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Solutions obtained by the quasilinearization method (QLM) are ompared with the WKB solu-

tions. While the WKB method generates an expansion in powers of ~, the quasilinearization method

(QLM) approahes the solution of the nonlinear equation obtained by asting the Shr�odinger equa-

tion into the Riati form by approximating nonlinear terms by a sequene of linear ones. It does

not rely on the existene of any kind of smallness parameter. It also, unlike the WKB, displays no

unphysial turning point singularities. It is shown that both energies and wave funtions obtained

in the �rst QLM iteration are aurate to a few parts of the perent. Sine the �rst QLM iterate

is represented by the losed expression it allows to estimate analytially and preisely the role of

di�erent parameters, and inuene of their variation on the properties of the quantum systems. The

next iterates display very fast quadrati onvergene so that auray of energies and wave funtions

obtained after a few iterations is extremely high, reahing 20 signi�ant �gures for the energy of the

sixth iterate. It is therefore demonstrated that the QLM method ould be preferable over the usual

WKB method.

PACS numbers: 03.65.Ca, 03.65.Ge, 03.65.Sq

I. INTRODUCTION

The quasilinearizationmethod (QLM) was onstruted

as a generalization of the Newton-Raphson method [1, 2℄

for the nonlinear di�erential equations to yield rapid

quadrati and often monotoni onvergene to the ex-

at solution. It was developed originally in theory of

linear programming by Bellman and Kalaba [3, 4℄ to

solve nonlinear ordinary and partial di�erential equations

and their systems. In the original works of Bellman and

Kalaba [3, 4℄, however, the onvergene of the method

has been proven only under rather restritive onditions

of small intervals and bounded, nonsingular fores [10℄

whih generally are not ful�lled in physial appliations.

This ould explain an extremely sparse use of the teh-

nique in physis, where only a few examples of the ref-

erenes to it ould be found [5, 6, 7, 8, 9℄. Reently,

however, it was shown [10℄ by one of the present au-

thors (VBM) that a di�erent proof of the onvergene

an be provided whih allows to extend the appliability

of the method to realisti fores de�ned on in�nite in-

tervals with possible singularities at ertain points. This

proof was generalized and elaborated in the subsequent

works [11, 12, 13, 14℄.

In the �rst paper of the series [10℄, the analyti re-

sults of the quasilinearization approah were applied to

the nonlinear Calogero equation [5℄ in the variable phase

approah to quantum mehanis, and the results were

ompared with those of the perturbation theory and with

the exat solutions. It was shown that the number of the

exatly reprodued perturbation terms doubles with eah

subsequent QLM iteration, whih, of ourse, is a diret

onsequene of a quadrati onvergene.

The numerial alulation of higher QLM approxima-

tions to solutions of the Calogero equation with di�erent

singular and nonsingular, attrative and repulsive poten-

tials performed in the work [12℄ has shown that already

the �rst few iterations provide aurate and numerially

stable answers for any values of the oupling onstant

and that the number of iterations neessary to reah a

given preision inreases only slowly with the oupling

strength. It was veri�ed that the method provides au-

rate and stable answers even for super singular potentials

for whih eah term of the perturbation theory diverges

and the perturbation expansion onsequently does not

exist.

In the third paper of the series [13℄ the quasilineariza-

tion method was applied to other well known typial

nonlinear ordinary di�erential equations in physis, suh

as the Blasius, DuÆng, Lane-Emden and Thomas-Fermi

equations whih have been and still are extensively stud-

ied in the literature. These equations, unlike the nonlin-

ear Calogero equation [5℄ onsidered in referenes [10, 12℄,

ontain not only quadrati nonlinear terms but various

other forms of nonlinearity and not only the �rst, but

also higher derivatives. It was shown that again just a

small number of the QLM iterations yield fast onvergent

and uniformly exellent and stable numerial results.

In the work [14℄ the quasilinearization method was ap-

plied to quantum mehanis by asting the Shr�odinger

equation in the nonlinear Riati form and alulating

the QLM approximations to bound state energies and

wave funtions for a variety of potentials, most of whih

are not treatable with the help of the perturbation the-

ory or the 1=N expansion sheme. It was shown that the

onvergene of the QLM expansion for both energies and

wave funtions is very fast and that already the �rst few

iterations yield extremely preise results. In addition it

was veri�ed that the higher QLM approximations, unlike

those in 1=N expansion method, are not divergent at any

order.

