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Abstract

Solutions obtained by the quasilinearization method (QLM) are compared with the WKB solutions. Expansion ofpth
QLM iterate in powers of̄h reproduces the structure of the WKB series generating an infinite number of the WKB term
the first 2p terms reproduced exactly. The QLM quantization condition leads to exact energies for the Pöschl–Teller, H
Hylleraas, Morse, Eckart potentials, etc. For other, more complicated potentials the first QLM iterate, given by the
analytic expression, is extremely accurate. The iterates converge very fast. The sixth iterate of the energy for the an
oscillator and for the two-body Coulomb–Dirac equation has an accuracy of 20 significant figures.
 2005 Elsevier B.V. All rights reserved.
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The quasilinearization method (QLM) and its iter
tions were constructed[1] as a generalization of th
Newton–Raphson method[2] for the nonlinear dif-
ferential equations to yield rapid quadratic and of
monotonic convergence to the exact solution. It d
not rely on the existence of any kind of smallness
rameter. The derivation of the WKB solution starts
casting the Schrödinger equation into nonlinear R
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cati form and solving that equation by expansion
powers ofh̄. It is interesting instead to solve this no
linear equation with the help of the quasilinearizat
method (QLM) whose application to physical pro
lems are discussed in works[3–6] and compare with
the WKB results.

The goal of this work is to point out that QLM ite
ates which are expressible in a closed integral fo
provide better approximation than the usual WK
We show that thepth QLM iterate when expanded i
powers ofh̄ reproduces the structure of the WKB s
ries generating an infinite number of the WKB term
.
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with the first 2p terms reproduced exactly. A simila
number of the next terms are reproduced with
proximately correct coefficients. We prove also th
the exact quantization condition in any QLM appro
imation, including the first, leads to exact energ
for many known physical potentials used in mole
ular and nuclear physics such as the Pöschl–Te
Hulthén, Hylleraas, Morse, Eckart, etc. In the gene
case of arbitrary potentials that do not have a s
ple analytic structure, we illustrate that both the wa
functions and energies are very well reproduced by
first QLM iterate and show significant improveme
over those obtained by the usual WKB approximati
If the initial QLM guess is properly chosen, the wa
function in the first QLM iteration, unlike the WKB
wave function, is free of unphysical turning point si
gularities. Since the first QLM iteration is given by a
analytic expression[3–6], it allows one to analytically
estimate the role of different parameters and the in
ence of their variation on different characteristics
a quantum system. The next iterates display very
quadratic convergence so that accuracy of energies
tained after a few iterations is extremely high, reach
up to 20 significant figures for the sixth iterate as
show on the examples of the anharmonic oscillator
the two-body Dirac equation with the Coulomb pote
tial.

The usual WKB substitution

χ(r) = C exp

(
λ

r∫
y(r ′) dr ′

)

converts the radial Schrödinger equation to nonlin
Riccati form

(1)
dy(z)

dz
+ (

k2(z) + y2(z)
) = 0,

where k2(z) = E − V − l(l + 1)/z2, λ2 = 2m/h̄2,
z = λr . The proper bound state boundary condit
for potentials falling off atz � z0 � ∞ is y(z) = const
at z � z0. This means thaty′(z0) = 0, so that Eq.(1)
at z � z0 reduces tok(z0)

2 + y2(z0) = 0 or y(z0) =
±ik(z0). We choose here to define the boundary c
dition with the plus sign, so thaty(z0) = ik(z0).

The quasilinearization[3,4,6]of this equation gives
a set of recurrence differential equations

(2)
dyp(z)

dz
= y2

p−1(z) − 2yp(z)yp−1(z) − k2(z)
with the boundary conditionyp(z0) = ik(z0). The an-
alytic solution[6] of these equations expresses thepth
iterateyp(z) in terms of the previous iterate:

yp(z) = fp−1(z)

−
z∫

z0

ds
dfp−1(s)

ds
exp

[
−2

z∫
s

yp−1(t) dt

]
,

(3)fp−1(z) = y2
p−1(z) − k2(z)

2yp−1(z)
.

Indeed, differentiation of both parts of Eq.(3) leads
immediately to Eq.(2) which proves thatyp(z) is a
solution of this equation. The boundary condition
obviously satisfied automatically.

The successive integrations by parts of Eq.(3)
lead[6] to the series

(4)yp(z) =
∞∑

n=0

L(p)
n (z)

with L(p)
n (z) given by recursion relation

L(p)
n (z) = 1

2yp−1(z)

d(−L(p)

n−1(z))

dz
,

L(p)

0 (z) = fp−1(z).

