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Solutions obtained by the quasilinearization method (QLM) are 
ompared with the WKB solu-

tions. While the WKB method generates an expansion in powers of ~, the quasilinearization method

(QLM) approa
hes the solution of the nonlinear equation obtained by 
asting the S
hr�odinger equa-

tion into the Ri

ati form by approximating nonlinear terms by a sequen
e of linear ones. It does

not rely on the existen
e of any kind of smallness parameter. It also, unlike the WKB, displays no

unphysi
al turning point singularities. It is shown that both energies and wave fun
tions obtained

in the �rst QLM iteration are a

urate to a few parts of the per
ent. Sin
e the �rst QLM iterate

is represented by the 
losed expression it allows to estimate analyti
ally and pre
isely the role of

di�erent parameters, and in
uen
e of their variation on the properties of the quantum systems. The

next iterates display very fast quadrati
 
onvergen
e so that a

ura
y of energies and wave fun
tions

obtained after a few iterations is extremely high, rea
hing 20 signi�
ant �gures for the energy of the

sixth iterate. It is therefore demonstrated that the QLM method 
ould be preferable over the usual

WKB method.

PACS numbers: 03.65.Ca, 03.65.Ge, 03.65.Sq

I. INTRODUCTION

The quasilinearizationmethod (QLM) was 
onstru
ted

as a generalization of the Newton-Raphson method [1, 2℄

for the nonlinear di�erential equations to yield rapid

quadrati
 and often monotoni
 
onvergen
e to the ex-

a
t solution. It was developed originally in theory of

linear programming by Bellman and Kalaba [3, 4℄ to

solve nonlinear ordinary and partial di�erential equations

and their systems. In the original works of Bellman and

Kalaba [3, 4℄, however, the 
onvergen
e of the method

has been proven only under rather restri
tive 
onditions

of small intervals and bounded, nonsingular for
es [10℄

whi
h generally are not ful�lled in physi
al appli
ations.

This 
ould explain an extremely sparse use of the te
h-

nique in physi
s, where only a few examples of the ref-

eren
es to it 
ould be found [5, 6, 7, 8, 9℄. Re
ently,

however, it was shown [10℄ by one of the present au-

thors (VBM) that a di�erent proof of the 
onvergen
e


an be provided whi
h allows to extend the appli
ability

of the method to realisti
 for
es de�ned on in�nite in-

tervals with possible singularities at 
ertain points. This

proof was generalized and elaborated in the subsequent

works [11, 12, 13, 14℄.

In the �rst paper of the series [10℄, the analyti
 re-

sults of the quasilinearization approa
h were applied to

the nonlinear Calogero equation [5℄ in the variable phase

approa
h to quantum me
hani
s, and the results were


ompared with those of the perturbation theory and with

the exa
t solutions. It was shown that the number of the

exa
tly reprodu
ed perturbation terms doubles with ea
h

subsequent QLM iteration, whi
h, of 
ourse, is a dire
t


onsequen
e of a quadrati
 
onvergen
e.

The numeri
al 
al
ulation of higher QLM approxima-

tions to solutions of the Calogero equation with di�erent

singular and nonsingular, attra
tive and repulsive poten-

tials performed in the work [12℄ has shown that already

the �rst few iterations provide a

urate and numeri
ally

stable answers for any values of the 
oupling 
onstant

and that the number of iterations ne
essary to rea
h a

given pre
ision in
reases only slowly with the 
oupling

strength. It was veri�ed that the method provides a

u-

rate and stable answers even for super singular potentials

for whi
h ea
h term of the perturbation theory diverges

and the perturbation expansion 
onsequently does not

exist.

In the third paper of the series [13℄ the quasilineariza-

tion method was applied to other well known typi
al

nonlinear ordinary di�erential equations in physi
s, su
h

as the Blasius, DuÆng, Lane-Emden and Thomas-Fermi

equations whi
h have been and still are extensively stud-

ied in the literature. These equations, unlike the nonlin-

ear Calogero equation [5℄ 
onsidered in referen
es [10, 12℄,


ontain not only quadrati
 nonlinear terms but various

other forms of nonlinearity and not only the �rst, but

also higher derivatives. It was shown that again just a

small number of the QLM iterations yield fast 
onvergent

and uniformly ex
ellent and stable numeri
al results.

