
Computer Physics Communications 183 (2012) 2601–2607
Contents lists available at SciVerse ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Numerical regularization of Klauder effect in QLM
R. Krivec ∗

Department of Theoretical Physics, J. Stefan Institute, Ljubljana, Slovenia

a r t i c l e i n f o

Article history:
Received 7 May 2012
Received in revised form
17 July 2012
Accepted 25 July 2012
Available online 27 July 2012

Keywords:
Quasilinearization
Singular potentials
Spiked oscillator
Klauder effect
Numerical solution of differential equations

a b s t r a c t

The numerical solution of the spiked harmonic oscillator in quantum mechanics within the framework
of the Quasilinearization Method (QLM) is investigated systematically for different degrees of singularity
α and different coupling constants λ. Several numerical algorithms consisting of different regularizations
of the QLM differential equation and different nonlinear integration point distributions are studied. A
simple algorithm that works uniformly across a large α, λ parameter space limited only by machine
precision is proposed. The algorithm uses a single weak parameter which results are almost independent
upon, accelerates the integration of the differential equations, and provides an automatic prescription for
treating singular and regular potentials using the same methods.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The spiked harmonic oscillator potential,

V = r2 +
λ

rα
(1)

describes interactions occurring in atomic, molecular, nuclear and
particle physics, mainly in scattering problems [1,2]. For α > 2
it is of relevance for supersingular interactions in quantum field
theory. It has been shown by Klauder [3–8] that the limit λ → 0
in the potential Eq. (1) does not turn off the effect of the spike. The
early work by Detwiler and Klauder [3] has already shown that the
matrix elements of these singular perturbations in the harmonic
oscillator states diverge so that all terms in the perturbation series
are infinite and the latter does not exist, as well as that the WKB
method is not applicable.

Various methods combining analytical information with nu-
merical calculation have been proposed to calculate energies and
wave functions, but numerical results in the literature are usually
limited to a single value of α, most commonly the critical value
α = 5/2. An early attempt at numerical integration was Ref. [9],
combining difference approximation with Richardson extrapola-
tion. The work Ref. [10] uses the method of analytic continuation,
but for α > 2, when the solution acquires an essential singularity
at the origin, it was necessary either to approximate the potential
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or use the leading term of the solution for some r < Rc . The recent
specializedmethod of Ref. [11] aims to provide the correct solution
at the origin in addition to energies, and presents converged values
for α = 5/2 and 0.001 < λ < 20. The QLM (Quasilinearization
Method) has also already been applied [12] to the spiked oscillator
problem for a few α, λ values, with precision exceeding that of the
literature.

Our aim in this work is to investigate the numerical limits
of a standard procedure in the framework of the QLM, such
that the same numerical methods could be used for regular
and very singular potentials. The numerical advantage of the
QLM is that its iterations are rapidly convergent for regular
and singular potentials alike and self-correcting, which to some
degree helps maintain numerical precision. At the present we
do not concentrate on the precision of the QLM solution itself
near the origin, as high-order expansions for the solution near
the origin have already been found analytically using the first
QLM iteration [13]. These expressions give good expectation
values and could be combined with the numerical methods
of the present work to give high-precision energies and wave
functions. Therefore thiswork is devoted to a grounds-up approach
concentrating only on the numerical aspects, trying to construct
a method that only depends ‘‘weakly’’ on some parameters, but
nevetherless gives energies to a precision exceeding that of the
literature and also as good as possible a representation of the
solution near the origin, which could even suffice to calculate
expectation values of interest.

The QLM pioneered by Mandelzweig [14] is a generalization,
covering singular as well as regular potentials in physics, of the
quadratically and often monotonically convergent scheme [15]
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for solving nonlinear differential equations. It can be applied in
quantum mechanics by rewriting the radial Schrödinger equation
as a nonlinear Riccati equation for the logarithmic derivative φ(r)
of the wave function or a function thereof. Seemingly similar to
WKB in this respect, the QLM is in fact a resummation of WKB:
the k-th QLM iteration sums 2k terms [16,17] of the WKB series.
In addition, for most exactly solvable potentials the first QLM
iteration gives the exact energies if a quantization condition is
imposed [18]. However, the Langer WKB solution [19] has been
found to be an ideal initial solution for the QLM iteration [17]
as it contains enough physics to assure the immediate onset of
quadratic convergence of the QLM. Namely, as has been proved in
Ref. [14], quadratic convergence starts at the QLM iteration where
the norm of the difference of the current and previous solutions is
small enough.