Sinced/dz = g d/dr , g = λ−1 = h̄/
√

2m, Eq.(4) rep-
resents the expansion of thepth QLM iterate in pow-
ers ofg, that is in powers of̄h, which one can compar
with the WKB series. For the zeroth iteratey0(z) it
seems natural to choose the zeroth WKB approxi
tion, that is to sety0(z) = ik(z), which in addition au-
tomatically satisfies the boundary condition. Howev
one has to be aware that this choice has unphys
turning point singularities. According to the existen
theorem for linear differential equations[7], if yp−1(z)

in Eq. (2) is a discontinuous function ofz in a certain
interval, thenyp(z) or its derivatives may also be di
continuous functions in this interval, so consequen
the turning point singularities ofy0(z) may propagate
to the next iterates.

Eq.(3) gives an especially simple expression[6] for
the first QLM iterate

y1(z) = ik(z) − i

z∫
z0

ds k′(s)exp

[
−2i

z∫
s

k(t) dt

]
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which thus is expressible in a closed integral for
This expression takes into account, though appr
mately, an infinite number of the WKB terms corr
sponding to higher powers of̄h, as will be shown in
the next section. In view of this it is a better appro
mation than the usual WKB.

To obtain the WKB series one has to expand
solutiony of the Riccati equation(1) in powers ofh̄.
This is easy to do by looking fory in the form of a
series and equating terms of identical powers ofg,

y =
∞∑

m=0

gmYm,

(5)Ym = − 1

2Y0

(
Y ′

m−1 +
m−1∑
k=1

Yk Ym−k

)
.

The derivatives in this and subsequent expressions
in the variabler . The zeroth WKB approximationY0
is given byY0 = ik. The comparison of expansion
the first QLM iterate in powers of̄h and the WKB
series was originally performed in[6]. There it was
shown that the expansion reproduces exactly the
two terms and also gives correctly the structure of
WKB series up to the powerg3 considered in thes
works, generating series with proper WKB terms,
with different coefficients. Comparison of Eqs.(4) and
(5) in the present work shows that this conclusion
true also if higher powers ofg are taken into account

The computation of the expansion of the seco
QLM iteratey2 in powers ofh̄ is done by reexpand
ing the term 1/(2y1) in L(p)

n (z) in the series in power
of g and keeping the powers up tog7 inclusively in this
expression as well as in the sum in Eq.(4). This pro-
cedure performed with the help of MATHEMATICA [8]
shows that expansion ofy2 reproduces exactly alread
the first four terms of the WKB series. It also giv
the true structure of the next terms of the WKB seri
generating series with proper WKB terms which ha
approximately correct coefficients. The expansion
y3 is obtained in the similar fashion. It reproduces
actly the first eight terms of the WKB series, that is
the terms up to the powerg7 inclusively.

Summing up, we have proved that the expans
of the first, second and third QLM iterates reprodu
exactly two, four and eight WKB terms, respective
Since the zeroth QLM iteratey0 was chosen to b
equal to the zeroth WKB approximationik, one can
state that thepth QLM iterate contains 2p exact terms.
In addition, the expansion of each QLM iterate has
proper structure whose terms are identical to thos
the WKB series but have only approximately corr
coefficients.

The 2p law is, of course, not accidental. The QL
iterates are quadratically convergent[1,3], that is the
norm of the difference of the exact solution and
pth QLM iterate‖y −yp‖ is proportional to the squar
of the norm of the differences of the exact solution a
the (p − 1)th QLM iterate:

(6)‖y − yp‖ ∼ ‖y − yp−1‖2.

Here the norm‖g‖ of the functiong(x) is the max-
imum of the functiong(x) on the whole interval o
values ofx. Sincey0 contains just one correct WKB
term of powerg0 and thus‖y − y0‖ is proportional to
g, one has to expect that‖y − y1‖ ∼ g2 and thusy1
contains two correct WKB terms of powersg0 andg1.
The difference‖y − y2‖ ∼ ‖y − y1‖ ∼ g4 so thaty2
contains four correct WKB terms of powersg0, g1, g2

andg3. Finally, the difference‖y −y3‖ should be pro-
portional tog8, and thereforey3 has to contain eigh
correct terms with powers betweeng0 andg7 inclu-
sively. This explains the 2p law.

The exact quantum-mechanical quantization con
tion for the energy[9,10] has the form:

(7)J =
∮
C

y(z) dz = i2πn.

Here y(z) is the logarithmic derivative of the wav
function, given by Eq.(1), z = gr , n = 0,1,2, . . . , is
the bound state number which counts the numbe
poles ofy(z); the integration is along a pathC in the
complex plane encircling the segment of the�z axis
between the turning points.