In the work [14℄ the quasilinearization method was ap-

plied to quantum me
hani
s by 
asting the S
hr�odinger

equation in the nonlinear Ri

ati form and 
al
ulating

the QLM approximations to bound state energies and

wave fun
tions for a variety of potentials, most of whi
h

are not treatable with the help of the perturbation the-

ory or the 1=N expansion s
heme. It was shown that the


onvergen
e of the QLM expansion for both energies and

wave fun
tions is very fast and that already the �rst few

iterations yield extremely pre
ise results. In addition it

was veri�ed that the higher QLM approximations, unlike

those in 1=N expansion method, are not divergent at any

order.

The present work is devoted to 
omparison of QLM
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and WKB. Indeed, the derivation of the WKB solution

starts by 
asting the radial S
hr�odinger equation into

nonlinear Ri

ati form and solving that equation by ex-

pansion in powers of ~. It is interesting instead to solve

this nonlinear equation with the help of the quasilin-

earization te
hnique and 
ompare with the WKB results.

Su
h a pro
edure was performed in works [7, 8℄, where it

was shown that the �rst QLM iteration reprodu
es the

stru
ture of the WKB series generating an in�nite series

of the WKB terms, but with di�erent 
oeÆ
ients. Be-

sides being a better approximation, the �rst QLM itera-

tion is also expressible in a 
losed integral form. Similar


on
lusions are rea
hed for higher QLM approximations

and it 
an be shown [15℄ that the p-th QLM iteration

yields the 
orre
t stru
ture of the in�nite WKB series

and reprodu
es 2

p

terms of the expansion of the solution

in powers of ~ exa
tly, as well as a similar number of

terms approximately.

That the �rst QLM iteration already provides a mu
h

better approximation to the exa
t solution than the usual

WKB is obvious, not only from 
omparison of terms of

the QLM andWKB series [7, 8, 15℄, but also from the fa
t

that the quantization 
ondition in the �rst QLM iteration

leads to exa
t energies for many potentials [15, 17℄ su
h

as for the Coulomb, harmoni
 os
illator, P�os
hl-Teller,

Hulthen, Hylleraas, Morse, E
kart and some other well

known physi
al potentials, whi
h have a simple analyti


stru
ture. By 
omparison, the WKB approximation re-

produ
es exa
t energies only in the 
ase of the �rst two

potentials.

The goal of this work is to point out that also for

other potentials with more 
ompli
ated analyti
al stru
-

ture QLM iterates provide mu
h better approximation

than the usual WKB. If the initial QLM guess is properly


hosen the wave fun
tion in all QLM iterations, unlike the

WKB wave fun
tion, is free of unphysi
al turning point

singularities. Sin
e the �rst QLM iteration is given by

an analyti
 expression [7, 8, 10, 11, 12, 13℄, it allows one

to analyti
ally estimate the role of di�erent parameters

and the in
uen
e of their variation on di�erent 
hara
-

teristi
s of a quantum system. The next iterates display

very fast quadrati
 
onvergen
e so that a

ura
y of en-

ergies obtained after a few iterations is extremely high,

rea
hing up to 20 signi�
ant �gures for a sixth iterate as

we show on the example of di�erent widely used physi
al

potentials.

The paper is arranged as follows: in the se
ond 
hapter

we present the main features of the quasilinearization ap-

proa
h to the solution of the S
hr�odinger equation, while

in the third 
hapter we 
onsider the appli
ation of the

method to 
omputations with the anharmoni
 os
illator,

logarithmi
, two-power (double-well), and Wood-Saxon

potentials and to the two-body Dira
 equation with stati


Coulomb potential. The �nal, forth 
hapter is devoted

to the dis
ussion of the results, 
onvergen
e patterns, nu-

meri
al stability, advantages of the method and its pos-

sible future appli
ations.

