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The proof of the convergence of the quasilinearization method of Bellman and
Kalaba, whose origin lies in the theory of linear programming, is extended to large
and infinite domains and to singular functionals in order to enable the application of
the method to physical problems. This powerful method approximates solution of
nonlinear differential equations by treating the nonlinear terms as a perturbation
about the linear ones, and is not based, unlike perturbation theories, on existence of
some kind of small parameter. The general properties of the method, particularly its
uniform and quadratic convergence, which often also is monotonic, are analyzed
and verified on exactly solvable models in quantum mechanics. Namely, applica-
tion of the method to scattering length calculations in the variable phase method
shows that each approximation of the method sums many orders of the perturbation
theory and that the method reproduces properly the singular structure of the exact
solutions. The method provides final and reasonable answers for infinite values of
the coupling constant and is able to handle even super singular potentials for which
each term of the perturbation theory is infinite and the perturbation expansion does
not exist. © 1999 American Institute of Physics.@S0022-2488~99!01812-5#

I. INTRODUCTION

Most problems of physics are not solvable exactly and therefore should be tackled wi
help of analytical or numerical approximation methods. In quantum mechanics and quantum
theory over the years many such methods were developed, from perturbation theories, We
Kramers–Brillouin~WKB! approach and Monte Carlo simulations to lattice computations, str
coupling approximation, 1/N expansion, and so on. The purpose of this paper is to ap
quantum mechanical problems an additional very powerful approximation technique calle
quasilinearization method~QLM!, whose origin lies in the theory of linear programming. T
method, whose iterations are carefully constructed to yield rapid quadratic convergence an
monotonicity, was developed around 30 years ago by Bellman and Kalaba to solve a wide
of nonlinear ordinary and partial differential equations or their systems arising in such diff
physics, engineering, and biology problems as orbit determination, detection of periodi
radiative transfer, and cardiology.1,2 The modern developments and applications of the metho
different fields are given in Ref. 3. QLM, however, was never systematically studied or e
sively applied in quantum physics though references to it could be found in well-kn
monographs4,5 dealing with the variable phase approach to potential scattering as well as in
scattered research papers.6–9 This could be explained by the fact that convergence of the me
has been proved only under rather restrictive conditions1,2 which generally are not fulfilled in
physical applications, such as, for example, a rather small domain of variables or forces wh
finite everywhere in the domain~see the following!. A goal of this work is to reformulate the proo
of the convergence for more realistic physical conditions of infinite domains and forces w

a!Electronic-mail: victor@vms.huji.ac.il
62660022-2488/99/40(12)/6266/26/$15.00 © 1999 American Institute of Physics
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could be singular at certain points of the domains. We also show how to deal with solutions
themselves could be infinite at certain values of variable such as, for example, scattering
tudes at values corresponding to bound state energies, etc.

Since this is our first paper on the subject, in order to make presentation as simple an
as possible, we limit ourselves to the case of the first-order nonlinear ordinary differential eq
in one variable. Physically this covers the quantum mechanics of one particle in a centra
since in this case the Schro¨dinger equation for a wave function could be rewritten as the Ric
equation for its logarithmic derivative.

Our proof of the convergence of the quasilinearization method for a general nonlinear
nary or partialnth order differential equation inN-dimensional space could be formulated alo
the same lines and will be given in a subsequent article.

The paper is arranged as follows. In Sec. II we present the main ideas and conditio
convergence of the quasilinearization approach, formulated by Bellman and Kalaba1,2 for the case
of the first-order nonlinear ordinary differential equation in one variable, and modify their pro
order to meet the physical reality of infinite interval of the variable or the possibility of sing
potentials. In order to highlight the power of the method in Sec. III we consider exampl
different singular and nonsingular, attractive and repulsive potentialsV(r ) for which the nonlinear
first-order ordinary differential equation

da~r !

dr
52V~r !~r 1a~r !!2, a~0!50, ~1.1!

for an S-wave scattering lengtha05a(`), obtained in variable phase approach,4,5 can be solved
exactly and compare the iterations obtained by the Bellman–Kalaba linearization method
exact solutions and with the usual perturbation theory. Our results, advantages of the meth
its possible future applications are discussed in Sec. IV.

II. THE QUASILINEARIZATION METHOD „QLM…

The aim of QLM is to obtain the solutionv(z) of a nonlinear first-order differential equatio

dv~z!

dz
5g~v~z!,z! ~2.1!

with the boundary conditionv(a)5c as a limit of a sequence of linear differential equations. T
goal is easily understandable in view of the fact that there is no useful technique of present
general solution of Eq.~2.1! in terms of a finite set of particular solutions as in a linear case wh
as a result of the superposition property, the equation could be solved analytically or nume
in a convenient fashion. In addition, the sequence should be constructed in such a way as to
quadratic convergence and, if possible, monotonicity.

The shift of the coordinatez5x1a and of the solution itselfu(x)5v(x1a)2c reduces Eq.
~1! to the canonical form10

du~x!

dx
5 f ~u~x!,x!, u~0!50, ~2.2!

where f (u(x),x)[g(u(x)1c,x1a).
The QLM prescription1,2 determines then11 iterative approximationun11(x) to the solution

of Eq. ~2.2! as a solution of

un118 ~x!5 f ~un ,x!1~un11~x!2un~x!! f u~un ,x!, un11~0!50, ~2.3!
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where the functionf u(u,x)5 ] f (u,x)/]u is a functional derivative of a functionalf (u(x),x). If
one definesm as an upper limit of a maximum of absolute values of the functional and its first
second functional derivatives

max~ u f ~u~x!,x!u,u f u~u,x!u,u 1
2 f uu~u,x!u!<m,`, ~2.4!

one can prove that the sequence of iterationsun(x), n51,2, . . . convergesuniformly and qua-
dratically on the interval@0,b# to solutionu(x) of Eq. ~2.2! for bm sufficiently small. Indeed,
introducing the metricigi of the functiong(x) as a maximum of the function on the interv
@0,b#,

igi5maxug~x!u,0<x<b, ~2.5!

and introducing notationsDun11(x)5u(x)2un(x), dun11(x)5un11(x)2un(x) one proves1,2

the following inequalities:

iDun11i<kiDuni2, ~2.6!

idun11i<kiduni2, ~2.7!

k5
bm

12bm
, ~2.8!

which establish the uniform quadratic convergence of sequenceun(x) on @0,b# for sufficiently
smallbm. A simple induction of Eq.~2.7! shows2 thatdun11(x) for an arbitraryl ,n satisfies the
inequality

idun11i<~kidul 11i !2n2 l
/k, ~2.9!

or for l 50,

idun11i<~kidu1i !2n
/k. ~2.10!

