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We trace the evolution of the shape of the two-electron photoionization spectrum with photon energy growth
using quite a precise two-electron wave function, obtained by the correlation function hyperspherical harmonic
method. We obtain the values ofv1 andv2 at which the spectrum curve changes its shape. Atv=v1 the U
shape changes to aW shape. Atv=v2 the centralW peak splits into two. We consider ground states of the
helium atom and of heliumlike ions with the nuclear chargeZ, the negative ion of hydrogen H−, and the excited
n1S state of helium. The limiting laws forZ@1 andn@1 are obtained. The analysis is carried outwithout
calculations of the particular energy distributions themselves.
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I. INTRODUCTION

In this paper we analyze the evolution of the shape of the
photoelectron energy distribution in double photoionization
with the growth of the photon energyv. We consider a num-
ber of systems containing two bound electrons. These are the
ground states of the helium atom and of light heliumlike
ions, the negative ion of hydrogen H−, and also the excited
states of the helium atomn1S sn.1d.

The qualitative picture of evolution of the photoelectron
spectrum curve shape with photon energy growth was pre-
sented long agof1,2g. It was shown that at some values of
the photon energiesv exceeding strongly the electron bind-
ing energiesI, i.e., atv@ I, the energy distribution becomes
a result of interplay of three distinctive mechanisms. In the
well-known shake-offsSOd mechanismf3g one of the elec-
trons is ionized by the direct absorption of the incoming
photon, while the second is moved into a continuous spec-
trum as a result of an instant change of the field acting upon
this electron due to the removal of the first electron. The SO
mechanism dominates at the edge of the spectrum, where the
photon transfers most of its energy«<v to the absorbing
electron, while the secondary electron obtains a small
amount of energy«, I. If both outgoing electrons are fast,
i.e., at«1,2@ I, the contribution of SO is strongly suppressed,
and the energy distribution is determined by the interplay of
two other alternative mechanisms. One of them is the final
state scatteringsFSSd, in which one electron absorbs the in-
coming photon and then ionizes the second electron after
colliding with it. Since «1,2@ I, both electrons carry large
momentapi =s2m«id1/2@h with h standing for the character-
istic momentum of the bound electron, whilem denotes the
electron mass. In the FSS mechanism the first electron ob-
tains momentump1 from the nucleus, transferring momen-
tum p2 to the secondary electron in the course of the scatter-
ing after photon absorption, i.e., in the final state. In the
quasifree mechanismsQFMd the electrons exchange large
momentap1,p2 without the participation of the nucleus,
which is possible only when they are close to each other.

The photoelectron spectrum obtains sharp peaks at the
edges of the energy interval«1,2→0, where the process is
dominated by the SO mechanism. At«1,2@ I the energy dis-
tribution is a result of interplay of the FSS and QFM. Quali-
tatively the FSS and SO spectra are similar. So, neglecting
the QFM we would obtain a smoothU-shaped spectrum
curve, with a minimum at the central point«1=«2=E/2, with
E=v− I2+ being the total energy available to the outgoing
electrons. However, the role of QFM increases with the
growth of v. Since the free process is possible only in the
vicinity of the center, QFM provides a central peak forv
exceeding some valuev1. The spectrum then acquires aW
shape until the photon energyv reaches a certain valuev2.
At v=v2 the central peak splits into two, which are shifted
symmetrically from the center. There is a local minimum at
the central point«1=«2 at v.v2. This fine structure of the
curve at v.v2 is due to the quadrupole nature of the
QFM f1g.

The conditionv@ I enables one to obtain explicit expres-
sions for the contributions of the FSS and QFM to the two-
electron photoionization energy spectrum by using the per-
turbative description of the final state wave functionf4g.
These expressions contain the initial state wave function
Csr 1,r 2d. In the FSS one of the electrons should be close to
the nucleus. Thus the amplitude contains a parameter that is
an integral of the functionCs0,r d. In the QFM the electrons
should be very close to each other. Thus, the amplitude con-
tains an integral of the functionCsr ,r d. We find the values
of v1 and v2 without calculating a particular energy distri-
bution. Instead of this, we analyze the second derivative of
the photoelectron energy distributionds2+/d«1 with respect
to «1, at the central point«1=E/2. This analysis enables us to
make some more conclusions about the shape of the spec-
trum curves.

The magnitude of the QFM contribution is very sensitive
to the quality of the approximate wave functions used in the
calculations. It was shown inf5,6g that the use of oversim-
plified wave functions of the initial or final states leads to
large but spurious QFM contributions in the framework of
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the dipole approximation, where it has to be zero. Even a
consistent treatment of the QFM, but without highly accurate
wave functions, results in quantitatively different energy dis-
tributions for different types of the initial state wave func-
tions, at least in the case of the helium atomf6g.