II. QUASILINEARIZATION METHOD

The usual WKB substitution

�(r) = C exp

�

�

Z

r

y(r

0

)dr

0

�

(1)


onverts the S
hr�odinger equation to nonlinear Ri

ati

form

dy(z)

dz

+ (k

2

(z) + y

2

(z)) = 0: (2)

Here k

2

(z) = E�V �l(l+1)=z

2

, �

2

= 2m=~

2

and z = �r.

The proper bound state boundary 
ondition for poten-

tials falling o� at z ' z

0

' 1 is y(z) = 
onst at z � z

0

.

This means that y

0

(z

0

) = 0, so that Eq. (2) at z ' z

0

redu
es to k(z

0

)

2

+ y

2

(z

0

)) = 0 or y(z

0

)) = �ik(z

0

). We


hoose here to de�ne the boundary 
ondition with the

plus sign, so that y(z

0

) = ik(z

0

).

The quasilinearization [7, 10, 13℄ of this equation gives

a set of re
urren
e di�erential equations

dy

p

(z)

dz

= y

2

p�1

(z) � 2y

p

(z)y

p�1

(z)� k

2

(z) (3)

with the boundary 
ondition y

p

(z

0

) = ik(z

0

).

The analyti
 solution [7℄ of these equations expresses

the p-th iterate y

p

(z) in terms of the previous iterate:

y

p

(z) = f

p�1

(z) �

Z

z

z

0

ds

d f

p�1

(s)

ds

exp

�

�2

Z

z

s

y

p�1

(t)dt

�

;

f

p�1

(z) =

y

2

p�1

(z) � k

2

(z)

2y

p�1

(z)

: (4)

Indeed, di�erentiation of both parts of Eq. (4) leads im-

mediately to Eq. (3) whi
h proves that y

p

(z) is a solution

of this equation. The boundary 
ondition is obviously

satis�ed automati
ally.

To utilize the re
urren
e relation (4) for wave fun
tion


omputation one has to pi
k up a proper initial guess. For

the zeroth iterate y

0

(z) it seems natural to 
hoose the

zero WKB approximation that is to set y

0

(z) = ik(z),

whi
h in addition automati
ally satis�es the boundary


ondition. However, one has to be aware that this 
hoi
e

has unphysi
al turning point singularities. A

ording

to the existen
e theorem for linear di�erential equations

[18℄, if y

p�1

(z) in Eq. (3) is a dis
ontinuous fun
tion of

z in a 
ertain interval, then y

p

(z) or its derivatives may

also be dis
ontinuous fun
tions in this interval, so 
onse-

quently the turning point singularities of y

0

(z) may prop-

agate to the next iterates. To avoid this we 
hoose [16℄

the Langer WKB wave fun
tion [19℄ as the zero iteration.

This fun
tion near the turning points a and b is given by

the simple analyti
 expression [20℄

�

i

(r) = 


i

s

S

1

3

i

(r)

jk(r)j

Ai

h

d S

1

3

i

(r)

i

;

S

i

(r) =

3

2

�

�

�

�

�

Z

r

i

jk(s)j ds

�

�

�

�

: (5)
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Here Ai denotes the Airy fun
tion, i = a; b, k

2

(r) =

2m(E � V (r)) � (l + 1=2)

2

=r

2

, d is �1 for a < r < b,

and 1 for r � a, r � b, and 


a

= 1, 


b

= (�1)

n

, where

n = 0; 1; 2; : : : is the number of the bound state. �

a

(r)

and �

b

(r) are 
ontinuous a
ross the turning points and


oin
ide with the usual WKB solution far from them. It

is easy to 
he
k that �

a

(r) and �

b

(r) 
oin
ide at some

point in the interval (a; b) between the turning points,

and that their values, but not derivatives, 
an be mat
hed

at that point.

