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A parameterless numerical implementation of the Quasilinearization Method (QLM) is con-
structed and tested to 21–25 digits precision to give quadratically convergent energies E of
the Klauder effect exhibiting spiked harmonic oscillator with the k=ra or expðk=raÞ type
spikes in a Riccati reformulation of the Schrödinger equation. The radial solution is uni-
formly quadratic convergent to the same precision as E, except in the small minorization
interval where the self-correcting property of QLM assures geometric convergence like in
the Picard algorithm to about 12–16 digits, sufficient not to affect the convergence of E,
confirming what is expected on physical grounds. It was shown before that for regular
potentials, immediate onset of quadratic convergence is guaranteed by the initial iteration
of the WKB form, and that for quadratic convergence of E for power-type spikes it suffices
to augment this by a nonlinear integration point distribution and by minorization of (neg-
ative) solution values. The form of the Riccati equation used allows the minorization func-
tion to easily be formally defined over the entire interval, without the need for a cutoff
radius of application, and dependence on its scale factor is plateau-like and negligible.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

For decades [1] a general method of solution has been sought applicable to small and large values k; a for the spiked har-
monic oscillator (SHO) potential,
V ¼ r2 þ k
ra : ð1Þ
Potentials of this type appear in molecular, atomic, nuclear and particle physics, for example in scattering [3,4], As Klau-
der has shown [5–10], the effect of the spike does not vanish in the limit k! 0. Detwiler and Klauder [5] have also shown
that its matrix elements diverge (supersingularity for a P 5=2), and the WKB method cannot be used. Analytical and numer-
ical approaches limited to small regions of the k; a space have been used to calculate energies and wave functions of SHO
starting with variational and large-coupling perturbative expansions by [1], followed by e.g. [11] and culminating with Ref.
[12], which is an algebraic method for a finite sum of k=ra type spikes.

A purely numerical approach has rarely been pursued, e.g. in [13], and such approaches relied on the detailed form of the
singular terms. However, from the viewpoint of QLM, a purely numerical approach is worth trying, as the ‘‘self-correcting’
property of OLM iterations might maintain convergence near singularities. In the work [2], QLM [14] has been applied to the
SHO using an ‘‘adaptive grid’’ and a minorization technique to regularize effects of numerical errors, resulting in E values
with up to 28 digits precision for a large region of a; k values. In the present work we modify, automatize algorithms
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and test the independence of our method of the form of V by applying it to a very singular infinite series version of the poten-
tial in Ref. [12], and analyze local convergence of the radial solution in comparison with earlier applications to different
potentials.

2. The QLM approach

The QLM devised by Mandelzweig [15] is a generalization of an iterative method for solving nonlinear differential equa-
tions to arbitrary regular and singular potentials, able of quadratic and often monotonic convergence [16]. It is applied in
quantum mechanics by rewriting the radial Schrödinger equation as a Riccati equation for a function expressed in terms
of the logarithmic derivative /ðrÞ of the wave function. QLM is a resummation of WKB: the kth QLM iteration sums 2k terms
[17,18] of the WKB series. For exactly solvable potentials the first QLM iteration gives exact energies if a quantization con-
dition is imposed [19]. Quadratic convergence starts once the norm of the difference of the current and previous iterations is
small enough [15].

However, a practical numerical implementation of QLM requires (i) a method to control the onset of quadratic conver-
gence, i.e., to guarantee its onset already at the first iteration, and (ii) a method to handle singular points preferably without
changing the form of equations, i.e., without coordinate transformations.

Our numerical implementation for the radial Schrödinger equation [14,17,18,21], for easier handling of nodes in the radial
solution vðrÞ, uses the (negative) form of solution:
uðxÞ ¼ arctan � j
/ðrÞ

� �
¼ arctan �j

vðrÞ
v0ðrÞ

� �
; ð2Þ
where x ¼ jr; j ¼
ffiffiffi
E
p

with 2m ¼ 1. In the resulting Riccati equation
u0ðxÞ ¼ �1þW sin2 uðxÞ ¼ qðx;uðxÞÞ; E > 0; ð3Þ
WðxÞ ¼ 2mVðrÞ=j2 for angular momentum l ¼ 0. The QLM iteration equations in differential form [14,21] for k ¼ 1;2; . . . ;M
are
u0kðxÞ ¼ qðx;uk�1ðxÞÞ þ ðukðxÞ � uk�1ðxÞÞquðx;uk�1ðxÞÞ ¼ Qðx;uk�1ðxÞ;ukðxÞÞ; ð4Þ
or, in simplified notation,
Qðx;uk�1;ukÞ ¼ �1þW sin2 uk�1 þ ðuk � uk�1ÞW sin 2uk�1 ð5Þ
with qu denoting the functional derivative @qðx;uðxÞÞ=@u.
For regular potentials, the numerical implementation has been completed in the work [18], where the Langer WKB solu-