In our numerical application of the QLM to the one-dimensional
Schrödinger equation [12,16,17,20], the QLM has been further
rewritten for easier handling of nodes in χ(r) by introducing the
new function

tan u(x) = −
κ

φ(r)
= −κ

χ(r)
χ ′(r)

(2)

where x = κr, κ =
√
E with 2m = 1, resulting in the nonlinear

Riccati differential equation (ODE), for E > 0,

u′(x) = −1 + W sin2 u(x) = q(x, u(x)), (3)

where W (x) = 2mV (r)/κ2 (for angular momentum l = 0). The
QLM iteration equations in differential formas used in our previous
works [12,20] for iterations k = 1, 2, . . . ,M are

u′

k(x) = q(x, uk−1(x)) + (uk(x) − uk−1(x))qu(x, uk−1(x))

= Q (x, uk−1(x), uk(x)), (4)

or explicitly, leaving out some arguments for brevity,

Q (x, uk−1, uk) = −1 + W sin2 uk−1

+ (uk − uk−1)W sin 2uk−1. (5)

Here qu denotes the functional derivative ∂q(x, u(x))/∂u. Near the
origin the solution to leading order is [13]

χ(r) ≈ exp(−br−β) (6)

or

u(x) ≈ −
κ

√
λ

 x
κ

α/2
(7)

where β = α/2 − 1, bβ =
√

λ.
In the previous work [12] it was found that stable numerical

convergence is obtained by using a simple explicit solver
(Runge–Kutta) on a nonuniform point distribution where the
point density is roughly inversely proportional to the size of
the derivative of the function χ(r), which is nonanalytic at the
origin, on the interval left of the inflection point, χ ′′(r) = 0.
(This ensured that the resulting point separation monotonically
increases with r .) It was not sufficient in general to use a density
inversely proportional to the derivative of the analytic function
u(κr). This point distribution was more nonlinear than the one
used via variable substitution in Ref. [21], 1 + Kr = eKy. However,
only a few α, λ values were selected and the applicability of the
numerical method to other values was not investigated in detail in
the work [12].

The goal of this work is (i) to extend the α, λ parameter space
where the standard QLM code based on the Riccati ODE can be
applied, and (ii) to try to make integration parameter selection
automatic in this space, implying that the parameters should vary
slowly with α, λ. We use the nonuniform point distribution of
Ref. [12] as a starting point. This will keep a unified framework for
the QLM iteration. For example, in our case a variable substitution
numerically sensible near the origin may not be sensible at large
x. We concentrate on a possibly very nonlinear point distribution
instead, and investigate the limits of its numerical implementation
imposed by the number representation in the computer.

The Klauder effectmanifests itself in the fact that in Eqs. (4)–(5),
q(0, u(0)) = Q (0, uk−1(0), uk(0)) = 0, in contrast to regular po-
tentials where q(0, u(0)) = Q (0, uk−1(0), uk(0)) = −1. Numer-
ically this is reflected in the need for the terms of Q (x, uk−1, uk),
Eq. (5), to cancel out near the origin. The problem lies not with the
very large values ofW (x), which are evaluated numerically in a sta-
ble manner, but with the following three issues in the evaluation
of Q (x, uk−1, uk).

First, the numerical initial solution u0(x) for the QLM iteration
may simply be zero either identically or on a finite interval near
the origin, for various reasons including lower precision attained
by available tools. Indeed, in the QLM the numerical precision of
the initial approximation should not matter, and should not be
expected. (For example, within a 128-bit QLM iteration schemewe
may be using a LangerWKB solution calculated in 64-bit arithmetic
using Airy functions by a 64-bit numerical library [22].) On the
interval where u0(x) = 0, we get numerically Q (x, u0, u1) = −1,
which effectively removes the singularity of V .