III. EXAMPLES

To show that the �rst QLM iteration gives very a
-


urate results for wave fun
tions and energies, as well as

demonstrate very fast 
onvergen
e of the next iterates let

us 
onsider �ve typi
al examples of potentials of rather

di�erent form used in atomi
, nu
lear and quark physi
s.

Let us start from the anharmoni
 os
illator V (r) =

1

2

r

5

. This potential is typi
ally used in di�erent nu-


lear, quark and quantum �eld theory models. The

exa
t energy of the ground state of this os
illator is

2.044 579 657 447 355 635 36 in atomi
 units with mass

set to unity, m = 1. This result is obtained by us by

a 
al
ulation using the Runge-Kutta method in quadru-

ple pre
ision. The WKB energy is di�erent by 4.5% and

equals 1.95159 in the same units, while the �rst-iteration

QLM energy equals 2.04528 and di�ers from the exa
t

energy only by 0.034%. The QLM energy 
oin
ides with

the exa
t energy in all twenty digits after the sixth iter-

ation.

For the �rst ex
ited state the exa
t energy is

6.713 546 501 445 253 110 53, while the WKB and �rst-

iteration QLM energies are 6.656623 and 6.713952 and

are di�erent from the exa
t energy by 0.84% and

0.006% respe
tively. The similar pi
ture exists for

the se
ond ex
ited state where the exa
t energy is

12.767 866 541 180 535 228 88. The WKB and �rst-

iteration QLM energies are 12.72396 and 12.76796 and

are di�erent from the exa
t energy by 0.34% and 0.0007%

respe
tively. Again, for both �rst and se
ond ex
ited

states the QLM energies di�er from the exa
t energies

only in the twentieth digit after the sixth iteration.

The graphs 
orresponding to the Langer WKB solu-

tion, the exa
t solution and the �rst QLM iterate for the

ground state are displayed in Fig. 1. One 
an see that

while the Langer solution is noti
eably di�erent from the

exa
t solution, the 
urve of the �rst QLM iteration is

indistinguishable from the exa
t 
urve.

This 
ould be followed more pre
isely by looking at

Fig. 2 where the logarithm of the di�eren
e between the

exa
t and WKB solutions and between the exa
t solution

and the �rst QLM iteration are shown. One 
an see that

the di�eren
e between the exa
t solution and the �rst

QLM iteration is two orders of magnitude smaller than

the di�eren
e between the exa
t and the WKB solutions,

that is one QLM iteration in
reases the a

ura
y of the

0
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 κ
r
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χmuχ0
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FIG. 1: Comparison of the Langer WKB solution �

0

(dashed


urve), the exa
t solution �

exa
t

(dotted 
urve) and the �rst

QLM iterate �

m

u

(solid 
urve) for the ground state of the

anharmoni
 os
illator V (r) =

1

2

r

5

. The last two are indistin-

guishable on the plot. Here x = �r, �

2

= 2mE=~

2

.
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FIG. 2: Logarithm of the di�eren
e between the exa
t �

exa
t

and WKB solutions �

0

(dashed 
urve) and between the exa
t

solution and the �rst QLM iterate �

m

u

(solid 
urve) for the

ground state of the anharmoni
 os
illator. The dips on the

graphs are artifa
ts of the logarithmi
 s
ale, sin
e the loga-

rithm of the absolute value of the di�eren
e of two solutions

goes to minus in�nity at points where the di�eren
e 
hanges

sign. The overall a

ura
y of the solution 
an be inferred only

at x values not too 
lose to the dips.

result by two orders of magnitude. Note that the dips

on the graphs are artifa
ts of the logarithmi
 s
ale, sin
e

the logarithm of the absolute value of the di�eren
e of

two solutions goes to minus in�nity at points where the

di�eren
e 
hanges sign. The overall a

ura
y of the solu-

tion 
an be inferred only at x values not too 
lose to the

dips.

