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The proof of the convergence of the quasilinearization method of Bellman and
Kalaba, whose origin lies in the theory of linear programming, is extended to large
and infinite domains and to singular functionals in order to enable the application of
the method to physical problems. This powerful method approximates solution of
nonlinear differential equations by treating the nonlinear terms as a perturbation
about the linear ones, and is not based, unlike perturbation theories, on existence of
some kind of small parameter. The general properties of the method, particularly its
uniform and quadratic convergence, which often also is monotonic, are analyzed
and verified on exactly solvable models in quantum mechanics. Namely, applica-
tion of the method to scattering length calculations in the variable phase method
shows that each approximation of the method sums many orders of the perturbation
theory and that the method reproduces properly the singular structure of the exact
solutions. The method provides final and reasonable answers for infinite values of
the coupling constant and is able to handle even super singular potentials for which
each term of the perturbation theory is infinite and the perturbation expansion does
not exist. © 1999 American Institute of PhysidS0022-248809)01812-5

I. INTRODUCTION

Most problems of physics are not solvable exactly and therefore should be tackled with the
help of analytical or numerical approximation methods. In quantum mechanics and quantum field
theory over the years many such methods were developed, from perturbation theories, Wentzel—
Kramers—Brillouin(WKB) approach and Monte Carlo simulations to lattice computations, strong
coupling approximation, 1/N expansion, and so on. The purpose of this paper is to apply to
guantum mechanical problems an additional very powerful approximation technique called the
quasilinearization metho@QLM), whose origin lies in the theory of linear programming. The
method, whose iterations are carefully constructed to yield rapid quadratic convergence and often
monotonicity, was developed around 30 years ago by Bellman and Kalaba to solve a wide variety
of nonlinear ordinary and partial differential equations or their systems arising in such different
physics, engineering, and biology problems as orbit determination, detection of periodicities,
radiative transfer, and cardiolody?. The modern developments and applications of the method to
different fields are given in Ref. 3. QLM, however, was never systematically studied or exten-
sively applied in quantum physics though references to it could be found in well-known
monograph$® dealing with the variable phase approach to potential scattering as well as in a few
scattered research pap&fsThis could be explained by the fact that convergence of the method
has been proved only under rather restrictive conditiénghich generally are not fulfilled in
physical applications, such as, for example, a rather small domain of variables or forces which are
finite everywhere in the domaiisee the following A goal of this work is to reformulate the proof
of the convergence for more realistic physical conditions of infinite domains and forces which
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could be singular at certain points of the domains. We also show how to deal with solutions which
themselves could be infinite at certain values of variable such as, for example, scattering ampli-
tudes at values corresponding to bound state energies, etc.

Since this is our first paper on the subject, in order to make presentation as simple and short
as possible, we limit ourselves to the case of the first-order nonlinear ordinary differential equation
in one variable. Physically this covers the quantum mechanics of one particle in a central field
since in this case the Scltioger equation for a wave function could be rewritten as the Ricatti
equation for its logarithmic derivative.

Our proof of the convergence of the quasilinearization method for a general nonlinear ordi-
nary or partialnth order differential equation iN-dimensional space could be formulated along
the same lines and will be given in a subsequent article.

The paper is arranged as follows. In Sec. Il we present the main ideas and conditions of
convergence of the quasilinearization approach, formulated by Bellman and k&fabthe case
of the first-order nonlinear ordinary differential equation in one variable, and modify their proof in
order to meet the physical reality of infinite interval of the variable or the possibility of singular
potentials. In order to highlight the power of the method in Sec. Ill we consider examples of
different singular and nonsingular, attractive and repulsive poteitialsfor which the nonlinear
first-order ordinary differential equation

da(r)
dr

=—V(r)(r+a(r))? a(0)=0, (1.2)

for an S-wave scattering lengthy=a(=), obtained in variable phase approdch;an be solved
exactly and compare the iterations obtained by the Bellman—Kalaba linearization method with
exact solutions and with the usual perturbation theory. Our results, advantages of the method, and
its possible future applications are discussed in Sec. IV.

II. THE QUASILINEARIZATION METHOD (QLM)

The aim of QLM is to obtain the solution(z) of a nonlinear first-order differential equation

dv(z)
dz

=9(v(2),2) (2.9

with the boundary conditiom(a)=c as a limit of a sequence of linear differential equations. This
goal is easily understandable in view of the fact that there is no useful technique of presenting the
general solution of Eq2.1) in terms of a finite set of particular solutions as in a linear case where,
as a result of the superposition property, the equation could be solved analytically or numerically
in a convenient fashion. In addition, the sequence should be constructed in such a way as to obtain
quadratic convergence and, if possible, monotonicity.

The shift of the coordinate=x+a and of the solution itselfi(x) =v(x+a) — ¢ reduces Eq.
(1) to the canonical fori?

du(x)_f B
ax (u(x),x), u(0)=0, (2.2

wheref(u(x),x)=g(u(x) +c,x+a).
The QLM prescriptioh? determines tha+ 1 iterative approximation,,. ;(x) to the solution
of Eq. (2.2) as a solution of

ur,1+1(x):f(unuX)+(un+1(X)_un(X))fu(un1X)- Un+1(0)=0, (2-3)
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where the functiorf ,(u,x)= df (u,x)/du is a functional derivative of a functiond(u(x),x). If
one definesn as an upper limit of a maximum of absolute values of the functional and its first and
second functional derivatives

one can prove that the sequence of iteratiopx), n=1,2,... convergesniformly and qua-
dratically on the interval0,b] to solutionu(x) of Eq. (2.2) for bm sufficiently small. Indeed,
introducing the metrid g|| of the functiong(x) as a maximum of the function on the interval
[0,b],

lgll=maxg(x)[,0<x<b, (2.9

and introducing notationd uy,, 1(X)=u(x) —up(X), SUn.1(X)=Upn41(X)—Uu,(X) one proves?
the following inequalities:

| Aun 2| <K[Augl?, (2.6

| dun - all <Kl Sup|1?, 2.7)
bm

k= m, (28)

which establish the uniform quadratic convergence of sequape on [0b] for sufficiently
smallbm. A simple induction of Eq(2.7) show$ that 5u,,, 1(x) for an arbitraryl <n satisfies the
inequality

| 8Ug - 1| < (K] Sup, 1) 7k, 2.9

or for 1 =0,

16Un 1l < (K] 8uy])?"/k. (2.10

The convergence depends therefore upon the quamtityk||u, — ue||, where zero iterationig(x)
satisfies the conditiony(0)=0 and is chosen from physical and mathematical considerations. In
view of Eq.(2.8) the convergence is reachedifn is sufficiently small. However, from Eq2.9)

it follows that for the convergence it is sufficient that just one of the quantitigsk|| Su,. 1| will

be small enough. Consequently, one can always hibye even if the first convergent coefficient
g, is large a well chosen initial approximatian, results in a smallness of at least one of the
convergence coefficienty,,, m>1, which enables a rapid convergence of the iteration series for
n>m.

One can prove in additidrf that the convergence is monotonic from bel@above, if func-
tional f (u(x),x) is strictly convex(concavg, that is if the second functional derivati¥g,(u,x) in
interval[O,b] exists and is strictly positivénegative.