Thepth QLM iterateyp(z), as we have seen, co
tains, in addition to 2p exact WKB terms of power
g0, g1, . . . , g2p−1, also an infinite number of struc
turally correct WKB terms of higher powers ofg
with approximate coefficients. One can expect the
fore that the quantization condition(7) with y(z) ap-
proximated by any QLM iterateyp(z), p = 1,2, . . . ,
including the first, gives more accurate energy than
usual WKB quantization condition which is obtain
by substituting into exact quantization condition(7)
the WKB expansion up to the first power ofg ∼ h,
¯
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that is

y(z) = ik(z) − dk(z)/dz

2k(z)
,

and neglecting all higher powers ofg in the expansion
Indeed, we will prove now that Eq.(7) with y(z) ap-
proximated by any QLM iterate leads to exact energ
not only for the Coulomb and harmonic oscillator p
tentials as was shown earlier in Ref.[6], but for many
other well-known physical potentials used in mole
ular and nuclear physics such as the Pöschl–Te
Hulthén, Hylleraas, Morse, Eckart, etc. The WK
quantization condition yields the exact energy only
the first two potentials, but not for the rest of them.

Let us prove it on the example of the Hulthén p
tential

V (r) = −Aexp(−r/a)
(
1− exp(−r/a)

)
,

A > 0, 0< r < ∞,

which plays an important role in molecular and n
clear physics. To compute the energy levels in
quasilinear approximation we have to use the Q
equation(2) which after switching to the variablet =
exp(−r/a), 0< t < 1, has the form

(8)− t

a

dyp

dt
= y2

p − 2yp yp−1 + ε − A
t

1− t
.

Hereε = −E andE is the energy. For convenience
further computations we set here 2m/h̄2 equal to unity.
The quantization condition(7) in variablet is given by

Jp = a

∮
C

yp(t)

t
dt = i2πn, p = 1,2, . . . .

At the singular pointt ∼ 0 of the integrand, Eq.(8)
reduces to

− t

a

dyp

dt
= y2

p − 2ypyp−1 + ε

whose solution isyp = cp, wherecp is a constant sat
isfying the algebraic equationc2

p − 2cpcp−1 + ε = 0.
Since at largep we expectyp−1 → yp → y, wherey

is an exact solution att = 0, it means, in view ofcp be-
ing a constant, that we should havecp = cp−1 = c, that
is, we are looking for a fixed point solution of this a
gebraic equation, which iscp = √

ε. The positive sign
before the root is chosen since the first term in exp
sion ofyp(t) in the WKB terms isik(t). Thus

yp(t) � ik(t) = i
√−ε + At/(1− t),

that is,y (0) � +√
ε.
p
In the same way one finds that the residues
other singular pointst = 1 andt = ∞ equal 1/a and√

ε + A, respectively. After taking into account th
poles t = 0 and t = 1 are encircled in the opposi
direction compared with the pole at infinity (whic
is encircled counterclockwise) and the reinstatem
of the factor 2m/h̄2 the exact quantization conditio
gives√

2ma2/h̄2
(−√

ε + √
ε + A

) = n + 1,

n = 0,1,2, . . . .

This expression coincides with the exact one for
Hulthén potential calculated in[11,12]and is different
from the WKB quantization condition√

2ma2/h̄2
(−√

ε + √
ε + A

) = n + 1

2
.

Similar computations show that the quantizat
condition (7) in any QLM approximation including
the first leads to exact energies for all the potent
mentioned above and for other potentials with a s
ple singular structure.

For more complicated potentials numerical calcu
tion is necessary. However, as we will see now, alre
the first QLM iterate, given by the closed analytic e
pression, is extremely accurate. For the zeroth ite
y0(z) one can choose the usual WKB approximati
However, this choice has unphysical turning point s
gularities. Consequently, ifyp(z) in Eq. (2) is a dis-
continuous function ofz in a certain interval, then[7]
yp+1(z) or its derivatives could also be discontinuo
functions in this interval, so the turning point singula
ities of y0(z) will unfortunately propagate to the ne
iterate. To avoid this we choose the Langer WKB wa
function[13] as the zeroth iteration. This function ne
the turning pointsa andb is given by the simple ana
lytic expression

χi(r) = ci

√
S

1/3
i (r)

|k(r)| Ai
[
dS

1/3
i (r)

]
,

(9)Si(r) = 3

2
λ

∣∣∣∣∣
r∫

i

∣∣k(s)
∣∣ds

∣∣∣∣∣.
Here Ai denotes the Airy function,i = a, b,

k(r) = 2m
[(

E − V (r)
) − (l + 1/2)2]

,

h̄2 2mr2
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d is −1 for a < r < b and 1 for r � a, r � b, and
ca = 1, cb = (−1)n, wheren = 0,1,2, . . . is the num-
ber of the bound state. It is easy to check thatχa(r) and
χb(r) coincide at some point at the interval(a, b) be-
tween the turning points, are continuous across th
and coincide with the usual WKB solutions far fro
them.