The a

ura
y of the WKB approximation in
reases for



4

-10

-8

-6

-4

-2

0

0 2 4 6 8 10

lo
g 1

0|
χ(

x)
-χ

ex
ac

t(
x)

|

x

log10|χmu
(x)-χexact(x)|

log10|χ0(x)-χexact(x)|

FIG. 3: As in Fig. 2, but for the ex
ited state of the os
illator

potential.

higher ex
itations. Therefore in the 
ase of the ex
ited

state both the Langer WKB and QLM 
urves are indis-

tinguishable from the exa
t one. Fig. 3 show, however,

that also in this 
ase the di�eren
e between the exa
t

solution and the �rst QLM iteration is by two orders of

magnitude smaller than the di�eren
e between the exa
t

and the WKB solutions.

Another interesting example is the modi�ed Coulomb

potential

V (r) = �

1

2�

+

l(l + 1)�

1

4

�

2

�

2

+

3

4

�

2

�

2

(� + �

2

)

2

; � = �Er

whi
h is obtained when the equal masses two-body Dira


equation with the stati
 Coulomb intera
tion is redu
ed

to the S
hr�odinger equation [21, 22℄. The exa
t energy of

the ground state with quantum numbers (N;L; S; J) =

(1; 0; 0; 0) is 0.999 993 340 148 538 880 1 in atomi
 units

with double mass set to unity, 2M = 1. This result was

obtained in the work [22℄ by an elaborate 
omputation us-

ing the �nite element method and 
on�rmed by ourselves

using the Runge-Kutta method in quadruple pre
ision.

The WKB energy equals 0.999 986 680 and di�ers from

the exa
t one by 6:6�10

�4

. The �rst-iteration QLM en-

ergy equals 0.999 993 335 and di�ers from the exa
t one

only by 5 � 10

�7

. The QLM energy 
oin
ides with the

exa
t one in all given digits after the sixth iteration.

The graph Fig. 4 of the exa
t, WKB and QLM ground

state wave fun
tions is similar to Fig. 2.

The graph Fig. 5 for their di�eren
es for this 
ase is

similar to Fig. 2 and shows that the di�eren
e between

the exa
t wave fun
tion and the �rst QLM iteration is

by two orders of magnitude smaller than the di�eren
e

between the exa
t and the WKB solutions. Thus also

in this 
ase just one QLM iteration in
reases the a

u-

ra
y of the wave fun
tion by a remarkable two orders of

magnitude.

The results for the ground and ex
ited states with
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FIG. 4: As in Fig. 1, but for the ground state with quantum

numbers (N;L;S; J) = (0; 0; 0; 0) in the modi�ed Coulomb

potential V (r) = �

1

2�

+

�
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4

�

2

�

=�
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+
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2

(� +

�

2
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2

, � = �Er.
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(x)-χexact(x)|
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FIG. 5: As in Fig. 2, but for the ground state in the modi�ed

Coulomb potential.

di�erent quantum numbers (N;L; S; J) for the modi�ed

Coulomb potential are summed up in Table 1 and also in

Figs. 6, 7, 8 where the the di�eren
es between the exa
t

wave fun
tion and the �rst QLM iteration and between

the exa
t and the WKB solutions are displayed. We see,

that though the a

ura
y of the WKB approximation in-


reases for ex
ited states and states with higher orbital

momenta, also in these 
ases one QLM iteration in
reases

the a

ura
y of the wave fun
tion by at least two orders

of magnitude.
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TABLE I: The WKB, �rst iteration QLM, full QLM and exa
t binding energies for di�erent potentials. K denotes the

number of QLM iterations, m denotes the (redu
ed) mass of the parti
le; D

1

= 10

2

(E

exa
t

� E

WKB

)=E

exa
t

, and D

2

=

10

2

(E

exa
t

� E

(1)

QLM

)=E

exa
t

. (In the �rst entry, D

1

and D

2

are given in the form x[y℄ whi
h stands for x� 10

y

.) E

WKB

and

E

(1)

QLM

are given to a limited number of digits, sin
e E

(1)

QLM

is slightly dependent on the dis
ontinuity in the derivative of the

Langer WKB solution at its joining point between the turning points. This dependen
e disappears in higher QLM iterations.