The QLM treats the nonlinear terms as a perturbation about the linear’aresis not based,
unlike perturbation theories, on the existence of some kind of small parameter. In the proof of
Bellman and Kalaba, a small parametem, however, does appear sort of through the back door.
The requirement of smabhm is unfortunately too restrictive in most physical problems wirare
and b are often large or infinite, since normally changes in an infinite domain and many
potentials are infinite at some points in the domain. For example, in the case of the variable phase
equation—Eq(1.1), since most of the realistic forces, like Yukawa, Coulomb, van der Waals, or
hard core potentials, are infinite at origin, a function

f(a(x),x)=—V(x)(x+a(x))? (2.11)
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or its first
fo(a(x),x)= —2V(x)(x+a(x)) (2.12

or second
faa(@(x),x)=—=2V(x) (2.13

functional derivatives, are infinite at the origin. This meams o, which is a zero convergence
interval. However it has been well known for a long tihié! that a first approximation of QLM
gives finite and reasonable results even for super singuidr /=4 potentials for which all the
terms of the usual perturbation theory are strongly divergent. It indicates that the corwition
being small may be too restrictive and should be relaxed.

Our goal now is to modernize the proof of uniform quadratic convergence of QLM so the
requirement of smallness of an interval for largeas well as the requirement of being finite is
removed. Let us subtract from both sides of E&2) a termh(w(x),x)u(x), wherew(x) and
h(w(x),x) are some arbitrary function and functional, respectively, which we chose later. We
obtain

du(x)
dx

—h(w(x),x)u(x)=f(u(x),x) —h(w(x),x)u(x), u(0)=0. (2.14
The integral form of Eq(2.14) is

)= | astt(u(s),9)~ hows) sucs)exs | dencwco) v, (219
or, in case of nonzero boundary conditin(0)=c,

u(x)=cexpfoxdth(w(t),t)+ Joxds(f(u(s),s)—h(w(s),s)u(s))expf:dth(w(t),t),

(2.1
which can be checked easily by a simple differentiation.
We consider three different forms of functievn(x) and its functionah(w(x),x):
h(w(x),x))=0, (2.17
h(w(x),x)=f,(w(x),x), w(x)=0, (2.18
h(w(x),x)=f,(W(x),x), W(X)=u(x). (2.19

We can now define the iteration scheme by setting the funct{ai on the right equal to iteith
approximationu,(x) and obtaining ther{+ 1)th approximation on the left-hand side. The zero
approximationug(x) is chosen from some mathematical or physical considerations and satisfies
the boundary conditiony(0)=0. We get three different iteration schemes, corresponding to Egs.
(2.17—(2.19, respectively:

U 10X) = foxdqf(un(sxs), (2.20

Un s 2(X) = foxdsﬁ(un(s),s)—fu<o,s>un<s>)exp J:dtfum,t), (2.2

and
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Up+1(X)= JOXdS(f(Un(S),S)—fu(Un(S),S)Un(S))eXDJ:dtfu(Un(t),t)- (2.22

In case of nonzero boundary conditin(0) = c the iteration sequence should be slightly modified.
For example, in this case, according to EB.16), Eq. (2.22 has a somewhat different form,
namely

X X X
un+1(X)=ceXpLdtfu(un(t),t)+JOds(f(un(s),s)—fu(un(s),S)un(s))epr dt f,(up(t),1).
S
(2.23
Let us concentrate in the beginning on E@.22, which, being the solution of Eq2.3),
displays the iteration sequence of the QLM. The subtraction of E8) for n andn—1 gives a
similar differential equation for the differencu,, . 1(X) = U, 1(X) —uy(X):
5Ur/1+1(X) = f(Un(X),X) - f(Un_l(X),X) + 5Un+1(X)fu(Un(X),X) - 5Un(X)fu(Un_1(X),X),
U, 1(0)=0. (2.29
By use of the mean value theor&hone can write
F(UA(X), ) = F(Un—10X),5) + 8Un () Fy(Un—100,3) + 3Fuy(Un(X), ) 8UA(X), (225
whereu,(x) lies betweeru,(x) andu,_4(x). As a result Eq(2.24) could be written as
SUp, 1(X) = 8Un 1 1(X) Fy(Un(X),X) = 3 (Un(X)) SUZ(X), (2.26

whose solution has a form

1 (x o 9 X
SUn+1(X) =3 fo ds fuu(Un(s),s) 5un(S)eprs dt f,(un(t),t). (2.27)

Obviously,

1 (x X
| SUn+1(0)|< 5 fod5|fuu(Un(S):5)||5un(S)|2eXpJSdtfu(un(t)1t)

Skn(X)'|5un(ﬂ|2skn(b)'”5un”2- (2-2&

HereX is the point on the intervdl0 x] where|du,(x)| is maximal,

1 (x X
0= | as s slexs | dttyu .0, 229

and positiveness of the integrand in E2.29 as well as definitiori2.5) are used. Since E(2.28
is correct for anyx in the interval[0b], it is correct also for a value ofte[0,b] for which
|8un,41(X)| reaches its maximal value. This gives

”5un+1”$kn(b)'||5un||2- (2-30)

Let us assume the boundness of the first two functional derivativdgugi),x)), that is the
existence of bounding functiorts(x) and G(x) which for anyu andx satisfy

fu(u(x), ) <FX),  [fuu(u(x),x)[<G(x). (2.3
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In this casek,(b)<k(b), where

k(b):% fobds G(s)expf:dt F(t), (2.32

and EQq.(2.30 could be written in the form
[6un+ 1 =<k(b)-[ du,l, (2.33

which is identical to Eq(2.7) but with k=k(b) instead ok given by Eq.(2.8). We can reproduce
the results of Bellman and Kalababy following their bounding restriction Eq2.4) and setting
F(x)=m, G(x)=2m. In this case the integrals in E(R.32 could be easily calculated and give
k(b)= (1—e~™P)/e~™MP which for smallmb reduces to the expression forgiven by Eq.(2.8).
However, as we will see in different examples in Sec.K(b) given by Eq.(2.32), unlikek given
by Eqg. (2.8), could be sufficiently small also for an infinite interval lendihand for singular
functionsG(x) andF(x). This means that the quantity (b),

q1(b) =k(b)[us—ugl|, (2.34

which is responsible for the convergerleee the discussion after E@.10] could be less than
unity and thus assure the convergence even in this case. As was pointed out there, the rapid
convergence is actually enough that an initial guess for zero iteration is sufficiently good to ensure
the smallness of just one of the convergence coefficignt®) =k(b)||Um41— Unl-

With the uniform quadratic convergence of the sequemge) for the intervals[0,b] in
which at least one of the convergence coefficiepttb) <1 now proven, one can conclude from
Eq. (2.27), that in addition for strictly convexXconcave functionals f(u(x),x) the difference
Un. 1(X) —un(x) is strictly positive(negative, which establishes the monotonicity of the conver-
gence from belowabove, respectively, on this interval.

If F(x) is a sign-definite function an@(x) =|F(x)|, the integral in Eq(2.32 could be taken
explicitly and produces a simple expression k¢b),

1 b
k(b)zi |expf0 dt F(t)—1]. (2.39

The subtraction of Eq(2.3) from Eg. (2.2 gives
Aur'Hl(x):f(u,x)—f(un(x),x)+Aun+1(x)fu(un(x),x)—Aun(x)fu(un(x),x),
Aun.4(0)=0, (2.39

which is similar to Eq(2.24—the starting point for our derivation of ER.33. The derivation
along the same lines, starting from Eg.36), gives the analog of Eq2.6) with k changed to
k(b):

1A unall<k(b)-[|Aug|?. (2.37

Equation(2.31) again confirms the uniform quadratic convergence of the sequgoea solution
u(x) of Eqg. (2.2. One can show in exactly the same fashion as before that for strictly convex
(concave functionalsf(u(x),x) differenceAu, ., is strictly positive(negative, proving in this
case the monotonic convergence to a limiting functiofiom below (above, respectively.