The convergence depends therefore upon the quantityq15kiu12u0i , where zero iterationu0(x)
satisfies the conditionu0(0)50 and is chosen from physical and mathematical consideration
view of Eq. ~2.8! the convergence is reached ifbm is sufficiently small. However, from Eq.~2.9!
it follows that for the convergence it is sufficient that just one of the quantitiesqm5kidum11i will
be small enough. Consequently, one can always hope2 that even if the first convergent coefficien
q1 is large a well chosen initial approximationu0 results in a smallness of at least one of t
convergence coefficientsqm , m.1, which enables a rapid convergence of the iteration series
n.m.

One can prove in addition1,2 that the convergence is monotonic from below~above!, if func-
tional f (u(x),x) is strictly convex~concave!, that is if the second functional derivativef uu(u,x) in
interval @0,b# exists and is strictly positive~negative!.

The QLM treats the nonlinear terms as a perturbation about the linear ones1,2 and is not based
unlike perturbation theories, on the existence of some kind of small parameter. In the pr
Bellman and Kalaba, a small parameter,bm, however, does appear sort of through the back do
The requirement of smallbm is unfortunately too restrictive in most physical problems wherem
and b are often large or infinite, sincex normally changes in an infinite domain and ma
potentials are infinite at some points in the domain. For example, in the case of the variable
equation—Eq.~1.1!, since most of the realistic forces, like Yukawa, Coulomb, van der Waals
hard core potentials, are infinite at origin, a function

f ~a~x!,x!52V~x!~x1a~x!!2 ~2.11!
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or its first

f a~a~x!,x!522V~x!~x1a~x!! ~2.12!

or second

f aa~a~x!,x!522V~x! ~2.13!

functional derivatives, are infinite at the origin. This meansm5`, which is a zero convergenc
interval. However it has been well known for a long time4,5,11 that a first approximation of QLM
gives finite and reasonable results even for super singular 1/r n , n>4 potentials for which all the
terms of the usual perturbation theory are strongly divergent. It indicates that the conditiobm
being small may be too restrictive and should be relaxed.

Our goal now is to modernize the proof of uniform quadratic convergence of QLM so
requirement of smallness of an interval for largem as well as the requirement ofm being finite is
removed. Let us subtract from both sides of Eq.~2.2! a termh(w(x),x)u(x), wherew(x) and
h(w(x),x) are some arbitrary function and functional, respectively, which we chose later
obtain

du~x!

dx
2h~w~x!,x!u~x!5 f ~u~x!,x!2h~w~x!,x!u~x!, u~0!50. ~2.14!

The integral form of Eq.~2.14! is

u~x!5E
0

x

ds~ f ~u~s!,s!2h~w~s!,s!u~s!!expE
s

x

dth~w~ t !,t !, ~2.15!

or, in case of nonzero boundary conditionu(0)5c,

u~x!5c expE
0

x

dth~w~ t !,t !1E
0

x

ds~ f ~u~s!,s!2h~w~s!,s!u~s!!expE
s

x

dth~w~ t !,t !,

~2.16!

which can be checked easily by a simple differentiation.
We consider three different forms of functionw(x) and its functionalh(w(x),x):

h~w~x!,x!)[0, ~2.17!

h~w~x!,x!5 f w~w~x!,x!, w~x![0, ~2.18!

h~w~x!,x!5 f w~w~x!,x!, w~x![u~x!. ~2.19!

We can now define the iteration scheme by setting the functionu(x) on the right equal to itsnth
approximationun(x) and obtaining the (n11)th approximation on the left-hand side. The ze
approximationu0(x) is chosen from some mathematical or physical considerations and sa
the boundary conditionu0(0)50. We get three different iteration schemes, corresponding to
~2.17!–~2.19!, respectively:

un11~x!5E
0

x

ds~ f ~un~s!,s!, ~2.20!

un11~x!5E
0

x

ds~ f ~un~s!,s!2 f u~0,s!un~s!!expE
s

x

dt fu~0,t !, ~2.21!

and
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un11~x!5E
0

x

ds~ f ~un~s!,s!2 f u~un~s!,s!un~s!!expE
s

x

dt fu~un~ t !,t !. ~2.22!

In case of nonzero boundary conditionu(0)5c the iteration sequence should be slightly modifie
For example, in this case, according to Eq.~2.16!, Eq. ~2.22! has a somewhat different form
namely

un11~x!5c expE
0

x

dt fu~un~ t !,t !1E
0

x

ds~ f ~un~s!,s!2 f u~un~s!,s!un~s!!expE
s

x

dt fu~un~ t !,t !.

~2.23!

Let us concentrate in the beginning on Eq.~2.22!, which, being the solution of Eq.~2.3!,
displays the iteration sequence of the QLM. The subtraction of Eq.~2.3! for n andn21 gives a
similar differential equation for the differencedun11(x)5un11(x)2un(x):

dun118 ~x!5 f ~un~x!,x!2 f ~un21~x!,x!1dun11~x! f u~un~x!,x!2dun~x! f u~un21~x!,x!,

dun11~0!50. ~2.24!

By use of the mean value theorem12 one can write

f ~un~x!,x!5 f ~un21~x!,x!1dun~x! f u~un21~x!,x!1 1
2 f uu~ ūn~x!,x!dun

2~x!, ~2.25!

whereūn(x) lies betweenun(x) andun21(x). As a result Eq.~2.24! could be written as

dun118 ~x!2dun11~x! f u~un~x!,x!5 1
2 f uu~ ūn~x!!dun

2~x!, ~2.26!

whose solution has a form

dun11~x!5
1

2 E
0

x

ds fuu~ ūn~s!,s!dun
2~s!expE

s

x

dt fu~un~ t !,t !. ~2.27!

Obviously,

udun11~x!u<
1

2 E
0

x

dsu f uu~ ūn~s!,s!uudun~s!u2 expE
s

x

dt fu~un~ t !,t !

<kn~x!•udun~ x̄!u2<kn~b!•iduni2. ~2.28!

Here x̄ is the point on the interval@0,x# whereudun(x)u is maximal,

kn~x!5
1

2 E
0

x

dsu f uu~ ūn~s!,s!uexpE
s

x

dt fu~un~ t !,t !, ~2.29!

and positiveness of the integrand in Eq.~2.29! as well as definition~2.5! are used. Since Eq.~2.28!
is correct for anyx in the interval@0,b#, it is correct also for a value ofxP@0,b# for which
udun11(x)u reaches its maximal value. This gives

idun11i<kn~b!•iduni2. ~2.30!

