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The limit relations for the partial derivatives of the two-electron atomic wave functions at the two-particle
coalescence lines have been obtained numerically using accurate correlation function hyperspherical harmonic
method wave functions. The asymptotic solutions of the proper two-electron Schrödinger equation have been
derived for both electron-nucleus and electron-electron coalescence. It is shown that the solutions for the
electron-nucleus coalescence correspond to the ground and singly excited bound states, including triplet ones.
The proper solutions at small distances R from the triple coalescence point were presented as the second order
expansion on R and ln R. The vanishing of the Fock’s logarithmic terms at the electron-nucleus coalescence
line was revealed in the frame of this expansion, unlike the case of electron-electron coalescence. On the basis
of the obtained boundary solutions the approximate wave function corresponding to both coalescence lines
have been proposed in the two-exponential form with no variational parameters.
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I. INTRODUCTION

Two-electron systems present an excellent basis both for
testing the new quantum calculational approaches to many-
body systems and for studying a number of photoelectron
and other atomic processes. This is because such systems are
the simplest ones with enough complexity to contain the
main features of a many-body theory. This complexity arises
from the electron-electron Coulomb potential which depends
on the interelectronic distance r12= �r1−r2�. The proper
Hamiltonian for infinite nuclear mass and charge Z, in
atomic units used throughout the paper, is given by

H = −
1

2
��1

2 + �2
2� −

Z

r1
−

Z

r2
+

1

r12
. �1�

It does not depend on any experimental constants whose val-
ues change considerably with improvements in measurement
equipment. Therefore, it provides a standard for theoretical
calibration.

It has been established �1� that relativistic and quantum-
electrodynamic corrections to the energy levels of an atomic
or molecular system require highly accurate nonrelativistic
wave functions. Rayleigh-Ritz variational calculations pro-
vide a wave function with relative error approximately pro-
portional to the square root of the relative error in the energy.
Therefore, if the energies are used to estimate the quality of
the wave functions, then it is necessary to calculate the non-

relativistic energies to far greater accuracy than would oth-
erwise be needed.

The alternative way for obtaining the very accurate and
locally correct wave functions is a direct solution of the
three-body Schrödinger equation. The correlation function
hyperspherical harmonic method �CFHHM�, employed in
this paper, realizes successfully this way of solution �2�. Ac-
curacy of the method is comparable to the most sophisticated
variational calculations.

For problems in atomic or molecular physics, eigenfunc-
tions of the Hamiltonian �1� exhibit singular behavior at
those points in configuration space where two or more
charged particles come together and the resulting potential
becomes infinite. For systems with zero total orbital momen-
tum �S states� the wave function depends only on three scalar
variables r1, r2, and r12, i.e., ����r1 ,r2 ,r12�. At the two-
particle coalescences, the derivatives of the wave function �
have discontinuities characterized by the famous Kato cusp
conditions �3�, which have the simplest form for the S state
of a two-electron atomic system

� ��

�r1
�

r1=0
= − Z��0,R,R� �r2 = r12 = R� , �2�

� ��

�r2
�

r2=0
= − Z��R,0,R� �r1 = r12 = R� , �3�
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The conditions �2� and �3� pertain to the situation when the
coordinates of one of the electrons and the nucleus coincide.
These conditions are valid for the electrons, which have the
same �triplet states� or the opposite �singlet states� spin di-
rections. The condition �4� deals with coincidence of coordi-
nates of two electrons. It is valid only for the singlet states,
while due to the Pauli exclusion principle ��R ,R ,0�=0 for
the triplet states. The inclusion of functions with such cusps
into trial wave functions has been shown to improve dramati-
cally the rates of convergence of Rayleigh-Ritz variational
calculations �4�. The using of the proper correlation function,
which obey the Kato conditions �2�–�4�, accelerates consid-
erably the convergence of CFHHM �2� approach, as well.

It is known that the cusp conditions �2�–�4� are conse-
quences of the Coulomb singularity in the potential and pro-
vide specific relations between the wave function and its first
derivative at the points of coalescence. It was shown in Ref.
�5� that the coalescence behavior also uniquely determines
the third derivative of the spherically averaged wave func-
tion in terms of the lower derivatives. The deduced relations
are valid for any atom, molecule, or electron gas in any
smooth external field.