In case the solutiom(x) and, respectively, its iterationg,(x) are going to infinity at some
points on interva[ 0b], Eq.(2.22 could become meaningless. To deal with it, it is necessary to
regularize Eq(2.2), that is reformulate it in terms of a new functim(x) which is finite, as, for
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example, to change to functiar(x) = 1/u(x) for |u(x)|>1, the prescription which is used in the
present work, or to set(x)=tanv(x) as it was suggested in Refs. 13 and 14. The corresponding
nonlinear equations for(x) have the form

dv(x) ! - ~
ax = —v(x)*f W'X , v(0)=u(c), |u(c)|=1, (2.39
and
dv(x)
X =cog v(x)f(tanv(x),x), v(0)=0, (2.39
respectively.

Let us now turn our attention to the iteration sequences given by(E@€) and(2.21). These
successive approximation schemes were considered by Piead! Calogero, Babikov, and Flue-
gge (CBP),*>!respectively. The quadratic convergence, reached in QLM, is based on a specific
choice of functionw(x) and its functionah(w(x),x) given by Eq.(2.19 which, in view of the
mean value theorem of E(R.25, assures cancellation of the first powerdof,(x) andAu,(x) in
recurrence relations of Eq&.24) and(2.36), respectively. Such cancellation will not happen for
the Picard and CBF choices wix) andh(w(x),x), given by Eqs(2.17) and(2.18. One obtains,
therefore, for these approximation schemes the usual inequality characteristic of the first-order
convergence

I6un 1/l < pll oug], (2.40

wherep is a correspondent convergence coefficient. This leads, instead of the very tamd/@r
type of convergence, displayed in Eq2.33 and (2.37), to the much slower geometric conver-
gence

I6un+all<p"duyl. (2.41)

lIl. QLM SCATTERING LENGTH CALCULATIONS AND THEIR COMPARISON WITH THE
PERTURBATION THEORY AND EXACT SOLUTIONS

In Sec. Il we proved that the QLM successive approximations to the exact solutiyrof
Eq. (2.22 given by Eq.(2.2) converge quadratically and uniformly on intery@b], whereb is
found from the requirement that one of the convergent coefficigptb) defined in a paragraph
following Eq. (2.34) is less than unity. In addition for strictly convexoncavé functionals
f(u(x),x) the convergence to a limiting functiom is monotonic from below(above, respec-
tively.

In order to highlight the power of the method in this section we consider examples of different
singular and nonsingular, attractive and repulsive potentials for which the nonlinear first-order
ordinary differential equation for aBwave scattering length, E¢L.1), obtained in variable phase
approach® could be solved exactly. We will compare the iterations obtained by the Bellman—
Kalaba quasilinearization methd®@LM) with exact solutions and with the usual perturbation
theory.

A. Square well potential

1. Repulsive square well

Let us start from the repulsive square well potential

V(r)=%(R—r), (3.)
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where® (R—r) is the Heavyside function andis a potential strength, which for now is assumed
to be positive. The change of variables to the dimensionless vasiabl& (r/R) and dimension-
less functionA(x) = VA[a(x R/yYA)]/R allows one to express E@l.1) for x<x,, Xo=+\ in a
form

dA(X) 2
g =~ (XFAX)Z A0)=0. 3.2

Forx>xq A(x) is a constant equal to the dimensionless scattering lehgthy/\ (ay/R), the
scattering length itself beingy=a(R). A further change of the function ta(x) =x+ A(X) gives
a familiar equation for the hyperbolic tangent,

du(x)

ax =1-u%x), u(0)=0. (3.3

The exact variable scattering lengr) for the repulsive square well potential is therefore

R r
a(r)= Ktanl‘( \/Xﬁ) -, (3.4
while the scattering length is given by
tanhy\ tanhx
ap=R —\/——1 =R °—1). (3.5
NN Xo
Here we use the Calogero definition of the scattering Iéhgth
) tand(k)
o=limy_.o——, (3.9

S is a scattering phase, which is different in sign from the definition used in most publications.

Before considering the QLM, let us turn to the usual perturbation theory. Displaying explicitly
the dependence of the potential on the coupling constény=Av(r) and expanding(r) in
powers of\, one obtains from Eq.1.1):

o0 s 2
> Aal(r)=—av(r)| r+ > Nan(r)] . (3.7)
k=1 n=1
Comparisons of coefficients before the powers\ajives the recurrence relation
k-2
ap(r)=—v(r)| r2du+2ra,_,(r)+ E ak_n_l(r)-an(r)), k=1,2,3... (3.8
n=1

The successive integrations of £§.8) produce the expansia(r) in the powers of the coupling
constant. The first three terms of the perturbation expansion of the variable scattering length, for
example, are

a,(r)y=— fords 2v(s),

az(r)=—j(:d525v(s)al(s), (3.9



6274 J. Math. Phys., Vol. 40, No. 12, December 1999 V. B. Mandelzweig

as(r)=— J;dsv(s)(25a2(5)+a§(s)),

and so on. Fou(x) this expansion gives

12 17 ., 62 , 1382 ., 21844
U0 =x— 3 X+ 5 X e X e X 1995 X * 5081075
929569 6404582
_ 15 17 1
638512875° ' 10854718875¢ O™ (3.10

These series, of course, could also be obtained by using the power series expansioxfltaah(
power expansion of scattering length is given by E§sL0 and(3.5), the latter can be written in
the formag=R([u(Xg)/Xo] —1).

Let us consider now the approximate QLM solutions of E43), choosing as a zero approxi-
mation a solution of this equation for a very smalil ug(x) =x. The recurrence relatio(2.22
now has the form

unﬂ(x)—f ds(1+un(s )exp( f dtu (t)) (3.11
while thenth approximation to the scattering length is given by
Up(X
apn=R nX0) ). (3.12
Xo

The substitution of the zero iteration in E®.11) leads to a first-order approximation,

ul(x)z—igerf(ix)eszr;, (3.13

where erfg) is the error functiort® Expansion 0f3.13 in power series enables a comparison with
perturbation serieé3.10),

Ug(X)=X— ! X3+ — x°— s X'+ 5 x4+ 0(x) (3.149
1 3 15 105 945 ’ '

which shows that the first approximation reproduces exactly three terms of the perturbation series,
that is two more terms than was given correctly by the zero QLM approximagex) =x. This
improvement of the representation of the perturbation series not by one, but by two powers of
is, of course, precisely what one should expect from the quadratic convergence. In addition, the
fourth term is also mostly correct being s+ vis-a-vis exact— 37z. The second iteration,(x)

could not be calculated analytically, but could be computed numerically or expressed by power
series expansion with the help of symbolic computation prodrafine latter gives

Lt 2 17 ., 62 , 1382 21844
Ua(X)=X= 3 X*+ 35 X0 2 X' S X T aoe X 5081 075 X
918 844 39944
_ 15 17 1
638512875° 709458755 O (3.19

One can see that the second iteration of QLM reproduces correctly the first seven terms of the
perturbation series, an improvement by 4 powers obmpare with previous QLM approximation
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u.(x). In addition, the eighth and ninth terms of the power series expansion(gj are very

close to their precise values in perturbation theory, beingise4-. and, 5.6X 10 * vis-a-vis

exact values— gzere—and 5.9 10 4, respectively.

