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Abstract

We find approximate analytical presentation of the solutions Ψ(r1, r2, r12) of Schrödinger equa-

tion for two-electron system bound by the nucleus, in the space region r1,2 = 0 and r12 = 0 that

are of great importance for a number of physical processes. The presentation is based on the

well known behavior of Ψ(r1, r2, r12) near the singular triple coalescence point. The approximate

functions are compared to the locally correct ones obtained earlier by the Correlation Function Hy-

perspherical Harmonic (CFHH) method for helium atom, light heliumlike ions and for the negative

ion of hydrogen H−. The functions are shown to determine a natural basis for the expansion of

CFHH functions in the considered space region. We demonstrate, how these approximate functions

simplify the calculations of the high energy ionization processes.
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I. INTRODUCTION

The ground states of the two-electron systems bound by the nucleus are described by

the wave functions, depending on three variables. These can be the distances between the

electrons and the nucleus r1,2 and the interelectron distance r12. Here we shall find analytical

expressions, which would approximate the solutions of the Schrödinger equation Ψ(r1, r2, r12)

in the special cases r1,2 = 0 and r12 = 0:

F (R) ≡ Ψ(0, R,R); Φ(R) ≡ Ψ(R,R, 0) , (1)

We shall consider the ground states of helium atom and of the light heliumlike ions, including

also the negative ion of hydrogen H−. In this paper we shall treat the ground states only.

Thus, the total spin of the two-electron system is equal to zero.

Note that this problem differs strongly from the traditional problem of approximating the

total wave function Ψ(r1, r2, r12) [1]. There are numerous wave functions of this kind, with

the approximate functions being usually certain combinations of exponentials and polyno-

mials, while a set of fitting parameters is found by minimization of the energy functional.

Thus, the quality of such functions is determined by the accuracy of reprodusing the binding

energy value. Since the averaged value of the Hamiltonian is determined by the distances,

which are of the order of the size of the atom, such functions provide very good approxima-

tion at these distances. However, as it was emphasized already in [2], they are not necessary

as precise in the limiting cases r1,2 = 0 and r12 = 0.

The motivation of our study is that in a number of dynamical problems one needs the

bound state wave functions in the such region of variables, where one of the distances

is much smaller then the other ones. This takes place in those processes on the bound

electrons, which are kinematically forbidden for the free ones. For example, the high energy

asymptotic of photoionization is expressed in terms of the two-electron function Ψ(0, R,R),

where r1 or r2 is zero [1]. The same is correct for the nonrelativistic high energy asymptotic

of the double photoionization, and for the energy distribution of the Compton scattering at

sufficiently small energies of the outgoing electrons. Some of the characteristics of the double

photoionization are expressed in terms of the two-electron function with zero interelectron

distance Ψ(R,R, 0) [3]. The straitforward way to obtain the functions F (R) and Φ(R) is

to calculate them from Ψ(r1, r2, r12), that could be derived numerically. This is a rather

complex procedure. Therefore here we shall build the approximate wave functions FA(R)
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and ΦA(R) based on the known behavior of the exact wave function only near the triple

coalescence point R = 0. The only free parameter of our approach is the value of the wave

functions at the coordinate origin

N = Ψ(0, 0, 0) . (2)

Our approach was initiated and encouraged by the large role of the proper treatment of the

two-particle coalescence point in the earlier calculations. For example, the binding energies

can be reproduced usually with a good accuracy by the approximate wave functions, which

are certain combinations of exponential and polynomial factors [1]. Such presentation is

good enough at distances of the order of the atomic size. However, it was understood long

ago that the analytical dependence upon R is not as simple as that, and the logarithmic

terms are presented in the expansion of the wave function near the origin [4]. Later it was

found that, if r1,2 or r12 turn to zero, the solution of the Schrödinger equation should satisfy

the specific Kato conditions [5]. Inclusion of the logarithmic terms [6], or accounting of

the Kato conditions [7] or both [8] does not influence much the energy value, but improves

strongly the convergence of the procedure of Ψ(r1, r2, r12) calculations. This encouraged us

to try a rather simple approach.