The present work is devoted to omparison of QLM
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and WKB. Indeed, the derivation of the WKB solution

starts by asting the radial Shr�odinger equation into

nonlinear Riati form and solving that equation by ex-

pansion in powers of ~. It is interesting instead to solve

this nonlinear equation with the help of the quasilin-

earization tehnique and ompare with the WKB results.

Suh a proedure was performed in works [7, 8℄, where it

was shown that the �rst QLM iteration reprodues the

struture of the WKB series generating an in�nite series

of the WKB terms, but with di�erent oeÆients. Be-

sides being a better approximation, the �rst QLM itera-

tion is also expressible in a losed integral form. Similar

onlusions are reahed for higher QLM approximations

and it an be shown [15℄ that the p-th QLM iteration

yields the orret struture of the in�nite WKB series

and reprodues 2

p

terms of the expansion of the solution

in powers of ~ exatly, as well as a similar number of

terms approximately.

That the �rst QLM iteration already provides a muh

better approximation to the exat solution than the usual

WKB is obvious, not only from omparison of terms of

the QLM andWKB series [7, 8, 15℄, but also from the fat

that the quantization ondition in the �rst QLM iteration

leads to exat energies for many potentials [15, 17℄ suh

as for the Coulomb, harmoni osillator, P�oshl-Teller,

Hulthen, Hylleraas, Morse, Ekart and some other well

known physial potentials, whih have a simple analyti

struture. By omparison, the WKB approximation re-

produes exat energies only in the ase of the �rst two

potentials.

The goal of this work is to point out that also for

other potentials with more ompliated analytial stru-

ture QLM iterates provide muh better approximation

than the usual WKB. If the initial QLM guess is properly

hosen the wave funtion in all QLM iterations, unlike the

WKB wave funtion, is free of unphysial turning point

singularities. Sine the �rst QLM iteration is given by

an analyti expression [7, 8, 10, 11, 12, 13℄, it allows one

to analytially estimate the role of di�erent parameters

and the inuene of their variation on di�erent hara-

teristis of a quantum system. The next iterates display

very fast quadrati onvergene so that auray of en-

ergies obtained after a few iterations is extremely high,

reahing up to 20 signi�ant �gures for a sixth iterate as

we show on the example of di�erent widely used physial

potentials.

The paper is arranged as follows: in the seond hapter

we present the main features of the quasilinearization ap-

proah to the solution of the Shr�odinger equation, while

in the third hapter we onsider the appliation of the

method to omputations with the anharmoni osillator,

logarithmi, two-power (double-well), and Wood-Saxon

potentials and to the two-body Dira equation with stati

Coulomb potential. The �nal, forth hapter is devoted

to the disussion of the results, onvergene patterns, nu-

merial stability, advantages of the method and its pos-

sible future appliations.

II. QUASILINEARIZATION METHOD

The usual WKB substitution

�(r) = C exp

�

�

Z

r

y(r

0

)dr

0

�

(1)

onverts the Shr�odinger equation to nonlinear Riati

form

dy(z)

dz

+ (k

2

(z) + y

2

(z)) = 0: (2)

Here k

2

(z) = E�V �l(l+1)=z

2

, �

2

= 2m=~

2

and z = �r.

The proper bound state boundary ondition for poten-

tials falling o� at z ' z

0

' 1 is y(z) = onst at z � z

0

.

This means that y

0

(z

0

) = 0, so that Eq. (2) at z ' z

0

redues to k(z

0

)

2

+ y

2

(z

0

)) = 0 or y(z

0

)) = �ik(z

0

). We

hoose here to de�ne the boundary ondition with the

plus sign, so that y(z

0

) = ik(z

0

).

The quasilinearization [7, 10, 13℄ of this equation gives

a set of reurrene di�erential equations

dy

p

(z)

dz

= y

2

p�1

(z) � 2y

p

(z)y

p�1

(z)� k

2

(z) (3)

with the boundary ondition y

p

(z

0

) = ik(z

0

).