Aside from the fact that already first QLM approximations sum many orders of the usual
perturbation theory, the QLM iterations, unlike the perturbation series, have meaning also for a
large or even infinite values of coupling constant. Indeed)fere any term of the perturbation
series is infinite. Even for a finite moderately large potential strengtl2.5 perturbation expan-
sion (3.10 diverges since the power series expansion of the hyperbolic tangepohverge®
only for xo< 7/2, that is for\ < 7r%/4. On the other side, the QLM approximations to the scattering
length are finite. The first QLM approximation to scattering len@Hh3 in view of an asymptotic
expression

e ?
erf(z)z(l— ) (3.16
7z

for |z]— 1% shows that the scattering length in this approximation equaly/2, a reasonable
approximation to exact valuay=—R. The computation of the scattering length in the second
QLM approximation gives again a finite and improved resyt — 3R.

To tackle more rigorously the question of convergence of the iteration series for dimension-
less scattering length,,=a,, /R given by Eqs(3.11) and(3.12) to exact resulfy=a, /R let us
turn to the convergence condition demanding the smallness of convergence coefficsdht
which in this case is given by

uy(x)

Up(X) = Up(X)
f T—l. (3.19

q1(b) =k(b)[ag1—aod|=k(b) =k(b)-max<y<p

To calculateqq(b) one first has to estimate(b) using, for example, Eq2.35. From Eq.
(3.3) and the boundary condition there follow$—x) = —u(x). We can consider therefore only
positive branch of the solution whose extremum is reached wtiéx)=1—u?(x)=0, that is
whenu(x)=1. This means thatQu(x)=<1. Since the first and second functional derivatives of
f(u(x),x)=1—u?(x) equal —2u(x) and —2, respectively, one can s&t(x)=—2 and G(x)
=|F(x)|=2, which gives

k(b)=3le"?*—1|< 3. (3.18

In view of the fact that, due to the properti®f the error function| uy(x)/x —1|<3 for all
positivex, one obtains that, (b)=< 7 for all values ofb. Thus the convergence of QLM approxi-
mations Eq.(3.11), and therefore,,,, given by Eq.(3.12, to the exact scattering lengty in
case of the repulsive square well is uniform and quadratic for all valugg, dhat is for all values
of coupling constank.

2. Attractive square well
The same conclusions are correct also for the attractive square well potential the equations for
which are obtained by changingto —\. The equation fou(x) now has a form
du(x)
dx

=1+u?(x), u(0)=0. (3.19

Its solution is
u(x) =tanx (3.20

and the scattering length is given by
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aozR(M—l)ER<U(XO)—1). (3.21)

W Xo

The QLM subsequent approximations are obtained with the help of recursion equations

unﬂ(x):joxds(l—uﬁ(s))exp(ZLthun(t)>. (3.22

Choosing the zero QLM approximation as before in farpix) =x leads to first QLM approxi-
mation,

V

X
uy(x)= 4 5

erf(x)ex2+ 5 (3.23

Now there is, however, an additional difficulty, since exact scattering lemgtky) is a singular
function ofxo= A and becomes infinite at values of the coupling constant corresponding to zero
bound state energies=((2n-+1) 7/2)%. This finds reflection in the fact that (x,) is increasing

very fast forxy around=/2. To deal with it let us, in accordance with the discussion in Sec. I,
regularize Eq(3.19, that is to rewrite it forju(x)|>1 in terms of a new function

v(X) 1 (3.29

- u(x)’

Definingc as a singular point wheng(c) =< one obtains, according to E(.38), the following
nonlinear equation fov(x):

d
0 e @rv?, v

In view of Eq.(3.19 a solution of Eq(3.29 is v(x) =u(c—x). Equation(3.24) then gives

1
u(x)= U= (3.26
Settingx= c/2 allows us to write
uZ(E) =1 (3.27
2
for constant c. Since the solution of E®.19 should be an odd function o
u(—=x)=—-u(x), (3.28
it is enough to choose only a positive branch of E227), that is
u %) =1. (3.29

From Eqgs.(3.26 and (3.28 follows the X periodicity of solutionu(x): u(x+2c)= 1/u(c—(x
+2c¢)) =— Lu(x+c) =—u(c—(c+x))=u(x). Thus it is enough to find a solution only on the
interval (0,Z). We can now formulate the following result.

The nth QLM approximationU,(x) to the solution of Eq(3.19 on the interval[0,2c,],
which is able to properly describe a singularity, is given by
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U o[ P Sl g 3
X)=Un(X)O| 5 —X|O(X)+ ———— 0| x— 5 |O| 5 —X

3c,
2

+un(x—2cn)<x— )@(ch—x), (3.30

where thenth QLM approximatioru,(x) on interval (0¢,/2) is found with the help of recurrence
relations Eq(3.22 and thenth approximate value, of c is given by

3
Un| %
Computation ofc,,/2 shows that the differences between the exact vedeier/2 and approximate
valuesc,, are very small already for the first and second QLM iterations, nanwgly ¢r/2) and

(c,— m/2) are 0.005 29 and 0.000 001 32, the errors of 0.5% and%0 respectively. Since the

nth QLM approximation, Eq(3.30, has a pole aky,=c,, )\:cﬁ gives a value of potential
strength corresponding to a zero energy bound state. One sees that the QLM description of such
state is extremely accurate already in the first and especially in the second approximations.

To prove the uniform quadratic convergence of the QLM iterations it is enough, in view of
Egs.(3.28 and(3.30 to considew,(x) only on intervals (@,/2) which are very close to interval
(0,/4). Since the first and second functional derivatives of the left-hand side df3E are
2u(x) and 2, respectively, anfli(x)|<1, one can chos€&(x)=G(x)=2 and use Eq(2.35,
which produces a simple expression kgb),

=1. (3.3)

k(b)= 3(e?*—1). (3.32

This leads to the following result fay,(b):

ql(b)z%(eZb—l)(\/Af—;erf(b)ebz— g) (3.33

A simple computation shows that(q,(b)<1 for 0<b<0.92, which proves the uniform qua-
dratic convergence of the QLM iterations on even larger intgi@@.92 than interval (0z/4) and
thus the convergence of the sequekkgx,) to the exact solution taxy on the interval (0,2,)
~(0,7). In view of its 2c,,~ r periodicity thenth QLM approximationJ,(x,) converges there-
fore to the exact solution for ally, that is for all values of the coupling constant

The extremely fast convergence of QLM approximations given by(E&0 is evident from
the ratios of the firsfEq. (3.23] and secondEg. (3.22 for n=1] QLM iterations to the exact
solution (3.20, which are shown in Figs. 1 and 2, respectively.

B. éfunction potential

In case of thes-function potential
A
V(r)zﬁﬁ(r—R), (3.39

Eq. (1.2) for the scattering length has the form
A (X)=NXx—A(X))?8(x—1)=N(1-A(x))?8(x—1), A(0)=0, (3.35

wherex=r/R and A(x)=— a(r)/R are dimensionless variable and variable scattering length,
respectively; note, that in E¢3.35 A(x) could not be set equai(1), sinceA(x) is discontinu-
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1.0051

0.995T

0.997 0.5 i 1.5 2 2.5 3
x

FIG. 1. The ratio of the first QLM iteration to the exact solution for the attractive square well as a function of the potential
strength\ (axisx).

ous atx=1, its derivative being proportional to th&function. Introduction of a new function
y(xX)=A0O(x—1), y(0)=0, y()=\ with a derivativedy(x) =\ §(x—1)dx reduces Eq(3.35
to the form

dA
%=(1—A(y))2, A(Y)y-0=0. (3.3

A solution of Eq.(3.36) is

Aly)= 1:l_—y (3.3

An exact solution of Eq(1.2) for the &potential thus is given bya(r)=—RA(y)=—R[\O(r

—R)]/[1+X0O(r—R)]. The scattering length, equalsa(r),-..=—RN/(1+X\). Itis is singular
at A = —1, reflecting the existence of the zero energy bound state for the unit potential strength.

