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Abstract

Solutions obtained by the quasilinearization method (QLM) are compared with the WKB solutions. Expansioptbf the
QLM iterate in powers of reproduces the structure of the WKB series generating an infinite number of the WKB terms with
the first 22 terms reproduced exactly. The QLM quantization condition leads to exact energies for the Pdschl-Teller, Hulthén,
Hylleraas, Morse, Eckart potentials, etc. For other, more complicated potentials the first QLM iterate, given by the closed
analytic expression, is extremely accurate. The iterates converge very fast. The sixth iterate of the energy for the anharmonic
oscillator and for the two-body Coulomb-Dirac equation has an accuracy of 20 significant figures.
0 2005 Elsevier B.V. All rights reserved.
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The quasilinearization method (QLM) and its itera- cati form and solving that equation by expansion in
tions were constructefl] as a generalization of the powers offi. It is interesting instead to solve this non-
Newton—Raphson metho@] for the nonlinear dif- linear equation with the help of the quasilinearization
ferential equations to yield rapid quadratic and often method (QLM) whose application to physical prob-
monotonic convergence to the exact solution. It does lems are discussed in work3—6] and compare with
not rely on the existence of any kind of smallness pa- the WKB results.
rameter. The derivation of the WKB solution starts by The goal of this work is to point out that QLM iter-
casting the Schrodinger equation into nonlinear Ric- ates which are expressible in a closed integral form

provide better approximation than the usual WKB.

We show that thepth QLM iterate when expanded in
" * Corresponding author. powers offi reproduces the structure of the WKB se-
E-mail address: rajmund.krivec@ijs.s{R. Krivec). ries generating an infinite number of the WKB terms
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with the first 2 terms reproduced exactly. A similar
number of the next terms are reproduced with ap-
proximately correct coefficients. We prove also that
the exact quantization condition in any QLM approx-
imation, including the first, leads to exact energies
for many known physical potentials used in molec-
ular and nuclear physics such as the Pdschl-Teller,
Hulthén, Hylleraas, Morse, Eckart, etc. In the general
case of arbitrary potentials that do not have a sim-
ple analytic structure, we illustrate that both the wave
functions and energies are very well reproduced by the
first QLM iterate and show significant improvement
over those obtained by the usual WKB approximation.
If the initial QLM guess is properly chosen, the wave
function in the first QLM iteration, unlike the WKB
wave function, is free of unphysical turning point sin-
gularities. Since the first QLM iteration is given by an
analytic expressiof8—6], it allows one to analytically
estimate the role of different parameters and the influ-
ence of their variation on different characteristics of

a quantum system. The next iterates display very fast
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with the boundary conditiom,, (zo) = ik(zo). The an-

alytic solution[6] of these equations expresses fitie
iteratey, (z) in terms of the previous iterate:

yp(2) = fr-1(2)

4 d B Z
—/ds% exp|:—2/y,,_1(t)dt:|,

20 N
Y2 1) —K2(2)
2yp-1(2)

Indeed, differentiation of both parts of E(B) leads
immediately to Eq(2) which proves thaty,(z) is a
solution of this equation. The boundary condition is
obviously satisfied automatically.

The successive integrations by parts of E8)
lead[6] to the series

[e.0]

W@ =Y L@

n=0

fr-1() = ®)

(4)

guadratic convergence so that accuracy of energies ob-with Efl”) (z) given by recursion relation

tained after a few iterations is extremely high, reaching
up to 20 significant figures for the sixth iterate as we
show on the examples of the anharmonic oscillator and
the two-body Dirac equation with the Coulomb poten-
tial.

The usual WKB substitution

r

x(ry==C exp(k / y(r’) dr’)

converts the radial Schrédinger equation to nonlinear
Riccati form

dy(z)
iz .

where k?(z) = E — V — I(1 + 1)/z%, A2 = 2m/h?,
z = Ar. The proper bound state boundary condition
for potentials falling off at ~ zg ~ oo is y(z) = const
at z > zo. This means that’(zg) = 0, so that Eq(1)
at z ~ zq reduces td(z0)? + y%(zo) = 0 or y(zo) =
+ik(zo). We choose here to define the boundary con-
dition with the plus sign, so that(zg) = ik(zp).

The quasilinearizatiof8,4,6] of this equation gives
a set of recurrence differential equations

+ (k*(2) +y%(2)) =0,

dy,(2)

dz @

= V512 = 27, (@yp-1() — k(@)

d(—LP(2)
dz ’

1
2)’[7—1(1)
LY @) = fr-12).