The analyti solution [7℄ of these equations expresses

the p-th iterate y

p

(z) in terms of the previous iterate:

y

p

(z) = f

p�1

(z) �

Z

z

z

0

ds

d f

p�1

(s)

ds

exp

�

�2

Z

z

s

y

p�1

(t)dt

�

;

f

p�1

(z) =

y

2

p�1

(z) � k

2

(z)

2y

p�1

(z)

: (4)

Indeed, di�erentiation of both parts of Eq. (4) leads im-

mediately to Eq. (3) whih proves that y

p

(z) is a solution

of this equation. The boundary ondition is obviously

satis�ed automatially.

To utilize the reurrene relation (4) for wave funtion

omputation one has to pik up a proper initial guess. For

the zeroth iterate y

0

(z) it seems natural to hoose the

zero WKB approximation that is to set y

0

(z) = ik(z),

whih in addition automatially satis�es the boundary

ondition. However, one has to be aware that this hoie

has unphysial turning point singularities. Aording

to the existene theorem for linear di�erential equations

[18℄, if y

p�1

(z) in Eq. (3) is a disontinuous funtion of

z in a ertain interval, then y

p

(z) or its derivatives may

also be disontinuous funtions in this interval, so onse-

quently the turning point singularities of y

0

(z) may prop-

agate to the next iterates. To avoid this we hoose [16℄

the Langer WKB wave funtion [19℄ as the zero iteration.

This funtion near the turning points a and b is given by

the simple analyti expression [20℄

�

i

(r) = 

i

s

S

1

3

i

(r)

jk(r)j

Ai

h

d S

1

3

i

(r)

i

;

S

i

(r) =

3

2

�

�

�

�

�

Z

r

i

jk(s)j ds

�

�

�

�

: (5)
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Here Ai denotes the Airy funtion, i = a; b, k

2

(r) =

2m(E � V (r)) � (l + 1=2)

2

=r

2

, d is �1 for a < r < b,

and 1 for r � a, r � b, and 

a

= 1, 

b

= (�1)

n

, where

n = 0; 1; 2; : : : is the number of the bound state. �

a

(r)

and �

b

(r) are ontinuous aross the turning points and

oinide with the usual WKB solution far from them. It

is easy to hek that �

a

(r) and �

b

(r) oinide at some

point in the interval (a; b) between the turning points,

and that their values, but not derivatives, an be mathed

at that point.

III. EXAMPLES

To show that the �rst QLM iteration gives very a-

urate results for wave funtions and energies, as well as

demonstrate very fast onvergene of the next iterates let

us onsider �ve typial examples of potentials of rather

di�erent form used in atomi, nulear and quark physis.

Let us start from the anharmoni osillator V (r) =

1

2

r

5

. This potential is typially used in di�erent nu-

lear, quark and quantum �eld theory models. The

exat energy of the ground state of this osillator is

2.044 579 657 447 355 635 36 in atomi units with mass

set to unity, m = 1. This result is obtained by us by

a alulation using the Runge-Kutta method in quadru-

ple preision. The WKB energy is di�erent by 4.5% and

equals 1.95159 in the same units, while the �rst-iteration

QLM energy equals 2.04528 and di�ers from the exat

energy only by 0.034%. The QLM energy oinides with

the exat energy in all twenty digits after the sixth iter-

ation.

For the �rst exited state the exat energy is

6.713 546 501 445 253 110 53, while the WKB and �rst-

iteration QLM energies are 6.656623 and 6.713952 and

are di�erent from the exat energy by 0.84% and

0.006% respetively. The similar piture exists for

the seond exited state where the exat energy is

12.767 866 541 180 535 228 88. The WKB and �rst-

iteration QLM energies are 12.72396 and 12.76796 and

are di�erent from the exat energy by 0.34% and 0.0007%

respetively. Again, for both �rst and seond exited

states the QLM energies di�er from the exat energies

only in the twentieth digit after the sixth iteration.

The graphs orresponding to the Langer WKB solu-

tion, the exat solution and the �rst QLM iterate for the

ground state are displayed in Fig. 1. One an see that

while the Langer solution is notieably di�erent from the

exat solution, the urve of the �rst QLM iteration is

indistinguishable from the exat urve.