In this paper we employ very accurate and locally correct
wave functionsf7,8g, obtained by a direct solution of the
three-body Schrödinger equation. The wave functions are
calculated by the correlation function hyperspherical har-
monic methodsCFHHMd. They have been used for the cal-
culations of various characteristics of two-electron systems,
both in their bound-f9g and continuous-spectrum statesf10g,
always demonstrating high accuracy.

For the ground state of the helium atom we find

v1 = 1.9 keV. s1d

We consider also the ground states of the heliumlike ions
with the nuclear chargeZ. The value ofZ should not be too
large, i.e.,saZd2!1 sa<1/137 is the fine structure con-
stantd. The latter inequality ensures that the relativistic cor-
rections are small. We find a simple equation for the energy
v1

* , which approximates the value ofv1 with the relative
accuracyaZ. For large values ofZ, Z@1, we obtain

v1
* = 0.65Z14/9 keV. s2d

The behaviorZ14/9 can be obtained by using the Coulomb
shydrogenliked functions.

We show that Eq.s2d holds with 1% accuracy forZù3.
We find that the central peak splits into two ones at

v2 = 8.9 keV s3d

in the case of the ground state of helium. For ions withZ
@1 the analysis carried out with the Coulomb functions pre-
dicts thatv2 increases linearly withZ. This is supported by
computations with precise wave functions that yield

v2
* = 4.7Z keV s4d

at Z@1.
For the ionization of helium excitedn1S states we found

that the values ofv1 and v2 depend uponn very weakly.
This is consistent with the general properties of the bound-
state wave functions in the limitn@1 f11g.

Results for small values ofZ andn are presented in Tables
I and II. The tables also contain the results for the hydrogen
negative ion H−.

In this paper we employ the system of units with"=c
=1. Therefore the relation between the energyv and the
linear momentumk of the photon isv=k. The averaged
momentum of the boundK-electron can be estimated by the
hydrogenlike valueh=maZ=3.73Z keV. For the atomic he-
lium the screened value of the nuclear chargeZ0=27/16f11g
corresponds toh=6.3 keV.

We present the general equations in Sec. II. The evolution
of the spectrum curve from theU to theW shape is consid-
ered in Sec. III. More complicated structures at larger ener-
gies are analyzed in Sec. IV. We summarize our results in
Sec. V.

II. GENERAL EQUATIONS

The energy distribution of the fast photoelectronss«1,2

@ Id from the double photoionization can be presented as the
additive sum of the FSS and QFM contributions, represented
by the termsT1sv ,gd andT2sv ,gd, respectively,

ds2+sv,«d
d«

= T1sv,gd + T2sv,gd. s5d

Here we introduced

g =
«1 − «2

«1 + «2
s6d

and assumed«1ù«2. The interference terms are strongly
suppressed due to the different angular distributions from the
FSS and QFM. The momenta of the outgoing electrons are
mostly orthogonal in the case of FSS, having the opposite
directions in QFM.

The contribution of the FSS can be presented in a simple
way if the outgoing electrons are described by the single-
particle functionscssr d. If both electrons belong to the same
shell, we findf4,12g

T1sv,gd =
kr−2l
4p

s+svd
dseesv,gd

d«
, s7d

with kr−2l=ed3rcs
2sr d / r2, while s+ and see denote the one-

electron photoionization cross section of the shell considered
and the free electron-electron scattering cross section in the
spin-singlet state, respectively.1 Using the well-known ex-
pression

1To simplify the notations we set«1+«2=v− I2+=v, since v
@ I2+.

TABLE I. The values ofv1, v1
* , v2, v2

* in keV for the ionization
of ground states of the heliumlike systems with the nuclear charge
Z. The column withZ=1 shows the data for the negative ion of
hydrogen H−.

Z 1 2 3 4 5

v1 0.549 1.93 3.70 5.89 8.49

v1
* 0.544 1.89 3.57 5.61 7.96

v2 3.97 8.89 13.7 18.5 23.3

v2
* 3.98 8.90 13.8 18.6 23.5

TABLE II. The values ofv1, v1
* , v2, and v2

* in keV for the
ionization of the excitedn1S states of helium atom.

n 2 3 4

v1 2.17 2.22 2.23

v1
* 2.28 2.34 2.36

v2 12.4 12.7 12.8

v2
* 12.4 12.7 12.8
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dsee

d«
=

pa2

v
S1

«
+

1

v − «
D2

, s8d

one obtains

T1sv,gd =
4a2kr−2ls+svd

v3s1 − g2d2 . s9d

The cross section of theK-shell photoionization in the
single-particle approximation isf11g

s+svd = ucss0du2Lsvd,

Lsvd =
211/2p2asaZd2

3m5 Sm

v
D7/2

. s10d

If the bound two-electron system is described by the cor-
related wave functionCsr 1,r 2d, the FSS contribution can be
presented as

T1sv,gd =
2a2mLsvdk1

v3s1 − g2d2 , s11d

with

m =E d3r uCs0,r du2
1

r2 , s12d

wherek1=2 for heliumlike ions andk1=1 for H− and for the
excited states of helium. Thus, the FSS contribution is pre-
sented via a single parameter of the initial state, expressed by
Eq. s12d.