Sinced/dz =gd/dr,g =A"1=h//2m, Eq.(4) rep-
resents the expansion of tixgh QLM iterate in pow-
ers ofg, thatis in powers ofi, which one can compare
with the WKB series. For the zeroth iteratg(z) it
seems natural to choose the zeroth WKB approxima-
tion, that is to set(z) = ik(z), which in addition au-
tomatically satisfies the boundary condition. However,
one has to be aware that this choice has unphysical
turning point singularities. According to the existence
theorem for linear differential equatiofid, if y,_1(z)
in Eq. (2) is a discontinuous function afin a certain
interval, theny, (z) or its derivatives may also be dis-
continuous functions in this interval, so consequently
the turning point singularities ofp(z) may propagate
to the next iterates.

Eq.(3) gives an especially simple express[6hfor
the first QLM iterate

£ () =

Y1(z)=ik(z)—i/dsk’(s) exp|:—2i/k(t)dt}

20 N
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which thus is expressible in a closed integral form. state that thegth QLM iterate contains22exact terms.
This expression takes into account, though approxi- In addition, the expansion of each QLM iterate has the

mately, an infinite number of the WKB terms corre-
sponding to higher powers @f, as will be shown in
the next section. In view of this it is a better approxi-
mation than the usual WKB.

To obtain the WKB series one has to expand the
solutiony of the Riccati equatioifl) in powers of#.
This is easy to do by looking foy in the form of a
series and equating terms of identical powerg of

00
y= ngYm,
m=0

1 m—1
Y = _Z—YQ (Yr/nl + ];- Y Ym—k)- (5)

The derivatives in this and subsequent expressions are

in the variabler. The zeroth WKB approximatiofip

is given byYp = ik. The comparison of expansion of
the first QLM iterate in powers of and the WKB
series was originally performed ii6]. There it was

shown that the expansion reproduces exactly the first
two terms and also gives correctly the structure of the

WKB series up to the poweg® considered in these
works, generating series with proper WKB terms, but
with different coefficients. Comparison of E¢8) and
(5) in the present work shows that this conclusion is
true also if higher powers ¢f are taken into account.
The computation of the expansion of the second
QLM iterate yo in powers ofi is done by reexpand-
ing the term ¥(2y1) in L,(f’) (z) in the series in powers
of g and keeping the powers upgd inclusively in this
expression as well as in the sum in K4). This pro-
cedure performed with the help of MHEMATICA [8]
shows that expansion @b reproduces exactly already
the first four terms of the WKB series. It also gives
the true structure of the next terms of the WKB series,
generating series with proper WKB terms which have
approximately correct coefficients. The expansion of
y3 is obtained in the similar fashion. It reproduces ex-
actly the first eight terms of the WKB series, that is all
the terms up to the power inclusively.

Summing up, we have proved that the expansion

of the first, second and third QLM iterates reproduces
exactly two, four and eight WKB terms, respectively.
Since the zeroth QLM iteratgg was chosen to be
equal to the zeroth WKB approximatiaty, one can

proper structure whose terms are identical to those of
the WKB series but have only approximately correct
coefficients.

The 2 law is, of course, not accidental. The QLM
iterates are quadratically convergg¢hi3], that is the
norm of the difference of the exact solution and the
pth QLM iterate|y — y, || is proportional to the square
of the norm of the differences of the exact solution and
the (p — 1)th QLM iterate:

(6)

Here the normi|g|| of the functiong(x) is the max-
imum of the functiong(x) on the whole interval of
values ofx. Sinceyg contains just one correct WKB
term of powerg® and thus|y — yo|| is proportional to

Iy = ypll ~ Iy = yp-1ll®

¢, one has to expect thty — y1|| ~ g2 and thusy;
contains two correct WKB terms of poweg8 andg?.
The differencel|y — yo|| ~ |ly — y1|l ~ g* so thaty,
contains four correct WKB terms of poweg8, g1, g2
andg?®. Finally, the difference{y — y3|| should be pro-
portional tog®, and thereforeys has to contain eight
correct terms with powers betweef and g’ inclu-
sively. This explains the2law.

The exact quantum-mechanical quantization condi-
tion for the energy9,10] has the form:

J =y§y(z)dz =i2nn. @

C

Here y(z) is the logarithmic derivative of the wave
function, given by Eq(l), z=gr,n=0,1,2,...,is

the bound state number which counts the number of
poles ofy(z); the integration is along a path in the
complex plane encircling the segment of the axis
between the turning points.