Second, the higher iterations uk(x) suffer from integration
errors which depend on the error of Q (x, u0, u1) and on the way
this error propagates to Q (x, uk−1, uk) for k > 1. (This would
especially be the case if an adaptive solver were used and, as is
sensible, the absolute error of the solution were checked near the
origin instead of its relative error.) The value of uk(x) returned
by the solver, whose correct value near the origin is very small
(if point density is large as anticipated), may consequently vary
by orders of magnitude from the true value, and, despite still
being ‘‘small’’, prevent correct cancellations in Q (x, uk−1, uk). We
address this by regularizing the values of uk−1(x) before they
enter the Q (x, uk−1, uk) calculation, or the value of the resulting
Q (x, uk−1, uk), or both.

Third, the problem has two scales. The quasiclassical region of x
where the matching point is normally set depends predominantly
on the harmonic part of V and varies relatively slowlywithα andλ,
compared to the inflection point of Eq. (6), rC = (

√
λ/(β + 1))1/β ,

which is of the order of 10−8 at α = 2.5, λ = 0.0001 and 106

at α = 2.5, λ = 1000. This could lead to nonmonotonic point
separations and numerical underflow of point separation near the
origin.

In general, while theQLM is self-correcting, numerical noise has
similar effects on convergence as a bad inital solution: itmay delay,
or, in the case of singular potentials, preclude the onset of quadratic
convergence.

2. Acceleration and regularization prescriptions

We present an improved nonlinear point distribution which
provides themainnumerical acceleration, anddifferent regulariza-
tion prescriptions that control the numerical noise near the origin.
Combinations of point distributions and regularization prescrip-
tions are shown schematically in Table 1.

Nonuniform point distributions are only applied on the LHS of
the matching point (0 ≤ x ≤ xm), while on the RHS we use
a uniform distribution. The different types of nonuniform point
distributions {xi} in Table 1 are based on equidistant sets {zi} as
follows:

• A (old): xi = exp(−bzi−β ′

) from x = 0 to the inflection point
xC = κrC of the distribution; this makes the point density
behave like the derivative of the solution χ . Points are defined
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Table 1
Schematic representation of regularization algorithms, labelled by point distribution type (A, B, C) and regularization type (0,Q ,U,UQ ).
{zi} is a set of equidistant values.

Regularization: Point distribution, {xi}
exp(−bzi−β ′

) plus power law (A) a exp(−bzi−β ) xN = xm(B) ziα/2(C)

u and Q leading terms, i < Ix (0) A0
Q replacement (q) Aq
u minorization (U) AU BU
u and Q minorization (UQ ) BUQ CUQ
left-to-right by setting the first separation at x = 0 to be
x1 − x0 = 10−σx ; if then xC > xm we bring it into [0, xm]

by defining a different β ′
≠ β; the point distribution is then

padded with a power-law distribution on the right if the new
x′

C < xm. This works only for a small region of α, λ.
• B: a point distribution defined right-to-left scaled by a factor

a in the x direction so that the resulting distribution inflection
point always coincides with xm : xi = a exp(−bzi−β), a =

exp(α/(α − 2)). Points near the origin may get very dense;
the set of points that differ by less than 10−σx (contiguous by
virtue of monotonicity) is replaced by a linear distribution of
the same number of points. This may reduce the final minimum
separation below 10−σx , but it does so very weakly, as O(N−1),
compared with the highly nonlinear separation dependence of
the original distribution.

• C: power-law point distribution xi = ziα/2 (shaped like u(x)).

The different types of regularizations in Table 1 are as follows:

• 0 (old): uk−1(x), uk(x) and Q (x, uk−1, uk) are replaced by the
leading order explicit solutions on the first Ix points near the
origin. Ix is fixed during parameter optimization (cf. Section 3)
so that the regularization interval [0, xIx ] diminishes as N
increases.

• q (old): replacement of Q (x, uk−1, uk) by the leading term of
the explicit expression for those xi where this leading term
is smaller than the current numerical solution. This avoids an
explicit x cutoff and u′(x) discontinuity but still fixes the form
of u(x) below the crossing point of the numerical solution and
the leading term.

