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Abstract. We study the high-energy behaviour of double photoionization and
of the ionization accompanied by excitation of the states n1S and n3S of the H�

ion, helium atom, and light helium-like ions. We show that the high-energy
nonrelativistic limit of the ‘‘ionizationþ excitation’’ to the single-ionization
cross section ratio is still valid for the photon energies, corresponding to the
relativistic energies of the outgoing electron. The same applies to the double
photoionization of the triplet states. The situation for the double photoioniza-
tion of singlet states differs due to the quasifree mechanism. All these ioniza-
tion ratios are calculated by using the high-precision locally correct wave
functions for the bound electrons. The importance of using locally correct
functions is emphasized.

1 Introduction

The analysis of the experimental data on ionization and excitation processes of
complicated systems provides the information on their structures. The largest
values of the cross sections are achieved in atomic heavy ion collisions. However,
in these cases the targets and projectiles are many-body systems. Thus, it is not
easy to clarify the mechanisms of the corresponding processes. From this point of
view the investigation of photoionization of the two-electron systems, i.e., of the
negative hydrogen ion H�, the helium atom, and helium-like ions is more instruc-
tive, since they are relatively simple three-body systems.

In order to calculate the cross sections one needs the three-body wave functions
of both the initial and the final states. It is reasonable to consider the high-energy



limits of the processes since at large values of the photon energy ! the interactions
of the fast outgoing electrons with the nucleus and between themselves can be
treated perturbatively. This does not mean that one can always use the plane waves
for the description of the fast electrons. However, several lowest-order terms deter-
mine the lowest-order term of the !�1 expansion of the cross sections. Thus, the
investigation of the high-energy ionization provides information about the initial-
state wave function Cðr1; r2Þ.

At photon energies exceeding 6 keV, ionization accompanied by radiation of
the photon, i.e., the Compton scattering is known to provide the largest contribu-
tion as compared to the other processes, in which one or both electrons are elimi-
nated from the helium atom. However, it is possible to separate experimentally the
contributions to the two-electron ionization and ionization with excitation caused
by either photon absorption (photoionization) or by photon scattering. In these
processes the wave function Cðr1; r2Þ is probed in different regions of the distances
r1 and r2. The cross section of the Compton scattering is determined by the kine-
matical region, in which the process on the free electrons is allowed. Thus, the
distances r1;2 � rb, with rb being the size of the bound state dominating in the
process. Photoionization with excitation is not allowed for free electrons. Thus, one
of the electrons should transfer the large momentum to the nucleus. This requires
one of the distances r1 or r2 to be small and therefore the function Cð0; rÞ at r � rb
is probed [1]. The same refers to the double photoionization at nonrelativistic
energies of the outgoing electrons. In the relativistic case there is an additional
contribution due to the quasifree mechanism (QFM) [2–4], in which the electrons
exchange the large momentum, transferring only the small momentum q � r�1

b to
the nucleus. This probes the wave function at r1;2 � rb, jr1 � r2j ! 0.

The motion of the initial-state electrons at distances of the order rb can be treated
in the nonrelativistic approximation if the averaged velocities are small enough,

ð�ZÞ2

n2
� 1; ð1Þ

with Z denoting the charge of the nucleus, � ¼ 1
137

being the fine-structure con-
stant, and n being the principal quantum number. If the energies ! of the photons
are as large as the rest energy of the electron, i.e., ! � m (we use the system of
units �h ¼ c ¼ 1, and the electron mass is kept as m), momentum q transferred to
the nucleus in the photoionization process becomes of the order of the electron
mass m. Thus, the wave function Cðr1 � q�1; r2 � rbÞ requires relativistic treat-
ment. The main relativistic effects can be accounted for by the Furry-Sommerfeld-
Maue (FSM) wave functions [5], which have the form of a differential operator
acting on the nonrelativistic wave function. The higher-order relativistic correc-
tions are of the order ð�Z=nÞ2

. In a similar way the FSM function describes the
configuration r1;2 � rb, jr1 � r2j . 1=m with the accuracy �2. Thus, for the ade-
quate description of the photoionization processes, it is sufficient to have a good
nonrelativistic initial-state wave function.