Let us assume the boundness of the first two functional derivatives off (u(x),x)), that is the
existence of bounding functionsF(x) andG(x) which for anyu andx satisfy

f u~u~x!,x!)<F~x!, u f uu~u~x!,x!u<G~x!. ~2.31!
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In this casekn(b)<k(b), where

k~b!5
1

2 E
0

b

ds G~s!expE
s

b

dt F~ t !, ~2.32!

and Eq.~2.30! could be written in the form

idun11i<k~b!•iduni2, ~2.33!

which is identical to Eq.~2.7! but with k5k(b) instead ofk given by Eq.~2.8!. We can reproduce
the results of Bellman and Kalaba1,2 by following their bounding restriction Eq.~2.4! and setting
F(x)5m, G(x)52m. In this case the integrals in Eq.~2.32! could be easily calculated and giv
k(b)5 (12e2mb)/e2mb, which for smallmb reduces to the expression fork given by Eq.~2.8!.
However, as we will see in different examples in Sec. III,k(b) given by Eq.~2.32!, unlikek given
by Eq. ~2.8!, could be sufficiently small also for an infinite interval lengthb and for singular
functionsG(x) andF(x). This means that the quantityq1(b),

q1~b!5k~b!iu12u0i , ~2.34!

which is responsible for the convergence@see the discussion after Eq.~2.10!# could be less than
unity and thus assure the convergence even in this case. As was pointed out there, th
convergence is actually enough that an initial guess for zero iteration is sufficiently good to e
the smallness of just one of the convergence coefficientsqm(b)5k(b)ium112umi .

With the uniform quadratic convergence of the sequenceun(x) for the intervals@0,b# in
which at least one of the convergence coefficientsqm(b),1 now proven, one can conclude from
Eq. ~2.27!, that in addition for strictly convex~concave! functionals f (u(x),x) the difference
un11(x)2un(x) is strictly positive~negative!, which establishes the monotonicity of the conve
gence from below~above!, respectively, on this interval.

If F(x) is a sign-definite function andG(x)5uF(x)u, the integral in Eq.~2.32! could be taken
explicitly and produces a simple expression fork(b),

k~b!5
1

2
uexpE

0

b

dt F~ t !21u. ~2.35!

The subtraction of Eq.~2.3! from Eq. ~2.2! gives

Dun118 ~x!5 f ~u,x!2 f ~un~x!,x!1Dun11~x! f u~un~x!,x!2Dun~x! f u~un~x!,x!,

Dun11~0!50, ~2.36!

which is similar to Eq.~2.24!—the starting point for our derivation of Eq.~2.33!. The derivation
along the same lines, starting from Eq.~2.36!, gives the analog of Eq.~2.6! with k changed to
k(b):

iDun11i<k~b!•iDuni2. ~2.37!

Equation~2.31! again confirms the uniform quadratic convergence of the sequenceun to a solution
u(x) of Eq. ~2.2!. One can show in exactly the same fashion as before that for strictly co
~concave! functionals f (u(x),x) differenceDun11 is strictly positive~negative!, proving in this
case the monotonic convergence to a limiting functionu from below ~above!, respectively.

In case the solutionu(x) and, respectively, its iterationsun(x) are going to infinity at some
points on interval@0,b#, Eq. ~2.22! could become meaningless. To deal with it, it is necessar
regularize Eq.~2.2!, that is reformulate it in terms of a new functionv(x) which is finite, as, for
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example, to change to functionv(x)5 1/u(x) for uu(x)u.1, the prescription which is used in th
present work, or to setu(x)5tanv(x) as it was suggested in Refs. 13 and 14. The correspon
nonlinear equations forv(x) have the form

dv~x!

dx
52v~x!2f S 1

v~x!
,xD , v~0!5u~c!, uu~c!u51, ~2.38!

and

dv~x!

dx
5cos2 v~x! f ~ tanv~x!,x!, v~0!50, ~2.39!

respectively.
Let us now turn our attention to the iteration sequences given by Eqs.~2.20! and~2.21!. These

successive approximation schemes were considered by Picard15 and Calogero, Babikov, and Flue
gge~CBF!,4,5,11 respectively. The quadratic convergence, reached in QLM, is based on a sp
choice of functionw(x) and its functionalh(w(x),x) given by Eq.~2.19! which, in view of the
mean value theorem of Eq.~2.25!, assures cancellation of the first power ofdun(x) andDun(x) in
recurrence relations of Eqs.~2.24! and~2.36!, respectively. Such cancellation will not happen f
the Picard and CBF choices ofw(x) andh(w(x),x), given by Eqs.~2.17! and~2.18!. One obtains,
therefore, for these approximation schemes the usual inequality characteristic of the firs
convergence

idun11i,piduni , ~2.40!

wherep is a correspondent convergence coefficient. This leads, instead of the very rapid 2n-power
type of convergence, displayed in Eqs.~2.33! and ~2.37!, to the much slower geometric conve
gence

idun11i,pnidu1i . ~2.41!

III. QLM SCATTERING LENGTH CALCULATIONS AND THEIR COMPARISON WITH THE
PERTURBATION THEORY AND EXACT SOLUTIONS

In Sec. II we proved that the QLM successive approximations to the exact solutionu(x) of
Eq. ~2.22! given by Eq.~2.2! converge quadratically and uniformly on interval@0,b#, whereb is
found from the requirement that one of the convergent coefficientsqm(b) defined in a paragraph
following Eq. ~2.34! is less than unity. In addition for strictly convex~concave! functionals
f (u(x),x) the convergence to a limiting functionu is monotonic from below~above!, respec-
tively.

In order to highlight the power of the method in this section we consider examples of diff
singular and nonsingular, attractive and repulsive potentials for which the nonlinear first-
ordinary differential equation for anS-wave scattering length, Eq.~1.1!, obtained in variable phas
approach4,5 could be solved exactly. We will compare the iterations obtained by the Bellm
Kalaba quasilinearization method~QLM! with exact solutions and with the usual perturbati
theory.

A. Square well potential

1. Repulsive square well

Let us start from the repulsive square well potential

V~r !5
l

R2 Q~R2r !, ~3.1!
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whereQ(R2r ) is the Heavyside function andl is a potential strength, which for now is assum
to be positive. The change of variables to the dimensionless variablex5Al(r /R) and dimension-
less functionA(x)5Al@a(x R/Al)#/R allows one to express Eq.~1.1! for x<x0 , x05Al in a
form

dA~x!

dx
52~x1A~x!!2, A~0!50. ~3.2!