For the high-pre
ision results, the number of 
orre
t digits is at least 18, and E tends to be slightly more pre
ise. Consequently

we give the numbers to 20 or 21 digits. Sin
e the 
omputer arithmeti
 was quadruple pre
ision (128-bit, about 30 de
imal

pla
es), the di�eren
es in the last digits of E

QLM

and E

exa
t

re
e
t the di�erent methods used. The state is labeled by nl ex
ept

for the Breit-Coulomb problem where the labels are N;L;S; J . The plus sign for the two-power potential stands for the ground

(symmetri
) state in the 
orresponding one-dimensional double-well potential; the minus sign stands for the regular states of

the two-power potential or the antisymmetri
 state of the 
orresponding one-dimensional double-well potential, respe
tively.

Potential m State E

WKB

E

(1)

QLM

E

QLM

K E

exa
t

D

1

D

2

Breit- 1 1 0 0 0 0.999986679987 0.999993335480 0.99999334014853888012 6 0.99999334014853888016 7[-4℄ 5[-7℄

Coulomb 2 0 0 0 0.999996670008 0.999998335239 0.99999833502466540218 7 0.99999833502466540223 2[-4℄ -2[-8℄

1 1 0 1 0.999996670037 0.999998335831 0.99999833501727839123 44 0.99999833501727839122 2[-4℄ -8[-8℄

2 1 0 1 0.999998520016 0.999999260060 0.99999926000774772931 47 0.99999926000774772931 7[-5℄ -1[-8℄

log r

1

2

1s 1.05346726985 1.044738 1.04433226746060809298 5 1.04433226746060809380 -0.88 -0.039

2s 1.850802588 1.8475 1.84744258030447816386 5 1.84744258030447816385 -0.18 -0.003

3s 2.299218712 2.289659 2.28961571419653762102 5 2.28961571419653762102 -0.42 -0.002

1

2

r

5

1 1s 1.9515942 2.045279 2.04457965744735563534 6 2.04457965744735563536 4.5 -0.03

2s 6.656623 6.713952 6.71354650144525311020 6 6.71354650144525311053 0.85 -0.006

3s 12.72396 12.76796 12.7678665411805352297 6 12.7678665411805352289 0.34 -0.001

�24

1+exp

r�1

0:2

1 1s -17.61192 -17.5432 -17.5597967410317970585 5 -17.5597967410317970589 -0.30 0.095

2s -7.190505 -7.37920 -7.37854164337449079226 5 -7.37854164337449079262 2.5 -0.009

3s -0.029269 -0.105156 -0.10819568493119384889 6 -0.10819568493119384933 72.9 2.8

1

2

g

2

(r

2

� a

2

)

2

1 1s+ 0.484067

a

0.483017

b

0.48295865991331554844 6 0.48295865991331554820 -0.98 -0.009

1s� 0.49734197 0.484218 0.48314820684089227025 6 0.48314820684089227025 -2.9 -0.22

2s� 1.39372888 1.373747 1.37363583606219407956 6 1.37363583606219407958 -1.5 -0.008

3s� 2.17217337 2.178319 2.17745782251542955262 6 2.17745782251542955243 0.24 -0.040

a

In
ludes the tunneling 
orre
tion to E.

b

Initial WKB approximation in
ludes tunneling 
orre
tion to E.

The other examples 
onsidered in this paper are the

logarithmi
 V (r) = log r, Wood-Saxon V = �V

0

=(1 +

exp((r�R)=a)) and the two-power (double-well) V (r) =

1

2

g

2

(r

2

� a

2

)

2

potentials, the results for whi
h are sum-

marized in Table 1. The graphs 
orresponding to di�er-

ent states of these potentials are shown in Figs. 9 - 17.