There are also singularities involving more than two par-
ticle, such as the triple-coincidence singularity in the helium
atom, when both electrons simultaneously approach the
nucleus. A formal expansion in powers of the hyper-radius
r=�r1

2+r2
2 and its logarithm ln r about this singular point was

proposed by Fock �6� for the S-state wave functions of the
helium atom. Subsequently, much effort has been devoted to
understanding this expansion. The O�r0�, O�r1�, and
O�r2 ln r� terms in Fock’s expansion are easy to obtain ana-
lytically. The O�r2� term in the expansion has been obtained
in closed form by Maslen and co-workers, through the ex-
tensive use of computer algebra �7,8�. Myers and co-authors
�9� have examined their results, and have verified that the
inclusion of this term in the expansion yields a continuous
“local” energy, whereas the “local” energy is finite but dis-
continuous at r=0 if the term is omitted. Forrey �10� per-
formed variational calculations of the ground-state energy of
helium. His basis set included an explicit treatment of the
Fock expansion in hyperspherical coordinates and extra
products of Laguerre polynomials in perimetric coordinates.
This work has demonstrated that the use of Fock basis func-
tions provided a substantial improvement in the convergence
rate.

We would like to emphasize that the calculation of the
accurate wave function at the coalescence lines is a very
difficult problem just because of their cusp nature. On the
other hand, a number of atomic physics problems could be
solved by using the functions appearing on the right-hand
side �RHS� of Eqs. �2�–�4�. The processes of photoionization
in the helium atom and heliumlike ions �11� could serve as
an example.

It is well known �see, e.g., Refs. �7–9��, that using Hamil-
tonian �1� we can present the Schrödinger equation for S

states of two-electron atoms and ions in the form
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In this paper we provide the accurate analytic solutions of
the Schrödinger equation �5� at the coalescence lines for both
small and very large R. The Kato cusp conditions �2�–�4� are
employed to solve the problem.

Our derivations are based on some limit relations, which
have been obtained by numerical calculations of the partial
derivatives of � and of the ordinary derivatives of the two-
electron wave function taken at the coalescence points. We
realize, that numerical proofs of the limit relations at R→�
cannot be considered as a rigorous proof of these relations.
However, we do believe that high accuracy of numerical cal-
culations, as well as the perfect coincidence of our numerical
results for R→0 with analytical ones, confirms the correct-
ness of our results for R→� too.

II. ELECTRON-NUCLEUS COALESCENCE

To investigate the case of coalescence of one electron and
the nucleus in two-electron atoms and ions, one should find
the limit as, e.g., r2 approaches zero for both sides of Eq. �5�.
It is easier to perform this mathematical operation with the
help of following relations:

r1
2 − r2

2 + r12
2

2r1r12
= cos �1,

r2
2 − r1

2 + r12
2

2r2r12
= cos �2, �6�

where �1 is the angle between the vectors r1 and r12, and �2
is the angle between r2 and r12 �see Fig. 1�. It is clear that

lim
r2→0

�1 = 0, lim
r2→0

�2 = �/2. �7�

Then, using Eqs. �6� and �7�, we can rewrite Eq. �5�, taking
the limit as r2 approaches zero:

FIG. 1. �Color online� Interparticle coordinates and associated
angles for the two-electron atom/ions.
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Here we took into consideration that r1=r12=R as r2 ap-
proaches zero. Inserting the Kato condition �3� into the RHS
of Eq. �8�, and assuming that the terms of Eq. �8� must be
finite in the whole 3D space, we obtain
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− E���R,0,R� .

�9�

We could certainly obtain the same equation if we took the
limit as r1 approaches zero �r2=r12=R�.

It is seen that the left-hand side �LHS� of Eq. �9� presents
a sum of the form klmcklm�R��lm

�k��R�, where for the partial
derivatives of � taken at the electron-nucleus coalescence
line, we have

�l,m
�k� �R� = lim

r2→0

�k��r1,r2,r12�
�rl�rm

�k = 1,2;l,m = 0,1,2,12� .

�10�

Here �r0=1. Then, in the case of the first partial derivatives
we have k=1, whereas one of the numbers l ,m is equal to
zero.

Let us now denote the two-electron wave S-function at the
electron-nucleus coalescence line as

��R,0,R� � F�R� . �11�

So, if we could express all of the functions �l,m
�k� �R� through

the functions F�R�, F��R�, and F��R�, with factors being de-
pending on R, then we obtain an ordinary differential equa-
tion of the second order for the function F�R�. The prime
denotes differentiation, as usual.

Solution of this differential equation under the proper
boundary conditions could give us the desired function F�R�.
We do not yet know how to do this in general form. How-
ever, as a first but important step we propose here a method
for solving Eq. �9� in the boundary regions, i.e., at very large
R and at small R. One should notice that the numerical cal-
culation of F�R� in these regions is particularly difficult.

