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We calculate the photoionization-with-excitation to photoionization ratios Rnl and Rn=�lRnl for atomic
helium and positive heliumlike ions at intermediate values of the photon energies. The final-state interactions
between the electrons are included in the lowest order of their Sommerfeld parameter. This enables us, in
contrast to purely numerical calculations, to investigate the roles of various mechanisms contributing beyond
the high-energy limit. The system of two bound electrons is described by the functions obtained by the
correlation function hyperspherical harmonic method. For the case of heliumlike ions we present the high-
energy limits as a power expansion in the inverse charge of the nucleus. We analyze the contribution of
excitation of states with nonzero orbital momenta to the ratios Rn. In the case of helium our results for Rn are
in good agreement with those of experiments and of previous calculations.
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I. INTRODUCTION

Atomic photoionization accompanied by excitation and
double photoionization have been thoroughly documented in
experimental and theoretical works in connection with the
many-electron problem. In the present paper the three-body
Coulomb problem in the case of two-electron systems is the
subject of investigation.

Most of the attention in experimental studies was focused
on the process of double photoionization. Photoionization
with additional excitation has not been investigated in detail.
The energy dependence of the cross section ratios in a broad
interval of the photon energies �, the dependence of these
ratios on the value of nuclear charge Z, and the branching
ratios for excitations of nl subshells of a shell with the prin-
cipal quantum number n remain subjects for future experi-
ments. As it stands now, there are experimental data only for
atomic helium. The intensity of excitation of the nth shell
relative to the main photoline n=1 was measured in Ref. �1�
for photon energies up to several hundred eV for the values
of n�6. A few measurements of 2s and 2p excitations at
smaller values of the photon energies were carried out
earlier—see Ref. �1� for examples.

Theoretical investigation of the process requires the
knowledge of the wave functions describing two electrons in
the field of the nucleus. In the initial state both electrons are
bound by the nucleus. In the final state one of the electrons
belongs to the continuum, while the second one is in the
excited bound state. Certain approximations �models� for the
wave functions are required. Somewhat different approxima-
tions are reasonable in different regions of the photon energy
�.

We use terminology which is similar to that employed for
the much studied double photoionization �2�. It is known that
the ratios

Rn��� =
�n

+����
�1

+���
�1�

of the cross sections �n
+���� for ionization with excitation of

the second electron to the nth level, to those without excita-

tion �1��� do not depend on the photon energy in the high-
energy limit �3,4�

Rn��� = const �2�

for �→�. This requires that � greatly exceeds the values of
single-particle ionization potentials I

� � I . �3�

The analyses of Refs. �3,4� have been carried out by employ-
ing the nonrelativistic functions for description of the outgo-
ing electrons. It was shown in Ref. �5� that asymptotics of
the ratio R��� remain the same in the whole region �3� in-
cluding the photon energies corresponding to relativistic out-
going electrons. Recall that this is not true for the double-to-
single photoionization ratios �6�.

By “high energies” we mean that part of the region �3�
where the ratios exhibit behavior described by Eq. �2�. At
low energies the ratio I /� cannot be treated as a small pa-
rameter. By “intermediate energies” we mean the values of
the photon energies where inequality �3� is true, while devia-
tions of the cross section ratios from the high-energy limit
are noticeable �with the relative deviations exceeding 10%�.
For atomic helium this is the region from 300−400 eV to 2
keV. In the systems bound by the nucleus with the charge Z
the limits of the interval are proportional to Z2.

Since the ionization with excitation is a three-body prob-
lem, certain approximated wave functions for both initial and
final states are required. It was shown in Refs. �3� and �4�
that in the high-energy limit the final-state interactions �FSI�
between the electrons can be neglected. This simplifies the
problem of the description of the final state �under a proper
choice of gauge interactions of the outgoing electron with the
nucleus can be neglected as well�. In Ref. �3� the high-energy
limit of the process was expressed in terms of the initial-state
wave function �i�r1 ,r2�. The high-energy limits of the ratios
Rn for atomic helium were calculated in Refs. �7,8� and de-
pendence on the choice of the approximate function �i was
traced. The calculations of Ref. �6� also include the Z depen-
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dence of the high-energy limits of Rn. Results of the high-
energy calculations for Li+ are presented in Refs. �9� and
�10�.

At low energies there is no small parameter. All the inter-
actions involved should be treated as accurately as possible.
In this energy region one must make a choice of both initial
and final-state wave functions. The low-energy calculations
of the cross sections �n

+���� have been carried out in Refs.
�14,15� for He and in Refs. �14,16� for Li+. The paper �16�
also contains results for partial cross sections �nl

+���� of ion-
ization accompanied by excitation of the remaining bound
electron to the subshells with quantum numbers n and l.
Low-energy calculations for the two-electron ions with larger
values of Z were carried out in Ref. �14�.

In the papers �11–14� the intermediate-energy region was
approached by extension of the low-energy calculations to
this energy interval. In the present paper we move from the
high-energy region by including next to leading order of ex-
pansion in powers of �−1. This is achieved by inclusion of
the interaction between the final-state electrons in the lowest
order of perturbation theory

We find several attractive points in such an approach. It
provides the possibility to clarify the role of various mecha-
nisms �in a fixed form of electron-photon interactions� rep-
resenting their contributions in terms of certain characteris-
tics of the initial wave function. Within the framework of the
approach one can estimate the magnitude of the neglected
terms, thus controlling the accuracy. At the lower limit of the
intermediate-energy region numerical calculations with cer-
tain models for the final-state wave functions are more pre-
cise. The discrepancy between the results obtained in nu-
merical and perturbative approaches should diminish as �
increases. Hence these two approaches should supplement
each other. A similar analysis of the intermediate-energy
double photoionization have been carried out earlier �17�.