tion [20] was found to assure immediate onset of quadratic convergence of the QLM iteration.
For power-type singular potentials (exhibiting the Klauder effect), numerical noise due to large WðxÞ but small u2ðxÞ in

products of the type WðxÞuðxÞ2 in Eq. (5) near the singularity may preclude the onset of quadratic convergence just like a bad
initial solution does, as follows. The Klauder effect amounts to the fact that qð0;uð0ÞÞ ¼ Qð0;uk�1ð0Þ;ukð0ÞÞ ¼ 0 in Eqs. (4) and
(5). (For regular potentials, qð0;uð0ÞÞ ¼ Qð0;uk�1ð0Þ;ukð0ÞÞ ¼ �1.) We must ensure that numerically the terms of
Qðx;uk�1;ukÞ cancel out near the origin. The work [2] demonstrated that to guarantee immediate onset of quadratic conver-
gence, it is sufficient to (i) construct a special ‘‘adaptive grid’’ point distribution not unlike the approach taken in the Finite
Element Method, and (ii) simply confine (minorize) the numerical noise of uðxÞ 6 0 near the origin into a finite interval pro-
vided by a small multiplier of the leading term of the solution near the origin. This works well as long as large values of WðxÞ
are representable in the computer sufficiently close to the singularities.

The goal of the present work is (a) to improve the automatic algorithm for point density (which was not entirely auto-
matic in [2]), (b) to address the problem of computer representability of large VðrÞ or WðxÞ values near the singularities,
and (c) to check for local deviations from quadratic convergence of uðxÞ due to minorization and their effect on conver-
gence of E. The aim is a unified QLM numerical implementation to give stable results for both regular and singular poten-
tials without resorting for example to coordinate transformations which may not be suitable across the whole LHS
subinterval in the matching procedure. To this end we chose the exponentially spiked harmonic oscillator potential
(ESHO),
V ¼ r2 þ lekr�a
; ð6Þ
which can be viewed as a series of power-law spike terms ðkk=k!Þr�ka; k ¼ 1; . . . ;1 like in Eq. (1), or a generalization of the
finite-sum potential of Ref. [12], or representing a special case of nonlinear perturbation [22]. We expect ESHO will exceed all
the difficulties of the SHO. Supersingular potentials of the form expðkr�bÞr�m were studied before in works on the so-called
‘‘peratization’’ method of regularization [4,23,24]. The potential Eq. (6) and the corresponding potential with the singularity
at infinity are representatives of the class of potentials dealt with in [5].
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3. Behavior near the singularity

Near the origin a representation of the ESHO solution to leading order is
~vðrÞ � exp �araþ1e
k
2r�a

� �
ð7Þ
or
~uðxÞ � � jffiffiffiffiffiffiffiffiffiffiffi
2ml

p e�
k
2

x
jð Þ�a

; ð8Þ
where a ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
2ml

p
=ak. (The tangent function is omitted in Eq. (8) [2]).

4. Numerical approach

4.1. Representability near the singularity

If the largest positive machine-representable number at given precision is 2g, and its natural logarithm is eg, the mini-
mum r for evaluating V of Eq. (6) is
rg �
k

eg � logl

� �1
a

: ð9Þ
For example, for l ¼ 1; k ¼ 0:0001; a ¼ 2:5, and g ¼ 16383 for 128-bit representation, we have eg � 11356 and
rg � 0:0006, which is too large for obtaining large precision.

We modified parts of the code that evaluate expressions like WðxÞ sin2 uðxÞ (Eq. (5)) to now optionally use log jWðxÞj
instead of WðxÞ, and the V-evaluating routines to return log jVðrÞj instead of VðrÞ. uðxÞ code is unchanged. If logarithmic rep-
resentation is used, rg is not used as lower limit on r, since it would be very difficult to reach the representation limit.

The effect of logarithmic representation on accuracy is weak. In computer representation of a floating-point number p
with fixed-length mantissa, Dp=p � �, where � is a machine constant. In 128-bit floating-point precision, it is typically
2�112 � 10�33. If p ¼ log V ; Dp=p ¼ ðDV=VÞ= log V � �, or DV=V � � log V .

