ < 20. The QLM (Quasilinearization Method)
[12–23] has been applied, strictly numerically but with
no restriction in principle on the ranges of α, λ, to the
spiked oscillator problem for a few α, λ values [20], with
precision exceeding that of the literature.
Quasilinearization transforms a nonlinear problem to

a series of linear initial value problems, for which effi-
cient algorithms exist. The quasilinearization iteration
exhibits quadratic convergence. It is a generalization
of the Bellman and Kalaba [24, 25] method developed
within the theory of linear programming by as a gen-
eralization of the Newton-Raphson method [26, 27] and
applied to different fields [28], but with no systematic
research into convergence criteria resulting in restricted
conditions of small intervals and bounded, nonsingular
potentials.
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The necessary generalizations initiated in the work [12]
resulted in extended proof of convergence for realistic po-
tentials on infinite intervals and with singularities, on
condition that quadratic convergence occur at some iter-
ation. The works [17, 18] further provided the missing
guarantee of occurrence of quadratic convergence, where
quadratic convergence was shown to be guaranteed al-
ready at the first iteration if the Langer WKB solution
was used as the initial QLM iterate. This enabled the
development of an entirely numerical QLM implemen-
tation suitable for nonsingular as well as supersingular
potentials [22, 23], exhibiting the Klauder phenomenon
and where a perturbation series does not exist, without
any variable substitution.

II. FORMULATION OF THE PROBLEM IN

QLM

For a one-dimensional problem in coordinate z with
potential V (z) inifinite except on [0, L], L > 0, the
Schrödinger equation reads

−
~
2

2m
χ′′(z) + V (z)χ(z) = Eχ(z), E < 0. (2)

In our case of a regular V (z) any method will work, in-
cluding the perturbation expansion or variational princi-
ple. However, we use QLM to gain additional insight.
The notation ~ = 1, κ2 = 2m|E|, U(z) = 2mV (z),

x = κz and the substitution involving the inverse loga-
rithmic derivative of χ(z), φ(x) = κχ(z)/χ′(z), lead to
the Riccati equation

φ′(x) = −1 + (1 +W (x))φ2(x), (3)

where W (x) = U(x/κ)/κ2. The further substitution
φ(x) = − tanu(x) avoids poles at excited states

u′(x) = −1 + (2 +W (x)) sin2 u(x). (4)

At z = 0 the solution behaves as

χ(z) ∼
z→0

z, u(x) ∼
x→0

−x. (5)

The (k+1)-th QLM iteration uk+1(x) [12–14, 24, 25] of
the solution of the first order nonlinear differential equa-
tion

u′(x) = f(u(x), x), u(0) = 0 (6)



2

is given by the linear term of the expansion in functional
space

u′

k+1(x) = f(uk, x) + (uk+1(x)− uk(x))fu(uk, x),

uk+1(0) = 0, (7)

where fu(u, x) = ∂f(u, x)/∂u is a functional derivative of
f(u(x), x). We solve the iteration using standard meth-
ods for ordinary differential equations (ODE). Alterna-
tively, we could use the integral formulation

uk+1(x) =

∫

x

0

ds(f(uk(s), s)− fu(uk(s), s)uk(s))

× exp

∫

x

s

dtfu(uk(t), t). (8)

uk(x), k = 0, 1, 2, ... converge uniformly and quadrat-
ically to u(x) of Eq. (6) from the first interation pro-
vided the initial guess for the zeroth iteration is suffi-
ciently good (in general, the Langer WKB function [18]).
For strictly convex (concave) functionals f(u(x), x),
uk+1(x)−uk(x) is strictly positive (negative), so conver-
gence is monotonic from below (above) [12]. The QLM
energy also satisfies the Rayleigh-Ritz variational princi-
ple [29], ensuring its quadratic convergence.
The method of solution is integration of Eq. (7) from

both sides of the potential well with matching at x = 0.

The variant of the method used also avoids the interpo-
lation of the functional values of the previous iteration
[22, 23], by solving all iterations simultaneously in the
form of a system of linear ODE [25]. This streamlines
the numerics somewhat by relieving the self-correcting
QLM algorithm of the numerical error of interpolation.

The potential is an infinite well with sinusoidal shape
on [0, L], for k = 1, 2, 3, . . .,

V (z) = λ cos

(

kπz

L

)

(9)

or

W (x) =
λ

κ2
cos

(

kπx

κL

)

. (10)

With κ approaching zero the width of the potential well
in the x coordinate vanishes and the coupling diverges.

III. RESULTS

IV. DISCUSSION
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