The final-state wave function can be presented as the power series in the
Sommerfeld parameter

�Z ¼ E1�Z

p1

ð2Þ
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of the interaction of the fast outgoing electron with energy E1 ¼ ðp2
1 þ m2Þ1=2

and
the three-dimensional momentum p1 with the nucleus.

This parameter is of the order �Z at ! � m. At these values of the photon
energies the first-order interaction between the fast electron and the nucleus con-
tributes to the lowest-order expansion of the amplitude [5]. The higher-order
corrections are of order �Z � �Z. In contrast to the nonrelativistic case, one
cannot carry out the expansion in powers of the ratio k=p (k stands for the photon
momentum). Thus, there is no dipole approximation in the relativistic case.

In the amplitudes of the ‘‘ionization with excitation’’ processes one can sepa-
rate the amplitude of the single ionization as a factor. The accuracy of such a
presentation is ð�ZÞ2

. This is because the ionization with excitation can be viewed
as a kind of a two-step process, in which single ionization is followed by the shake-
off of the second electron, in the whole region !� I with I denoting the binding
energy. Thus, the ratios of the cross sections of these processes to the cross section
of single photoionization are determined by the properties of the initial state only.
The corrections of the order �Z cancel out in the shake-off ratios. In this way these
ratios can be obtained with the accuracy ð�ZÞ2

.
The same applies to the double ionization of the singlet states, when we con-

sider the photon energies !� m, corresponding to the nonrelativistic outgoing
electrons. At ! � m an alternative quasifree mechanism (QFM) provides the con-
tribution of the same order as the shake-off. In the QFM large momentum qe � m
is exchanged between the outgoing electrons if ! � m. Relativistic effects in the
initial state are described by the FSM wave function Cðr1; r2Þ at jr1 � r2j � 1=qe,
thus being expressed through the nonrelativistic wave function. In this case the
structures of the amplitudes of the single and double ionization processes are
different. Therefore the double-to-single ionization ratio of singlet states depends
on the ratio !=m in the region ! � m. It reaches a new asymptotic value in the limit
!� m [6]. The corrections of the order �Z do not cancel out in the QFM part of the
double-to-single ionization ratio. Thus, we obtain the double-to-single ionization
ratios of the singlet states with the accuracy �Z.

In this paper we present the analysis and the calculations of the high-energy
limits of the double photoionization and of the ionization with excitation cross
sections for the ground and excited n1S and n3S states of two-electron systems.
We consider the H� ion, the helium atom, and the helium-like ions. In the latter
case we investigate the cross-sections dependence upon the nuclear charge. We use
the approach, traditional for the double photoionization studies, of presenting the
double-to-single cross section ratios

RðkÞ
n ð!Þ ¼ �

ðkÞþþ
n ð!Þ
�
ðkÞþ
n ð!Þ

; RðkÞ�
n ð!Þ ¼ �

ðkÞþ�
n ð!Þ
�
ðkÞþ
n ð!Þ

: ð3Þ

Here the notations þ;þþ;þ� correspond to single ionization, double ionization,
and ionization with excitation, respectively. The cross sections are summed over all
the final states belonging to the discrete spectrum. The upper index ðkÞ denotes the
excited nkS initial states with n ¼ k ¼ 1 for the ground state. Note that in the
existing experiments somewhat different parameters are detected, with the cross

sections �
ðkÞþþ
n and �

ðkÞþ�
n related to the total cross section of the formation of the
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singly charged ion �
ðkÞþ
n þ �

ðkÞþ�
n . The expression ‘‘high-energy limit’’ means that

the photon energy exceeds strongly the energy of the electron at rest, i.e.,

!� m: ð4Þ
In this limit we calculate the leading term of the expansion of the ratios R

ðkÞ
n

and R
ðkÞ�
n in powers of !�1. In some cases the ‘‘high-energy nonrelativistic limit’’

can be just expanded to the relativistic region of energies of the outgoing
electrons.

As shown above, all what we need is a nonrelativistic wave function of the
initial state, which would describe the two-electron system in the configurations
where one of the electron-nucleus distances r1;2 or the electron-electron distance
jr1 � r2j is small. In these cases the behaviour of the solution of the Schr€oodinger
equation is described by the Kato cusp conditions [7]. It was shown in ref. [8] that
even the energy of the ground state of helium, i.e., the characteristic, which is
determined mainly by the distances r1;2 � rb, jr1 � r2j � rb can be obtained with
much better accuracy if the wave function satisfies the Kato conditions. It was
shown in refs. [9–11] that the violation of these conditions may cause erroneous
results in the high-energy photoionization problem.