• U: minorization of uk−1(x) and uk(x) before the Q (x, uk−1, uk)
calculation, using a multiple of the leading term of the explicit
solution. This does not enforce the uk(x) values themselves, just
limits their numerical noise.

• UQ : minorization of Q (x, uk−1, uk) in addition to uk−1(x), uk(x).

The minorization function for u(x),

fm(x) = Fm


−

κ
√

λ

 x
κ

α/2


, (8)

is just the leading termof u(x)multiplied by an arbitrary parameter
Fm. If the numerical solution uk(x) is smaller than fm(x) (larger
in absolute value), it is replaced by fm(x), and if uk(x) > 0, it is
replaced by 0. If Q (x, uk−1, uk) is minorized, it is likewise confined
between f ′

m(x) and 0. Minorization has no effect if the numerical
solution lies between fm and 0. fm is applied at all x, even though it
is not generally true that fm(x) is smaller than the true solution. It
certainly is true for large enough x, which is ensured by omitting
the tangent function in Eq. (2). The ambiguity in the crossing
point of the numerical solution and of fm therefore consists of the
unknown effects of omitting the tangent function and additional
terms in fm and of the effect of Fm. The effect of this ambiguity on
the results is resolved by performing computations with several
fixed values of the ‘‘external’’ parameter Fm. The advantage here is
that there is no explicit cutoff parameter so the procedure is simple
and automatic; also, additional computations for different Fm serve
as independent verifications.
3. Description of calculation

The approximate E value of the ground or an excited state for a
given α, λ pair is first determined by a low-precision tabulation of
the difference of the RHS and LHS solutions at the matching point
D = uM,LHS(xm) − uM,RHS(xm) as a function of κ .

The high-precision calculations for a given α, λ pair proceed
as follows. Eq. (4) is solved in two phases for different ‘‘external’’
parameters like Fm and σx and the selected algorithm from Table 1.
The first phase is the parameter optimization phase in which κ
is fixed close to the true κ , and the ‘‘internal’’ parameters N,M ,
and xu are given some initial values N0,M0 and xu0 and then
gradually increased in subsequent passes in the order of the effect
their previous change has had on D, until |D| is small enough.
In each optimization pass the entire QLM iteration is repeated,
starting with the (possibly lower precision) initial solution of the
Langer WKB type. (The energy of the WKB solution is optionally
recalculated in each pass independently of κ .) The second phase is
the search for the zero of D as a function of κ , using the optimized
‘‘internal’’ parameters and the fixed ‘‘external’’ parameters; the
zero gives E.

Integration in this work has been performed using the fourth-
order explicit Runge–Kutta method in order to preserve full
control over integration. In particular, this eliminates local error
estimation and subsequent step and order adjustments, whose
effects could not be separated from the effects of different
point densities and regularizations. To integrate the k-th QLM
iteration uk(x), the Runge–Kutta method however requires the
values of the previous function uk−1(x) at midpoints of the
integration steps. These values are obtained by a five-point
Lagrange interpolation [23] whose estimated error is one order
in h smaller [24] than the estimated solver error. Testing of an
alternativemethod avoiding the interpolation phase is in progress.

For the level of precision of E reported in this work a 128-
bit floating-point representation, nowadays readily available in
efficient compiler implementations (as opposed to unlimited
precision libraries), is required.

4. Results and discussion

Typical behavior of uk(x) for successive QLM iterations k =

1, 2, . . . ,M near the origin for new regularization algorithms is
illustrated in Figs. 1–3 for a large λ where it is more pronounced.
Incidentally in the x intervals displayed in these figures the
numerical initial WKB approximation is identically zero. E values
agree to 21 significant digits despite variations in uk(x) near
the origin if Q (x, uk−1, uk) is not minorized, in which case
Q (x, uk−1, uk) starts out with the wrong value of −1. The bottom
graphs of Figs. 1–2 in logarithmic scale show the numerical noise
below the crossing point of uk−1(x) and fm, which the algorithm
BUQ in Fig. 3 practically eliminates.