It is not necessary to apply the above procedures to the initial QLM approximation, i.e. the Langer WKB solution. It can be
set to 0 for x < jrg where V is not numerically representable. This is a similar situation as appears at the boundary x of the
LHS and RHS Langer WKB functions [18], where the Langer solution has a step but already the first QLM iteration u1ðxÞ is
smooth. Thus unchanged WKB part of code can be used.

4.2. Point density

The nonlinear distribution B1 ¼ fxig of N integration points on the LHS of the matching point xm is a generalized imple-
mentation of the distribution ‘‘B’’ used in [2]. If fzig ¼ f0; . . . ; zNg is an equidistant set, fxig are defined right-to-left using the
form ~vðrÞ of Eq. (7) scaled by a factor A so that the resulting distribution inflection point always coincides with xm
xi ¼ A exp �azaþ1
i e

k
2z�a

i

� �
: ð10Þ
(Previously [2] the inflection point was not moved to xm which caused the algorithm breakdown in some cases.) We take
A ¼ 1 and detect the inflection point by searching for largest point separation on ð0; zN ¼ xm=jÞ. If no maximum is found, zN is
retained, otherwise it is redefined as the discovered inflection point. Since there is no simple a priori check for point
sequence monotonicity, the above process is repeated until such distribution is achieved, or else a linear sequence is
returned. Like in [2], if a number of points near the singularity are spaced by less than 10�rx , they are replaced by a linear
distribution, which still reduces the final minimum separation below 10�rx only as OðN�1Þ. The difference with respect to [2]
is that if V is evaluated directly, rx is not an arbitrary parameter but is constrained by the V representability limit jrg. How-
ever if log jV j is evaluated instead of V, then for all practical purposes rx is a free parameter in the sense of [2].

Tests have shown this point distribution to be in general increasingly more efficient with increasing requested precision
than the coordinate transformation of [13] which results in linearly increasing point spacing.

4.3. Error regularization

Local convergence near a singularity is maintained by the minorization regularization (‘‘UQ’’ of the work [2]): if
ukðxÞ < f mðxÞ (larger in absolute value), it is replaced by f mðxÞ, if ukðxÞ > 0, it is replaced by 0. Likewise Qðx;uk�1;ukÞ is
‘‘clamped’’ to ½f 0mðxÞ;0�.

For x smaller than a certain small value x0 depending on the goodness of Eq. (7) the minorization function for uðxÞ is
f mðxÞ ¼ Fm~uðxÞ; x 6 x0; ð11Þ
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where ~u is given by Eq. (8), and Fm is an arbitrary multiplication parameter. In the course of the calculation, it is not possible
to decide at which x ¼ x0 f mðxÞ is no longer required, as we are comparing it with noisy uðxÞ values; therefore f m must be
defined for all x, i.e., must be everywhere smaller than the (negative) correct solution. This is achieved by defining x0 as
the inflection point x0 : ~u00ðx0Þ ¼ 0:
Table 1
QLM w
gk1 ¼ lo
column
points n
converg
take ov
expone
in the fi

k

1
2
3
4
5
6
7
8
9
10
11
12
x0 ¼
kaja

2ðaþ 1Þ

� �1
a

ð12Þ
and replacing Eq. (11) by a matched linearly extrapolated function (tangent to ~uðxÞ at x ¼ x0) for x > x0:
f mðxÞ ¼ Fm ~uðx0Þ þ ðx� x0Þ~u0ðx0Þð Þ; x > x0: ð13Þ
Omitting the tangent function in Eq. (8) makes x0 larger.
The crossover point xc of a numerical iteration ukðxÞ and f mðxÞ, like in [2], depends on numerical errors and the ‘‘external’’

parameter Fm; this ambiguity is again resolved by performing computations with several fixed values of Fm. If the depen-
dence on Fm has a plateau [2] in a large interval whose lower border is close to 1, we consider the method stable and free
from a regularization radius parameter.

4.4. Description of calculation

The approximate E values are first determined by a tabulation of the difference of the RHS and LHS solutions at the match-
ing point DðjÞ ¼ uM;LHSðxmÞ � uM;RHSðxmÞ [2].

The calculation proceeds automatically as in [2]: Eq. (4) is solved in two phases for different ‘‘external’’ parameters like Fm

and rx using the algorithm B1UQ. In the first phase the parameters are optimized for j fixed close to the true j and the
‘‘internal’’ parameters N; M, and xu are gradually increased from some initial values N0; M0 and xu0 according to an optimi-
zation algorithm until jDj is small enough. In each optimization pass the QLM iteration, starting with the lower precision ini-
tial Langer WKB solution, is performed. In the second phase we solve DðjÞ ¼ 0.