As it is shown in this paper, the approximate functions for (1) appear to be

FA(R) = N exp

[

−
(

Z − 1

2

)

R

]

; ΦA(R) = N exp(−2ZR) . (3)

They have to be compared to precise or highly accurate locally correct functions FLC(R)

and ΦLC(R). As such, we use the functions obtained by the Correlation Function Hy-

perspherical Harmonic (CFHH) method [9]. These non-variational wave functions of the

two-electron system bound by a light nucleus in s-state have been obtained by direct solu-

tion of the three-body Schrödinger equation [10], without additional approximations. They

require complicated computer codes for being employed.

The way we construct the approximate wave functions insures that they reproduce the

CFHH functions FLC(R) and ΦLC(R) with good accuracy at sufficiently small values R. The

question is, how long this can last, while R increases. In other words, we must calculate

the characteristics of the processes, which are determined by F (R) and Φ(R) at R being of

the order of the size of the atom, and compare the results obtained with (3) and with the

CFHH functions.
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The answer is that the relative discrepancy between functions (3) and CFHH functions

does not exceed several percents at characteristic distances 1
(Z−1/2)

and 1
2Z

. The same is the

accuracy of the photoionization characteristics.

Of course, such accuracy would not have been sufficient for the calculation of the static

atomic characteristics, e.g. of the energy levels values. However, e.g. there was qualitative

controversy in theoretical results on the double photoionization energy distribution until

recent time [11], with quantitative results differing by orders of magnitude. Thus it would

be unjustified to run for too high accuracy in any case. On the other hand, good accuracy of

the functions (2) prompts a basis for expansion of the CFHH functions. Since the functions

(3) have the radial dependence of the 1s-functions in the Coulomb fields with charges (Z− 1
2
)

and 2Z, respectively, one can present the numerical CFHH functions as linear combinations

of the functions of this field with the dominative contribution coming from 1s terms.

We build our approximate wave functions and discuss their relation to other approaches in

Sec.2. We analyze expansion of CFHH functions at two-particle coalescence points in series

of the single particle eigenfunctions of Coulomb fields in Sec.3. We consider the applications

in Sec.4, and summarize in Sec.5. Atomic system of units is used through the paper.

II. WAVE FUNCTIONS

It is known that at small distances r1,2 ≪ Z−1 the solution of the Schrödinger equation

can be presented as [12, 13]

Ψ(r1, r2, r12) = N

[

1 − Z(r1 + r2) +
1

2
r12 +O(r2, r2 ln r)

]

, (4)

with r =
√

r2
1 + r2

2. The explicit form of the quadratic terms was found in [12]. Eq.(4) is

consistent with more general Kato conditions [5],

∂Ψ(r1, r2, r12)

∂r1

∣

∣

∣

∣

r1=0

= −ZΨ(0, r2, , r2) ;

∂Ψ(r1, r2, r12)

∂r2

∣

∣

∣

∣

r2=0

= −ZΨ(r1, 0, r1) ;

∂Ψ(r1, r2, r12)

∂r12

∣

∣

∣

∣

r12=0

=
1

2
Ψ(r1, r1, 0) . (5)

which are fulfilled for the CFHH functions. Using Eq.(4) we find that at r1,2 ≪ Z−1

F (R) = N

[

1 −
(

Z − 1

2

)

R + ...

]

; Φ(R) = N (1 − 2ZR + ...) , (6)
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with the dots denoting the higher terms. This provides

lim
R→0

1

F (R)

dF (R)

dR
= −Z +

1

2
, (7)

and

lim
R→0

1

Φ(R)

dΦ(R)

dR
= −2Z . (8)

We require Eqs. (7) and (8) to be satisfied by our approximate functions FA(R) and

ΦA(R) for all R. This leads to Eq.(3).

The functions (3) correspond to a very simple physical pictures. Note that (3) look like

the 1s functions in the Coulomb fields with charges (Z − 1/2) and 2Z, respectively, that

serve in fact as a sort of adjustable parameters. It’s R dependence is one of 1s electron,

while the small probability of the three-particle coalescence is contained in the factor N

determined by Eq.(2). We calculate the latter by using the CFHH functions.