For x.x0 A(x) is a constant equal to the dimensionless scattering lengthA05Al(a0 /R), the
scattering length itself beinga0[a(R). A further change of the function tou(x)5x1A(x) gives
a familiar equation for the hyperbolic tangent,

du~x!

dx
512u2~x!, u~0!50. ~3.3!

The exact variable scattering lengtha(r ) for the repulsive square well potential is therefore

a~r !5
R

Al
tanhSAl

r

RD2r , ~3.4!

while the scattering length is given by

a05RS tanhAl

Al
21D [RS tanhx0

x0
21D . ~3.5!

Here we use the Calogero definition of the scattering length4

a05 limk→0

tand~k!

k
, ~3.6!

d is a scattering phase, which is different in sign from the definition used in most publicatio
Before considering the QLM, let us turn to the usual perturbation theory. Displaying expl

the dependence of the potential on the coupling constantV(r )5lv(r ) and expandinga(r ) in
powers ofl, one obtains from Eq.~1.1!:

(
k51

`

lkak8~r !52lv~r !S r 1 (
n51

`

lnan~r !D 2

. ~3.7!

Comparisons of coefficients before the powers ofl gives the recurrence relation

ak8~r !52v~r !S r 2dk112rak21~r !1 (
n51

k22

ak2n21~r !•an~r !D , k51,2,3. . . ~3.8!

The successive integrations of Eq.~3.8! produce the expansiona(r ) in the powers of the coupling
constant. The first three terms of the perturbation expansion of the variable scattering leng
example, are

a1~r !52E
0

r

ds s2v~s!,

a2~r !52E
0

r

ds2sv~s!a1~s!, ~3.9!
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a3~r !52E
0

r

dsv~s!~2sa2~s!1a1
2~s!!,

and so on. Foru(x) this expansion gives

u~x!5x2
1

3
x31

2

15
x52

17

315
x71

62

2835
x92

1382

155 925
x111

21 844

6 081 075
x13

2
929 569

638 512 875
x151

6 404 582

10 854 718 875
x171O~x19!. ~3.10!

These series, of course, could also be obtained by using the power series expansion of tanhx). The
power expansion of scattering length is given by Eqs.~3.10! and~3.5!, the latter can be written in
the forma05R(@u(x0)/x0# 21).

Let us consider now the approximate QLM solutions of Eq.~3.3!, choosing as a zero approx
mation a solution of this equation for a very smallx: u0(x)5x. The recurrence relation~2.22!
now has the form

un11~x!5E
0

x

ds~11un
2~s!!expS 22E

s

x

dt un~ t ! D , ~3.11!

while thenth approximation to the scattering length is given by

a0,n5RS un~x0!

x0
21D . ~3.12!

The substitution of the zero iteration in Eq.~3.11! leads to a first-order approximation,

u1~x!52 i
Ap

4
erf~ ix !e2x2

1
x

2
, ~3.13!

where erf(x) is the error function.16 Expansion of~3.13! in power series enables a comparison w
perturbation series~3.10!,

u1~x!5x2
1

3
x31

2

15
x52

4

105
x71

8

945
x91O~x11!, ~3.14!

which shows that the first approximation reproduces exactly three terms of the perturbation
that is two more terms than was given correctly by the zero QLM approximationu0(x)5x. This
improvement of the representation of the perturbation series not by one, but by two powerl
is, of course, precisely what one should expect from the quadratic convergence. In additio
fourth term is also mostly correct being2 12

315 vis-a-vis exact2 17
315. The second iterationu2(x)

could not be calculated analytically, but could be computed numerically or expressed by
series expansion with the help of symbolic computation program.17 The latter gives

u2~x!5x2
1

3
x31

2

15
x52

17

315
x71

62

2835
x92

1382

155 925
x111

21 844

6 081 075
x13

2
918 844

638 512 875
x151

39 944

70 945 875
x171O~x19!. ~3.15!

One can see that the second iteration of QLM reproduces correctly the first seven terms
perturbation series, an improvement by 4 powers ofl compare with previous QLM approximatio
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u1(x). In addition, the eighth and ninth terms of the power series expansion ofu2(x) are very
close to their precise values in perturbation theory, being2 918 844

638 512 875 and, 5.6331024 vis-a-vis
exact values2 929 569

638 512 875and 5.9031024, respectively.
Aside from the fact that already first QLM approximations sum many orders of the u

perturbation theory, the QLM iterations, unlike the perturbation series, have meaning also
large or even infinite values of coupling constant. Indeed, forl→` any term of the perturbation
series is infinite. Even for a finite moderately large potential strengthl>2.5 perturbation expan
sion ~3.10! diverges since the power series expansion of the hyperbolic tangent ofx0 converges16

only for x0,p/2, that is forl,p2/4. On the other side, the QLM approximations to the scatter
length are finite. The first QLM approximation to scattering length~3.13! in view of an asymptotic
expression

erf~z!.S 12
e2z2

Apz
D ~3.16!

for uzu→`16 shows that the scattering length in this approximation equals2 R/2, a reasonable
approximation to exact valuea052R. The computation of the scattering length in the seco
QLM approximation gives again a finite and improved resulta052 3

4R.
To tackle more rigorously the question of convergence of the iteration series for dimen

less scattering lengthA0,n5a0,n /R given by Eqs.~3.11! and~3.12! to exact resultA05a0 /R let us
turn to the convergence condition demanding the smallness of convergence coefficient~2.34!,
which in this case is given by

q1~b!5k~b!ia0,12a0,0i5k~b!Iu1~x!2u0~x!

x I5k~b!•max0<x<bUu1~x!

x
21U. ~3.17!

To calculateq1(b) one first has to estimatek(b) using, for example, Eq.~2.35!. From Eq.
~3.3! and the boundary condition there followsu(2x)52u(x). We can consider therefore onl
positive branch of the solution whose extremum is reached whenu8(x)512u2(x)50, that is
whenu(x)51. This means that 0<u(x)<1. Since the first and second functional derivatives
f (u(x),x)512u2(x) equal 22u(x) and 22, respectively, one can setF(x)522 and G(x)
5uF(x)u52, which gives

k~b!5 1
2 ue22b21u< 1

2 . ~3.18!

In view of the fact that, due to the properties16 of the error functionu u1(x)/x 21u< 1
2 for all

positivex, one obtains thatq1(b)< 1
4 for all values ofb. Thus the convergence of QLM approx

mations Eq.~3.11!, and thereforea0,n , given by Eq.~3.12!, to the exact scattering lengtha0 in
case of the repulsive square well is uniform and quadratic for all values ofx0 , that is for all values
of coupling constantl.