We expect the approach developed in the present paper to
be useful also because of certain discrepancies between ex-
perimental data for helium �1� and theoretical results. The
high-energy limit of the ratio Rn extrapolated from the data
obtained in Ref. �1� is in perfect agreement with the calcu-
lated one only for n=2. The disagreement increases with n
reaching a factor of about 2 for n=5. There is also visible
disagreement between theoretical and experimental results
for Rn��� at ��200–400 eV for n=2,4 ,5 �13,14�. Note
also that in the case of helium there is a discrepancy between
the calculations employing various approaches �see, e.g.,
Refs. �13� and �14��. Moving from the high-energy region
can be instructive also since �as noted in Ref. �14�� the R
matrix approach, widely used in low-energy calculations, be-
comes unstable at high energies. Finally, studies of the Z
dependence of the ratios Rn may be of interest in connection
with the increasing attention devoted to the physics of the
multicharged ions.

We calculate ratios �1� of photoionization accompanied by
excitation of the residual ion for helium atom and light heli-
umlike positive ions. We also obtain more detailed charac-
teristics

Rnl��� =
�nl

+����
�10

+ ���
. �4�

Such ratios are also detected in the low-energy experiments
�18�. The ratios defined by Eq. �1� can be represented as

Rn��� = �
l

Rnl��� .

In this paper the calculations are carried out with inclusion of
next-to-leading order terms of expansion of the ratios �1� in
powers of �−1. This means that for ns states we calculate the
high-energy limits of the ratios �1� and the correction of the
order 1 /�. For nl states with l�1 we obtain the leading
order of expansion in 1 /�.

In the limit �3� all the interactions of the outgoing electron
can be treated perturbatively �3�. In the high-energy limit of
�n

+� final-state interactions �FSIs� of the outgoing electron
with the electron bound in the residual ion can be neglected.
The excitation following photoionization is due to the spe-
cific correlation in initial state known as shake-up �SU�.
Only s states can be excited by this mechanism. Excitations
of the states with nonzero values of angular momentum l are
quenched by a small factor of the order I /�.

We can present the ratios �4� as

Rns��� = An +
I0

�
Bn0 �5�

�where I0 is the electron binding energy in hydrogen� for l
=0, while for l�1

Rnl��� =
I0

�
Bnl. �6�

In the atomic system of units used throughout the paper �e
=m=�=1, c=137� I0=1 /2.

The coefficients An and Bln with l�1 do not depend on
the photon energy, while we show that Bn0 contains a smooth
dependence on �. Now we can present the ratios Rn defined
by Eq. �1� as

Rn��� = An +
1

2�
Bn, Bn = �

l

Bnl. �7�

In the SU mechanism the interactions of the outgoing elec-
tron with nucleus can be treated perturbatively �3�. Excited
electrons can be described by the Coulomb field wave func-
tions. Thus, all the specifics of this three-body problem is
contained in the wave function of the initial state. The ion-
ized electron approaches the nucleus at distances which are
much smaller than the size of the atom. The SU cross section
is thus determined by initial-state wave function �i�r1 ,r2� at
electron-nucleus coalescence point, i.e., by �i�r1=0 ,r2�.

The SU probabilities depend on n in terms of the wave
function and of momentum pn of the outgoing electron

pn
2 = 2	n

with 	n being the energy of the outgoing electron. In the
lowest order of expansion in powers of I /� we can put
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pn
2 = p1

2 = p2 = 2� . �8�

The SU terms with this value of p determine the high-energy
limit of the ratios

lim
�→�

Rnl��� = lim
�→�

Rns���
l0 = An. �9�

Now we consider three types of contribution beyond the
high-energy limit, in the same way as it was done in Ref.
�17� for the double photoionization. The kinematical correc-
tions to SU ratios are caused by taking into account n depen-
dence of momentum pn in the SU amplitudes. This provides
the contributions to the terms Bn on the right-hand side
�RHS� of Eq. �5�. Note that these corrections are proportional
to the small parameter I /�, containing also dependence on
specific parameter ��Z with

�Z =
Z

p
. �10�

One has to have in mind that corrections of the order ��Z /�
drop as �−3/2 but contain a numerically large coefficient. We
shall not treat ��Z as a small parameter, but include it ex-
actly. The dependence of the cross sections on ��Z is known
to be presented by the Stobbe factor S����=exp�−��� which
is common for the photoionization processes �19,20�. These
corrections are expressed in terms of SU contributions An to
the ratios �5�, which appear only in the ratios Rns.

In the next to leading order the excitation energy can be
transferred to the second electron also by the initial-state
interactions �ISIs� beyond the SU. In this case the terms of
the order 1 /� and Z2 /� come from the higher terms r1

2 /r2
2

and �r1 ·r2� /r2
2 of the expansion of initial-state function

�i�r1 ,r2� at r1→0. Thus the contribution will be presented
in terms of the derivatives of the initial-state wave function,
integrated with the Coulomb field function of the bound
state.

The excitation energy can be transferred also by the final-
state interactions �FSIs� between the final-state electrons. We
include the FSIs by the perturbative method developed in
Ref. �21�. The FSI amplitude is presented as a power series
of the Sommerfeld parameter of the interaction between the
fast outgoing electron and that of the residual ion

� =
1

v
, �11�

while v is their relative velocity. Thus, the square of the
amplitude is presented as a power series in �2=1 /2	 with 	
being the energy of the outgoing electron. Looking for terms
of the relative order �−1 in the cross sections, we must in-
clude the lowest correction of the order �2, putting

�2 =
1

2�
. �12�

The FSI contributions are presented in terms of matrix ele-
ments of relatively simple operators sandwiched by the func-
tion �i�r1 ,r2� and the Coulomb function of the electron in
residual ion. The states with any angular momenta l can be

excited by the FSI in the next to leading order of �−1 expan-
sion.