The direct correlation function hyperspherical harmonic
method allows us to calculate numerically the two-electron
wave function ��r1,r2,r12�, as well as its special case F�R�,
with very large accuracy. By using the CFHHM numerical
calculations we obtained the following limit relations be-
tween the functions mentioned above for the asymptotic re-
gion of very large R:

lim
R→�

��1,0
�1��R�

F��R� � = 1, �12�

lim
R→�

��1,1
�2��R�

F��R� � = 1, �13�

lim
R→�

��2,2
�2��R�
F�R� � = Z2, �14�

lim
R→�

��1,12
�2� �R�
F�R� � = 0, �15�

lim
R→�

��12,12
�2� �R�
F�R� � = 0, �16�

lim
R→�

��12,0
�1� �R�
F�R� � = 0. �17�

The calculations show that these relationships are valid at
least to four significant digits. We cannot achieve higher ac-
curacy due to the fact that the inaccuracies of the wave func-
tions and especially of their derivatives go up with R. Note
that the asymptotic relations �12�–�17� are valid for the
ground states of the two-electron atoms and ions, as well as
for its excited states, including triplet states.

Relations �15�–�17� show that we can neglect the partial
derivatives with respect to r12. Moreover, the calculations of
the accurate CFHHM wave functions show that the ratio of
F��R� /F�R� achieves a finite value as R approaches infinity.
In the next sections we will obtain this ratio as a finite func-
tion of Z and E. This property together with the limit relation
�12� allows us to neglect the terms proportional to 1/R on
both sides of Eq. �9�. And finally, using the relations �13� and
�14�, Eq. �9� is transformed into the following simple differ-
ential equation:

d2Fas�R�
dR2 + �2E + Z2�Fas�R� = 0. �18�

As is well known, the solution, which is convergent at
R→�, has the form

Fas�R� = C1 exp�− R�− 2E − Z2� . �19�

The function Fas�R� is the asymptotic representation �for
very large R� of the accurate two-electron wave function in
the situation when one of the electrons “seats” on the
nucleus, while the other electron is far away. Equation �12�
shows that this function depends on two parameters, the
nuclear charge Z and the total energy E of the two-electron
atomic system. C1 is an arbitrary constant. We used only the
accurate wave functions of the discrete spectrum �E�0� to
obtain the relations �12�–�17�. The condition of exponent in
Eq. �19� to be real leads to the inequality

− 2E 	 Z2 �20�

at least for the S states of the helium atom or heliumlike ions
with the nuclear charge Z.
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We have calculated the CFHHM energy levels of the He-
lium atom and the ions of Li+ and B3+ for both the singlet
and triplet S states with n
7. These data, presented in Table
I, confirm the validity of the inequality �20�.

It is known �12,13� that helium spectrum can be divided
into three distinct parts: �i� the ground and singly excited
bound states, �ii� doubly excited bound states, �iii� the con-
tinuum states. The energy of singly excited states converge
to the value of Efs1=−Z2 /2. The energy of doubly excited
states, being revealed by experimentalists �see, e.g., a num-
ber of references in Ref. �13��, converge to the final state
energies, which are higher than Efs1. Therefore, those states
are embedded into the continuum spectrum.

It is easy to conclude that Eq. �20� corresponds to the final
state energy �−Z2 /2�, and that the limit relations �12�–�17�
describe the ground and singly excited bound states. So, if
the electrons are far away from each other �R→��, then
the simplest model one may think of is the model of two
independent electrons. The inner electron is bound in a
state with principal quantum number N and energy
EN=−Z2 / �2N2�, the outer electron is in a hydrogenlike
orbital with energy En=−�Z−1�2 / �2n2� and n�N assuming
a screening of the nuclear charge. The total energy is simply
the sum of the one-particle energies. The case of R approach-
ing infinity corresponds to the conditions of n→�, En→0,
and Etotal=EN=1�Efs1. So, these arguments give additional
evidence to the validity of the limit relations �12�–�17� and,
consequently, the asymptotic solution �19� for the ground
and singly excited bound states.