2. Attractive square well

The same conclusions are correct also for the attractive square well potential the equati
which are obtained by changingl to 2l. The equation foru(x) now has a form

du~x!

dx
511u2~x!, u~0!50. ~3.19!

Its solution is

u~x!5tanx ~3.20!

and the scattering length is given by
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a05RS tanAl

Al
21D [RS u~x0!

x0
21D . ~3.21!

The QLM subsequent approximations are obtained with the help of recursion equations

un11~x!5E
0

x

ds~12un
2~s!!expS 2E

s

x

dt un~ t ! D . ~3.22!

Choosing the zero QLM approximation as before in formu0(x)5x leads to first QLM approxi-
mation,

u1~x!5
Ap

4
erf~x!ex2

1
x

2
. ~3.23!

Now there is, however, an additional difficulty, since exact scattering lengtha0(x0) is a singular
function ofx05Al and becomes infinite at values of the coupling constant corresponding to
bound state energiesl5((2n11) p/2)2. This finds reflection in the fact thatu1(x0) is increasing
very fast forx0 aroundp/2. To deal with it let us, in accordance with the discussion in Sec
regularize Eq.~3.19!, that is to rewrite it foruu(x)u.1 in terms of a new function

v~x!5
1

u~x!
. ~3.24!

Definingc as a singular point whereu(c)5` one obtains, according to Eq.~2.38!, the following
nonlinear equation forv(x):

dv~x!

dx
52~11v~x!2!, v~c!5

1

u~c!
50. ~3.25!

In view of Eq. ~3.19! a solution of Eq.~3.25! is v(x)5u(c2x). Equation~3.24! then gives

u~x!5
1

u~c2x!
. ~3.26!

Settingx5 c/2 allows us to write

u2S c

2D51 ~3.27!

for constant c. Since the solution of Eq.~3.19! should be an odd function ofx,

u~2x!52u~x!, ~3.28!

it is enough to choose only a positive branch of Eq.~3.27!, that is

uS c

2D51. ~3.29!

From Eqs.~3.26! and ~3.28! follows the 2c periodicity of solutionu(x): u(x12c)5 1/u(c2(x
12c)) 52 1/u(x1c) 52u(c2(c1x))5u(x). Thus it is enough to find a solution only on th
interval (0,2c). We can now formulate the following result.

The nth QLM approximationUn(x) to the solution of Eq.~3.19! on the interval@0,2cn#,
which is able to properly describe a singularity, is given by
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Un~x!5un~x!QS cn

2
2xDQ~x!1

1

un~cn2x!
QS x2

cn

2 DQS 3cn

2
2xD

1un~x22cn!QS x2
3cn

2 DQ~2cn2x!, ~3.30!

where thenth QLM approximationun(x) on interval (0,cn/2) is found with the help of recurrenc
relations Eq.~3.22! and thenth approximate valuecn of c is given by

unS cn

2 D51. ~3.31!

Computation ofcn/2 shows that the differences between the exact valuec5 p/2 and approximate
valuescn are very small already for the first and second QLM iterations, namely (c12 p/2) and
(c22 p/2) are 0.005 29 and 0.000 001 32, the errors of 0.5% and 1024%, respectively. Since the
nth QLM approximation, Eq.~3.30!, has a pole atx05cn , l5cn

2 gives a value of potentia
strength corresponding to a zero energy bound state. One sees that the QLM description
state is extremely accurate already in the first and especially in the second approximation

To prove the uniform quadratic convergence of the QLM iterations it is enough, in vie
Eqs.~3.28! and~3.30! to considerun(x) only on intervals (0,cn/2) which are very close to interva
(0,p/4). Since the first and second functional derivatives of the left-hand side of Eq.~3.19! are
2u(x) and 2, respectively, anduu(x)u<1, one can choseF(x)5G(x)52 and use Eq.~2.35!,
which produces a simple expression fork(b),

k~b!5 1
2 ~e2b21!. ~3.32!

This leads to the following result forq1(b):

q1~b!5
1

2
~e2b21!SAp

4
erf~b!eb2

2
b

2D . ~3.33!

A simple computation shows that 0,q1(b),1 for 0,b,0.92, which proves the uniform qua
dratic convergence of the QLM iterations on even larger interval~0,0.92! than interval (0,p/4) and
thus the convergence of the sequenceUn(x0) to the exact solution tanx0 on the interval (0,2cn)
'(0,p). In view of its 2cn'p periodicity thenth QLM approximationUn(x0) converges there-
fore to the exact solution for allx0 , that is for all values of the coupling constantl.

The extremely fast convergence of QLM approximations given by Eq.~3.30! is evident from
the ratios of the first@Eq. ~3.23!# and second@Eq. ~3.22! for n51] QLM iterations to the exact
solution ~3.20!, which are shown in Figs. 1 and 2, respectively.

B. d-function potential

In case of thed-function potential

V~r !5
l

R
d~r 2R!, ~3.34!

Eq. ~1.1! for the scattering length has the form

A8~x!5l~x2A~x!!2d~x21![l~12A~x!!2d~x21!, A~0!50, ~3.35!

where x5 r /R and A(x)52 a(r )/R are dimensionless variable and variable scattering len
respectively; note, that in Eq.~3.35! A(x) could not be set equalA(1), sinceA(x) is discontinu-
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ous atx51, its derivative being proportional to thed-function. Introduction of a new function
y(x)5lQ(x21), y(0)50, y(`)5l with a derivativedy(x)5ld(x21)dx reduces Eq.~3.35!
to the form

dA~y!

dy
5~12A~y!!2, A~y!y5050. ~3.36!

A solution of Eq.~3.36! is

A~y!5
y

11y
. ~3.37!

An exact solution of Eq.~1.1! for the d-potential thus is given bya(r )52RA(y)[2R @lQ(r
2R)#/@11lQ(r 2R)#. The scattering lengtha0 equalsa(r ) r 5`[2Rl/(11l). It is is singular
at l521, reflecting the existence of the zero energy bound state for the unit potential stre

FIG. 1. The ratio of the first QLM iteration to the exact solution for the attractive square well as a function of the po
strengthl ~axis x).