This ould be followed more preisely by looking at

Fig. 2 where the logarithm of the di�erene between the

exat and WKB solutions and between the exat solution

and the �rst QLM iteration are shown. One an see that

the di�erene between the exat solution and the �rst

QLM iteration is two orders of magnitude smaller than

the di�erene between the exat and the WKB solutions,

that is one QLM iteration inreases the auray of the
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FIG. 1: Comparison of the Langer WKB solution �

0

(dashed

urve), the exat solution �

exat

(dotted urve) and the �rst

QLM iterate �

m

u

(solid urve) for the ground state of the

anharmoni osillator V (r) =

1

2

r

5

. The last two are indistin-

guishable on the plot. Here x = �r, �

2

= 2mE=~

2

.
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FIG. 2: Logarithm of the di�erene between the exat �

exat

and WKB solutions �

0

(dashed urve) and between the exat

solution and the �rst QLM iterate �

m

u

(solid urve) for the

ground state of the anharmoni osillator. The dips on the

graphs are artifats of the logarithmi sale, sine the loga-

rithm of the absolute value of the di�erene of two solutions

goes to minus in�nity at points where the di�erene hanges

sign. The overall auray of the solution an be inferred only

at x values not too lose to the dips.

result by two orders of magnitude. Note that the dips

on the graphs are artifats of the logarithmi sale, sine

the logarithm of the absolute value of the di�erene of

two solutions goes to minus in�nity at points where the

di�erene hanges sign. The overall auray of the solu-

tion an be inferred only at x values not too lose to the

dips.

The auray of the WKB approximation inreases for
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FIG. 3: As in Fig. 2, but for the exited state of the osillator

potential.

higher exitations. Therefore in the ase of the exited

state both the Langer WKB and QLM urves are indis-

tinguishable from the exat one. Fig. 3 show, however,

that also in this ase the di�erene between the exat

solution and the �rst QLM iteration is by two orders of

magnitude smaller than the di�erene between the exat

and the WKB solutions.

Another interesting example is the modi�ed Coulomb

potential

V (r) = �

1

2�

+

l(l + 1)�

1

4

�

2

�

2

+

3

4

�

2

�

2

(� + �

2

)

2

; � = �Er

whih is obtained when the equal masses two-body Dira

equation with the stati Coulomb interation is redued

to the Shr�odinger equation [21, 22℄. The exat energy of

the ground state with quantum numbers (N;L; S; J) =

(1; 0; 0; 0) is 0.999 993 340 148 538 880 1 in atomi units

with double mass set to unity, 2M = 1. This result was

obtained in the work [22℄ by an elaborate omputation us-

ing the �nite element method and on�rmed by ourselves

using the Runge-Kutta method in quadruple preision.

The WKB energy equals 0.999 986 680 and di�ers from

the exat one by 6:6�10

�4

. The �rst-iteration QLM en-

ergy equals 0.999 993 335 and di�ers from the exat one

only by 5 � 10

�7

. The QLM energy oinides with the

exat one in all given digits after the sixth iteration.

The graph Fig. 4 of the exat, WKB and QLM ground

state wave funtions is similar to Fig. 2.

The graph Fig. 5 for their di�erenes for this ase is

similar to Fig. 2 and shows that the di�erene between

the exat wave funtion and the �rst QLM iteration is

by two orders of magnitude smaller than the di�erene

between the exat and the WKB solutions. Thus also

in this ase just one QLM iteration inreases the au-

ray of the wave funtion by a remarkable two orders of

magnitude.

The results for the ground and exited states with
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FIG. 4: As in Fig. 1, but for the ground state with quantum

numbers (N;L;S; J) = (0; 0; 0; 0) in the modi�ed Coulomb

potential V (r) = �
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FIG. 5: As in Fig. 2, but for the ground state in the modi�ed

Coulomb potential.

di�erent quantum numbers (N;L; S; J) for the modi�ed

Coulomb potential are summed up in Table 1 and also in

Figs. 6, 7, 8 where the the di�erenes between the exat

wave funtion and the �rst QLM iteration and between

the exat and the WKB solutions are displayed. We see,

that though the auray of the WKB approximation in-

reases for exited states and states with higher orbital

momenta, also in these ases one QLM iteration inreases

the auray of the wave funtion by at least two orders

of magnitude.
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TABLE I: The WKB, �rst iteration QLM, full QLM and exat binding energies for di�erent potentials. K denotes the

number of QLM iterations, m denotes the (redued) mass of the partile; D

1

= 10

2

(E

exat

� E

WKB

)=E

exat

, and D

2

=

10

2

(E

exat

� E

(1)