Tables 2–10 present E values calculated with old and new reg-
ularization algorithms, rounded to the number of digits requested
from the parameter optimization algorithm. Usually at least one
more digit than displayed is correct in the results, but occasionally
the last digit of lower-precision result is rounded off incorrectly,
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Table 2
E for selected combinations of ‘‘external’’ parameters Fm and σx , point distributions, and regularization prescriptions (‘‘R.A.’’), α = 2.5, λ = 0.0001. 10−σx is the smallest
point separation parameter near the origin, and its use depends slightly on the algorithm specified in column ‘‘R.A.’’ Fm is the size parameter for the minorization function.
xm and xu are the matching point and the upper interval boundary, respectively; xm is constant, given by the condition u(xm) ≈ −π/2, while xu is an ‘‘internal’’ parameter
increased during parameter optimization. P is the number of significant digits after the comma; the adjacent column (s.) specifies the solver used (RK: Runge–Kutta, A:
adaptive variable order/variable step solver [25]).M is the maximum QLM iteration (either an ‘‘internal’’ parameter or fixed); D = uM,RHS(xm)− uM,LHS(xm). N is the number
of points on [0, xm] and [xm, xu]; for Runge–Kutta P ≈ O(N−4). For illustration, theM = 3 result (row 1) has converged to 5 digits less than the 4-th QLM iteration; large N is
an artifact of a conservativeM-increasing algorithm. Results for σx = 32 and 64 agree to all digits; in several casesM up to 12 has been tested and results agree withM = 4.

σx Fm R.A. xm xu P s. M N E

64 1.200 BU 1.5 12.62 20 RK 3 1490769 3.00040789861816370549

64 1.000 BU 1.5 12.87 20 RK 8 899178 3.00040789861816316882
64 1.001 BUQ 1.5 12.87 20 RK 8 897296
64 1.010 BU 1.5 12.87 20 RK 8 899178
64 1.050 BU 1.5 12.87 20 RK 8 894069
64 1.100 BU 1.5 12.87 20 RK 8 898783
64 1.200 BU 1.5 12.87 20 RK 4 899756
64 1.300 BUQ 1.5 12.87 20 RK 8 903483
64 1.500 BU 1.5 12.87 20 RK 8 899178
64 2.000 BU 1.5 12.87 20 RK 8 899427
64 8.000 BUQ 1.5 12.87 20 RK 8 905966
64 100.000 BU 1.5 12.87 20 RK 8 895609
64 1000.000 BU 1.5 39.00 20 RK 8 951646

32 1.300 BU 1.5 12.87 20 A 8 209083 3.00040789861816316882
64 1.300 BU 1.5 12.87 20 A 8 209083
64 1.300 BU 1.5 12.87 20 A 8 2090956

32 1.001 BUQ 1.5 14.21 24 RK 8 10505710 3.000407898618163168821759
32 1.300 BU 1.5 14.21 24 RK 6 10527752
32 1.300 BUQ 1.5 14.21 24 RK 8 10578156
Table 3
As Table 2, but α = 2.5, λ = 1. The old method AU exhibits a slight instability.

σx Fm R.A. xm xu P s. M N E

32 0.000 AU 1.8 15.83 20 RK 8 282137 4.31731168924736736599
32 0.000 AU 2.8 15.83 20 RK 8 282178 4.31731168924736736598

64 1.200 BU 3.0 16.08 20 RK 4 233691 4.31731168924736736599
64 1.300 BU 3.0 18.11 27 RK 8 13470653 4.317311689247367365989407606
64 1.300 BU 3.0 18.48 28 RK 8 23220709 4.3173116892473673659894076064
Table 4
As Table 2, but α = 2.5, λ = 1000.

σx Fm R.A. xm xu P s. M N E

64 1.200 BU 30.0 112.62 19 RK 4 469118 44.9554847880956299040
32 1.300 BUQ 30.0 117.17 23 RK 8 5175722 44.95548478809562990399132
64 1.300 BU 30.0 121.90 26 RK 8 25991492 44.95548478809562990399132464
Table 5
As Table 2, but α = 3.5, λ = 0.0001.