Thus, all the contributions up to the order �−1 will be
presented in terms of certain characteristics of the initial-
state wave functions. We employ the functions obtained by
the correlation function hyperspherical harmonic method
�CFHHM�, obtained in Ref. �22�. The CFHHM functions
have been employed successfully for investigation of the pa-
rameters of the bound two-electron systems �23� and some
characteristics of the double photoionization. Also, the
method of inclusion of the FSIs �21� enabled us earlier to
remove the discrepancy between experimental and theoreti-
cal results in creation of vacancies in electronic shells during
nuclear transitions and in single photoionization of the p
states �24�. In Ref. �17� it was used for investigation of the
double photoionization at intermediate energies. In the
present paper we use the CFHHM functions and the pertur-
bative treatment of FSIs for investigation of photoionization
with excitation.

Note that for the system containing a larger number of
electrons the picture is more complicated. Considering ion-
ization with excitation of the subshell with l=1 we find for
ionization without excitations �+��−9/2, while for ioniza-
tion accompanied by excitation to an s state �+���−7/2 �the
ISI provides admixture of two s state electrons to the system
containing two p state ones�. Hence the corresponding ratio
increases proportionally to �.

Our analysis is completely nonrelativistic. We neglect the
terms of the order � /m in the wave function of the final
state, and in the operator of the photon-electron interaction.
The latter means that we are using the dipole approximation.
We also assume �Z /137�2�1, to neglect relativistic effects
in the initial bound system.

II. GENERAL EQUATIONS

The cross section of photoionization accompanied by ex-
citation of the residual ion into a state with the quantum
numbers n , l ,m can be written as

d�nl
+� =

2�

�c
�
m

�Fnlm�2
�� − 	n − Ii�
d3pn

�2��3 . �13�

Here Ii denotes the ionization potential of the K electron in
the initial-state atom. The factor 2 is due to two electrons in
the K shell. The overbar shows that the averaging over the
photon polarizations have been carried out. The angular de-
pendence of the amplitudes can be written explicitly because
of the dipole approximation employed. The amplitude

Fnlm = �nlm����	 , �14�

with � being the operator of interaction between the photon
and an electron, while � and nlm describe the initial and
final two-electron states, can be represented as

Fnlm = �4��1/2 �e · pn�
c

Tnlm. �15�

After averaging over the photon polarizations one obtains
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�nl
+� =

4

3

pn
3

c3�
�
m

�Tnlm�2. �16�

If the FSIs are neglected, the final-state function is

nlm�r1,r2� = � f�pn;r1��nlm�r2� �17�

with the functions � f and �n,l,m being just the continuum and
bound state single-particle wave functions in the Coulomb
field. If condition �3� is valid, the interactions of the outgoing
electron with the nucleus can be included perturbatively. Us-
ing the velocity gauge for the operator �, i.e.,

��r� = − i�e · ��

with e standing for the photon polarization, we obtain the
leading contribution of expansion in powers of p−2 as com-
ing from the plane waves. Following Ref. �17� we can sepa-
rate two scales in the interactions between the fast outgoing
electron and the nucleus. Those taking place at small dis-
tances of the order p−1�rc with rc=1 /Z being the charac-
teristic size of the atom are expressed in terms of the param-
eter ��Z

�n� ��Z
�n�=Z / p�n��. Such contributions can be calculated

explicitly, producing the factor

N��Z
�n�� = Nr��Z

�n��e−��Z
�n�

�18�

with Nr��Z
�n��= 
2��Z

�n� / �1−exp�−2��Z
�n����1/2 being the nor-

malization factor of the nonrelativistic Coulomb continuum
wave function. The interactions which take place at the dis-
tances of the order r�rc can be presented as p−2 series thus
cancelling in the ratios �1� and �2�. Thus we can put

nlm
�0� �r1,r2� = N��Z

�n��ei�pn·r��nlm�r2� . �19�

Following Ref. �20� we present the factors N2��Z
�n�� in the

cross sections as

N2��Z
�n�� = h���Z

�n��e−��Z
�n�

�20�

with the function h��Z
�n��=2��Z

�n� / �exp���Z
�n��+exp�−��Z

�n���
containing only weak dependence on parameter ��Z

�n�. Thus
we can put h���Z

�n��=h���Z�, with �Z defined by Eq. �10�.
Hence,

N2��Z
�n�� = h���Z�e−��Z

�n�
. �21�

The second factor on the RHS of Eq. �21� is the Stobbe
factor mentioned above.

We shall also present the perturbative FSI contributions in
terms of the function �17�. Thus the ratios �1� will be pre-
sented in terms of the matrix elements of initial-state two-
electron function and the Coulomb function of the excited
electron.

III. AMPLITUDES BEYOND THE SHAKE-UP

Following the analysis given above, we present the am-
plitudes for ionization with excitation beyond the SU as

Fnlm = Fnlm
�s� + Fnlm

�i� + Fnlm
�f� �22�

with Fnlm
�s� standing for SU amplitude, which includes kine-

matical corrections to the high-energy limit, while Fnlm
�i� and

Fnlm
�f� are the contributions caused by correlations in ISIs and

FSIs, correspondingly.

A. Amplitudes without inclusion of final-state interactions

Since in this subsection we neglect the interactions be-
tween the outgoing electrons, we can use Eq. �14� for the
amplitude with the final-state wave function presented by Eq.
�17�. Recall that we use the operator � in the velocity form.
This provides

Fnlm = �4��1/2�e · pn�N��Z
�n��� d3r2�nlm

� �r2��̃i�pn;r2� .