QLM

)=E

exat

. (In the �rst entry, D

1

and D

2

are given in the form x[y℄ whih stands for x� 10

y

.) E

WKB

and

E

(1)

QLM

are given to a limited number of digits, sine E

(1)

QLM

is slightly dependent on the disontinuity in the derivative of the

Langer WKB solution at its joining point between the turning points. This dependene disappears in higher QLM iterations.

For the high-preision results, the number of orret digits is at least 18, and E tends to be slightly more preise. Consequently

we give the numbers to 20 or 21 digits. Sine the omputer arithmeti was quadruple preision (128-bit, about 30 deimal

plaes), the di�erenes in the last digits of E

QLM

and E

exat

reet the di�erent methods used. The state is labeled by nl exept

for the Breit-Coulomb problem where the labels are N;L;S; J . The plus sign for the two-power potential stands for the ground

(symmetri) state in the orresponding one-dimensional double-well potential; the minus sign stands for the regular states of

the two-power potential or the antisymmetri state of the orresponding one-dimensional double-well potential, respetively.

Potential m State E

WKB

E

(1)

QLM

E

QLM

K E

exat

D

1

D

2

Breit- 1 1 0 0 0 0.999986679987 0.999993335480 0.99999334014853888012 6 0.99999334014853888016 7[-4℄ 5[-7℄

Coulomb 2 0 0 0 0.999996670008 0.999998335239 0.99999833502466540218 7 0.99999833502466540223 2[-4℄ -2[-8℄

1 1 0 1 0.999996670037 0.999998335831 0.99999833501727839123 44 0.99999833501727839122 2[-4℄ -8[-8℄

2 1 0 1 0.999998520016 0.999999260060 0.99999926000774772931 47 0.99999926000774772931 7[-5℄ -1[-8℄

log r

1

2

1s 1.05346726985 1.044738 1.04433226746060809298 5 1.04433226746060809380 -0.88 -0.039

2s 1.850802588 1.8475 1.84744258030447816386 5 1.84744258030447816385 -0.18 -0.003

3s 2.299218712 2.289659 2.28961571419653762102 5 2.28961571419653762102 -0.42 -0.002

1

2

r

5

1 1s 1.9515942 2.045279 2.04457965744735563534 6 2.04457965744735563536 4.5 -0.03

2s 6.656623 6.713952 6.71354650144525311020 6 6.71354650144525311053 0.85 -0.006

3s 12.72396 12.76796 12.7678665411805352297 6 12.7678665411805352289 0.34 -0.001

�24

1+exp

r�1

0:2

1 1s -17.61192 -17.5432 -17.5597967410317970585 5 -17.5597967410317970589 -0.30 0.095

2s -7.190505 -7.37920 -7.37854164337449079226 5 -7.37854164337449079262 2.5 -0.009

3s -0.029269 -0.105156 -0.10819568493119384889 6 -0.10819568493119384933 72.9 2.8

1

2

g

2

(r

2

� a

2

)

2

1 1s+ 0.484067

a

0.483017

b

0.48295865991331554844 6 0.48295865991331554820 -0.98 -0.009

1s� 0.49734197 0.484218 0.48314820684089227025 6 0.48314820684089227025 -2.9 -0.22

2s� 1.39372888 1.373747 1.37363583606219407956 6 1.37363583606219407958 -1.5 -0.008

3s� 2.17217337 2.178319 2.17745782251542955262 6 2.17745782251542955243 0.24 -0.040

a

Inludes the tunneling orretion to E.

b

Initial WKB approximation inludes tunneling orretion to E.

The other examples onsidered in this paper are the

logarithmi V (r) = log r, Wood-Saxon V = �V

0

=(1 +

exp((r�R)=a)) and the two-power (double-well) V (r) =

1

2

g

2

(r

2

� a

2

)

2

potentials, the results for whih are sum-

marized in Table 1. The graphs orresponding to di�er-

ent states of these potentials are shown in Figs. 9 - 17.