FIG. 2. Same as in Fig. 1, but for the second QLM approximation.
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1. Repulsive d-function potential

Let us now consider QLM approximations to the exact solution~3.37! in the case of the
repulsived-function potential,l.0. According to Eq.~2.22! they are given by the following
iteration sequence:

An11~y!5E
0

y

ds~12An
2~s!!expS 22E

s

y

dt(12An(t) D , ~3.38!

since the functional derivative of the right-hand part of Eq.~3.36! equals22(12A(y)). The
introduction of thenth approximationun(y)512An(y) to a function u(y)512A(y)5 1/(1
1y) helps to write recurrence relationship~3.38! in a simpler form:

un11~y!5expS 22E
0

y

dt un(t) D 1E
0

y

ds un
2~s!)expS 22E

s

y

dt un(t) D , ~3.39!

which coincides with the QLM iteration scheme~2.23! for Eq. ~3.36!, rewritten with the help of
the functionu(x)512A(x) as

u8~x!52u~x!2, u~0!51, ~3.40!

Since forx5` y5l, un(l) gives thenth approximation tou(l)512A0(l)5 1/(11l) where
A0(l) is the exact dimensionless scattering length.

Let us chose as a zero approximationu0(y)[u(0)51. The substitution in Eq.~3.39! for n
50 gives

u1~y!5 1
2 ~11e22y!. ~3.41!

One can see that already the first approximationu1(l) for l→` is finite and equals12, which
gives a value of12 for the approximate dimensionless scattering length vis-a-vis the exact v
A051. Each term in the perturbation series foru(l),

u~l!5 (
m50

`

~2l!m, ~3.42!

in this case is infinite while the perturbation expansion itself is divergent already forulu>1. The
comparison of perturbation expansion~3.42! with the perturbative expansion of the first QLM
approximation~3.41!,

u1~l!5 1
2 ~11e22l!512l1l22 2

3 l31 1
3 l42 2

15 l51O~l6!, ~3.43!

shows that in this approximation the perturbation series is correct up to the fourth term. The
second approximation also could be calculated analytically with the help of symbolic compu
program17 and gives the rather cumbersome expression

u2~l!521/4

22Aee22l
2e1/22l1A2p erfSe2l

&
DAee22l

e1/22e1/21l2A2p erfS 1

&
De1/2Aee22l

Aee22l
e1/2(2e22l12l11)

.

~3.44!
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For l→` the largest term both in the numerator and denominator ise1/21l. Thereforeu2(`)
5 1

4, which corresponds to the second QLM approximation toA0 being 3
4, a significant improve-

ment compared with the result, obtained in this limit in the first QLM approximation~3.41!. The
computation of the power series expansion yields

u2~l!512l1l22l31l42l51l62
62

63
l71

79

84
l82

4931

5670
l91O~l10!. ~3.45!

The perturbation series in the second QLM approximation is given correctly up to the se
term, while the coefficients of the eighth and ninth terms are different only by1

63 and 5
84, that is by

1.6% and 6%, respectively.
Analytic calculation of the third QLM approximation seems impossible but the power s

expansion could be evaluated with the help of the same program,17 which yields

u3~l!512l1l22l31l42l51l62l71l82l91l102l111l122l131l14

2
59 534

59 535
l151

1 904 891

1 905 120
l162

12 139 457

12 145 140
l17

1
161 721 779

161 935 200
l182

113 880 892 943

114 225 041 700
l191O~l20!. ~3.46!

In the third QLM approximation the first 15 terms of the perturbation series are given ex
while the next 5 terms have coefficients extremely close to being exact.

Summing up, the number of the terms given precisely in the zero, first, second, and third
approximations equals 1, 3, 7, and 15, increasing by 2, 22 and 23, respectively, that is accordin
to geometric progression withq52, exactly as one should expect from the quadratic law of
convergence. The numberNn of perturbation series terms reproduced exactly in thenth QLM
approximation is therefore

Nn5 (
k50

n

qk5
qn1121

q21
52n1121 ~3.47!

and for largern approximately doubles withn increasing by each unit. For example, the six
QLM approximation reproduces exactly 27215127 terms of the perturbation expansion, wh
the twelfth approximation reproduces already 2132158191 terms, and so on.

The numerical computation ofu3(`) gives 0.125, corresponding toA050.875, a finite and
gratifying result.

Comparison of the first three QLM approximationsun(l), n51,2,3 with exact solution
u(l)5 1/(11l) and its perturbation expansion~3.42! containing 15 terms~up tol14, inclusively!
for the d-function potential with the potential strengthl changing in the interval~0,10! is shown
graphically in Fig. 3. One can see that each subsequent QLM approximation reproduces th
solution better than the previous one up to infinite values of the coupling constant, while ev
15th-order perturbation theory is not able to describe the exact solution adequately beyl
51.

To prove the uniform quadratic convergence of QLM iterations let us note that the firs
second functional derivatives of the left hand side of Eq.~3.40! are22u(x) and22, respectively,
exactly as in the case of the repulsive square well which was discussed earlier. The extrema
of u(x), reached whenu8(x)52u2(x)50, is, obviously, zero, which, in view of boundar
condition u(0)51, means 0<u(x)<1. This allows one to choose the same functionsF(x)
522, G(x)52 as for the repulsive square well, and consequently results in the same expr
3.18 for k(b). Since it follows from Fig. 3 that the maximal difference between zero and
QLM approximationsiu1(x)2u1(x)i equals1

2, one obtains as beforeq1(b)< 1
4, which proves the

uniform quadratic convergence of the QLM iterations for all values ofb. This means that the
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convergence of subsequent QLM approximations to the exact scattering length for the rep
d-function potential is uniform and quadratic for all values of coupling constantl, including very
large and infinite ones.

2. Attractive d-function potential

For negativel the subsequent approximationsun(l) start to increase very rapidly withulu as
one can see, for example, from analytic expressions~3.41! and ~3.44!. According to discussion
before Eq.~2.38! we have to switch in this case in Eq.~3.40! to a new functionv(x)5 1/u(x),
which thus satisfies the trivial equationv8(x)51 with a boundary conditionv(0)51. The QLM
solution of this equation in thenth approximation, calculated from Eq.~2.23!, is vn(x)511x or
un(x)5 1/(11x) for any n, which means that this form of the equation for the attract
d-function potential generates an exact solution in any QLM approximation and there is no
for further investigation.

C. Inverse square potential

Let us consider now the inverse square potential

V~r !5
l

r 2 Q~R2r !, ~3.48!

wherel is the dimensionless coupling constant. As is well known,18 this potential produces a fal
to the center in case ofl,2 1

4. For r<R, Eq. ~1.1! for the scattering length could be written i
the form

A8~x!52lS 11
A~x!

x D 2

, A~0!50, ~3.49!

wherex5 r /R andA(x)5 a(r )/R are the dimensionless variable and variable scattering len
respectively; forx.1, A(x)[A(1) is a constant and represents the dimensionless scatt
lengthA0 . Looking for a solution in the formA(x)5xa(x), we obtain fora(x),

a8~x!52
1

x
@a~x!1l~11a~x!!2. ~3.50!