We use the initial-state wave functions, obtained by the correlation function
hyperspherical harmonic method (CFHHM) in refs. [12–14]. The functions
describe the ground states of the two-electron systems, as well as the excited nkS
states.

In Sect. 2 we analyze the shake off and quasifree mechanisms in detail. We
discuss the choice of the initial-state wave function in Sect. 3. We present our
numerical results for the singlet and triplet states in Sects. 4 and 5, providing
the summary in Sect. 6.

2 Shake-Off and Quasifree Mechanisms

The single-photoionization and the shake-off-mechanism contributions to the ioni-
zation with excitation and to double ionization can be considered in a similar way.
The general expression for the amplitudes is F�ð!Þ ¼ F0ð!ÞJ� with F0 being the
amplitude of the single ionization process and � denoting the state of the secondary
electron, while [1]

J� ¼
ð
Cð0; rÞ’�ðrÞ d3r; ð5Þ

with ’� being the electron wave function in the Coulomb field of the residual
nucleus. The ground state is labeled by � ¼ 1. Thus, we obtain

R�n ¼
X
b

jJbj2

jJ1j2
; Rþ

n ¼
X
c

jJcj2

jJ1j2
; ð6Þ

with b and c standing for the final bound and continuum states.
Actually, the wave function Cðr1 � q�1; r2 � rbÞ enters the integrand on the

right-hand side of Eq. (5). The momentum q transferred to the nucleus is of the
order m in the relativistic case. The relativistic wave function Cðr1 � q�1; r2 � rbÞ
can be expressed in terms of the nonrelativistic one by using the lowest-order
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iteration of the Bethe-Salpeter equation

C ¼ C0 þ GVC ð7Þ
with V standing for the interactions inside the system, while G is the relativistic
Green function of two free electrons. The higher-order iterations provide the terms
of higher orders of the expansion in powers of p�2

1 . This equation connects the
wave function Cðr1 � p�1

1 ; r2 � rbÞ with the wave function Cðr1 � rb; r2 � rbÞ.
This becomes quite explicit in the momentum space, where

CFðp1;p2Þ ¼
8��Z

p4
1

�
1 þ ðap1Þ

2m

�ð
d3f

ð2�Þ3
CFðf; p2Þ ð8Þ

with CFðp1; p2Þ being the Fourier transform of the function Cðr1; r2Þ, while a are
the standard Dirac matrices. The integral on the right-hand side of Eq. (8) is
saturated by momenta f of the order of the binding momentum of the atom. The
latter is of the order m�Z. Thus, the nonrelativistic function CFðf; p2Þ can be

employed on the right-hand side of Eq. (8) with the accuracy ð�ZÞ2
. Hence,

Eq. (8) presents the relativistic wave function in terms of the nonrelativistic one.
All the relativistic effects are contained in the factor GV on the right-hand sides of
Eqs. (7) and (8). Note that Eq. (8) is just the representation of the FSM function of
the relative motion of the electrons.

Thus the ratios R
ðkÞ
n and R

ðkÞ�
n determined by Eq. (3) are expressed by Eq. (6) in

the whole region !� I and do not depend on !, although the cross sections in the
numerators and denominators depend on the parameter !=m. This becomes impor-
tant in the region !Zm. The situation differs for the double photoionization of the
singlet states due to the QFM contribution.

The main point of QFM is that two free electrons at rest can be moved to
continuum by interaction with a photon. This contrasts with the single photoioni-
zation which is not allowed for free electrons. The cross section of the QFM
contribution is thus proportional to the probability for the two electrons composing
a bound state with the principal quantum number n to come to the same point,

Cn ¼
ð
jCnðr; rÞj2 d3r ¼

ð
j ~CCnðR; 0Þj2 d3R; ð9Þ

expressed in terms of the nonrelativistic function ~CCnðR; �Þ ¼ Cnðr1; r2Þ with
R ¼ ðr1 þ r2Þ=2, � ¼ r1 � r2. The FSM terms presented by Eq. (8) are included
into the cross section of the free process �þþ