�23�

Here

�̃i�pn;r2� =� d3r1�i�r1,r2�e−i�pn·r1� �24�

is the partial Fourier transform of the initial-state wave func-
tion in variable r1.

Since the integral over r2 on the RHS of Eq. �23� is satu-
rated at r2�rc, while pn�rc

−1, we need expansion of the

function �̃�pn ;r2� in inverse powers of pn
2. It is convenient to

employ the Lippman-Schwinger equation

�̃i�pn;r2� =
2Z

pn
2 J�pn,r2�, J�pn,r2� =� d3r

r
e−i�pn·r��i�r,r2� .

�25�

The integral on the RHS is dominated by r� pn
−1�r2. Thus

the expansion in pn
−2 can be carried out by expanding the

function ��r ,r2� in powers of r in the integrand on the RHS
of Eq. �25�.

1. Shake-up with kinematical corrections

Presenting

J�pn,r2� = lim

→0

� d3r

r
e−i�pn·r�−
r�i�r,r2� , �26�

we obtain for the leading order contribution

J�pn,r2� =
4�

pn
2 ��0,r2� , �27�

which enables us to write for the SU amplitudes

Fnlm
�s� = a�pn�Sn
l0
m0, Sn = �4��1/2� dr2r2

2�n0
�r��r2���0,r2�

�28�

with

a�pn� = �4��1/2�e · pn�N���Z
�n��

8�Z

p2pn
2 , �29�

while the upper index �r� in Eq. �28� labels the radial part of
the Coulomb function �n0. In the leading order we should
neglect the dependence of pn on n, putting pn= p, just as in
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Eq. �8�. The high-energy limit of the amplitude �28� is thus

Fn00
�0� = a�p�Sn. �30�

In the next to leading term we must include the n dependence
of pn. Since the residual ion contains only one electron, the
latter is described by the Coulomb wave function, and thus

pn
2 = p2 − 2
n, �31�

where


n =
Z2

2
1 −

1

n2� �32�

is the excitation energy of the electron in the final-state ion.

2. Contributions of correlations in the initial state

Now we return to Eqs. �24� and �25�, looking for higher
order terms of expansion of the function �i�r ,r2� at r→0.
Since the CFHHN functions are expressed in terms of vari-
ables r= �r� , r2= �r2� , �= �r−r2�, we present the expansion in
terms of the function ��r ,r2 ,��=�i�r ,r2�

��r,r2,�� = 1 + ri�i +
1

2
rirj�i · � j���r,r2, �r − r2�� .

�33�

Here we put ��r ,r2 , �r−r2��=��0,r2 ,r2� after the deriva-
tives are calculated. Using Eq. �33� we find that at small r

��r,r2,�� = ��0,r2,r2� + r�r��r,r2,r2� − r�����0,r2,��

+
r2

2
�r��r,r2,r2� +

r2�1 − �2�
r2

����0,r2,��

+
r2�2

2
����0,r2,�� − r2��r�� �r,r2,�� . �34�

Here �= �r ·r2� /rr2. The derivatives �r� and ��� �and those of
the second order� are taken at the points r=0 and �=r2. The
higher terms of expansion in r contribute to the higher order
corrections in 1 / p to the amplitudes. Thus, they are ne-
glected. While evaluating the next to leading order terms we
must put pn= p.

Using Eqs. �26� and �34� we find nonzero contributions to
the amplitudes with the angular momenta l=0 and 1. For
excitation to s states we obtain

Fn00
�2� = a�p�Qn

1

p2 , Qn = − �4��1/2� dr2r2
2�n0

�r��r2�

� ��r��r,r2,r2� +
1

3
����0,r2,�� +

2

3r2
����0,r2,���r0

2

�35�

with the upper index �r� labeling the radial part of the single-
particle Coulomb field function as in Eq. �28�. The function
a�p� is determined by Eq. �29�. Other notations are explained
in the text below Eq. �26�. For excitation into p states, choos-
ing the direction of the outgoing electron momentum as the
axis of quantization of the angular momentum, we obtain

Fn1m
�2� = ia�p�Pn


m0

p
,

Pn = �4��1/22�3

3
� dr2r2

2�n1
�r��r2�����0,r2,��r0.

Thus interactions in the initial state provide corrections of
the order p−2 to the cross sections of excitations into s states.
The dependence of the wave function on the interelectron
distances �= �r1−r2�, which describes the electron correla-
tions also enables excitations into p states. Excitation to the
states with higher orbital momenta due to the ground-state
correlations only are still impossible.

B. Contribution of the final-state interactions

Now we include the final-state interactions. Following
Refs. �21,24� we present the final-state wave function as

�f� = �1 + GVee + GVeeGVee��0� �37�

with �0� being the wave function �17�, where the FSIs have
been neglected �here we omit lower indices�, Vee is the
electron-electron interactions, and G is the propagator of the
system of two noninteracting electrons in the Coulomb field
of the nucleus. The second and third terms on the RHS of Eq.
�37� correspond to one and two interactions between the
final-state electrons, thus being proportional to the powers of
the parameter � defined by Eq. �11�.

The last two terms on the RHS contain infrared divergent
contributions caused by the Coulomb interactions Vee. It was
shown in Ref. �21� that the infrared divergent terms cancel in
each order of the expansion of the square of the amplitude
�F�2. The situation is similar to that with the infrared singu-
larities in the e-N scattering analyzed in Ref. �25�. The can-
cellation can be illustrated by assuming the electron interac-
tions to be defined as Vee�r�=lim�→0 e−�r /r. The
contributions ln � emerge in intermediate steps but vanish in
the final expression for �F�2.