To characterize the quality of our approximate functions, we introduce the

y1(R)) = log10 |
FA(R) − FCFHH(R)

FCFHH(R)
|; y2(R) = log10 |

ΦA(R) − ΦCFHH(R)

ΦCFHH(R)
| (9)

with the lower indices CFHH denotes the wave functions obtained in [10].

The accuracy of the functions (3) increases rapidly with the nuclear charge Z growth.

However even for the negative ion H− (Z = 1) the accuracy is rather high. At characteristic

R ∼ (Z − 1/2)−1, and R ∼ (2Z)−1 the errors of the function ΦA for H− make 6%, being

less than 1% for the function FA. The errors increase at larger values of R. They exceed

the value of 10% at the distances, at which the wave functions are already very small. The

functions yi(R) (9), describing R-dependence of the errors are presented in Fig. 1. We

present the results for helium (Z = 2) since most of the studies of the two-electron systems

are carried out for this case. We give also the results for Z = 4 to illustrate Z dependence. A

curve for H− (Z = 1) is also presented, since this case is the most difficult for investigations.

The dip on the graph of Fig. 1a is a result of the logarithmic scale, since the logarithm of

the absolute value of the difference of the two functions goes to −∞ at the points where the

difference changes sign. The overall accuracy of the solution therefore can be inferred only

at the values of R not too close to the dip.

One can see that the discrepancy with CFHH functions becomes much greater at R

becoming of the order of the size of the atom, comparing to that at smaller R. However, the

precision is still good enough for obtaining results with the accuracy of several percents.
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The values of N , the latter being defined by Eq.(2) are presented in Table 1. At large

Z the single-particle hydrogenlike model is expected to become increasingly true, since the

interaction between the electrons is Z times weaker than their interaction with the nucleus.

Hence, in the limit Z ≫ 1

N = Nc =
Z3

π
. (10)

The results presented in Table 1 illustrate this tendency. As expected, deviations from the

limiting law (10) are of the order Z−1. The actual results are smaller than predicted by (10)

since the latter does not include the electron repulsion, which diminishes this value.

Of course, there are numerous simple approximate wave functions of the type

ΨA(r1, r2, r12) = c(exp(−ar1 − br2) + exp(−ar2 − br1)),

which are build in order to calculate the ground state energy values [1], thus approximating

the solutions of the Schrödinger equation at r1,2 of the order Z−1 (in the case of H− they

had to reproduce also the very existence of the bound state). Technically, they turn to the

single-exponential forms at r1 = r2 = R and do not depend on r12. These functions can

be compared to our functions Φ(R) defined by Eq.(3). But they do not approximate the

locally correct CFHH functions ΦA(R), and, following [2], are not supposed to. We illustrate

this statement by presenting in Fig.2 the CFHH function Φ(R), our function (3) and the

screened Coulomb wave function Φs(R) = a3

π
exp(−2aR) with a = 27/16 for helium [1].

In [14] the function F (R) for H−, He and Li+ was approximated by a hydrogenlike

function with the effective charge Zeff treated as a variational parameter. The values of

Zeff for Z = 1, 2, 3 have been found to be 0.58, 1.53 and 2.52, correspondingly. In [15] the

function F (R) for the ion H− have been analyzed at large distances. We do not claim our

functions to be true in this R-region, which is not essential for us since of prime importance

is the R domain within the atomic radius.

III. EXPANSION OF CFHH FUNCTIONS IN SERIES OF THE COULOMB

FIELD EIGENFUNCTIONS

The R dependence of the approximate wave functions FA(R) and ΦA(R) (3) is the same

as that of 1s functions in the Coulomb fields of the nuclei with the charges Z1 = Z−1/2 and

Z2 = 2Z, respectively. The high precision of these functions suggests that the eigenfunctions
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of the Schrödinger equations in these fields compose convenient series for expansion of the

CFHH functions F (R) and Φ(R).