0 ð!Þ and QFM contributes

�
ð1Þþþ
QFM ð!Þ ¼ Cn�

þþ
0 ð!Þ; ð10Þ

with Cn defined by Eq. (9).
Thus, the double-to-single ionization ratio R

ð1Þ
n is the sum of the shake-off

contribution given by Eq. (6) and the QFM one,

ðRð1Þ
n ÞQFM ¼ Cn�

þþ
0 ð!Þ

�
ð1Þþ
n ð!Þ

: ð11Þ

In contrast to the shake-off term (6), the QFM ratio (11) depends on the parameter
!=m. The contribution (11) is !=m times smaller than that of the shake-off. The
two terms are of the same order at ! � m. Their sum reaches a new asymptotic
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value at !� m [6]. The QFM for the triplet states is quenched by a factor of the
order ðm�Z=!Þ2

, reflecting a small probability for the two bound electrons to be
separated by a small distance 1=! in a space-asymmetric state.

All the ratios considered above drop as Z�2 at large Z. Note that the values of Z
are limited by the condition (1) which ensures that the relativistic effects at the
distances r � rb are small.

3 The Wave Function of the Initial State

The parameters of the double-ionization processes are very sensitive to the choice
of the approximate initial-state wave function  appr. Even for the best studied case
of the helium atom the discrepancy of the characteristics of the double photoioniza-
tion provided by different types of functions exceeds strongly the discrepancy of the
values of the ground-state binding energy. For example, the Hartree-Fock value of
R
ð1Þ
1 underestimates the experimental one by a factor of 3 [15]. One needs a varia-

tional wave function with a large number of parameters to reproduce the experi-
mental data. The value also differs by several times for different functions [16]. The
uncertainties are even larger for the excited states. As we have seen, the values of
the ratios are determined by the wave function at r1 ! 0 and jr1 � r2j ! 0. The
dependence of the wave functions of the initial state (which can be either the ground
or the excited state) on the components of the vectors r1 and q is non-analytic at
these points due to the singularities of the Coulomb interactions

VeN ¼ ��Z
r1

and Vee ¼
�

jr1 � r2j
: ð12Þ

The behaviour of the wave functions near these points is determined by the Kato
conditions [7]. For the ground state

r0

@Cðr1; r2Þ
@r1

¼ �ZCðr1; r2Þ ð13Þ

at r1 ! 0 and

r0

@ ~CCðR; �Þ
@�

¼ 1

2
~CCðR; �Þ ð14Þ

at � ¼ jr1 � r2j ! 0. Here r0 is the Bohr radius. Eqs. (13) and (14) can be viewed
as the conditions of the cancellation of the singularities in the Schr€oodinger equation
for the helium atom at r1 ! 0 and at �! 0.

The calculation of the amplitude of the double ionization with the ‘‘accurate’’
approximate wave functions which, however, do not satisfy the Kato cusp condi-
tions, may lead to controversial results. For example, it was noted recently in ref.
[11] that the coefficient C1 ¼ C, being expressed by Eq. (9) if the amplitude is
evaluated by using the Bethe-Salpeter equation (7), becomes rather

C ¼
ð ����2r0

@ ~CCðR; � ¼ 0Þ
@�

����
2

d3R

in the original formalism of quantum mechanics. The two values coincide for
the exact wave function C due to Eq. (14). However, they may differ for the
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approximate functions. Somewhat more dramatical examples of the erroneous re-
sults, which can originate from the violation of the Kato conditions, are analyzed in
refs. [9] and [10].

However, even if the short-distance behaviour is treated properly, the various
approximate wave functions still provide numbers which differ rather strongly
[10]. This increases the necessity to have a proper wave function of the initial
state.

We use the functions obtained in refs. [12–14] for the description of the initial
state, which can be either the ground or an excited state of the system. They were
found by using the correlation function hyperspherical harmonic method. The
initial wave function is decomposed as

C ¼ e fF; ð15Þ
where f is the correlation function describing the singularities of C, and F is a
smooth part which can be expanded in a fast converging hyperspherical harmonic
(HH) expansion. The function f depends on the interparticle distances, what is
necessary and sufficient to take into account analytically the two- and three-body
Coulomb singularities (cusps) in the wave function, i.e., it satisfies the Kato cusp
conditions [7] exactly. Here C is obtained by direct solution of the three-body
Schr€oodinger equation, which guarantees local correctness [12–14] of C because
the convergence of C across the configurations space is uniform.