Explicit expressions which include FSIs in the process
with the fast outgoing electron up to terms of the order �2

have been obtained in Refs. �21,24�. The first order ampli-
tude F�f1�, corresponding to the second term on the RHS of
Eq. �37� is mostly imaginary. The real part of F�f1� is sup-
pressed by additional power of p−1 and thus can be written as
being proportional to �−1. The second order amplitude is
mostly real. Thus Im F�f1���, Re F�f1���2, Re F�f2���2,
and Im F�f2���3 �we do not trace the dependence on Z here�.
The FSI amplitudes can be presented as �21�

Fnlm
�f1� = a�p�i���nlm�ln�r2 − r2z����i	 +

�2

2
��nlm�r0

d

dr2
��i	� ,

�38�

Fnlm
�f2� = −

a�p��2

2
��nlm�ln2�r2 − r2z����i	 . �39�

Here �i��i�r1=0 ,r2� is a function of r2= �r2� and z is the
direction of the momentum of the outgoing electron. Recall
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that the z axis is chosen for the quantization of angular mo-
mentum and r0 is the Bohr radius. Thus all the contributions
to Fnlm

�f� have nonzero values only for m=0.
For s states both amplitudes Ff1 and Ff2 are important,

since the terms containing the factor �2 interfere with the SU
amplitude. For s states

Fns
�f1� = a�p��i�Un + �2Vn�, Fns

�f2� = − a�p��2Wn, �40�

with

Un = �4��1/2� dr2r2
2�n0

�r��r2�ln r2��i�0,r2� ,

Vn =
�4��1/2

2
� dr2r2

2�n0
�r��r2�

d�i�0,r2�
dr2

r0,

Wn = −
�4��1/2

2
� dr2r2

2�n0
�r��r2�ln2�r2���i�0,r2� . �41�

For the states with l�0 there is no interference with the SU
amplitude. Thus only the first term of the amplitude F�f1� is
important. We can present

Fnl
�f1� = ia�Snlcl + O��2� �42�

with

Sn� = �4��1/2� dr2r2
2�n�

�r��r2���0,r2� , �43�

while

c� =
�2l + 1

2
�

−1

1

dt ln�1 − t�Pl�t� = −
�2l + 1

l�l + 1�
, �44�

and Pl is the Legendre polynomial.

IV. THE RATIOS

Now we can calculate the cross sections and the ratios �1�
and �4�. The cross sections are related to the squares of the
amplitudes �F�2 by Eqs. �13� and �16�. We start with calcula-
tion of the values of �F�2.

A. Excitation of s states

Expressions for excitation of s states have the most com-
plicated structure

�Fns�2 = a2�pn�Sn
2 +

a2�p�
2�

�2SnQn + 2Sn�Vn + Wn� + Un
2� .

�45�

Here the first term on the RHS stands for the SU contribution
taking account of kinematical corrections �28� and �29�. The
first term in the square brackets comes from interference be-
tween SU and ISI amplitudes �30� and �35�. The second term
in brackets is caused by interference of the SU amplitude
presented by Eq. �30� with the first and second order FSI
amplitudes presented by Eqs. �40� and �41�. The last term in
brackets is purely a FSI contribution.

In order to obtain contribution of the first term on the
RHS of Eq. �45� to the ratio �1� we must include the n de-
pendence of the phase volume in Eq. �13� for the cross sec-
tion. As a result, for the purely SU ratio we find

Rns
SU =

Sn
2

S1
2

p

pn
e−���Z

�n�−��, �46�

with pn defined by Eq. �31�. In the lowest order of expansion
in powers of I /� the dependence of Rn

SU on parameter ��Z is
just the same as it would result in expansion of the RHS of
Eq. �46� in powers of ��Z. However, this is not true for the
higher order terms of the I /� expansion.

The contribution of the other terms to the ratios Rn can be
found as their ratios to squared amplitude of photoionization
without excitation �F1s�2, where the corrections of the order
I /� should also be included. This gives

Rns��� =
Sn

2

S1
2 +

1

2�
�Sn

2

S1
2

Z2

2
1 −

1

n2��1 − ��Z� +
2Sn

S1
2 Qn + Vn

+ Wn −
Sn

S1
�Q1 + V1 + W1�� + Un

2 −
Sn

2

S1
2U1

2� . �47�

The first term on the RHS is the high-energy limit of the
ratio. Note that Eq. �47� provides exact dependence on pa-
rameter ��Z in next to leading order of the I /� expansion.
The expression in square brackets on the RHS of Eq. �47�
should be identified with parameter Bn0 introduced by Eq.
�5�. Separating energy independent contributions and the
terms, which depend on the photon energy through param-
eter ��Z we write

Bn0 = dn + ��Zfn, �48�

with

dn =
Sn

2

S1
2

Z2

2
1 −

1

n2� +
2Sn

S1
2 Qn + Vn + Wn −

Sn

S1
�Q1 + V1

+ W1�� + Un
2 −

Sn
2

S1
2U1

2, fn = −
Sn

2

S1
2

Z2

2
1 −

1

n2� . �49�

B. Excitation of p states

Excitations of the states with l�0 can take place only
beyond the SU approximation. The contributions of ISIs and
FSIs are expressed by Eq. �36� and by the first term in brack-
ets on the RHS of Eq. �38�, correspondingly:

Fn1 = i
1

p
�Pn + Sn1� , �50�

leading to

Rn1��� =
1

2�

�Pn + Sn1�2

S1
2 . �51�

C. Excitation of the states with l�2

In this case only the FSIs contribute. The amplitude is
expressed by Eq. �43� giving
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Rnl��� =
1

2�

cl
2Snl

2

S1
2 �52�

with cl defined by Eq. �44�. Now we turn to analysis of
particular cases.