Like in [2], integration in this work has been performed using the fourth order explicit Runge–Kutta method with fifth
order midpoint interpolation of uk�1ðxÞ (Eq. (4)), so that integration error is clearly separated from QLM iteration error.
128-bit floating-point representation has been used.

5. Results

5.1. Convergence of uðxÞ compared with SHO and regular potentials

Table 1 presents the convergence of QLM iterations in the linear metric (infinity norm, or maximum absolute difference
over integration points fxig). For the regular Woods-Saxon potential, quadratic convergence is evident both for the infinite
norm and for the LHS values of ukðxmÞ.
ave function convergence for regular and singular potentials. The first column for each potential displays logarithms of the infinity norm
g10jjuk � uk�1 jj1 (maximum value over the interval) of the absolute differences of successive QLM iterations ukðxÞ on the LHS; the corresponding second
displays logarithms of local absolute differences at the matching point, �k ¼ log10 ukðxmÞ � uk�1ðxmÞj j. �k indicates both the uniform accuracy across
ot close to singularity as well as accuracy of E, and exhibits quadratic convergence. For the Woods-Saxon potential, both gk1 and �k exhibit quadratic
ence, i.e., doubling of precision on each iteration. For SHO [2], gk1 converges quadratically only in the beginning, before the effects of the minorization

er (�k ¼ �32 indicates that convergence is limited by number representation and precise �k values are meaningless.) Similar results are obtained for the
ntially spiked oscillator (ESHO), calculated in the logarithmic representation of V; the largest x where minorization algorithm was triggered is 4� 10�6

rst case and 0.089 in the second case. ESHO demonstrates how QLM continues to improve local error for some time with geometric convergence.

Woods-Saxon SHO ESHO ESHO
[18] a = 2.5, k = 0.0001 a = 1, k = 0.0001 a = 1, k = 1

gk1 �k gk1 �k gk1 �k gk1 �k

�1.20 �1.24 �2.24 �1.68
�2.79 �2.79 �4.07 �4.07 �4.96 �5.01 �3.45 �3.78
�6.51 �6.51 �10.10 �10.10 �9.78 �11.69 �5.10 �7.68
�14.32 �14.32 �19.37 �22.50 �10.41 �20.59 �5.73 �15.81
�30.30 �30.30 �18.67 �31.98 �11.59 �30.10 �6.94 �27.60

�18.69 �32 �12.86 �32 �9.34 �32
�18.57 �32 �14.97 �32 �11.96 �32
�18.96 �32 �16.72 �32 �13.48 �32

�16.36 �32 �13.25 �32
�16.35 �32 �12.96 �32
�16.68 �32 �9.37 �32
�16.35 �32 �11.67 �32
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For singular potentials, regularization by minorization causes the solution near the singularity (at the origin) to converge
slower in a small interval ½0; xc� on which the minorization algorithm is ‘‘clamping’’ values, where the crossover point xc is not
prescribed in advance. In ½0; xc� the convergence is geometric (linear) like in the Picard iteration algorithm [16]. In the case of
the spiked oscillator potential [2] in Table 1, the infinity norm converges quadratically only in the beginning, before becom-
ing limited by the local convergence in the minorization region. On the other hand, ukðxÞ outside of this region are not
affected by the minorization procedure and converge quadratically.

Results are similar for the ESHO; difference in convergence is more pronounced with larger k; the pointwise convergence
in this case is displayed in Fig. 1, where relatively large values (of the order of 10�16) appear on the relatively large interval (0,
0.089). However, the values are only about 2 orders of magnitude larger than for k = 0.0001 (last part of Table 1).

Obviously integration precision is independent of, but must match the precision of the QLM iteration. As the Runge–Kutta
integration has error � OðN�4Þ, we need roughly of the order of 105 points for 20 digit precision, etc. This is automatically
provided by the code which repeats the QLM iteration with increasing N as well as increasing M until desired precision is
reached. Fast convergence in m in most cases allows M to be fixed and intentionally rather large (as evident a posteriori)
in order to save on the M optimization time.

It should be noted that if instead of minorization, uk�1ðxÞ in Eq. (4) were joined at some x ¼ xj with a truncated expansion
like Eq. (7), we would not only acquire another parameter (xj, presumably of the order of xc) but would have no way of
estimating the total error (numerical plus the error of the expansion) on ð0; xjÞ.