Introducing the common notation X(R) for the functions F (R) and Φ(R) we present the

normalized functionsXN(R) = 1

C
1/2

X

X(R) with CX =
∞
∫

0

R2X2(R)dR. Thus
∞
∫

0

R2X2
N(R)dR =

1.

In the expansions over the complete sets of some eigenfunctions, XN(R) can be presented

as:

FN (R) =
∑

aifi(R); ΦN(R) =
∑

biϕi(R) , (11)

with
∑

denoting the sum over the states of discrete spectrum and integration over continuum

ai =

∞
∫

0

R2FN(R)f ∗

i (R)dR; bi =

∞
∫

0

R2ΦN(R)ϕ∗

i (R)dR . (12)

For fi(R) and ϕi(R) normalized to one, it is

∑

a2
i =

∑

b2i = 1 . (13)

Choosing the solutions of the Schrödinger equations in the Coulomb fields with the charges

Z1 = Z−1/2 and Z2 = 2Z as the functions fi(R) and ϕi(R) respectively, we find the values

a1s and b1s presented in Table 2. For atomic helium a1s = 0.9997, b1s = 0.998. High accuracy

of the functions (3) corresponds to domination of the terms a2
1s and b21s in the sums (13).

The precision of calculations can be improved by adding the contributions of the higher

states according to Eq.(12). Of course, in our case only the s-states are involved. For

example, a2s = −0.02, b2s = −0.05 in the case of atomic helium. The results for the other

values of Z are presented in Table 2. This procedure enables to achieve any desired accuracy,

controlled by Eq. (13).

IV. EXAMPLES OF APPLICATION

As we said above, one of the possible application of the functions (3) is the high energy

photoionization processes. Let us start with the single photoionization. The high energy

nonrelativistic asymptotic for the K-shell ionization cross section can be written as [1]

σ =
211/2πe2Z2C2

3mcω7/2
, (14)
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where m is electron mass ans c is the speed of light. The properties of the ionized states

contained in the factor

C =

∞
∫

0

R2F (R)ψK(R)dR . (15)

Here F(R) is determined by Eq.(1), while ψK(R) is the single-particle function of the K-

electron in residual ion. In our case ψK(R) is just the 1s function of the Coulomb field with

the charge Z.

In the single-particle approximation C is simply the value of the single-particle wave

function at the coordinate origin. To illustrate the quality of the functions (3) we compare

the results for the factor C calculated by using the CFHH functions and the functions (3).

In the latter case we find an analytic expression

C =
2NZ3/2

√
π(2Z − 1/2)3

, (16)

providing C = 0.102 for the case of atomic helium. The numerical calculations with the

CFHH functions give C = 0.103 in this case. Hence, employing the approximate function

(3) leads to the error of 1%. Earlier the authors of [16] found that the value of C ob-

tained by using the Hylleraas-type variational function is well approximated by employing

a hydrogenlike function with Zeff = Z − 0.53.

Now let us turn to the case of the double photoionization. The shape of the spectrum

curve of the double photoionization changes with the photon energy growth. The mecha-

nisms which cause these changes are explained in [3]. While the photon energy ω is smaller

than certain value ω1, the energy distribution approaches its minimum at the central point,

with the equal energies of the outgoing electrons, ε1,2, i.e. ε1 = ε2. There is a peak at the

central point at ω > ω1, which splits into two at ω > ω2. Thus, there is a local minimum at

ε1 = ε2 at ω > ω2.

The values of ω1,2 were obtained in [17] by using the CFHH functions. We shall not

repeat derivation of the corresponding equations here. We rather explain their origin and

put them down, in order to illustrate, how the functions (3) enable to obtain approximate

solutions.