The �rst two potentials are used respe
tively for 
ompu-

tations in quark and nu
lear physi
s. The double-well

potential, that is the quarti
 potential in one dimension

with degenerate minima, is typi
ally studied in quantum

�eld theory and in the framework of the tunneling prob-

lem in quantum me
hani
s. Its perturbation series does

not 
onverge and di�erent alternative nonperturbative

approa
hes are therefore explored sin
e the des
ription

of tunneling between two minima should be ne
essarily

nonperturbative (see, for example, referen
e [23℄ and the

referen
es therein).

In parti
ular, in the paper [24℄ using the 1=N expan-

sion method, the tunneling terms were not in
luded for

the symmetri
 (ground) state of the double well poten-

tial in one dimension, giving the 1=N energy of 0:48305


ompared to the exa
t energy, 0:48295: : : In addition, in

our 
al
ulation it is easy to spe
ify the boundary 
ondi-

tion at r = 0 in this parti
ular 
ase (where �(0) 6= 0),

so we 
an 
al
ulate on the interval r � 0 only: be-


ause we do the QLM iteration on the fun
tion u(�r) =

ar
tan

�

���(r)=�

0

(r)

�

, we have simply u(0) = �

�

2

. This


an easily be seen by taking into a

ount that �(r) has
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FIG. 6: As in Fig. 2, but for the ex
ited state with quantum

numbers (N;L;S; J) = (2; 0; 0; 0) in the modi�ed Coulomb

potential.
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FIG. 7: As in Fig. 2, but for the ex
ited state with quantum

numbers (N;L;S; J) = (1; 1; 0; 1) in the modi�ed Coulomb

potential.

an even-power Taylor expansion at r = 0. We use the

tunneling term just to 
orre
t the energy of the initial

WKB approximation, 
hanging the usual WKB quanti-

zation 
ondition to

Z

b

a

k(r)dr = (n+

1

2

)� �

1

2

e

�

R

a

�a

K(r)dr

where the se
ond term on the RHS is the tunneling term

[25℄; k(r) = iK(r) and n = 0; 1; 2; : : : is the number of

the bound state. The tunneling 
orre
tion a�e
ts the 1st

QLM iteration but of 
ourse not the full QLM 
al
ula-

tion, where the boundary 
onditions 
ompletely spe
ify

the 
onverged solution.
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FIG. 8: As in Fig. 2, but for for the ex
ited state with

quantum numbers (N;L;S; J) = (2; 1; 0; 1) in the modi�ed

Coulomb potential.
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FIG. 9: As in Fig. 1, but for the ground state of the logarith-

mi
 potential V = log(r).

IV. CONCLUSION

One 
an show [15, 17℄ that the approximation by

the �rst QLM iterate in Eq. (4) leads to exa
t ener-

gies for many well known physi
al potentials su
h as the

Coulomb, harmoni
 os
illator, P�os
hl-Teller, Hulthen,

Hylleraas, Morse, E
kart, et
. For other potentials whi
h

have more 
ompli
ated analyti
al stru
ture we show on

examples of the anharmoni
 os
illator, logarithmi
, two-

power (double-well), and Wood-Saxon potentials and for

the solution of the two-body Dira
 equation with stati


Coulombpotential, that the use of the Langer WKBwave

fun
tion as an initial guess already in the �rst QLM ap-

proximation gives energies and wave fun
tions two orders

of magnitude more a

urate than the WKB results. Su
h

a QLM solution, unlike the usual WKB solution, displays
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FIG. 10: As in Fig. 2, but for the ground state of the loga-

rithmi
 potential.
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FIG. 11: As in Fig. 1, but for the ground state of the Wood-

Saxon potential V = �V

0

=(1+exp((r�R)=a)), with V

0

= 24,

R = 1, a = 0:2.

no unphysi
al turning point singularities. Sin
e the �rst

QLM iterate is given by an analyti
 expression (4) for

p = 1 it allows one to estimate analyti
ally the role of

di�erent parameters and their in
uen
e on properties of

a quantum system with mu
h higher pre
ision than pro-

vided by the WKB approximation. In addition, it was

shown that six QLM iterations are typi
ally enough to

obtain both the wave fun
tion and energy with the a

u-

ra
y of twenty signi�
ant digits.
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