V. THE CASE OF HELIUM

A. High-energy limit

In Table I we compare our results for the high-energy
limits with those extrapolated from the experimental data �1�
and with the results of previous calculations �7,9,13,14�.
There were also several publications of the high-energy limit
for R2s only. The pioneering calculation �26� provided R2s

=4.61�10−2, while the latest available result is R2s=4.79
�10−2 �27�.

One can see that various theoretical approaches provide
very close values for high-energy limits at n�6. However,
the values of these limits extrapolated in Ref. �1� from the

experimental data are in perfect agreement with the theoret-
ical results only for n=2. Discrepancy between theoretical
and experimental results increases with n rapidly.

B. Beyond the high-energy limit

Now we consider the contributions beyond the limit �9�.
Let us start with excitation of ns states. As we showed above,
the contributions beyond the high-energy limits come from
kinematical corrections to the SU term and from the initial
and final-states electron-electron interactions. One can see
from Table II that the FSI and ISI contributions are positive,
with the FSI term being about three times larger than the ISI
one for all values of n. The kinematical corrections are nega-
tive at ��1, corresponding to ��540 eV. At larger � val-
ues they become positive. Their contribution to the param-
eter Bn0 defined by Eq. �5� does not exceed 10% for �
�1 keV. They increase with �, becoming as large as 25
−30 % in the limit ��1 ���500 eV�. In this limit the FSI
contribution determines about one half of the parameter Bn0.
Note that the relative role of the three contributions does not
vary much with n.

Contributions to excitation of p states come from FSIs
and ISIs. Actually the former one dominates, providing more
than 4/5 of the total contribution to Bn1. The result of calcu-
lations are presented in Table III. One can see that Bn0 and
Bn1 provide contributions of the same order of magnitude to
the energy dependent part of the ratio Rn��� defined by Eqs.
�1� and �7�.

200 400 600 800 1000
Ω�eV�

0.05

0.1

0.15

0.2
Xnl�Ω�

X32

X31

X21

...

FIG. 1. Energy dependence of the relative role of excitations to
the states with l�0, expressed by the ratio Xnl=�nl

+� /�n
+�=Rnl /Rn

for the case of helium �Z=2�.

TABLE I. The high-energy limits of the ratios Rns in percent for a helium atom. The column “theory-I”
�7� stands for early high-energy calculations with a variational initial-state function and “theory-II” �9� are
results obtained using many-body perturbation theory. Theory-III �13� and theory-IV �14� are the extensions
of the low-energy results with multiconfiguration Hartree-Fock and variational ground-state wave functions,
correspondingly. The last column shows the result obtained in Ref. �1� by extrapolation of the experimental
data of Ref. �1� with statistical errors given in parentheses.

n Theory-I Theory-II Theory-III Theory-IV This work Experiment

2 5.34 4.79 4.78 4.79 4.80 4.80 �13�
3 0.66 0.592 0.605 0.596 0.590 0.543�33�
4 0.21 0.19 0.200 0.197 0.195 0.118�37�
5 0.100 0.09 0.092 0.091 0.0900 0.048�30�
6 0.055 0.05 0.050 0.0515 0.0493

TABLE II. Contributions of various mechanisms to the value
Bn0 defined by Eq. �5� for the case of helium. Here �=��Z, �
=1.04 or �=500 eV, �=0.73 for �=1 keV.

n Kinematical corrections ISI FSI Bn0

2 0.072�1−�� 0.027 0.094 0.193−0.072�

3 0.105�1−���−1� 0.50�−2� 1.46�−2� �3.01−1.05���−2�
4 0.036�1−���−1� 1.76�−3� 5.00�−3� �1.04−0.36���−2�
5 0.174�1−���−2� 0.85�−3� 2.40�−3� �4.99−1.74���−3�
6 0.095�1−���−2� 0.47�−3� 1.35�−3� �2.77−0.95���−3�
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Thus the energy-dependent parts of the ratios Rn��� de-
termined by parameters Bn, are dominated by contributions
of s and p states. The d states provide corrections of about
10%, while contributions of states with larger values of or-
bital momenta are negligibly small. The coefficients Bn are
dominated by FSI which provide more than 70% of the val-
ues.

Excitation of the states with l�2 are due to FSIs only.
The cross sections of d states excitations are several times
smaller than those of p states still providing noticeable con-
tributions to parameter Bn �Eq. �71�� for n�3. The relative
role of excitation of d states slowly increases with increasing
n—see Table III. Excitation of states with higher values of l
drops rapidly with increasing of l. For example, the cross
section for excitation of 4f state is about twenty times
smaller than that of 4d state. The values of Bnl and Bn are
presented in Table III. The energy dependence of the relative
role of excitations to the states with l�0, expressed by the
ratio �nl

+� /�+�=Rnl /Rn is shown in Fig. 1.
The ratios Bn /An converge to certain limiting values while

n increases. This is due to similar n−3 behavior of both char-
acteristics at large n.

C. Comparison with earlier results

Now we compare our result with experimental and theo-
retical data obtained by the others. In Fig. 2 we present the
ratios Rn for 2�n�6, calculated in the present work and
measured in Ref. �1�. We also show the results of calcula-
tions carried out in Ref. �14�, where the intermediate-energy
region was reached by moving from the low energies.

We see that for n=2 our results are in good agreement
with those of Refs. �1,14� for ��400 eV. As expected,
there are noticeable deviations from results of Refs. �1,14� at
smaller values of �. We do not show the results of calcula-
tions for ��900 eV obtained in Refs. �11,27�, which are

also in good agreement with those of the present paper. For
n=3 we find a good agreement with experimental and theo-
retical results at all values of �. For the cases n=4 and n
=5 our results are close to those of Ref. �14�, with both sets
of the calculated values exceeding the experimental data at
��300–400 eV. For n=6 the experimental results are
available only for ��160 eV, where the accuracy of our
approach is poor since �Z

2 �0.34. However, the deviations
between our results and experimental data are not large for
n=6, as well as for the other values of n in this energy
region.