σx Fm R.A. xm xu P s. M N E

64 1.200 BU 2.0 13.66 20 RK 3 557943 3.00786463633627324667

64 1.200 BU 2.0 12.87 20 RK 4 316722 3.00786463633627296200
32 1.300 BUQ 2.0 14.21 24 RK 8 2810891 3.007864636336272961998877
64 1.300 BU 2.0 14.78 27 RK 8 18512572 3.007864636336272961998877131
Table 6
As Table 2, but α = 3.5, λ = 1.

σx Fm R.A. xm xu P s. M N E

64 1.200 BU 3.0 16.08 20 RK 4 233667 4.44294789891022795321
32 1.300 BUQ 3.0 17.41 24 RK 8 2063194 4.442947898910227953212778
64 1.300 BU 3.0 18.85 28 RK 8 23682661 4.4429478989102279532127782565
Table 7
As Table 2, but α = 3.5, λ = 1000.

σx Fm R.A. xm xu P s. M N E

64 1.200 BU 20.0 143.40 19 RK 3 2187263 26.1088452422553116909

64 1.200 BU 20.0 67.57 19 RK 4 360860 26.1088452422552341817
32 1.300 BUQ 20.0 70.30 23 RK 8 3062558 26.10884524225523418166949
64 1.300 BU 20.0 71.71 26 RK 8 19601431 26.10884524225523418166948949
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Table 8
As Table 2, but α = 7.0, λ = 0.0001.

σx Fm R.A. xm xu P s. M N E

64 1.200 BU 2.0 13.66 20 RK 4 671509 3.24626398251223449657
32 1.300 BUQ 2.0 14.78 24 RK 12 5929228 3.246263982512234496569367
Table 9
As Table 2, but α = 7.0, λ = 1.

σx Fm R.A. xm xu P s. M N E

64 1.200 BU 4.0 16.89 20 RK 4 576303 4.72801534446030414488
32 1.300 BUQ 4.0 18.28 24 RK 8 6615144 4.728015344460304144887804
Table 10
As Table 2, but α = 7.0, λ = 1000.

σx Fm R.A. xm xu P s. M N E

64 1.200 BU 8.0 33.78 19 RK 4 609853 10.8966840384220026627
32 1.300 BUQ 8.0 35.85 23 RK 8 6863006 10.89668403842200266271998
Fig. 1. uk(xi), k = 0, . . . , 8 for α = 3.5, λ = 1000, algorithm BU (uk−1 and uk
regularized, Q (xi, uk−1, uk) not regularized), Fm = 1.3; parameters optimized for
20 significant digits, converged E = 26.1088452422552341817. QLM iterations
k ≥ 4 are indistinguishable in the graphs; uk stabilize for xi > 0.005; here
xm = 20, xu = 67.57. Top: linear scale, bottom: xi, |uk(xi)| in logarithmic scale.
uk values are calculated by the ODE solver from regularized uk−1 and are not yet
regularized themselves, therefore they can undershoot the minorant. The initial
LangerWKB solution u0 is zero for xi < 0.12 due to lower computational precision.
‘‘u leading term’’ denotes fm(xi)/Fm; ‘‘minorant’’ denotes fm(xi). Displayed interval
contains about 5 × 104 integration points of the N/2 = 360 860 points on [0, xm],
drawn with i running in steps of N/200 except for i ≤ 11 where i step is 1.

which is entirely due to the error estimation algorithm and not to
the intrinsic precision of the method. The column P refers to the
number of converged digits behind the comma, not the number of
significant digits. Up to 29 significant digits precision is displayed;
Fig. 2. As in Fig. 1, but Fm = 8, an unrealistically large value. (Note that scale is
different than in Fig. 1.) Nevertheless the E value agrees to all digits with the value
quoted in Fig. 1. Wrong uk values with slope ≈ −1 persist on a larger interval, and
an additional QLM iteration is required for indistinguishability of uk .

this is rather close to the limit of the 128-bit arithmetic but easily
reached, as illustrated by a few values (Tables 3 and 6); 28 digits
are displayed in Tables 4, 5 and 7; the somewhat incomplete set of
results with more than 28 digits was only limited by the available
computer time.