The QFM contribution has a more complicated form, con-
taining a function of the momentumq=p1+p2−k transferred
to the nucleus, integrated over kinematical constraints. The
QFM amplitude can be written asf1,4g

FQFMsk,p1,qd = F0sk,p1dSsq2d, s13d

with F0sk ,p1d given by the following expression:

F0sk,p1d = s4pad3/24Î2
sep1dsp1kd

m3v3 . s14d

Here F0sk ,p1d is the amplitude of interaction of a photon
with a system of two electrons at rest, with the final state
consisting of two free electrons with momentap1,k −p1. The
factor

Ssq2d =E d3rCsr ,r de−iq·r s15d

describes the transfer of momentumq to the nucleus by the
bound electrons. The QFM contribution to the energy spec-
trum can be presented as

ds2+

d«
=

1

4

m2

v
uFQFMu2

dq2dt

s2pd3 s16d

with t=p1k /p1k, the valueuFQFMu2 is averaged over the pho-
ton polarizations. Using Eqs.s13d–s16d, we can present

T2sv,gd =
3Î2

2p2Z2LsvdSv

m
D1/2E

−1

1

dt t2s1 − t2dFsv,g,td

s17d

with Lsvd defined by Eq.s10d, while

Fsv,g,td =E
qmin

2

4p1
2

dq2Dsq2d,

Dsq2d = uSsq2du2. s18d

The functionSsq2d is defined by Eq.s15d,

qmin
2 sg,td = spg − vtd2. s19d

Herep=smvd1/2 is the value of the momentum of the outgo-
ing electrons at the central point of the spectrumg=0.

In the QFM the nucleus obtains the momentumq,h,
which is much smaller than the outgoing electron momenta.
The values ofq,h are inside the interval of integration on
the right-hand sidesrhsd of Eq. s12d if the value ofg is small
enough. In any case, the QFM kinematics is available at the
central point, i.e., atg=0.

The values ofv where the spectrum curve with a mini-
mum at the central point converts into that with a maximum,
and vice versa, are determined by the equation

T19sv,0d + T29sv,0d = 0, s20d

with Ti9sv ,0d being the the second-order derivative with re-
spect tog at g=0.

A straightforward calculation, which involves integration
in the angular variablet fEq. s17dg by parts enables us to
present Eq.s20d in the form

8a2mk1

v3 +
6Î2

p2Z2vmSv

m
D1/2

Asvd = 0. s21d

Here

Asvd =E
−1

1

dt t2s1 − 2t2dDsv2t2d, s22d

while the functionD, defined by Eq.s18d, can be presented
as

Dsv2t2d = U4pE
0

`

dr r2sinvtr

vtr
Csr,rdU2

. s23d

III. FROM U TO W

At small values ofv the first term on the left-hand side
slhsd of Eq. s21d dominates and therefore the sum on the lhs
is positive. At somev value,v=v1, the second term com-
pensates the first one.

Let us start with the heliumlike ions. We can estimatem
asm,h5, and thusv1,hsaZd5/9!h. On the other hand, the
integral on the rhs of Eq.s23d is dominated by the values of
r of the order of the size of the 1s state, i.e.,r ,h−1. Thus,
we can try the expansion in powers ofvtr in the integrand of
Eq. s23d. Settingssinvtrd /vtr =1 we obtain
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Asvd = const =A = −
2

15
B, s24d

with

B = UE d3rCsr ,r dU2

. s25d

Assuming that the functionAsvd is given by Eq.s24d, we
find the solution of Eq.s21d

v1
* = 52/9spaZd4/9S 8m2

B2m
D1/9

. s26d

As one can see from Table I, the values ofv1 andv1
* are very

close indeed.
The parametersm andB defined by Eqs.s12d ands25d are

determined by the wave functionsCs0,r d and Csr ,r d at r
,h. At large Z@1 one can expect, at these distances the
hydrogenlike behavior of the functionsf7,8g. Thus, atZ@1
the parameterB does not depend onZ, while m,Z5. Hence,
v1

* ,Z14/9. The straightforward computations lead to Eq.s1d.
Since the important values ofr in the rhs of Eq.s25d are

of the order ofh−1, we have neglected the terms of the rela-
tive order of aboutaZ by settingssinvtrd /vtr =1. Thus, the
equalityv1=v1