1.005+

0.9951

0.997 0.5 i 1.5 2 2.5 3
x

FIG. 2. Same as in Fig. 1, but for the second QLM approximation.
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1. Repulsive é-function potential

Let us now consider QLM approximations to the exact soluiid/37) in the case of the
repulsive s-function potential, A\>0. According to Eq.(2.22 they are given by the following
iteration sequence:

, (3.39

Ansa(y)= Joyds(l—Aﬁ(S))eXp( —ZLydt(l—An(t)

since the functional derivative of the right-hand part of E8.36) equals—2(1—A(y)). The
introduction of thenth approximationu,(y)=1—A,(y) to a functionu(y)=1—-A(y)= 1/(1
+v) helps to write recurrence relationshi®.38 in a simpler form:

y
unH(y):exp( ~2 [ atu,

+ foyds uﬁ(s))exp( —2Lydt un(t)), (3.39

which coincides with the QLM iteration schen(2.23 for Eq. (3.36), rewritten with the help of
the functionu(x)=1—A(x) as

u’'(x)=-u(x)?, u(0)=1, (3.40

Since forx=o y=N\, u,(\) gives thenth approximation tai(\) =1—Ay(\)= 1/(1+\) where
Ap(\) is the exact dimensionless scattering length.

Let us chose as a zero approximatiag(y)=u(0)=1. The substitution in Eq3.39 for n
=0 gives

uy(y)=3(1+e %), (3.41

One can see that already the first approximatigth) for A— is finite and equalg, which
gives a value of; for the approximate dimensionless scattering length vis-a-vis the exact value
Ap=1. Each term in the perturbation series qi\),

u(x>=mE:O (=)™, (3.42

in this case is infinite while the perturbation expansion itself is divergent already [ferl. The
comparison of perturbation expansi@®.42 with the perturbative expansion of the first QLM
approximation(3.41),

Ui(AN)=2(1+e 2)=1—-N+N2— 2\3+ La4— ZN5+0(\9), (3.43

shows that in this approximation the perturbation series is correct up to the fourth term. The next,
second approximation also could be calculated analytically with the help of symbolic computation
progrant’ and gives the rather cumbersome expression

= e = 1 -
—2vet P ey \og erf(7)Vee Pell2_gli2eh _\[p erf(;)el’z\/ee 2
2 2

N 2”91/2(— e A 42N +1)

Uz()\)z —-1/4

(3.49
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For A— the largest term both in the numerator and denominata'/fs*. Thereforeu,(«)
=2, which corresponds to the second QLM approximatiorgabeing £, a significant improve-
ment compared with the result, obtained in this limit in the first QLM approximatiofl). The
computation of the power series expansion yields

62 79 4931
—1_ 2_y3 4_ 5 6__ 7 8__ 9 1
Up(N)=1—N+AZ= A3+ N4 =\5+\ 53N 82" 5570 +0(\9. (3.4

The perturbation series in the second QLM approximation is given correctly up to the seventh
term, while the coefficients of the eighth and ninth terms are different onkg bhpd &, that is by
1.6% and 6%, respectively.

Analytic calculation of the third QLM approximation seems impossible but the power series
expansion could be evaluated with the help of the same protfrarhich yields

Us(N) = 1= N+ A2 A3H N NS HNO - AT+ NB— N O N 10— \ 114 \ 12 \ 134 \ 14

59534 . 1904891 | 12139457

T 59535 1005120" 12145140

161721779 ,, 113880892943 5 . 5
" 161935200 114225041700° O (3.46

In the third QLM approximation the first 15 terms of the perturbation series are given exactly
while the next 5 terms have coefficients extremely close to being exact.

Summing up, the number of the terms given precisely in the zero, first, second, and third QLM
approximations equals 1, 3, 7, and 15, increasing by’2Zrl 2, respectively, that is according
to geometric progression withy=2, exactly as one should expect from the quadratic law of the
convergence. The numbét, of perturbation series terms reproduced exactly inritie QLM
approximation is therefore

n+1__

=211 (3.47

n
q
N, = k—
. kgoq q-1

and for largemn approximately doubles withn increasing by each unit. For example, the sixth
QLM approximation reproduces exactly 21=127 terms of the perturbation expansion, while
the twelfth approximation reproduces already21=8191 terms, and so on.

The numerical computation af;(«) gives 0.125, corresponding #,=0.875, a finite and
gratifying result.

Comparison of the first three QLM approximationg(\), n=1,2,3 with exact solution
u(\)= 1/(1+\) and its perturbation expansi¢8.42 containing 15 termgup tox 4, inclusively)
for the &-function potential with the potential strengthchanging in the interval0,10 is shown
graphically in Fig. 3. One can see that each subsequent QLM approximation reproduces the exact
solution better than the previous one up to infinite values of the coupling constant, while even the
15th-order perturbation theory is not able to describe the exact solution adequately beyond
=1.

To prove the uniform quadratic convergence of QLM iterations let us note that the first and
second functional derivatives of the left hand side of B0 are —2u(x) and— 2, respectively,
exactly as in the case of the repulsive square well which was discussed earlier. The extremal value
of u(x), reached whenu’(x)=—u?(x)=0, is, obviously, zero, which, in view of boundary
condition u(0)=1, means €& u(x)<1. This allows one to choose the same functidi(x)
=—2,G(x)=2 as for the repulsive square well, and consequently results in the same expression
3.18 fork(b). Since it follows from Fig. 3 that the maximal difference between zero and first
QLM approximationg|u(x) — u;(x)|| equals3, one obtains as befog (b)< %, which proves the
uniform quadratic convergence of the QLM iterations for all value$.ofThis means that the
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FIG. 3. Comparison of first three QLM approximationg(\),n=1,2,3, curves a, b, and c, respectively, with exact
solutionu(\)= 1/(1+\), curve d, and its perturbation expansi@42, curve e, containing 15 termisp to A%, inclu-
sively), for the &function potential with the potential strength(axis x) changing in the interval0,10.

convergence of subsequent QLM approximations to the exact scattering length for the repulsive
&function potential is uniform and quadratic for all values of coupling constamtcluding very
large and infinite ones.

2. Attractive é-function potential

For negative\ the subsequent approximatiomg(\) start to increase very rapidly witix| as
one can see, for example, from analytic expressi@#4l) and (3.44). According to discussion
before Eq.(2.38 we have to switch in this case in E(.40 to a new functionv(x)= 1/u(x),
which thus satisfies the trivial equatieri(x) =1 with a boundary condition(0)=1. The QLM
solution of this equation in theth approximation, calculated from E(.23), is v,(X)=1+x or
u,(x)= 1/(1+x) for any n, which means that this form of the equation for the attractive
Ssfunction potential generates an exact solution in any QLM approximation and there is no need
for further investigation.