The values of ω1,2 can be presented as solutions of the following equation, which involves

the functions F (R) and Φ(R) [17]:

λµ = ω9/2A(ω) , (17)
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with λ being a certain numerical coefficient, and

µ =

∞
∫

0

dr|F (r)|2 , (18)

while the function A depends on ω in a more complicated way:

A(ω) =

+1
∫

−1

dtt2(1 − 2t2)D(ω2t2) (19)

with

D(q2) = |
∞

∫

0

sin(qr)

qr
Φ(r)r2dr|2 . (20)

Employing the exact CFHH functions requires tedious computations. However, using

the approximate wave functions (3) one can obtain analytical expressions for both left-hand

side and right-hand side of Eq.(17). Putting F (r) = FA(r) and Φ(r) = ΦA(r) we obtain

µ = 1
2Z−1

, while

A(ω) =
1

ω6

(

6a6 + 13a4 + 2a2 + 3

6a2(a2 + 1)3
+

1 − 2a2

2a3
arctan

1

a

)

(21)

with a = 2Z/ω.

The values of ω1,2 obtained by using the CFHH functions and the functions (3) are

presented in Table 3. One can see that the discrepancy between two sets of results drops

rapidly with Z growth. Being 22% for H− and 9% for helium, it becomes 4% for Z = 4.

V. SUMMARY

We build very simple analytical presentations (3), for the wave functions F (R) and Φ(R)

describing ground states of two-electron systems bound by the Coulomb field of the nucleus

in the space regions r1,2 = 0 and r12 = 0. The presentation is based on the behavior of the

exact solution of the Schrödinger equation near the three-particle coalescence singularity.

Comparing our functions (3) to the locally correct CFHH functions for the ion H−, atomic

helium and light heliumlike ions (relativistic corrections, which are of the order (Z/137)2

are not included), we found good agreement in a large interval of the values of the R. As

is evident the precision of the approximate functions increases with the nuclear charge Z

growth.
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We show that the solutions of the single-particle Schrödinger equations in the Coulomb

fields with the charges Z1 = Z−1/2 and Z2 = 2Z provide natural basis for expansion of the

functions F (R) and Φ(R) with the domination of 1s terms. The latter tendency increases

with Z. The approach is more precise for the function F (R), then for Φ(R).

Examples, presented in Sec.4 show that even for the lightest heliumlike systems such as

H− and He the wave functions (3) can be used at least for the estimation of the physical

parameters.

The high precision of such a simple approximation that properly treats singularities in the

wave function is in agreement with the conventional believe that the singularities determine

such important atomic characteristics as high-energy photoionization cross sections.
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TABLE I: The value F (0) = Φ(0) = N for several values of Z. The ratio r̃ = N/Nc with Nc

defined by Eq. (10) illustrates the convergence to the high Z limit.

Z 1 2 3 4 5 6

N 0.071 1.37 5.77 15.2 31.6 56.8

r̃ = N
Nc

0.22 0.61 0.67 0.74 0.79 0.83

TABLE II: The coefficients of the two lowest terms of expansions (11) of the CFHH functions in

terms of the Coulomb functions. The coefficients of the next terms are limited by the conditions

|ai| < ã, |bi| < b̃, while the values of ã = (1− a2
1s − a2

2s)
1/2 and b̃ = (1− b2

1s − b2
2s)

1/2 are presented

in the two bottom lines.

Z 1 2 3 4

a1s 0.98482 0.99970 0.99991 0.99996

b1s 0.99067 0.99807 0.99918 0.99955

a2s –0.144 –0.020 –0.010 –0.007

b2s –0.108 –0.046 –0.030 –0.022

ã 0.097 0.015 0.008 0.005

b̃ 0.082 0.041 0.028 0.021

TABLE III: The values of ω1 and ω2 (Sect.4) in keV for the ground states of the lightest heliumlike

systems, calculated by using the CFHH functions [10] and the functions (3).

Z 1 2 3 4

ω1 – this work 0.67 2.11 3.92 6.14

ω1 – [10] 0.55 1.93 3.70 5.89

ω2 – this work 4.86 9.71 14.5 19.3

ω2 – [10] 3.97 8.89 13.7 18.5
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FIG. 1: The functions y1(R) and y2(R) defined by Eq. (9), for the negative ion H−(Z = 1)

— Fig.1a, for atomic helium (Z = 2) — Fig.1b, and for the ion Be++(Z = 4) — Fig.1c.
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