We have obtained some limit relations for the functions
�10� and �11� in the vicinity of the triple collision point
R=0 as well. The proper numerical calculations yield for the
singlet states

lim
R→0

��1,0
�1��R�
F�R� � = − Z , �21�

lim
R→0

��12,0
�1� �R�
F�R� � =

1

2
, �22�

lim
R→0

��1,12
�2� �R�
F�R� � = −

1

2
Z . �23�

Note that Eq. �21� contains the singlet function F�R�,
whereas the corresponding Eq. �12� includes the first deriva-

tive F��R�. The results for the triplet states are

lim
R→0

�R2�1,1
�2��R�

F�R� � = lim
R→0

�R�1,0
�1��R�

F�R� � = 2, �24�

lim
R→0

�R2�2,2
�2��R�

F�R� � = − 2, �25�

lim
R→0

�R�1,12
�2� �R�

F�R� � =
1

2
, �26�

lim
R→0

��12,0
�1� �R�
F�R� � =

1

4
. �27�

As is known, the two-electron wave functions of the singlet
states at the triple coincidence point are nonzero. Therefore,
Eqs. �21� and �22� allows to avoid the divergence at R=0 for
terms proportional to R−1 in Eq. �9�. The triplet states, which
are proportional to R2 in the vicinity of the triple collision
point, don’t have to obey such a requirement.

We were able to obtain only the simplest limit relations as
R approaches zero. We hope these relations could be good
for searching the general solution of Eq. �9�. However, to
derive the solution for small R we propose another way,
which is more precise as well as more reliable. As was men-
tioned earlier, in Refs. �7,8� analytic expansions of the three-
body atomic wave functions were presented. The expansions
were derived for the exact solutions of the Schrödinger equa-
tion �5� up to the terms of the order r2 �including r2 ln r�. We
used some of those results �see Ref. �8�, pp. 2796–2797� to
obtain the analytical representation of the two-electron wave
functions at the two-particle coalescence lines in the vicinity
of the triple coincidence point. The same results, but for the
singlet states only, could be derived by using Ref. �9�. How-
ever, one should be very careful, because in the last reference
we found at least three misprints, which could have influence
on the final results. The first misprint is a missing factor 2 in
the expression for Y2,0 �below Eq. �14� �9��. The second one
is the incorrect expression r12 sin � cos � on the RHS of the
expression for Y2,1 �below Eq. �14� �9��. The third misprint is
the missing function cos−1 before �r1 ·r2 /r1r2� in the RHS of
Eq. 11 �9�.

So, using the results of Refs. �8,9� and taking the limit as
r2→0, we obtain for the singlet states

TABLE I. Energy levels �in a.u.� of nkS states for the helium atom and heliumlike ions of Li+�Z=3� and
B3+�Z=5�.

n \ He: k=1 k=3 Li+: k=1 k=3 B3+: k=1 k=3

1 −2.903724 −7.278876 −22.02788

2 −2.145970 −2.175225 −5.040179 −5.110019 −14.57652 −14.73188

3 −2.061221 −2.068696 −4.733102 −4.751430 −13.41017 −13.45127

4 −2.033566 −2.036524 −4.629208 −4.636571 −13.00797 −13.02461

5 −2.021225 −2.022633 −4.581895 −4.585572 −12.82326 −12.83163

6 −2.014537 −2.015122 −4.556331 −4.558559 −12.72341 −12.72824

7 −2.010629 −2.010870 −4.541111 −4.542445 −12.66341 −12.66654
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F�R� � 1 − R
Z −
1

2
� +

R2

12
�4Z2 − 2Z�3 − ln 2� + 1 − 2E� .

�28�

The similar result for the triplet states has the form

F�R� � R2�1 − R
2

3
Z −

1

4
�

+
R2

10
	5

3
Z2 − Z
2 −

5

6
ln 2� +

1

4
− E�� . �29�

For simplicity, the wave functions �28� and �29� are normal-
ized by condition F�0�=1 for the singlet states, and
�F�R� /R2�R=0=1 for the triplet states.

We would like to pay particular attention to the absence of
the Fock’s logarithmic term in both expressions. This term
disappears at the electron-nucleus coalescence line, because
of the vanishing Fock’s angular coefficient 21 in the limit as
r2 approaches zero �whereas r1→r12� for the singlet states.