C. Inverse square potential

Let us consider now the inverse square potential
A
V(r)=r—2®(R—r), (3.48

where\ is the dimensionless coupling constant. As is well kndfvhis potential produces a fall
to the center in case of< — 3. Forr<R, Eq.(1.1) for the scattering length could be written in
the form

A(x)\?
1+T), A(0)=0, (3.49

A’ (X)=—\

wherex=r/R and A(x) = a(r)/R are the dimensionless variable and variable scattering length,
respectively; forx>1, A(x)=A(1) is a constant and represents the dimensionless scattering
lengthAy. Looking for a solution in the fornA(x) =xa(x), we obtain fora(x),

a’(x)z—;[a(x)-i-)\(l—l—a(x))z. (3.50
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Note, that in this equation boundary conditiaf0)=0 is not necessaryx(x) could be any
function regular ak=0 so that conditiolA(0)=0 is satisfied. Setting(x) = constart=A, gives

an algebraic equatiomy=—\(1+A,)? whose solution is given byA,=—1— 1/2\ (1
*++/1+4\). Since forA—0 there should be no scattering only solution with the minus sign
before the square root should be chosen, since only for this sol&jen0 when\ —0. Setting

for convenienceg=4\ we finally obtain

A0=—1—§(1—\/1+g). (3.5))

The solution has a singularity, namely a branch poing=at- 1, that is at\ = — 7. The singularity
marks the beginning of intervat <<\ <—% where a fall to the center takes pldtand the
expression for the scattering length becomes complex, its real and imaginary parts-fat are
given by

2 2
ReAqy=— ~g ImAOZE\/—l—g. (3.52

Note that in view of our definitiori3.6) of the scattering length one has to choseAy®0.18 The
perturbation series for the scattering length could be obtained by expansion of the square root in
Eq. (3.5 in the power series which gives

Ao Lol B s 7 4 21 5 33 420
0= 79v89 764971289 5129 710249 163824¢

715 2431 4199 29393 52003 ,
+ g g+ 9 s T YTy
327687 1310727 ' 262144

20971529 " 21943049

185725 . 334305 |, 9694845 . 17678835

167772169 335544329 10737418249 21474836487

64822395 . 119409675 . 883631595

T 88599345929 "17170869184% 1374389534727
1641030105 , 6116566755 , 11435320455
+ g20— +
2748779069447 1099511627776° ' 2199023255552

171529806825 322476036831 1215486600363

_ 23+ 24_ 25
3518437208883 ' 70368744177664 281474976710656

N 2295919134019 . 17383387729001
562949953421312 4503599627370 498

N 32968493968795 . 125280277081421
9007 199254740992 36028797018 963968

N 238436656380769 .,  14544636039226909
72057594037927938 4611686018427 387 904

27767032 438524099
9223372036854 775808

22

27

29

31

82+ 0(g%). (3.53

The expansion is convergéffor |g|<1, that is for|]\|<2.
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Let us now turn our attention to QLM approximations and their convergence. The QLM
iterations sequences are easiest to find by considering differential form 2.3 ¢2.Eg. which
could be written as

1+g(1+an(x))) . (3.54

100 == | S(1= (X)) + ap1()

The assumption that,(x) are constant functionsy,(x)=c,, immediately establish the QLM
recurrence relationship

1-c2
Cn+1= =9 2g(T 4oy (3.59

Note that since,,, ;— 0 wheng— 0 each approximation to the scattering amplitude vanishes for
g=0 as it should be since in the absence of the potential there is no scattering. The convergence
of the QLM iteration sequence to the exact soluti@®b1) is obvious. Indeed, fon—x, Eq.

(3.55 is

1-c?
Coo:—gm- (3.56

whose solution vanishing fag—0 is given by the expression fd, in Eq. (3.51). The QLM
approximationc,, to the dimensionless scattering length for an infimt¢herefore indeed is.,
=A, as we wanted to show.

The explicit calculation of the first few QLM approximations, starting from the usual initial
guesscy=0 gives

~ 9
Ci= a+2g’ (3.57
(16+ 169+ 3g?)g
2=~ agr B2t (3:59
(4096+ 12 288)+ 14 08®y°+ 7680y°+ 20163* + 2249°+ 7g°)g (3.59
C3: - .

(128+ 2569+ 16092+ 3293+ g%) (2 +9)(8+ 89+ g?)

These expressions, unlike that of the perturbation theory, give finite values algo-foior even
for g=, where the first, second, and third QLM approximations givg — 3, — £ vis-a-vis the
exact valueAy= —1; the fourth approximation, not given here because of its cumbersome form,
results in— 12, and so on. The convergence of these values is from above in agreement with the
law of convergence for the concave functions proved in Sec. Il, since the second functional
derivative — \/x? of the right-hand side of Eq3.49 is negative for the repulsive potential.

The expansion of the QLM approximations in the power series in the coupling constant shows
as in previous examples that each QLM iteration sums exactly many perturbation series terms,
whose number is given by E¢3.47). One obtains:

Co=0, (3.60

1 1

1 1
__ = i I S
=4 9759 159 %329

1
~ 5z 97100, (3.61
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11, 5 ., 7 , 21 . 33
©2= 739789 629 71289 5129 " 1024¢

107 177

593
_ 7 8__ 9 1
2096 9 8102 9" 327689 709 (362

1 1, 5 7 , 21, 33 429 _ 715
€= 729789 76249 71289 5129 "1024Y 163829 "32768Y

2431 4199 ., 29393 ., 52003 ., 185725

1310729 " 2621449 20971529 219043049 167772167

334305 ,, 2423711 . 4419705 . 16205537 .

335544329  268435456° ' 536870912% 2147483648

, 29852049 . 220900693 ., 2 .
42949672960 34359738368 O (363
11 5 7 21 33 429 715

—_ T N2 T A8, N4 T 5 6_ 7 8
Ca= 49759 752971289 " 5129 " 10249 163829 " 32768Y

2431 , 4199 . 29393 . 52003 , 185725 .

1310729 2621429 20971529 " 2194304Y 167772167

334305 9694 845 17678835 64822395

14 15 16__
8589934592

_ 17
335544329 107374182488 2147483648

119409675 . 883631595 1641030105
e +
17179869184 137438953478 ' 274877906944
6116566 755 11435320455 171529806 825

_ 21+ 22 23
1099511627776 ' 2199023255552 35184372088832

322476036831 1215486600363 2295919134019

24 25 26
0368744177668 281474976710658 < 562949953421319

17383387729001 32968493968 795

_ 27+ 28
4503599627370498 ' 9007 199 254 740 999

125280277081421 ,, ~ 238436656380769

T 36028797018963968 ' 72057594 037927 938

3636150009806727 ,, ~ 6941758109631017 . _ . .
11520921504 606846 97% ' 2305843000213693953 'O (369

Comparison of EQqs(3.60-(3.64 with Eq. (3.53 shows that the QLM iterations withm
=0,1,2,3,4 reproduce exactly 1,3,7,15,31 terms of the perturbation series, respectively, in exact
agreement with Eq(3.47), while the next few terms have coefficients extremely close to being
exact. The number of terms given precisely by the zero, first, second, third and fourth QLM
approximations is increasing by 22,222 and 2, exactly as we saw earlier in the case of the
S-function potential and in precise agreement with the quadratic law of the convergence, proved in
Sec. Il. Due to simplicity of the algebraic recurrence relatit®155 Eq. (3.47) for numberN,, of

the perturbation series terms given precisely byrttieQLM approximation could be checked for