FIG. 3. Comparison of first three QLM approximationsun(l),n51,2,3, curves a, b, and c, respectively, with exa
solutionu(l)5 1/(11l), curve d, and its perturbation expansion~3.42!, curve e, containing 15 terms~up to l14, inclu-
sively!, for thed-function potential with the potential strengthl ~axis x) changing in the interval~0,10!.
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Note, that in this equation boundary conditiona(0)50 is not necessary:a(x) could be any
function regular atx50 so that conditionA(0)50 is satisfied. Settinga(x)5constant[A0 gives
an algebraic equationA052l(11A0)2 whose solution is given byA05212 1/2l (1
6A114l). Since for l→0 there should be no scattering only solution with the minus s
before the square root should be chosen, since only for this solutionA0→0 whenl→0. Setting
for convenienceg54l we finally obtain

A05212
2

g
~12A11g!. ~3.51!

The solution has a singularity, namely a branch point, atg521, that is atl52 1
4. The singularity

marks the beginning of interval2`,l,2 1
4 where a fall to the center takes place18 and the

expression for the scattering length becomes complex, its real and imaginary parts forg,21 are
given by

ReA05212
2

g
, Im A05

2

g
A212g. ~3.52!

Note that in view of our definition~3.6! of the scattering length one has to chose ImA0>0.18 The
perturbation series for the scattering length could be obtained by expansion of the square
Eq. ~3.51! in the power series which gives

A052
1

4
g1

1

8
g22

5

64
g31

7

128
g42

21

512
g51

33

1024
g62

429

16 384
g7

1
715

32 768
g8

2431

131 072
g91

4199

262 144
g102

29 393

2 097 152
g111

52 003

4 194 304
g12

2
185 725

16 777 216
g131

334 305

33 554 432
g142

9 694 845

1 073 741 824
g151

17 678 835

2 147 483 648
g16

2
64 822 395

8 859 934 592
g171

119 409 675

17 179 869 184
g182

883 631 595

137 438 953 472
g19

1
1 641 030 105

274 877 906 944
g202

6 116 566 755

1 099 511 627 776
g211

11 435 320 455

2 199 023 255 552
g22

2
171 529 806 825

35 184 372 088 832
g231

322 476 036 831

70 368 744 177 664
g242

1 215 486 600 363

281 474 976 710 656
g25

1
2 295 919 134 019

562 949 953 421 312
g262

17 383 387 729 001

4 503 599 627 370 496
g27

1
32 968 493 968 795

9 007 199 254 740 992
g282

125 280 277 081 421

36 028 797 018 963 968
g29

1
238 436 656 380 769

72 057 594 037 927 936
g302

14 544 636 039 226 909

4 611 686 018 427 387 904
g31

1
27 767 032 438 524 099

9 223 372 036 854 775 808
g321O~g33!. ~3.53!

The expansion is convergent16 for ugu,1, that is forulu, 1
4.
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Let us now turn our attention to QLM approximations and their convergence. The Q
iterations sequences are easiest to find by considering differential form 2.3 of Eq.~2.22! which
could be written as

an118 ~x!52
1

x Fg

4
~12an

2~x!!1an11~x!S 11
g

2
~11an~x!! D G . ~3.54!

The assumption thatan(x) are constant functions,an(x)[cn , immediately establish the QLM
recurrence relationship

cn1152g
12cn

2

412g~11cn!
. ~3.55!

Note that sincecn11→0 wheng→0 each approximation to the scattering amplitude vanishes
g50 as it should be since in the absence of the potential there is no scattering. The conve
of the QLM iteration sequence to the exact solution~3.51! is obvious. Indeed, forn→`, Eq.
~3.55! is

c`52g
12c`

2

412g~11c`!
, ~3.56!

whose solution vanishing forg→0 is given by the expression forA0 in Eq. ~3.51!. The QLM
approximationcn to the dimensionless scattering length for an infiniten therefore indeed isc`

[A0 as we wanted to show.
The explicit calculation of the first few QLM approximations, starting from the usual in

guessc050 gives

c152
g

412g
, ~3.57!

c2521/4
~16116g13g2!g

~818g1g2!~21g!
, ~3.58!

c3521/8
~4096112 288g114 080g217680g312016g41224g517g6!g

~1281256g1160g2132g31g4!~21g!~818g1g2!
. ~3.59!

These expressions, unlike that of the perturbation theory, give finite values also forg.1 or even
for g5`, where the first, second, and third QLM approximations give2 1

2, 2 3
4, 2 7

8 vis-a-vis the
exact valueA0521; the fourth approximation, not given here because of its cumbersome f
results in2 15

16, and so on. The convergence of these values is from above in agreement w
law of convergence for the concave functions proved in Sec. II, since the second func
derivative2 l/x2 of the right-hand side of Eq.~3.49! is negative for the repulsive potential.

The expansion of the QLM approximations in the power series in the coupling constant s
as in previous examples that each QLM iteration sums exactly many perturbation series
whose number is given by Eq.~3.47!. One obtains:

c050, ~3.60!

c152
1

4
g1

1

8
g22

1

16
g31

1

32
g42

1

64
g51O~g6!, ~3.61!
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c252
1

4
g1

1

8
g22

5

64
g31

7

128
g42

21

512
g51

33

1024
g6

2
107

4096
g71

177

8192
g82

593

32 768
g91O~g10!, ~3.62!

c352
1

4
g1

1

8
g22

5

64
g31

7

128
g42

21

512
g51

33

1024
g62

429

16 384
g71

715

32 768
g8

2
2431

131 072
g91

4199

262 144
g102

29 393

2 097 152
g111

52 003

4 194 304
g122

185 725

16 777 216
g13

1
334 305

33 554 432
g142

2 423 711

268 435 456
g151

4 419 705

536 870 912
g162

16 205 537

2 147 483 648
g17

1
29 852 049

4 294 967 296
g182

220 900 693

34 359 738 368
g191O~g20!, ~3.63!

c452
1

4
g1

1

8
g22

5

64
g31

7

128
g42

21

512
g51

33

1024
g62

429

16 384
g71

715

32 768
g8

2
2431

131 072
g91

4199

262 144
g102

29 393

2 097 152
g111

52 003

4 194 304
g12

185 725

16 777 216
g13

1
334 305

33 554 432
g142

9 694 845

1 073 741 824
g151

17 678 835

2 147 483 648
g162

64 822 395

8 589 934 592
g17

1
119 409 675

17 179 869 184
g182

883 631 595

137 438 953 472
g191

1 641 030 105

274 877 906 944
g20

2
6 116 566 755

1 099 511 627 776
g211

11 435 320 455

2 199 023 255 552
g222

171 529 806 825

35 184 372 088 832
g23

1
322 476 036 831

70 368 744 177 664
g242

1 215 486 600 363

281 474 976 710 656
g251

2 295 919 134 019

562 949 953 421 312
g26

2
17 383 387 729 001

4 503 599 627 370 496
g271

32 968 493 968 795

9 007 199 254 740 992
g28

2
125 280 277 081 421

36 028 797 018 963 968
g291

238 436 656 380 769

72 057 594 037 927 936
g30

2
3 636 159 009 806 727

1 152 921 504 606 846 976
g311

6 941 758 109 631 017

2 305 843 009 213 693 952
g321O~g33!. ~3.64!