At first glance, it is natural to assume that all of the Fock’s
logarithmic terms are canceled at the electron-nucleus coa-
lescence line. However, such an assumption proved to be
incorrect. We verified the angular coefficients 31, 41 and
42, corresponding to the logarithmic terms in the Fock’s
expansion up to the terms of order r4 ,r4 ln2 r �singlet states�.
The exact expressions for these quantities could be found,
e.g., in Ref. �7�. All of these three angular coefficients proved
to be nonzero. So, we conclude that the first logarithmic term
21r

2 ln r of the Fock’s expansion is the only one to vanish at
the electron-nucleus coalescence line, at least for the singlet
states. Equation �29� shows additionally that for the triplet
states all of the logarithmic terms, up to the fourth order in r,
are canceled in the limit as r2→0 �or r1→0�. Accordingly,
the values of the first and second derivatives F��0� ,F��0� for
the singlet states and �F�R� /R2�R=0� , �F�R� /R2�R=0� for the
triplet states are finite. We verified the validity of the expan-
sions �28� and �29� by direct calculation of these derivatives
in the limit as R→0, using the accurate � functions. The
results coincided with the calculations performed according
to the analytical formulas �28� and �29� within the accuracy
of five significant digits.

Note that double-limit relations �21�–�27�, as well as simi-
lar ones from the next section �electron-electron sticking� for
R→0 could be obtained analytically by using expansions of
Ref. �8�. We do not know the adequate analytical way to
obtain the limit relations at R→�. However, all of the limit
relations presented here were derived and checked numeri-
cally with inaccuracy, which was not higher than 0.01%. We
believe that high accuracy of numerical calculations and the
perfect accuracy of our numerical results for R→0, speaks in
favor of correctness of our results for R→�.

III. ELECTRON-ELECTRON COALESCENCE

For the case of forming the two-electron coalescence or
the coincidence of the coordinates of the both electrons, one
should take the limit as r12→0 on both sides of the Eq. �5�.
In this case we have �see Fig. 1�:

lim
r12→0

�1 = lim
r12→0

�2 = �/2. �30�

Then, in the limit as r12→0 both terms with the mixed par-
tial derivatives vanish in Eq. �5�, and we can write

−
1

2
�
2

�2�

�r1
2 + 2

�2�

�r12
2 ��

r12=0

−
2

R
� ��

�r1
�

r12=0

=
2

r12
�
 ��

�r12
−

1

2
���

r12=0
+ 
2Z

R
+ E���R,R,0� .

�31�

When deriving Eq. �31�, we took into account that
r1=r2=R as r12 approaches zero. Then, using the Kato con-
dition �4� in the RHS of Eq. �31�, we obtain

�
 �2�

�r1
2 +

�2�

�r12
2 ��

r12=0

+
2

R
� ��

�r1
�

r12=0

= − 
2Z

R
+ E���R,R,0� . �32�

From the CFHHM numerical calculations, we obtain the fol-
lowing relation:

lim
r12→0

���r1,r2,r12�
�r1

=
1

2

d��R�
dR

, �33�

where

��R� = ��R,R,0� . �34�

The relation �33� is not a double-limit relation like
all the other similar relations presented in the Sec. II. It
is the only relation of such form obtained. It is valid for all
0
R
� and Z�1. The excited states are included as well.
Using Eq. �33�, we can rewrite Eq. �32� in the form

�
 �2�

�r1
2 +

�2�

�r12
2 ��

r12=0

= g�R� , �35�

where

g�R� = −
1

R

d��R�
dR

− 
2Z

R
+ E���R� . �36�

Calculation of the ordinary first derivative d� /dR is consid-
erably more precise than the calculation of the partial deriva-
tives of the second order. The proper calculation of the func-
tion g�R� and its comparison with the ordinary second
derivative d2� /dR2 yields, in the limit of R approaching
infinity:

lim
R→�

����R�
g�R� � = 4. �37�

Then, using the limit relation �37�, we can rewrite Eq. �36� in
the limit of very large R:
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1

4

d2�as

dR2 + E�as = 0. �38�

As before, we neglected the terms proportional to R−1 in Eq.
�36�. The proper solution of the differential equation �38� has
the form

�as�R� = C̄1 exp�− 2R�− E� , �39�

where C̄1 is an arbitrary constant. The function �as�R� is the
asymptotic representation of the accurate two-electron
atomic wave function for the case of two electrons being at
the same point but far away from the nucleus. Unlike Fas, Eq.
�39� shows that �as depends on only one parameter, energy
E. As far as we consider the discrete spectrum, then E�0
and consequently the exponent on the RHS of Eq. �39� is
negative.

Moreover, we obtained the following relation in the limit
as R→0:

lim
r1=r2=R→0

lim
r12→0

���r1,r2,r12�
�r1

= − Z lim
R→0

��R� . �40�

It enables one to avoid the divergence at R=0 for the terms
that are proportional to R−1 in the general Eq. �32� for the
case, when two electrons are at the same point.