J. Math. Phys., Vol. 40, No. 12, December 1999  Quasilinearization method and its verification . . . 6285

higher QLM approximations. For example, in Sec. IlIB on the example of the repulsive
é-potential we concluded thalg=127. The simple calculation using a symbolic manipulation
progrant’ shows immediately that it is precisely the same for the inverse square potential. Indeed,
the first seven nonzero terms of the expansion in powegsaffdifferenceAy,— cg between exact
scattering length Eq:3.51) and its sixth QLM approximation are

1
_ 127
28948 022 309 329 048 855 892 746 252 171 976 963 317 496 166 410 141 009 864 396 001 978 2822409 984

127
128
* 57 896 044 618 658 097 711 785 492 504 343 953 926 634 992 332 820 282 019 728 792 003 956 564819 968

16319
_ 129
231584 178 474 632 390 847 141 970 017 375 815 706 530 969 331 281 128 078 915 168 015 826 259279 872

707 135
130
* 463 168 356 949 264 781 694 283 940 034 751 631 413 079 938 662 562 256 157 830 336 031 652 518559 744

92988 123
_ 131
3705 346 855 594 118 253 554 271 520 278 013 051 304 639 509 300 498 049 262 642 688 253 220 148 477 952

N 2473622041 132
7410693 711 188 236 507 108 543 040 556 026 102 609 279 018 600 996 098 525 285 376 506 440 298 955 904

110 916 205 323 s

" 29642 774 844 752 946 028 434 172 162 224 104 410 437 116 074 403 984 304 101 141 506 025 761 187 823 616
(3.69

exactly as one expects from E¢.47. In addition, one can see that the next terms of the
perturbation series are also reproduced extremely well, their difference with the precise terms
being infinitesimally small. Namely, the coefficient of 127th powega$ about 3.4% 10’5, the
coefficient of 128th power is about 2.¥90 "4 and so on.

For the attractive potential expressiof&57)—(3.59 become singular, with the number of
zeros of denominators increasing with each iteration. This, of course, is a reflection of the fact that
the exact scattering length, has a branch point ai=—1 and a cut line along the real axis
betweerng= —1 andg= —o. Whenn is increasing, the poles are getting closer and closer to each
other and fuse together at=~, where, as we saw earlier, the exact amplitude and its singularity
are reproduced.

To handle the singularities one can try, as we have discussed earlier, to consider instead of the
function a(x) a new functionB(x) such thata(x)= 1/8(x). Substitution of Eq(3.65 into Eq.

(3.50 leads to

1
B'()=TBOO+A(1+B(x)?, (3.66

which is different from Eq(3.50 only by the sign of the right-hand side. The QLM iterations
sequence is found as before by considering differential f@r8) of Eq. (2.22:

g

1
Bhr00= | (1= BA00)+ Bra(X) 1+§<1+Bn<x>>) , (3.67

which leads under a previous assumptiorBgfbeing a constant functiolg,=c,, to exactly the
same QLM recurrence relatiort3.55. Again, the convergence of the QLM series follows from
the fact that ah— o we have the same E(B.56), as before, with only distinction—since now the
scattering amplitude in the limih=< is given by 1B., one should take a solution of this
equation which is going to infinity aj— 0 rather than to zero. Such solution is given by
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FIG. 4. Comparison of real parts of the exact scattering let@ttve a and of the second QLM approximation tadurve
b) for inverse square potentidl|<8.

sz—l—g(l-l— Vv1+9). (3.68

Then=% QLM approximation to the scattering leng#y thus equals to

1 1

& —1—3(1+ V1+g)

=-1-Z(-iFg) (369

which indeed coincides exactly with expressi@b1) for A.

Since the change t8,,(x) = 1/a,(x) does not give anything new, the only way to avoid the
singularities in the case of attractive potential seems therefore to use the fact that the zero ap-
proximation could be an arbitrary, not necessarily real, number, and to clegaea complex
number with a positive imaginary part of the same order as a real part. The necessity of choosing
co complex in the case of the attractive potential follows also from the fact that in this case the fall
to the center happens. The inelastic cross section for zero energies, determined by the imaginary
part of theS-wave scattering lengti could not therefore be zero; however, from recurrence
relations(3.55 it is obvious that unless the initial guesg is a complex number, all subsequent
QLM approximations are real.

Comparison of real and imaginary parts of the scattering length with those calculated in the
second and third QLM approximations for an arbitrary initial guegs-1+i and for coupling
constant valueg\|<2 (|g|=<8) is shown in Figs. 4-7. One can see that already for the second
QLM iteration the agreement between the exact scattering length and the QLM approximation to
it is quite good. It improves visibly for the next QLM iteration. For the fourth and next iterations
the distinction between exact and approximate scattering length is difficult to see and therefore the
correspondent graphs are not shown.

D. Inverse quartic potential
Our next and last example is the inverse quartic potential of ragius

R2
V(r)z)\r—4®(p—r), (3.70
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FIG. 5. Comparison of imaginary parts of the exact scattering leoyttve @ and of the second QLM approximation to
it (curve B for inverse square potentidly|<8.

where \ is a dimensionless coupling constant. ket p the equation for a variable scattering
lengtha(r) is given by

da(r) R? )
ar :—Ar—4(r+a(r)), a(0)=0, (3.71

while the scattering lengtla, equalsa(p). Introduction of the dimensionless functian(x)
= a(r)/R\/X and of the dimensionless variabte= r/R\/\ reduces Eq(3.7)) to

da(x) 1 ,
W:_F(X_I— a(X)) s a(0)=0, (372’

whose solution is obviously given by

X
a(X)=— m (3.73)

Since forr=p x=x=p/RyY\, and a(p/RyYN\)=— p/(p+Ry\), the dimensionless scattering
lengthAy=a,/R is given by

FIG. 6. Same as in Fig. 4, but in the third QLM approximation.
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p pIN
ho” ﬁa( RV p+RN

which coincides with that found in Ref. 19 and also in Refs. 4, 11, and 14, vghsrget tox. The
solution has a singularity, namely a branch point &0. The singularity marks the beginning of
interval — o<\ <0, where potential is attractive and a fall to the center takes Btatand where
the expression for the scattering lendth becomes complex. We consider therefore only repul-
sive potentials.

As always, let us start from the perturbation expandi®n), whose coefficients,,(r) are
calculated from recurrence relatio.8). In view of a strong singularity of the potential at the
origin from Eq.(3.9) it follows, however, that first coefficierat;(r), and therefore all the others,
are infinite. The perturbation expansion does not exist, which, of course, is a consequence of the
branch point singularity of the scattering length directly\&tO.

There is, however, no problems with the QLM approximations to solut®i3, whose
iteration sequence in this case is given by

P Yo 1 R
“Rityy’ yo—x_o—;\/xy (3.74

xd xdt
an1(X)=— J'OS—;S[SZ_ aﬁ(s)]exr( —ZJS t—4(t+an(t))). (3.795

Starting from the usual initial guessy(x)=0 one easily computé&s! the first iterationa;(x)
=—exp(1k%[§ds/s’e” 1’32), which substitution s=1/\t reduces to a form ay(x)

= —3exp(1k%[ 7, dt/t*2e y=— /2 e erfc(1k). The dimensionless scattering length in the
first QLM approximation therefore is

Vrp
Ao1= YNy (xg)=— > ﬁyoeyo erfdyo), (3.76

where erfck)=1—erf(x) is the complementary error functidhOne can see tha, 1, like Ag, is
a function ofy, and therefore has the same branch point singulariky=ad as the exact scattering
length.