Precision of the order of 20 digits in E is achieved with only
four QLM iterations, as already indicated on the limited number
of cases in the previous work [12]; this is even less than in
the QLM calculations of regular or Coulomb-like potentials using
equidistant integration points in Refs. [17,18].M = 3 is always too
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Fig. 3. As in Fig. 1, but algorithm BUQ (uk−1, uk and Q (x, uk−1, uk) regularized).
The E value is again identical to that of Fig. 1, and all QLM iterations uk(x) are
indistinguishable at this scale (while QLM iterations of Fig. 1 agree only for x >

0.005).

small (Tables 2, 5 and 7). The Langer WKB initial approximation
energy agrees with the exact E to only a few digits, therefore
each QLM iteration yields 4–5 digits in E for the spiked oscillator
potential. In view of this we usually fix M to typical values 4, 8,
12, . . . and perform separate computations using differentM , thus
eliminating one convergence parameter.

For all Tables 2–10 control runs with one of the ‘‘internal’’
parameters larger than usual were made. About half of the typical
scope of control runs in Fm and in the two methods BU and BUQ
is only presented in Table 2. The latter control runs demonstrate
the resilience of E to residual errors of uk(x) near the origin. Some
tables display control runs inM .

4.1. Comparison of algorithms

Older algorithms used in the previous work [12] employing the
inferior point distribution A are slow and unpredictable. Algorithm
A0 converges fast in some cases (small α or λ), and suffers
from arbitrariness of the parameter Ix. Algorithm Aq converges
uniformly overα, λ but extremely slowly (needs of the order of 105

points to reach a fewdigit precision). AlgorithmAU is only superior
to Aq for α = 2.5, λ = 0.0001; for α = 2.5, λ = 1 AU is only a
little better than Aq and fails at other α, λ.

New algorithms BUQ and BU using the improved point
distribution B require only about 103 points for 12 digit precision,
and converge uniformly over α, λ (and require about half as
many points as algorithm A0 where the latter converges at all).
Algorithm BUQ does not provide acceleration of (or better E
than) BU, but provides much better numerical solutions uk(x)
at small x (on the scale defined by xm) (see Figs. 1 and 3). For
comparison, the numerical method used in [9] (approximating
the second derivative with centered differences followed by
Richardson extrapolation) required about 80,000 points for 6
significant digits.

Like the old algorithm AU in Ref. [12], the results by new
algorithms BUQ and BU were once again checked against the
algorithm CUQ, which uses a simpler power-law point distribution
modeled after the u(x) leading term near the origin. As expected
CUQ is of a small advantage only at λ ≫ 1 and converges much
slower than BUQ at λ ≪ 1. At α = 2.5, λ = 0.0001 CUQ requires
N = 165 031 and 1600 s for 8 significant digits in E comparedwith
BU or BUQ, which require N = 510 and 5 s.

As anticipated, the choice of Fm is rather arbitrary; values in
even as unrealistic an interval as [0.00001, 100]have been checked
to give the same E values (Tables 2–10), except that with the
algorithm BU, the QLM iterations or the direct solution of u(x)
deviate appreciably from the correct solution, the more so the
more Fm deviates from 1 (Figs. 1–2), while with the algorithm
BUQ they are almost indistinguishable (Fig. 3). However, despite its
arbitrariness Fm becomes important when large enough; it should
be borne in mind that without minorization (or equivalently by
setting Fm = ∞), the integration does not succeed at all. The
‘‘external’’ parameter σx can also be safely set to a large number;
e.g. twice the number of digits in machine precision.

4.2. Summary

New algorithms BU and BUQ used with the Runge–Kutta
method work uniformly well for E for all checked α, λ combina-
tions, and BUQ in addition gives a surprisingly good solution u(x)
near origin. The parameter Fm can be conveniently put equal to,
say, 1.3, as its precise value is unimportant for E values, and like-
wise σx can be set to e.g. 64. In this sense the present results can be
obtained without a free parameter.