Let us consider a couple of examples. The ex
energy of the ground state of the anharmonic osc
torV (r) = r4 is 2.393 644 016 482 303 115 6 in atom
units with mass set to unity,m = 1. This result is
obtained by us using the Runge–Kutta method
quadruple precision arithmetic. The WKB energy
different by 2.8% and equals 2.326 62, while the fir
iteration QLM energy equals 2.394 75 and differs fro
the exact energy only by 0.046%. The QLM energy
incides with the exact energy in all twenty digits af
the sixth iteration.

The graph inFig. 1 displays the logarithm of th
difference between the exact and WKB solutions a
between the exact solution and the first QLM ite
tion. One can see that the difference between the e
solution and the first QLM iteration is two orders
magnitude smaller than the difference between the
act and the WKB solutions, that is, just one QL
iteration increases the accuracy of the wave func
by two orders of magnitude.1

The second example is the modified Coulomb
tential

V (r) = − 1

2ρ
+ l(l + 1) − 1

4α2

ρ2
+

3
4α2

ρ2(ρ + α2)2
,

ρ = αEr,

obtained when the equal-mass two-body Dirac eq
tion with the static Coulomb interaction is reduced
the Schrödinger equation[14]. The exact energy o
the 1S0 ground state is 0.999 993 340 148 538 880
in atomic units with double mass set to unity, 2M = 1.
This result was obtained in the work[15] by an elabo-
rate computation using the finite element method
verified by ourselves using the Runge–Kutta meth
in quadruple precision. WKB in this case predicts

1 The dips are artifacts of the logarithmic scale, as the logari
of the absolute value of the difference of two solutions goes to−∞
at points where the difference changes sign. The overall accura
the solution can therefore be inferred only atx values not too close
to the dips.
t

Fig. 1. Logarithm of the difference between the exact solutionχexact
and the WKB solutionχ0 (dashed curve) and betweenχexact and
the first QLM iterateχmu (solid curve) for the ground state of th
anharmonic oscillator.1

energy very accurately since the potential is very cl
to the Coulomb potential, for which WKB energ
is precise. It equals 0.999 986 680 0 and differs fr
the exact one only by 6.66× 10−6. The first-iteration
QLM energy equals 0.999 993 335 4 and differs fr
the exact energy by 5× 10−9, that is, it is more accu
rate than the WKB energy by three orders of mag
tude. The QLM energy coincides with the exact o
up to the twentieth digit after the sixth iteration.

The calculation shows that the difference betwe
the exact wave function and the first QLM iteration
as in previous example, by two orders of magnitu
smaller than the difference between the exact and
WKB solutions. Thus also in this case one QLM ite
ation increases the accuracy of the wave function b
remarkable two orders of magnitude.

In conclusion, we have shown that the quasil
earization method (QLM) which approaches solut
of the Riccati–Schrödinger equation by approximat
the nonlinear terms by a sequence of the linear o
and is not based on the existence of a small para
ter, sums the WKB series. The expansion of thepth
QLM iteration in powers of̄h reproduces the structur
of the WKB series generating an infinite number of
WKB term with 2p terms of the expansion reproduc
exactly and a similar number approximately. As a
sult, one expects that the exact quantization condi
with integrand replaced by any QLM iterate inclu
ing the first gives more accurate energy than the W
quantization condition which is obtained by substit
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41

38

52

k,

77)

lag,

II,

92)
ing into Eq. (7) the WKB expansion up to the firs
power ofh̄ and neglecting all higher powers ofh̄. We
show on examples of the Hulthén potential that it
fact, the QLM energy is exact already in the first it
ation. Similarly, one can show that the approximat
by the first QLM iterate in Eq.(7) leads to exact en
ergies for many well-known physical potentials su
as the Coulomb, harmonic oscillator, Pöschl–Tel
Hulthén, Hylleraas, Morse, Eckart, etc. For other p
tentials which have more complicated analytical str
ture we show on examples of the anharmonic oscilla
and modified Coulomb potentials that the use of
Langer WKB solution as an initial guess already
the first QLM approximation gives energies and wa
functions at least two orders of magnitude more
curate than the WKB results. Such a QLM solutio
unlike the usual WKB solution, displays no unphy
ical turning point singularities. Since the first QL
iterate is given by a closed analytic expression it
lows one to estimate analytically the role of differe
parameters and their influence on properties of a qu
tum system with much higher precision than provid
by the WKB approximation. In addition, it was show
that six QLM iterations are usually enough to obta
both the wave function and the energy with extre
accuracy of twenty significant figures.
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