* holds with the relative accuracyaZ.
Turning to the excitedn1S states of helium, let us start

from the limiting casen@1. In the single-particle picture of
the FSS, the cross sectionT1sv ,gd depends on two param-
eters of the initial state. These are the expectation valuekr−2l
of one of the electrons and the normalization factorucss0du2
of another electron—see Eqs.s9d and s10d. In the limit n
@1 one can expect the product of the Coulomb functions to
be a qualitatively good approximation. In this case bothkr−2l
and ucss0du2 decrease asn−3 with growing n f10g. As to the
QFM contribution, the functionCsr ,r d describes the con-
figuration in which the external electron comes to the dis-
tances about the size of the internal electron orbit. The shape
of the r dependence does not depend onn in this case. Thus,
all then dependence is contained in the normalization factor
n−3. Hence, both terms on the lhs of Eq.s21d depend onn for
n@1 in the same way. Therefore the value ofv1 as well as
the approximate solution of Eq.s21d

v1
* = 52/9spaZd4/9S 2m2

B2m
D1/9

s27d

do not depend onn for n@1. This equation is true for the
negative ion of hydrogen H− as well.

The values ofv1 and v1
* for n=2,3,4 arepresented in

Table II. One can see that then dependence is very weak
even for these values ofn.

Note that at the pointv1 we still haveT2!T1, i.e., the
QFM provides a small correction to the contribution of FSS.
This happens because the cross sectionT2sv ,gd depends on
g via the parameterp2g2/h2, with p2/h2=mv /h2@1. Thus,

T29sv ,0d /T2sv ,0d,v / I @1. On the other hand,T19sv ,0d
=4T19sv ,0d. Hence, Eq.s21d leads toT2!T1. This means
that evaluation of the spectrum curve starts with a small
QFM surplus on the smooth FSS curve.

IV. FINE STRUCTURE OF THE PEAK

At v.v1 the lhs of Eq.s20d becomes negative. However,
one can show that there is one more root of this equation.
Assuming v@h we find that T19sv ,0d!T29sv ,0d, while
T29sv ,0d.0. The latter inequality can be obtained by noting
that the integrand on the rhs of Eq.s23d is determined byr
,h. Thus, the integral on the rhs of Eq.s22d is dominated by
small utu,1/vr !1, where the integrand is positive. Hence,
we can expect that there exist a rootv2,h of Eq. s21d. At
v,h the FSS contributionT1 is at leasta<1/137 times
smaller than the QFM termT2. This means that the solution
v2

* of the equation

Asvd = 0 s28d

is expected to be close to the solution of Eq.s21d.
This is supported by the computations which employ our

initial state wave functions. The results are presented in
Tables I and II.

We can trace the dependence ofv2
* on Z for the photoion-

ization of heliumlike ions with the nuclear chargeZ@1. The
integrand on the rhs of Eq.s23d is saturated byr ,h−1. To
obtain the dependence onZ we can approximate the wave
function Csr ,r d by a product of the hydrogenlike 1S func-
tions, i.e., by settingCsr ,r d<e−2hr sthe normalization factor
is not important for estimationd. This gives

Dsv2t2d = Dhsv2t2d = F 26p2h2

sv2t2 + 4h2d2G2

. s29d

Now Eq. s28d can be written as

E
−1

1

dt t2s1 − 2t2d
1

st2 + a2d4 = 0, s30d

with a=2h /v. The solution isa=1.534fof course, the left-
hand side of Eq.s30d can be evaluated explicitlyg, and thus
v2

* =1.30h=4.85Z keV. This is very close to Eq.s4d, which
is true with 1% accuracy even forZ=5.

In the case of the ionization of the excitedn1S states of
helium, the dependence of the valuesv2 andv2

* on n is very
weak. The reasons are the same as for the weak dependence
of the valuesv1 andv1

* .

V. SUMMARY

In this paper we traced the evolution with energy of the
photoelectron spectrum of the double photoionization of
atomic helium, light heliumlike ions, the negative ion of hy-
drogen H−, and of the excited states of atomic helium. We
found the values of the photon energiesv1, at which the
U-shaped curve converts into aW-shaped curve, andv2, at
which the central peak splits into two. We found the limiting
equations forv1 andv2 for the ionization of the heliumlike
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ions with Z@1. We obtained the limiting behaviorv1
=const andv2=const atn@1 for the ionization of the ex-
cited n1S states.

We carried out the corresponding calculations by using
the wave functions developed by using the correlation func-
tion hyperspherical harmonic methodf7,8g. We show that the
limit laws start working at rather small values ofZ andn.

We obtained the values ofv1 and v2 without building
particular energy distributions. Such distributions will be
presented in a separate publication.
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