The pth QLM iteratey,(z), as we have seen, con-
tains, in addition to 2 exact WKB terms of powers
g% ¢t ..., g% 1 also an infinite number of struc-
turally correct WKB terms of higher powers ¢f
with approximate coefficients. One can expect there-
fore that the quantization conditidid) with y(z) ap-
proximated by any QLM iterate,(z), p=1,2,...,
including the first, gives more accurate energy than the
usual WKB quantization condition which is obtained
by substituting into exact quantization conditi¢r)
the WKB expansion up to the first power of~ #,
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that is

: dk(z)/dz

y(z) =ik(2) %)
and neglecting all higher powers gin the expansion.
Indeed, we will prove now that Eq7) with y(z) ap-
proximated by any QLM iterate leads to exact energies
not only for the Coulomb and harmonic oscillator po-
tentials as was shown earlier in RE8], but for many
other well-known physical potentials used in molec-
ular and nuclear physics such as the Poschl-Teller,
Hulthén, Hylleraas, Morse, Eckart, etc. The WKB
guantization condition yields the exact energy only for
the first two potentials, but not for the rest of them.

Let us prove it on the example of the Hulthén po-
tential

Vir)=-A eX[Z(—r/a)(l — exﬁ—r/a)),

A>0, O<r<oo,

which plays an important role in molecular and nu-
clear physics. To compute the energy levels in the
quasilinear approximation we have to use the QLM
equation(2) which after switching to the variable=
exp(—r/a), 0 <t < 1, has the form

t
1= (8)
Heree = —E andE is the energy. For convenience of
further computations we set hera 22 equal to unity.
The quantization conditiof¥) in variabler is given by

af yp(0)
t
C
At the singular point ~ 0 of the integrand, E(q8)
reduces to

tdy,

—— =L =22y, ¥, 1te—A

dt=i27n, p=12....

Ip

=2 —2ypyp-1+e€

whose solution iy, = ¢, wherec,, is a constant sat-
isfying the algebraic equaticxrﬁ —2cpcp_1+€=0.
Since at large we expecty,—1 — y, — y, wherey

is an exact solution at= 0, it means, in view of , be-

ing a constant, that we should havye=c,_1 = c, that

is, we are looking for a fixed point solution of this al-
gebraic equation, which is, = \/e. The positive sign
before the root is chosen since the first term in expan-
sion ofy, (¢) in the WKB terms isik(¢). Thus

yp (1) = ik(t) =iy/—e + At/(1—1),

thatis,y,(0) >~ +/e.
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In the same way one finds that the residues at
other singular points = 1 andr = oo equal ¥a and
Ve + A, respectively. After taking into account that
polest = 0 andr = 1 are encircled in the opposite
direction compared with the pole at infinity (which
is encircled counterclockwise) and the reinstatement
of the factor 2u/42 the exact quantization condition
gives

V2ma?/h? (—Je + Ve +A)=n+1,
n=012,....

This expression coincides with the exact one for the
Hulthén potential calculated ji1,12]and is different
from the WKB quantization condition
1
=n-+ =.

V2ma?/h? (—Je + e+ A) 5

Similar computations show that the quantization
condition (7) in any QLM approximation including
the first leads to exact energies for all the potentials
mentioned above and for other potentials with a sim-
ple singular structure.

For more complicated potentials numerical calcula-
tion is necessary. However, as we will see now, already
the first QLM iterate, given by the closed analytic ex-
pression, is extremely accurate. For the zeroth iterate
yo(z) one can choose the usual WKB approximation.
However, this choice has unphysical turning point sin-
gularities. Consequently, if,(z) in Eq. (2) is a dis-
continuous function of in a certain interval, thefv]
yp+1(z) or its derivatives could also be discontinuous
functions in this interval, so the turning point singular-
ities of yo(z) will unfortunately propagate to the next
iterate. To avoid this we choose the Langer WKB wave
function[13] as the zeroth iteration. This function near
the turning points: andb is given by the simple ana-
lytic expression

S o
xi(r)=ci KOl Ailds; ()],
3 r
Si(r) =Sk /|k(s)|ds. 9)

Here Ai denotes the Airy functiori,= a, b,

I+ 1/2)2}

2m
k(r) = ?[(E - V() - 2
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. 0 T T T T r
dis -1fora<r <band1lforr <a,r>b, and 108 101X, () Kexact(¥) ——

ca=1,cp=(=1)", wheren =0,1, 2, ...is the num- A 080X Aexae*) — ]
ber of the bound state. Itis easy to check that) and J— TN T
x»(r) coincide at some point at the interval, b) be- ‘
tween the turning points, are continuous across them
and coincide with the usual WKB solutions far from
them.