To obtain a higher QLM approximation it is convenient to remove a fourth power of variable
in the denominators of the integrals in E§.75. To do this, let us introduce a new variakjle
= 1/x and a new functiorB(x) = «(1/x) with a boundary conditiofB()= «(0)=0. Equation
(3.72 then has the form

d
B —a+ya)? B0, 377

whose exact solution is given by

B(y)=— (3.78

(1+y)’

while Eq. (3.75 is written as

Brra(y)=— f:dil—szﬁﬁ(S)]eXF(Z f:dtt(lwn(t))). (379

The nth QLM approximation tow(x) is ay(X) = B,(1X)=pB,(y) so thata(xy)=B(y,) and the
initial guess could be choseBy(x)=B(*)=0. In the long ranged cage=<, y,=0, and, since
erfc(0)=1, Ag,=— Jm/2JA=-0.886/\, a very good approximatidh to exact valueA,
=—\. The next QLM approximation, which can be computed numerically, result&oin
=—0.988/\, a precision of 1.2%. For comparison, calculatiorAgfin the second CBF approxi-
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FIG. 7. Same as in Fig. 5, but in the third QLM approximation.

mation, Eq.(2.21), which in this case reduces to a simple minded linearization apprddesed
on neglecting a nonlinear term, givéQ),zz—O.954\/X, precision of only 4.6%. In the infinite
coupling finite range casg, is very large and one can use asymptotic expres&dtt), which
gives Ag1= — 3p/R, a reasonable first approximation to exact valg= — p/R. In the next,
second QLM approximation, the numerical computation yedgs=—$p/R, a significant im-
provement.

The uniform quadratic convergence of QLM sequeii8€5 is proved, according to Eq.
(2.34), by showing that the first convergence coefficigptb) is less than unity. In our case, we
have choseny(x)=0 and therefore,(b) =k(b)| a1 (x)|<k(b), since in view of the properties
of the complimentary error functioh|a,(x)|<1 for all x.

To estimatek(b) we have to knowG(x) andF(x), which have to satisfy inequaliti€.31).
Since the first and the second derivatives of the right-hand side of &E#R are — 2/x* (x
+ a(x)) and— 2/x*, respectively, and since the scattering length for the repulsive potential has no
poles and should be finitey(xX)<M whereM is some positive constant, and therefore one can
chooseG(x) =F(x)=F,(x)= 2M/x*. For small k<e), wheree<1 is some small but finite
number, looking fora(x) in the form a(x)~ax+bx? and substituting in Eq(3.72 gives a
=—1,b=1. The first functional derivative for smalltherefore equals- 2/x? and one can choose
in this case negative boundary functibiix)=F ,(x) = — 2/x? and G(x) =|F,(x)|.

Separating in Eq(2.35 for k(b) smaller and larger values afgives

) (3.80

1 €
k(b)= E‘C eprO dtFy(t)—1

whereC=exp/ Edt F(t) is a finite constant even for infinite interval=cc. Since expfgdtF,(t))
=exp(—2/5dt1/t?) =exp(2t|<,) =0, Eq.(3.80 givesk(b)=2 und thusq;(b)=<3$, which proves
uniform quadratic convergence of QLM iteration sequeng€x,), EQ. (3.75, on the whole
interval (0,), that is for all values of coupling constant including large and infinite ones.

IV. CONCLUSION

Summing up, we have reformulated the proof of the convergence of the quasilinearization
method(QLM) of Bellman and Kalabf by removing unnecessary restrictive conditions gener-
ally not fulfilled in physical applications, and have generalized the proof for large or infinite
domains of variables and for functionals which are singular at some points in the domain. We also
have shown how to deal with solutions which are infinite at certain values of variable such as, for
example, scattering amplitudes at values corresponding to bound state energies, etc.
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In order to make presentation as simple and short as possible, we have limited ourselves here
to the case of the first-order nonlinear ordinary differential equation in one variable, which physi-
cally covers the quantum mechanics of one particle in a central(fielthis case the Schdinger
equation for a wave function could be rewritten as the nonlinear Ricatti equation for its logarith-
mic derivative though the same modernization of the Bellman and Kalaba bfamiuld be
provided also for a general nonlinear ordinary or pantitd order differential equations in the
N-dimensional space.

In order to highlight the power of the method in Sec. Ill we have considered examples of
different singular and nonsingular, attractive and repulsive potentialsfor which the nonlinear
first-order ordinary differential equatidi.l) for the S-wave scattering length,=a(«) obtained
in variable phase approathcould be solved exactly and have compared the iterations obtained
by the Bellman—Kalaba linearization method with exact solutions and with the usual perturbation
theory. The results could be summed up as follows.

(i) The sequence,(x), n=1,2,... of QLM iterations, Eq(2.22, convergesuniformly and
quadraticallyto solutionu(x) of Eq. (2.2). For the convergence on the intery@lb] is enough
that an initial guess for zero iteration is sufficiently good to ensure the smallness of just one of
convergence coefficientg,(b) =k(b)||um.1— Uy, Wherek(b) is given by Eq.(2.32 or Eq.

(2.39. In addition, for strictly convex(concavé functionals f(u(x),x) difference u,,1(x)
—up(x) is strictly positive(negative, which establishethe monotonicityf the convergence from
below (above, respectively, on this interval.

(i) The QLM treats the nonlinear terms as a perturbation about the lineat%aes is not
based, unlike perturbation theories, on the existence of some kind of small parameter. As a result,
it is able to handle, unlike the perturbation theory, large or even infinite values of the coupling
constant.

(iii) Comparison of QLM with the perturbation theory shows that each QLM iteration repro-
duces and sums many orders of perturbation theory exactly and in addition many more orders
approximately. Namely, in agreement with the quadratic pattern of the convergence, the number
N, of the terms of the perturbation series, reproduced exactly imtheQLM approximations,
equals 2"1—1, and approximately the same number of terms is reproduced approximately. The
number of the exactly reproduced terms thus doubles with each subsequent QLM approximation,
and reaches, for example, 127 terms in the sixth QLM approximation, 8191 terms in the twelfth
QLM approximation and so on.

(iv) QLM handles without any problems not only singular potentials, like the inverse squared
potential, for which the perturbation theory is divergent outside a narrow interval of the values of
the coupling constant, but even super singular potentials, like reverse quartic potential, for which
perturbation series are not existent at all, since their calculation leads to infinities in each order of
the perturbation expansion.

(v) As we saw in all of our examples, QLM easily handles different singularities, like poles or
branch point singularities, reproducing correct type of the singularity already in first iterations.

(vi) Although the analytic calculations of third and higher approximation in QLM, like in the
usual perturbation theory, in most cagexcluding inverse square potenjiaeem impossible, the
simplicity of the QLM iterational sequence E.22 (which, unlike perturbation theory, con-
taines no sums on intermediate energy sjaéssures nonproblematic numerical calculation of
higher order iterations, while the extremely fast convergence of the method allows accurate esti-
mate of the solution after relatively small number of iterations.

In view of all this, since most equations of physics, from classical mechanics to quantum field
theory, are either not linear or could be transformed to a nonlinear form, the quasilinear method
may turn out to be extremely useful and in many cases more advantageous than the perturbation
theory or its different modifications, like expansion in inverse powers of the coupling constant,
1/N expansion, etc.
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