The approximate solution of the Eq. �32� at small R may
now be obtained by neglecting the terms that are not propor-
tional to R−1 in that equation. Also using Eq. �33�, we have
the equation

d�2

dR
+ 2Z�2 = 0, �41�

with the the solution

�2�R� = C̄2 exp�− 2ZR� . �42�

We can again use the approach developed in the works �8,9�
at r12→0 �r1=r2=R�. However, one should not forget that
the expressions presented in these papers are valid only for
r2�r1. In Ref. �10� the angular coefficients 00,10,21,20
of the Fock expansion are expressed through Pluvinage co-
ordinates � and � �14�, which are more symmetric and are
valid for arbitrary r1 and r2. Taking into account that the
scaling transformation r→r /Z was applied to the Hamil-
tonian in Ref. �14�, we obtained under the simplifying nor-
malizing condition of ��0�=1:

��R� � 1 − 2ZR + R2	2Z

3

 2

�
− 1�ln R −

E

3
+

5

3
Z2 + �z�

�43�

with

�z =
2Z

3

 1

�
− 1�ln 2 +

1

6
+

Z

3
+ 2a2,1. �44�

Here a2,1 is an unknown coefficient of the homogeneous so-
lution, which cannot be deduced from the local behavior of
the Schrödinger equation near the nucleus �8–10�. It is a very
difficult problem to calculate exactly a2,1, because of the

presence of the logarithmic term on the RHS of Eq. �43�.
However, we have evaluated �z �and consequently a2,1� using
the accurate CFHHM wave functions. This yielded the fol-
lowing approximate dependence:

�z �
1

2
−

3

10
Z . �45�

This linear part of the Z dependence is the most accurate one
for 2
Z
5. We found that the term −E /3 in Eq. �43� ex-
presses correctly the dependence of ��R� on the state of
excitation, while the term �5/3�Z2 represents accurately the
nonlinear dependence of ��R� upon the nuclear charge Z.
Note that using the proper formulas from Refs. �8,9� yields
the erroneous term Z2 instead of the correct result �5/3�Z2 in
the expression �43�. As we can see, the Fock’s logarithmic
term is preserved at the electron-electron coalescence line,
unlike the case of the electron-nucleus line. Hence, the sec-
ond derivative ���R� has a logarithmic singularity at the
origin. It is seen that solutions �42� and �43� coincide in the
first order approximation at small R.

IV. RESULTS AND DISCUSSIONS

In Secs. II and III we have obtained analytical represen-
tations of the accurate two-electron wave functions at the
boundary regions of both two-particle coalescence lines. We
found that the behavior of these boundary solutions both at
small and at large distances R has an exponential character.
These properties enable us to propose a simple approximate
representation for the ground state wave functions in the
two-exponential form. The main idea is that the first expo-
nential represents the behavior at small R and the second
exponential represents the behavior at very large R. So, let us
consider the following function:

f�R� = C�exp�− �R� + � exp�− �R�� , �46�

with

� = ��1 + �� − �� . �47�

Here C, �, �, and � are arbitrary parameters. This two-
exponential function possesses an important peculiarity:

f��0�
f�0�

= − � , �48�

that is the ratio of the first derivative to the function itself
at the origin �R=0� depends upon only one parameter �.
Let the second exponential in the RHS of Eq. �46� present
the behavior of the wave functions in question at very
large R. Then according to the results of the previous
sections �see Eqs. �19� and �28��, we can put �s=�−2E−Z2

and �s=Z−1/2 for the electron-nucleus coalescence line of
the singlet states. Considering C as the normalization con-
stant, we have only one unknown parameter �. It can be
obtained using the second derivative of the wave function
F�R� at the origin. Then the double differentiation of the
general function �46� yields, in the limit of R approaching
zero
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h �
f��0�
f�0�

=
���1 + �� − ���2 + ��2

1 + �
. �49�

On the other hand, we have from Eq. �28�:

hs =
1

6
�4Z2 − 2Z�3 − ln 2� + 1 − 2E� . �50�

Equation �49� is a quadratic with respect to parameter �. It
has two roots: �1=−1 and �2= �h−�2� / ��−��2. While the
root �1 yields a trivial solution f�R�=0, we retain only the
solution �=�2. Using Eq. �50� and taking into consideration
the values of parameters �s and �s mentioned above, we
obtain