VI. Z DEPENDENCE

A. High-energy limit

It was shown in Ref. �6� that the SU ratios An drop as Z−2

at Z�1. The tendency is illustrated by the results of calcu-
lations for Z�10 presented in Table IV. One can see that the
convergence to Z−2 law becomes better for larger values of n.
In Ref. �28� the Z dependence of high-energy limits for
double-to-single photoionization ratio was traced and pre-
sented as a Z−1 series. We can write a similar presentation for
the ionization followed by excitation. Assuming that An can
be approximated by two terms of the series one has

TABLE III. Parameters Bnl and Bn of the energy-dependent con-
tributions to the ratios Rnl and Rn defined by Eqs. �5�–�7�.

States Bnl Bn

2s 0.193−0.072�

2p 0.130 0.323−0.072�

3s �3.01−1.05���−2�
3p 1.86�−2� �5.13−1.05���−2�
3d 3.07�−3�
4s �1.04−0.36���−2�
4p 0.62�−2� �1.80−0.36���−2�
4d 1.35�−3�
4f 3.9�−5�
5s �4.99−1.74���−3�
5p 2.93�−3� �0.86−0.17���−2�
5d 0.70�−3�
6s �2.77−0.95���−3�
6p 1.63�−3� �4.80−0.95���−3�
6d 0.40�−4�

FIG. 2. �Color online� Energy dependence of the ratios Rn in
10−2 units for the case of helium. The dots stand for the experimen-
tal data of Ref. �1�. The solid lines show the results of the present
work. The dashed lines show the results of the calculations carried
out in Ref. �14�.

TABLE IV. The values AnZ2�102, with An defined by Eq.
�9�.

n Z=2 Z=3 Z=4 Z=6 Z=10

2 19.1 14.9 12.8 11.4 10.4

3 2.36 2.18 2.06 1.93 1.84

4 0.781 0.749 0.722 0.692 0.660

5 0.360 0.351 0.340 0.327 0.316

6 0.197 0.193 0.188 0.182 0.176
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An =
an

Z2 +
bn

Z3 . �53�

The values of an and bn are given in Table V. The conver-
gence of the Z−1 series is faster than in the case of double
photoionization �28�. Also, in contrast to the double photo-
ionization case, the leading Z−2 terms underestimate the val-
ues of the ratios. Note that in approach of Ref. �6�, where all
the interactions between the electrons where treated pertur-
batively,

An =
cn

Z2 �54�

with cn also presented in Table V �a numerical error was
corrected in Ref. �10��. As expected, our values of an are
close to cn.

The results presented in Table V also illustrate the ten-
dency to n−3 behavior. The values of the product n3Rns

�0� for
n=5 and 6 differ by 5% for Z=2 and by 4% for Z=10.

B. Beyond the high-energy limits

In this case Eq. �3� can be written as

� �
Z2

2
.

In order to trace Z dependence of the characteristics, we
consider the limit Z�1. Let us start with excitations of s
states. One can see that in Eqs. �48� and �49� the ratio
s1 /Sn�1 /Z, while Qn /S1�Z, Vn /Z�Z, Wn /S1�1, Un /S1
�1. Thus in Eq. �5� An�1 /Z2, Bns�1. Hence, we can
present

Rn0 = 1 +
Z2

2�
rn0�An, �55�

with rn0=Bn0 /Z2An. Using Eqs. �48� and �49� we can write

rn0 = rn0
d + ��Zrn0

f �56�

with rn0
d =dn /Z2An and

rn0
f =

fn

Z2An
= −

n2 − 1

2n2 . �57�

In a similar way we can present for l�1

Rnl =
Z2

2�
rnlAn, �58�

with rnl=Bnl /Z2An, while parameters Bnl are introduced by
Eq. �6�.

For the cross section ratios Rn defined by Eq. �1� we
present

Rn = 1 +
Z2

2�
rn�An, rn = rn

d + ��Zrn
f , rn

d = r0
d

+ �
��0

rnl, rn
f = rn0

f . �59�

For illustration we present characteristics of the process for
Z=10. Interplay of the three types of contributions to the
parameter Bn0 describing excitation of s states is shown in
Table VI. As in the case Z=2 the FSIs provide the main
contribution. However, the domination is less pronounced
than in the case of helium.

As one can see from Eq. �57�, the ratios rn0
f do not depend

on Z. Dependence of parameters rnl and rn on Z is illustrated
by the results presented in Table VII. The values of rn

d for
Z=10 are somewhat larger than for Z=2. This is mainly due
to the larger contribution for excitation of p states in the case
Z=10. On the other hand the role of excitation of d states
becomes smaller—see Fig. 3. The ratio of rn

d for Z=2 and
Z=10 exhibits very weak dependence on n. The values of rnl
and rn converge to certain limiting values while n increases.
This is due to similar n−3 behavior of the parameters Bnl and
An at large n.

To estimate the limiting behavior of the ratios Rn for
Z�1, note that the first term on the RHS of Eq. �7� for Rn
depends on the nuclear charge as Z−2. Since the values of rn

f

are several times smaller than rn
d they can be neglected for

��Z�1. At these energies the second term contains only
weak dependence on Z.