5.2. Convergence of E

Table 2 presents E values rounded to the number of stable digits, which may be slightly larger than the precision P
requested from the parameter optimization algorithm. Up to 25 significant digits are displayed; this is nearly as much as
Fig. 1. QLM iterations of the radial solution and their absolute differences for small x (x < 4; xm ¼ 2) for the worst case of Table 1 (a=1, k=1). Top left:
iterations in linear scale. The initial Langer WKB iteration exhibits a step at x � 3:1 [18] (appearing extended due to plotting resolution), which is
immediately removed by QLM iteration 1; higher QLM iterations are already indistinguishable from iteration 1 on the plot. Also shown are the leading term
solution ~u and the minorant f m for Fm ¼ 3. Top right: same but showing logarithms of absolute values on both axes. Bottom: differences of successive QLM
iterations k ¼ 1; . . . ;12. In the small minorization interval they exhibit geometric convergence and remain of the order of 10�12 but for all other x they
converge uniformly quadratically (together with E) in just a few iterations before hitting the number representation limit.



Table 2
Energies for ESHO for l ¼ 1 and different a; k.

k a P xm xm M N E E� ESHO

0.0001 1 20 1.0 15.08 8 2971101 4.000 120 209 493 762 545 13
2.5 24 1.5 16.32 8 126208903 4.019 500 484 397 453 880 862 195 1.019 093
7 16 2.0 14.49 12 3635160 4.468 981 860 644 389 330 84 1.222 718

1 1 20 2.0 18.85 8 606131 5.947 670 144 334 628 741 43
24 2.0 20.40 8 5300000 5.947 670 144 334 628 741 432 474

2.5 20 3.0 19.61 12 2411282 6.081 340 849 816 087 358 93 1.764 029
7 20 4.0 28.27 12 18117990 6.330 867 660 859 813 905 92 1.602 852
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possible because we are close to the limit of the 128-bit arithmetic but do lose some precision via the logarithmic
representation.

From Fig. 1 it is obvious that even in our extreme singular example, precision of the order of 20 digits in E is achieved with
only four QLM iterations, like in previous work [2,14]. Because of this, we again usually fix M to values 4;8;12; . . . and
perform separate computations using different M, thus eliminating one convergence parameter.

For runs in Table 2 several control runs with one of the ‘‘internal’’ parameters larger than usual were made, like in SHO
[2]. Fm is taken equal to 2 and 3, for which results agree to at least one more digit than the requested precision P. To verify
this in more detail, the convergence for k ¼ 1; a ¼ 1 has been tested also for all combinations of Fm ¼ 1:0; 1:2; 1:5; 2:0; 3:0
and rx ¼ 32; �64; �128; �160. For the prescribed accuracy P ¼ 20 we get 23 stable digits (E ¼ 5: . . . 741 429 8), with 21
correct as shown by the results for P ¼ 24 where we get 26 stable digits (E ¼ 5: . . . 741 432 473 7). The test confirms the rule
that we get P þ 1 correct digits, therefore all values in Table 2 are rounded accordingly.

ESHO energies are shifted with respect to SHO (last column of Table 2).

5.3. Summary

The generalized minorization algorithm B1UQ with logarithmic representation of V and the Runge–Kutta integration
works for different a and large spans of k, requiring roughly the same N as SHO. The precise value of the parameter Fm is
unimportant, as is the value of rx, making the approach effectively parameterless like its precursor [2].

In the minorization intervals, the self-correcting nature of the QLM iteration equations still provides geometric (linear)
convergence, which reached 12–16 digits. This does not affect the quadratic convergence of E.

6. Conclusion

The numerical implementation of QLM has been generalized and shown to work in an extremely singular setting. This
makes it practically independent of the form of singularity. It yields quadratically convergent energies E and radial solutions
uðxÞ as precise as the numerical integration error and number representation permit, except that uðxÞ converges geometri-
cally like the Picard algorithm in small, self-adjusting minorization intervals around singularities; it is QLM which assures
this convergence at all, and it does not affect E.

The function f m can be obtained from some representation ~u of the local nonanalytic solution at the singularity; due to the
way the Riccati solution uðxÞ is defined, simply omitting the tangent function and continuing f m by a linear function past the
inflection point of ~u makes it a minorant on the entire interval, alleviating the need for a cutoff radius parameter.

The key to convergence is a nonlinear integration point distribution for singular potentials which makes points denser
approximately in inverse proportion to radial solution magnitude, thus being able to bridge the small scale of the spike
and the large scale of the harmonic term without variable transformation. It is ensured the points form a monotonically
increasing sequence. A uniform integration point distribution is used for regular potentials. A Runge–Kutta solver was used
to minimize the effect of errors contained in the minorized, or clamped values from the previous iteration it uses. Only four
QLM iterations sufficed to get E to 20 digit precision, which is actually less than for regular potentials using equidistant
points [18,19]. The same program can be used for both regular and singular potentials.
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