Algorithm BUQ provides both acceleration of the ODE solution
(reduction of the number of integration points for given precision
by moving them where they are needed) and better values of the
solution (a reduction of error by many orders of magnitude) near
the origin (in terms of the scale of the integration intervals [0, xm]

and [xm, xu]). This enabled the automation of the computations
by setting up tables of starting values of ‘‘internal’’ convergence
parameters M0,N0 and xu0 (a small multiple of xm). M0 and N0
vary very slowly across the α, λ space and do not depend on the
required precision. The parameters xm and xu vary in the α, λ
space but xm is determined by the overall scale of V via the Langer
WKB solution such that uWKB(xm) ≈ −π/2. Namely, this value is
attained by u(x) at the upper bound of the left-to-right integration
stability interval where the Jacobian

Jk(x) =
∂Q (x, uk−1(x), uk(x))

∂uk
= W sin 2uk−1(x) (9)

is negative.
The proposed regularization is stable and efficient for

Runge–Kutta but does not appear suitable for adaptive solvers,
usually of the combined Adams/BDF type, which operate with pre-
scribed accuracy. Standard adaptive solvers [25] usually fail well
below P = 20, even in 128-bit arithmetic. The precise reason
has not been investigated, but since they typically try to subdivide
point separation idefinitely, we assume this is because internal in-
termediate values suffer from the type of numerical noise treated
in our regularization algorithms. One way to approach this would
be to specify smaller precision requirements near the origin, but
that would introduce additional parameters in the regularization;
this may be the subject of another work. Inserting regularization



R. Krivec / Computer Physics Communications 183 (2012) 2601–2607 2607
code directly into adaptive solvers (unlike the Runge–Kutta solver
where no error estimates are performed and regularization can be
done a posteriori) may not make sense as error estimates [24] are
based on approximations to the Jacobian equation (9), which is sin-
gular at the origin, Jk(x) ≈ x−α/2, in addition to being subject to
numerical noise.

Computational times using an explicit fourth-order Runge–
Kutta method in quadruple (128-bit) precision are of the order of
10 min for 20 significant digits; no special attempt to optimize
the program, e.g. by pre-tabulating V , etc., has been made.
The complete times including ‘‘internal’’ parameter optimization
(primarily in N) are of the order of 1–2 h, as we always started
from conservative parameter values in order to perform redundant
checking and to determine theminimal required parameter values.
However, as the values of N and M in Tables 2–10 vary rather
slowly they can be safely interpolated and extrapolated in α, λ
space, performing parameter optimization only on some α values
and on λ values separated by several orders of magnitude.

4.3. Conclusion

The proposed numerical approach puts the numerical difficul-
ties of integrating theQLMequations for the spikedharmonic oscil-
lator under the control of a single ‘‘weak’’ regularization parameter
Fm that has negligible influence on E on a very large interval, but
is critical for the approach to work in the sense that removing the
corresponding regularization (or setting this parameter to infinity)
causes the integration to fail. The precise formof fm, i.e. the number
of expansion terms [13] included may be largely irrelevant for the
determination of E. Singularities other than power-law type may
be treatable in the same way. Selection of fm is facilitated by our
choice of solution representation, as merely omitting the tangent
function usually makes it a minorant on the entire interval. Our re-
sults cover a rectangular region of the α, λ space, which includes
α, λ combinations published previously.

In addition to absolutely stable E values, we obtained an
unusually stable and smooth form of the solution near the origin,
which may turn out to be sufficiently accurate to calculate
expectation values. We plan to test the need for improvements
of the wave function near the origin by combining the present
numerical approach with the expansions evaluated analytically
from the 1st QLM iteration [13].
The results were made possible by a simple explicit formula for
the nonuniform integration point distribution which depends on
the coefficients of the spike, λ/rα . This point distribution bridges
the small scale of the spike and the scale of the harmonic term. A
simple Runge–Kutta solver was used in this work. The integration
parameters like the number of integration points vary very slowly
across α, λ, which enabled a practically automatic calculation of
energies up to the level of just a few digits below the machine
precision. Moreover, the relaxation of Fm towards large values can
be used as an estimate of the influence of the solution errors in
a small region near origin on the results. The required number of
QLM iterations for 20 digit precision (four) is smaller than in the
calculations of regular potentials using equidistant points [17,18].
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