The �rst two potentials are used respetively for ompu-

tations in quark and nulear physis. The double-well

potential, that is the quarti potential in one dimension

with degenerate minima, is typially studied in quantum

�eld theory and in the framework of the tunneling prob-

lem in quantum mehanis. Its perturbation series does

not onverge and di�erent alternative nonperturbative

approahes are therefore explored sine the desription

of tunneling between two minima should be neessarily

nonperturbative (see, for example, referene [23℄ and the

referenes therein).

In partiular, in the paper [24℄ using the 1=N expan-

sion method, the tunneling terms were not inluded for

the symmetri (ground) state of the double well poten-

tial in one dimension, giving the 1=N energy of 0:48305

ompared to the exat energy, 0:48295: : : In addition, in

our alulation it is easy to speify the boundary ondi-

tion at r = 0 in this partiular ase (where �(0) 6= 0),

so we an alulate on the interval r � 0 only: be-

ause we do the QLM iteration on the funtion u(�r) =

artan

�

���(r)=�

0

(r)

�

, we have simply u(0) = �

�

2

. This

an easily be seen by taking into aount that �(r) has
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FIG. 6: As in Fig. 2, but for the exited state with quantum

numbers (N;L;S; J) = (2; 0; 0; 0) in the modi�ed Coulomb

potential.
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FIG. 7: As in Fig. 2, but for the exited state with quantum

numbers (N;L;S; J) = (1; 1; 0; 1) in the modi�ed Coulomb

potential.

an even-power Taylor expansion at r = 0. We use the

tunneling term just to orret the energy of the initial

WKB approximation, hanging the usual WKB quanti-

zation ondition to

Z

b

a

k(r)dr = (n+

1

2

)� �

1

2

e

�

R

a

�a

K(r)dr

where the seond term on the RHS is the tunneling term

[25℄; k(r) = iK(r) and n = 0; 1; 2; : : : is the number of

the bound state. The tunneling orretion a�ets the 1st

QLM iteration but of ourse not the full QLM alula-

tion, where the boundary onditions ompletely speify

the onverged solution.

-12

-10

-8

-6

-4

-2

0

0 5 10 15 20 25 30

lo
g 1

0|
χ(

x)
-χ

ex
ac

t(
x)

|

x

log10|χmu
(x)-χexact(x)|

log10|χ0(x)-χexact(x)|

FIG. 8: As in Fig. 2, but for for the exited state with

quantum numbers (N;L;S; J) = (2; 1; 0; 1) in the modi�ed

Coulomb potential.
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FIG. 9: As in Fig. 1, but for the ground state of the logarith-

mi potential V = log(r).

IV. CONCLUSION

One an show [15, 17℄ that the approximation by

the �rst QLM iterate in Eq. (4) leads to exat ener-

gies for many well known physial potentials suh as the

Coulomb, harmoni osillator, P�oshl-Teller, Hulthen,

Hylleraas, Morse, Ekart, et. For other potentials whih

have more ompliated analytial struture we show on

examples of the anharmoni osillator, logarithmi, two-

power (double-well), and Wood-Saxon potentials and for

the solution of the two-body Dira equation with stati

Coulombpotential, that the use of the Langer WKBwave

funtion as an initial guess already in the �rst QLM ap-

proximation gives energies and wave funtions two orders

of magnitude more aurate than the WKB results. Suh

a QLM solution, unlike the usual WKB solution, displays
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FIG. 10: As in Fig. 2, but for the ground state of the loga-

rithmi potential.
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FIG. 11: As in Fig. 1, but for the ground state of the Wood-

Saxon potential V = �V

0

=(1+exp((r�R)=a)), with V

0

= 24,

R = 1, a = 0:2.

no unphysial turning point singularities. Sine the �rst

QLM iterate is given by an analyti expression (4) for

p = 1 it allows one to estimate analytially the role of

di�erent parameters and their inuene on properties of

a quantum system with muh higher preision than pro-

vided by the WKB approximation. In addition, it was

shown that six QLM iterations are typially enough to

obtain both the wave funtion and energy with the au-

ray of twenty signi�ant digits.
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