�s =
4�Z ln 2 − E − Z2� − 1

3�1 − 2Z + 2�− 2E − Z2�2
. �51�

The exponent � of the first exponential plays an important
part in constructing the approximate function �46�. Note that
it does not represent the behavior of this function at the ori-
gin. Both exponentials give contributions to the correct be-
havior of the function �46� in this boundary region according
to Eqs. �48� and �49�. However, the inequality �	� must be
valid if we want the exponent � to present the approximate
function �46� at very large R. So, using Eq. �51� and the
proper expressions for parameters �s and �s we have for the
ground state

�s =
2 − 4E + 8Z2 − 4Z�3�1 + �s� − ln 2� + 6�s

6�2�Z − �s� − 1�
. �52�

In Table II we present the numerical values of the exponents
�s and �s as well as the factor �s for the helium atom and
several heliumlike ions. As one can see from Table II, the
parameter �s is greater than �s for all Z presented.

To verify how good are the approximate functions �46�
with the parameters of Table II, we have drawn the curves
y�R�=log10��Fs�R�− fs�R�� /Fs�R�� on Fig. 2. Fs�R� and fs�R�
are the accurate and the approximate functions, respectively.
One can see from Fig. 2 that the approximate curves are very
close to the exact ones at small R. However, even at quite
large R the accuracy is not lower than 10%. The total accu-
racy is increasing with the nuclear charge Z.

The triplet states of the two-electron atomic systems are
always excited states. Only the electron-nucleus coalescence
line is formed for these states according to the Pauli exclu-
sion principle. It is important that the corresponding wave
function at the coalescence line Ft�R� behaves according to
Eq. �29� similar to R2 as R approaches zero. Therefore, the

function �46� is not suitable in this case. Instead, for the
lowest energy triplet state we can propose the simple ap-
proximate function of the form

f t�R� = CtR�exp�− �tR� − exp�− �tR�� , �53�

where �t=�−2Et−Z2 has to describe the behavior of F�R� at
very large R. It is easy to derive the following property of
this function at the origin:

�� d

dR
	 f t�R�

R2 �	 f t�R�
R2 �−1��

R=0
= −

1

2
��t + �t� . �54�

On the other hand, according to Eq. �29� the exact represen-
tation of Ft�R� yields the value of �1/4−2Z /3� for this quan-
tity. So we obtain for the unknown exponent

�t =
4

3
Z −

1

2
− �t. �55�

It is easy to verify that the inequality �t	�t is valid for all Z.
This condition is necessary to make the behavior of f t�R�
close to the correct one. Figure 3 demonstrates the quite
satisfactory behavior of the approximate functions �53�, es-
pecially for R�5 a.u. We can observe that at small R the
accuracy of f t�R� decreases with increasing Z, whereas at
large R it increases with Z. The dips on the graphs of Fig. 2
and 3 are artifacts of the logarithmic scale, since the loga-
rithm of the absolute value of the difference of the two func-
tions goes to −� at the points of crossing the functions. The
overall accuracy therefore can be inferred only at the values
of R not too close to the dip.

The case of the electron-electron coalescence is the most
complicated, because of the presence of the logarithmic term
in the Eq. �43�. However, the general two-exponential form
�46� can be applied in this case too, but without the repre-
sentation �47�.

For simplicity, let us put C=1/ �1+�� in Eq. �46�. Then
we obtain the approximate function fe�R�, which obeys
the condition fe�0�=1, that in turn enables one to compare
fe�R� with the expansion �43� in a simple manner. The
exponent � representing the behavior at very large R is

TABLE II. The parameters �, �, and � for the approximate
wave functions at the electron-nucleus coalescence line. The lower
index s signifies that the parameter presents a singlet state.

Z 2 3 4 5

�s 1.58574 2.75657 3.93411 5.11350

�s 1.34441 2.35793 3.36320 4.36599

�s 0.551062 1.80594 3.17337 4.57790

FIG. 2. Deviation of the approximate function fs�R� from the
exact value Fs�R� at the electron-nucleus coalescence line for the
ground states of the two-electron atom/ions with the nuclear charge
Z=2,3 ,4 ,5.
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equal to �e=2�−E and has to obey the inequality �e	�e,
according to the asymptotic representation �39�. So, we have
two unknown parameters �e and �e. The factor �e has to be
positive, because the ground state wave function is nodeless.
Then, for the first derivative fe��R� at the origin we have
fe��0�=−��e+�e�e� / �1+�e�. Comparing this formula with
Eq. �43�, we obtain the first constraint