The accuracy of the CFHHM wave function has previously been studied in
ref. [12] for the ground and the 21S excited state of the helium atom and for the
ground state of the positronium ion (Ps�). In ref. [12], the correlation function f lin-
ear in interparticle coordinates was used. However, a linear f satisfying all cusp
conditions, including the repulsive one, has a wrong asymptotic behaviour
which becomes critical for spatially extended systems [8]. Indeed, for the ground
state of the helium atom, the inclusion of all cusp conditions in f yielded better
D ¼ HC=EC� 1 than if the repulsive cusp condition was omitted, while for
the 21S excited state of helium and for the ground state of Ps�, the D values were
much better at distances of a few a.u. if the repulsive cusp condition was omitted.
As expected, the behaviour of C near the coalescence points was always im-
proved [12] by the inclusion of the cusp conditions, by up to 6 orders of magnitude
for the 21S state of the helium atom, compared with omitting the repulsive cusp
condition.

The necessity of a proper description of local properties of the wave function
also in variational calculations was stressed in ref. [17] where a variational prin-
ciple for the minimization of the local energy � ¼ HC=C� E instead of E was
developed and realized within the quantum Monte Carlo method. The two best
calculations of the helium atom ground state gave E with errors of 0.004 a.u. and
2� 10�6 a.u., respectively. The corresponding standard deviations of the local
energy, �, were 0.14 a.u. and 0.001 a.u., respectively. This shows that the error in
energy was still decreasing faster than �. An example of a CFHHM calculation
with the same precision 2� 10�6 a.u. in energy is the CFHHM calculation of the
21S state with Km ¼ 32 [8]. Here Km is the maximum value of the global angular
momentum used in the hyperspherical expansion of the smooth factor �. The
measure of the local accuracy analogous and comparable to �, the expectation
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value hj�ji ¼ EhjDji was 0.0023 a.u., which is of the same order of magnitude as
0.001 a.u. [17], indicating that the proposed variational principle in this reference,
while giving better accuracy of the wave function than the ordinary Ritz variational
approach, is roughly equivalent in precision to the CFHHM approach using rela-
tively small Km. Namely, the CFHHM calculation in ref. [8] was done for Km up to
56, where hj�ji fell to 0.0003 a.u. and E improved by two digits. For the helium
atom, the particles f1; 2; 3g correspond to fe; e; �g, where � denotes the 4Heþþ.
For Ps�, the particles f1; 2; 3g correspond to fe; e; eþg, where eþ denotes the
positron. The Jacobi vectors, the first connecting the k-th, or ij-th, pair, and the
second connecting the center of mass of the k-th pair with the third particle, are
denoted by rk and sk, respectively. The angle between rk and sk is denoted by �k.
The odd-man out notation and the explicit pair notation for relative coordinates are
used interchangeably. Thus, r1 ¼ re� in the case of the helium atom.

The general nonlinear form of f is [18]

f ¼
X3

k¼1

½ak þ ðbk � akÞ exp½�rk=ðnkrkÞ��rk; ð16Þ

where rk are approximate values of the expectation values of interparticle dis-
tances, and nk are free parameters which are optimized for a faster convergence
of the method. Putting bk ¼ ZiZjmimj=ðmi þ mjÞ, where mi and Zi are particle
masses and charges, respectively, assures that the Kato cusp conditions are satis-
fied exactly.

Only a nonlinear dependence of f on interparticle distances assures that f can
have a proper asymptotic behaviour and can incorporate all cusp conditions. In the
Ps� calculation [19] employing nonlinear f the convergence of the method was
improved by orders of magnitude compared to the calculation employing a linear f .
For the helium atom states [8] it is, however, enough to employ the linear correla-
tion function obtained from Eq. (16) with ak ¼ bk; k ¼ 1; 2; 3, and the helium ion
mass of 7294.2996 a.u.