VII. SUMMARY

We have considered photoionization accompanied by ex-
citation for helium atoms and positive two-electron ions. We
focused on the case of intermediate photon energies, for
which expansion of the amplitudes in powers of �−1 is pos-
sible, while account of the lowest term only is not sufficient.
We included the final-state interactions between the electrons

TABLE V. The values of coefficients an and bn in Eq. �53� and
of coefficients cn in Eq. �54�.

n an�−2� bn�−2� cn�−2�

2 8.9 15.0 9.2

3 1.7 1.4 1.7

4 0.61 0.48 0.64

5 0.30 0.16 0.30

6 0.17 0.08 0.17

20 40 60 80 100
Ω�keV�

0.025

0.05

0.075

0.1

0.125

0.15

Xnl�Ω�

X32

X31

X21

...

FIG. 3. Energy dependence of the relative role of excitations to
the states with l�0, expressed by the ratio Xnl=�nl

+� /�n
+�=Rnl /Rn

for the case Z=10.
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in the lowest order of their Sommerfeld parameter. This en-
abled us to analyze the role of various mechanisms of trans-
ferring the excitation energy. We calculated the ratios Rnl of
the cross sections �nl

+� for ionization, accompanied by transi-
tion of the second electron to the bound state with quantum
numbers n , l to the cross section for ionization without exci-
tations �10

+ , and also found the sums Rn=�lRnl—Eq. �47�,
�51�, and �52�.

Following Ref. �17�, we separated three types of contri-
butions beyond the high-energy limit. These are the kine-
matical correction to the shake-up �SU� terms, and the con-
tributions describing the transfer of excitation energy by
initial-state and final-state interactions. The FSIs were in-
cluded by the perturbative approach developed in Ref. �21�
and employed in Ref. �24�. This enabled us to extract the
energy-dependent factors, presenting the amplitudes in terms
of the matrix elements containing the initial-state wave func-
tions. The latter were obtained in Ref. �22� using the corre-
lation function hyperspherical harmonic method. These func-
tions were employed in atomic physics calculations earlier
�23�.

We carried out the calculations taking into account the
next-to-leading terms of expansion in powers of �Z

2. The ki-
nematical corrections to the SU terms also depend on the
parameter ��Z. Dependence on this parameter was included
exactly.

The cross sections for excitation of ns states have the
most complicated structure. In this case we had to include
kinematical corrections to SU terms. The ISI amplitudes are
proportional to �Z

2, and we included their interference with
the SU amplitudes. The first and second order FSI ampli-
tudes contain the factors i� and �2. Thus we had to include
the interference between SU and FSI amplitudes and a purely
FSI term. All the corrections should be included in the ex-
pressions for ionization cross sections without excitation �10

+

as well. The cross section for excitation of p states was de-
termined by ISI and FSI mechanisms, with both amplitudes
being proportional to i�. Ionization accompanied by excita-
tions to the state with l�2 took place only due to the FSIs.

For the case of helium we found the values of the high-
energy limits for n�6 to be in agreement with those calcu-
lated by others—Table I. For excitations of ns states we
found that FSIs provide the largest contributions. Excitations
of np and ns states provide contributions of the same order
of magnitude as the energy-dependent parts of the ratios Rn.

Excitations of nd states determine a corrections of about
10% to Rn. Excitation of states with l�3 are negligibly
small—Tables II and III. For atomic helium we carried out
detailed comparison with earlier experimental and theoretical
results. We found good agreement at ��400 eV for n=2
and even at smaller values of � for the larger values of
n—Fig. 2.

For larger Z we found an approximate formula �53�,
which presents the high-energy limits in the form of the Z−1

series, with the leading terms of expansion being consistent
with the earlier results �6,10�. Excitation of ns states beyond
the high-energy limit is still dominated by the FSIs. The role
of excitation of the states with l=1 increases, e.g., for Z
=10 transitions to np states provide the largest contribution
to the energy-dependent part of Rn. The role of excitation of
nd states drops with Z. These results are illustrated by Table
VII and Fig. 3. In the limit Z�1 the ratios Rn can be pre-
sented as the sums of two terms. The high-energy limit term
does not depend on �, dropping with Z as Z−2. The second
term drops as �−1, varying with Z slowly.

For the case of helium, as well as for the ions with larger
values of Z, the contribution of ISIs to the ratios Rn is about
10%. Hence, the ratios Rn are determined by the kinematical
corrections to SU and by the FSIs.
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TABLE VI. Contributions of various mechanisms to the value
Bn defined by Eq. �5� for the case Z=10, �=��Z.

n Kinematical corrections ISI FSI Bn0

2 0.390�1−���−1� 1.91�−2� 4.96�−2� 0.104−0.039�

3 0.820�1−���−2� 0.41�−3� 1.00�−2� �2.23−0.82���−2�
4 0.326�1−���−2� 1.56�−3� 3.85�−3� �8.67−3.26���−3�
5 0.152�1−���−2� 0.76�−3� 1.91�−3� �4.19−1.52���−3�
6 0.856�1−���−2� 0.43�−3� 1.07�−3� �2.36−0.86���−3�

TABLE VII. The values of characteristics rn0
d for l=0 and rnl for

l�0 and rn
d defined by Eqs. �58�, �55�, and �56� for Z=2 and Z

=10.

Z=2 Z=10

State rn0
d ,rn� rn

d rn0
d ,rn� rn

d

2s 1.01 1.00

2p 0.68 1.69 1.38 2.38

3s 1.28 1.21

3p 0.77 2.18 1.68 2.94

3d 0.13 0.05

4s 1.33 1.31

4p 0.80 2.33 1.80 3.18

4d 0.17 0.07

4f 5.0�−3� 2.0�−3�
5s 1.39 1.33

5p 0.82 2.40 1.86 3.27

5d 0.19 0.08

6s 1.40 1.34

6p 0.83 2.43 1.89 3.31

6d 0.20 0.08
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