�e = 2Z + �e�2Z − �e� . �56�

It is easy to verify that the inequality 2Z	�e is valid for all
Z�1. Therefore, for the parameters �e and �e obeying the
constraint �56�, the condition �e	�e will be valid for any
positive �e. To obtain the second constraint for the param-
eters �e and �e, one can use for example an integral property
of the exact wave function ��R� such as the normalization
integral S=�0

��2�R�R2dR with ��0�=1. It is easy to calcu-
late S using the accurate CFHHM wave functions available.
Replacing ��R� by fe�R� in the integrand, and executing a
simple integration, we obtain the second constraint in the
form

1

�2�e�3 +
2�e

��e + �e�3 +
�e

2

�2�e�3 =
S

2
�1 + �e�2. �57�

The simplest way of solving the set of the equations �56� and
�57� is using the well-known program MATHEMATICA �15�.
The equations have a number of roots �including complex
ones�. However, only one root turned out to be real and
positive, and therefore it could be applicable to �e. The cor-

responding solutions along with the other accompanying
quantities E, S, and �e are presented in Table III. It is seen
from Table III that the approximate function parameters ful-
fill all the conditions mentioned above.

The degree of coincidence for the accurate and approxi-
mate helium wave functions at the electron-electron coales-
cence line is presented in Fig. 4. The solid line describes the
deviation curve for the two-exponential approximate func-
tion fe�R� of the helium atom. For comparison, we have also
drawn the corresponding one-exponential function �42�, pre-
sented by the dotted line. The graphs are limited by the value
of R=2 a.u., because of the very fast decay of the two-
electron atomic wave functions at the electron-electron coa-
lescence line. For example, if ��0�=1, then ��2��0.0006
�for Z=2�. For comparison, we can point out that the corre-
sponding value of the wave function at the electron-nucleus
coalescence line Fs�2��100��2�. The graphs on Fig. 4 dem-
onstrate that the two-exponential function is considerably
more accurate than the one-exponential one �2�R�. All of the
approximate functions presented in this section could be em-
ployed for the evaluation of different atomic phenomena, and
processes of the atomic photoionization in particular.

V. CONCLUSION

We have considered and analyzed some particular solu-
tions of the Schrödinger equation for the two-electron atom

FIG. 3. Deviation of the approximate function f t�R� from the
exact value Ft�R� for the 2S-triplet states of the two-electron atom
and ions with nucleus charges Z=2,3 ,4 ,5.

TABLE III. Parameters �e, �e, and �e of the approximate wave functions at the electron-electron coales-
cence line. The accompanying values of the total energy E and the integrals S are presented as well.

Z −E S �e �e �e

2 2.9037244 0.00452855 3.40806 5.54012 2.60184

3 7.2799134 0.00127463 5.39626 8.32976 3.8589

4 13.655566 0.000524535 7.39069 11.1232 5.12583

5 22.030917 0.000264651 9.38742 13.9178 6.39552

FIG. 4. Deviation of the approximate functions fe�R� and �2�R�
from the exact wave function ��R� at the electron-electron coales-
cence line for the helium atom.
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or ion �with the nucleus charge Z and the total energy E�
using the accurate CFHHM wave functions. We have ob-
tained mathematical relations between the partial derivatives
taken at the two-particle coalescence lines and the ordinary
derivatives of the wave function taken at the same coales-
cence lines. The relations were found for the limit cases of
very large and small distances R between one of the elec-
trons and the other electron close to the nucleus �electron-
nucleus coalescence� or between the two electrons close to-
gether and the nucleus �electron-electron coalescence�.
We have obtained the only relation valid for all R�0 and
Z�1. It connects the first partial derivative on r1 �or r2�
and the first ordinary derivative of wave function at the
electron-electron coalescence line.

We have examined both singlet and triplet S states, and
obtained the asymptotic solutions �for very large R� with the
exponents �−R�−2E−Z2� or �−2R�−E� for the electron-
nucleus or electron-electron coalescence, respectively. These
results turned out to be valid for the ground and singly ex-
cited bound states. We have derived the second-order expan-
sions in R and ln R in the vicinity of the triple coalescence

point for small R. We have found that the Fock’s logarithmic
terms vanished at the electron-nucleus coalescence line, un-
like the case of the electron-electron coalescence, but only in
the framework of the second-order expansion.

We have proposed simple two-exponential approxima-
tions for the two-electron atomic wave functions at the coa-
lescence points. The approximations are valid for the lowest
energy �nodeless� states. It was demonstrated that all of the
approximate functions have quite satisfactory accuracy and
could be employed at least for the initial qualitative evalua-
tion of a number of phenomena in the atomic physics.
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