Let us consider a couple of examples. The exact
energy of the ground state of the anharmonic oscilla-
tor V(r) = ris 2.393 644 016 482 303 115 6 in atomic
units with mass set to unityp = 1. This result is 7 ‘ . . . .
obtained by us using the Runge—Kutta method and 0 1 2 3 4 5
quadruple precision arithmetic. The WKB energy is x
different by 2.8% and equals 2.326 62, while the first- ;1 | ooarithm of the difference between the exact solufigncet
iteration QLM energy equals 2.394 75 and differs from  ang the wkB solutionyo (dashed curve) and betwegaxactand
the exact energy only by 0.046%. The QLM energy co- the first QLM iteratey,, (solid curve) for the ground state of the
incides with the exact energy in all twenty digits after anharmonic oscillatot.
the sixth iteration.

The graph inFig. 1 displays the logarithm of the  energy very accurately since the potential is very close
difference between the exact and WKB solutions and to the Coulomb potential, for which WKB energy
between the exact solution and the first QLM itera- is precise. It equals 0.999 986 6800 and differs from
tion. One can see that the difference between the exactthe exact one only by.66 x 10~8. The first-iteration
solution and the first QLM iteration is two orders of QLM energy equals 0.999 993 3354 and differs from
magnitude smaller than the difference between the ex- the exact energy by & 102, that is, it is more accu-
act and the WKB solutions, that is, just one QLM rate than the WKB energy by three orders of magni-
iteration increases the accuracy of the wave function tude. The QLM energy coincides with the exact one

]0g10| X(x) 'szacl(x)l

by two orders of magnitude. up to the twentieth digit after the sixth iteration.
The second example is the modified Coulomb po-  The calculation shows that the difference between
tential the exact wave function and the first QLM iteration is,
1 1041 —1a2 3,2 as in previous exqmple, by two orders of magnitude
Vir)y=——+ 5 4 5 4 55> smaller than the difference between the exact and the
. 2p p p=(p +ac) WKGB solutions. Thus also in this case one QLM iter-
p=akr,

ation increases the accuracy of the wave function by a
obtained when the equal-mass two-body Dirac equa- remarkable two orders of magnitude.

tion with the static Coulomb interaction is reduced to  In conclusion, we have shown that the quasilin-
the Schrodinger equatiofi4]. The exact energy of  e€arization method (QLM) which approaches solution
the 1Sy ground state is 0.999 993340 148538880 12 ©f the Riccati—Schrédinger equation by approximating
in atomic units with double mass set to unity/2= 1. the nonlinear terms by a sequence of the linear ones,
This result was obtained in the woft5] by an elabo- and is not based on the existence of a small parame-
rate computation using the finite element method and ter, sums the WKB series. The expansion of fita
verified by ourselves using the Runge—Kutta method QLM iteration in powers of: reproduces the structure

in quadruple precision. WKB in this case predicts the ©0f the WKB series generating an infinite number of the
WKB term with 2¥ terms of the expansion reproduced
ErE— _ o _ exactly and a similar number approximately. As a re-
The dips are artifacts of t_he logarithmic scale,_ as the logarithm sult, one expects that the exact quantization condition
of the absolute value of the difference of two solutions goesdo ith int d | db LM iterate includ
at points where the difference changes sign. The overall accuracy of WI n ggran replace y any Q itérate includ-
the solution can therefore be inferred onlyratalues not too close ing the first gives more accurate energy than the WKB

to the dips. quantization condition which is obtained by substitut-
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ing into Eq. (7) the WKB expansion up to the first
power offi and neglecting all higher powers bf We
show on examples of the Hulthén potential that it in
fact, the QLM energy is exact already in the first iter-
ation. Similarly, one can show that the approximation
by the first QLM iterate in Eq(7) leads to exact en-
ergies for many well-known physical potentials such
as the Coulomb, harmonic oscillator, Péschl-Teller,
Hulthén, Hylleraas, Morse, Eckart, etc. For other po-
tentials which have more complicated analytical struc-
ture we show on examples of the anharmonic oscillator
and modified Coulomb potentials that the use of the
Langer WKB solution as an initial guess already in
the first QLM approximation gives energies and wave
functions at least two orders of magnitude more ac-
curate than the WKB results. Such a QLM solution,
unlike the usual WKB solution, displays no unphys-
ical turning point singularities. Since the first QLM
iterate is given by a closed analytic expression it al-
lows one to estimate analytically the role of different
parameters and their influence on properties of a quan-
tum system with much higher precision than provided
by the WKB approximation. In addition, it was shown
that six QLM iterations are usually enough to obtain
both the wave function and the energy with extreme
accuracy of twenty significant figures.
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