The highly accurate wave function of the He atom in its ground and several
lowest excited n1S states with n ¼ 2; . . . ; 5 can be used not only in calculations of
some ground-state observable characteristics, but also to determine cross sections
of atomic processes. Such are the high-energy photoionization cross sections,
which can be expressed solely via the initial-state wave functions. For example,
recently the cross sections for the two-electron photoionization and photoionization
with excitation of the He atom and helium-like ions in the limit of very high photon
energy ! were calculated [20, 21]. It was demonstrated there that the two-electron
photoionization cross section and photoionization with excitation and their ratio to
the one-electron photoionization cross section depend strongly upon the quality of
the initial-state wave function. Another interesting process occurs if the initial state
is excited, in which case photoionization with de-excitation can take place.

4 Results for the Singlet States

We start with the results for the total values of the double-to-single ionization ratios
R
ð1Þ
n . The largest value is obtained for n ¼ 1 with R

ð1Þ
1 ¼ 0:0837 for the ionization
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of the negative ion of hydrogen H�. For the ground state of helium we find
R
ð1Þ
1 ¼ 0:0762. For large Z the ratio is expected to drop as Z�2. However, for the

ground states of the light helium-like ions the ratio drops slower with Z. The
numerical results are presented in Table 1.

Now we follow the relative role of the QF mechanism in the ionization of n1S
states as a function of the nuclear charge Z. Since the contributions of both the
shake-off and QF mechanisms drop as Z�2 at large Z, their relative contribution
does not depend on Z in the limit Z � 1. The role of the QF mechanism is
determined by the function 	ðn;ZÞ defined in such a way that

Rð1Þ
n ¼ Rð1Þ

n;s:o: 	 	ðn; ZÞ; ð17Þ

where R
ð1Þ
n;s:o: is the shake-off contribution, for the limiting values of R

ð1Þ
n . We

expect, thus, the function 	 to depend smoothly on Z with Z-dependence ceasing
at large Z. For the ground states of H� and He the values of 	 are 	ð1; 1Þ ¼ 5:22
and 	ð1; 2Þ ¼ 4:63. For the helium-like ions 	ð1; 2Þ increases slowly with the

Table 1. Ratio Rð1Þ
n as function of Z and n

n 1 2 3 4 5

Z R
ð1Þ
1 R

ð1Þ
2 R

ð1Þ
3 R

ð1Þ
4 R

ð1Þ
5

1 0.08366

2 0.07615 0.01569 0.00559 0.00247 0.00127

3 0.04347 0.01844 0.01023 0.00627 0.00402

4 0.02733 0.01492 0.01001 0.00741 0.00563

5 0.01864 0.01148 0.00845 0.00692 0.00579

6 0.01349 0.00890 0.00690 0.00600 0.00532

7 0.01020 0.00703 0.00564 0.00510 0.00469

8 0.00798 0.00567 0.00465 0.00431 0.00408

9 0.00641 0.00466 0.00388 0.00367 0.00354

10 0.00526 0.00389 0.00328 0.00315 0.00308

Table 2. Factors 	ðn; ZÞ as functions of Z and n

n 1 2 3 4 5

Z 	ðn; ZÞ

1 5.222

2 4.632 1.737 1.515 1.462 1.444

3 5.081 1.531 1.232 1.148 1.115

4 5.380 1.500 1.180 1.095 1.062

5 5.583 1.495 1.161 1.077 1.046

6 5.727 1.497 1.153 1.069 1.039

7 5.835 1.500 1.148 1.064 1.035

8 5.919 1.503 1.145 1.062 1.032
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high Z limit being 	 � 6:3. However, for Z > 8 the neglected corrections of the
order �Z may appear to be more important than the change of the function
	ð1;ZÞ with Z.

The results for the function 	ðn; ZÞ are presented in Table 2.
In Table 5 we show the results for ‘‘ionization with excitation’’ for several

lowest values of n and Z.

5 Results for the Triplet States

In the case of the singlet states the single photoionization was the main channel
of the process. In contrast, the excited ions are created with the largest probability
in the ionization of the triplet states. This is because the photon interacts mostly
with the inner electron and thus it is most probable to find the ns-excited ion in the
final state. For example, in the ionization of the 23S state of the atom of helium, the
probabilities to find the final-state electron in the states 1s and 3s are, correspond-
ingly, 23 and 4.5 times smaller than to obtain it in the state 2s. The double ioniza-
tion provides a still smaller fraction 3:3 	 10�3 of the main channel.

In Table 3 we present the results for the limiting value of the cross-section
ratio

~RRð3Þ
n ¼ �

ð3Þþþ
n

�
ð3Þþ
n þ �

ð3Þþ�
n

; ð18Þ

where �
ð3Þþ�
n is the sum of the ‘‘ionization with excitation’’ cross section over the

final states of the discrete spectrum. The ratio ~RR
ð3Þ
n describes the fraction of the

double ionization in the inclusive ionization processes. The data placed in Table 3
show the dependence of this ratio on the value of n and on the charge of the
helium-like ions. The values for the ratios R

ð3Þ�
n , defined by Eq. (3), are given in

Table 4. The distributions a
ð3Þ
n� ¼ jJ�j2 over the final excited states, where J� is

defined by Eq. (5), are shown in Table 5.

Table 3. ~RRð3Þ
n ðZÞ � 103 values for the n3S states in the helium isoelectronic

sequence

n 2 3 4 5

Z ~RR
ð3Þ
2

~RR
ð3Þ
3

~RR
ð3Þ
4

~RR
ð3Þ
5

2 3.116 1.965 1.043 0.573

3 3.040 3.662 3.076 2.332

4 2.222 3.420 3.526 3.198

5 1.615 2.811 3.218 3.211

6 1.209 2.262 2.755 2.911

7 0.933 1.830 2.321 2.546

8 0.739 1.500 1.957 2.204

9 0.599 1.247 1.660 1.906

10 0.495 1.050 1.421 1.655
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6 Summary

We calculated the relativistic high-energy limit of the ‘‘ionizationþ excitation’’ to
single ionization and of double-to-single ionization ratios. We obtained also the
results for the distribution between the final states in ‘‘ionization of excitation’’
processes. The calculations are carried out for the atoms of helium, for helium-like
ions, and for the H� negative ion. The ground states as well as the excited n1S and
n3S states are considered as the initial states.

We showed that, although the corresponding cross sections depend on the
photon energy ! strongly in the region ! � m, the ‘‘ionization with excitation’’
to the single-ionization cross section ratios do not. The same refers to the double-
to-single cross section ratios of the triplet states. Thus the results of our earlier
calculations of these ratios in the high-energy non-relativistic limit [20–22] can be
expanded to the whole region !� I.

These calculations as well as the calculations of the double-to-single ratio of
the singlet states, where the specific quasifree mechanism is very important, were
carried out by using very precise locally correct initial-state wave functions
[12–14]. The proper description of the quasifree mechanism relies strongly on these

Table 4. Rð3Þ�
n ðZÞ values for the n3S states in the helium isoelectronic sequence

n 2 3 4 5

Z R
ð3Þ�
2 R

ð3Þ�
3 R

ð3Þ�
4 R

ð3Þ�
5

2 28.53 113.79 291.18 595.76

3 16.83 62.19 154.06 309.04

4 13.58 48.70 118.96 236.66

5 12.06 42.63 103.37 204.73

6 11.20 39.20 94.63 186.89

7 10.63 37.00 89.05 175.55

8 10.24 35.47 85.19 167.71

9 9.95 34.35 82.36 161.97

10 9.72 33.49 80.19 157.60

Table 5. an� values for the lowest n3S states of He� (Z ¼ 2)

n 2 3 4 5

�

1 0.04458 0.01118 0.00436 0.00214

2 1.033 0.07593 0.02170 0.00934

3 0.2287 0.5211 0.1154 0.04498

4 0.00583 0.6719 0.09669 0.05350

5 0.00179 0.00073 0.9702 0.00758

6 0.00080 0.00046 0.06774 0.8569

7 0.00044 0.00033 0.00011 0.2967

8 0.00027 0.00021 0.00005 0.00353

9 0.00018 0.00014 0.00005 0.00001

High-Energy Two-Electron Photoabsorption as a Three-Body Problem 13



properties of the wave functions. For example, if the function Cðr; rÞ involved in the
calculation of the QF mechanism is approximated by a product of the Coulomb
functions, the contribution appears to be overestimated by a factor of 2.

The expansion of the approach to the heavier helium-like ions requires account
of the relativistic corrections of higher order to the wave function of the initial state
and more precise treatment of the wave function of the final state.
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