Comparison of Eqs.~3.60!–~3.64! with Eq. ~3.53! shows that the QLM iterations withn
50,1,2,3,4 reproduce exactly 1,3,7,15,31 terms of the perturbation series, respectively, in
agreement with Eq.~3.47!, while the next few terms have coefficients extremely close to be
exact. The number of terms given precisely by the zero, first, second, third and fourth
approximations is increasing by 2, 22, 23 and 24, exactly as we saw earlier in the case of t
d-function potential and in precise agreement with the quadratic law of the convergence, pro
Sec. II. Due to simplicity of the algebraic recurrence relations~3.55! Eq. ~3.47! for numberNn of
the perturbation series terms given precisely by thenth QLM approximation could be checked fo
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higher QLM approximations. For example, in Sec. III B on the example of the repu
d-potential we concluded thatN65127. The simple calculation using a symbolic manipulati
program17 shows immediately that it is precisely the same for the inverse square potential. In
the first seven nonzero terms of the expansion in powers ofg of differenceA02c6 between exact
scattering length Eq.~3.51! and its sixth QLM approximation are

2
1

28 948 022 309 329 048 855 892 746 252 171 976 963 317 496 166 410 141 009 864 396 001 978 282 409 984
g127

1
127

57 896 044 618 658 097 711 785 492 504 343 953 926 634 992 332 820 282 019 728 792 003 956 564 819 968
g128,

2
16319

231 584 178 474 632 390 847 141 970 017 375 815 706 539 969 331 281 128 078 915 168 015 826 259 279 87
g129,

1
707 135

463 168 356 949 264 781 694 283 940 034 751 631 413 079 938 662 562 256 157 830 336 031 652 518 559 74
g130,

2
92 988 123

3 705 346 855 594 118 253 554 271 520 278 013 051 304 639 509 300 498 049 262 642 688 253 220 148 477 9
g131,

1
2 473 622 041

7 410 693 711 188 236 507 108 543 040 556 026 102 609 279 018 600 996 098 525 285 376 506 440 296 955 9
g132,

2
110 916 205 323

29 642 774 844 752 946 028 434 172 162 224 104 410 437 116 074 403 984 394 101 141 506 025 761 187 823 6
g133,

~3.65!

exactly as one expects from Eq.~3.47!. In addition, one can see that the next terms of
perturbation series are also reproduced extremely well, their difference with the precise
being infinitesimally small. Namely, the coefficient of 127th power ofg is about 3.45310276, the
coefficient of 128th power is about 2.19310274, and so on.

For the attractive potential expressions~3.57!–~3.59! become singular, with the number o
zeros of denominators increasing with each iteration. This, of course, is a reflection of the fa
the exact scattering lengthA0 has a branch point atg521 and a cut line along the real ax
betweeng521 andg52`. Whenn is increasing, the poles are getting closer and closer to e
other and fuse together atn5`, where, as we saw earlier, the exact amplitude and its singul
are reproduced.

To handle the singularities one can try, as we have discussed earlier, to consider instea
function a(x) a new functionb(x) such thata(x)5 1/b(x). Substitution of Eq.~3.65! into Eq.
~3.50! leads to

b8~x!5
1

x
@b~x!1l~11b~x!!2, ~3.66!

which is different from Eq.~3.50! only by the sign of the right-hand side. The QLM iteratio
sequence is found as before by considering differential form~2.3! of Eq. ~2.22!:

bn118 ~x!5
1

x Fg

4
~12bn

2~x!!1bn11~x!S 11
g

2
~11bn~x!! D G , ~3.67!

which leads under a previous assumption ofbn being a constant function,bn[cn , to exactly the
same QLM recurrence relations~3.55!. Again, the convergence of the QLM series follows fro
the fact that atn→` we have the same Eq.~3.56!, as before, with only distinction—since now th
scattering amplitude in the limitn5` is given by 1/b` , one should take a solution of thi
equation which is going to infinity atg→0 rather than to zero. Such solution is given by
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b`5212
2

g
~11A11g!. ~3.68!

The n5` QLM approximation to the scattering lengthA0 thus equals to

1

b`
5

1

212
2

g
~11A11g!

[212
2

g
~12A11g!, ~3.69!

which indeed coincides exactly with expression~3.51! for A0 .
Since the change tobn(x)5 1/an(x) does not give anything new, the only way to avoid t

singularities in the case of attractive potential seems therefore to use the fact that the ze
proximation could be an arbitrary, not necessarily real, number, and to choosec0 as a complex
number with a positive imaginary part of the same order as a real part. The necessity of ch
c0 complex in the case of the attractive potential follows also from the fact that in this case th
to the center happens. The inelastic cross section for zero energies, determined by the im
part of theS-wave scattering length,18 could not therefore be zero; however, from recurren
relations~3.55! it is obvious that unless the initial guessc0 is a complex number, all subseque
QLM approximations are real.

Comparison of real and imaginary parts of the scattering length with those calculated
second and third QLM approximations for an arbitrary initial guessa0511 i and for coupling
constant valuesulu<2 (ugu<8) is shown in Figs. 4–7. One can see that already for the sec
QLM iteration the agreement between the exact scattering length and the QLM approxima
it is quite good. It improves visibly for the next QLM iteration. For the fourth and next iterati
the distinction between exact and approximate scattering length is difficult to see and theref
correspondent graphs are not shown.

D. Inverse quartic potential

Our next and last example is the inverse quartic potential of radiusr,

V~r !5l
R2

r 4 Q~r2r !, ~3.70!

FIG. 4. Comparison of real parts of the exact scattering length~curve a! and of the second QLM approximation to it~curve
b! for inverse square potential,ugu<8.
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where l is a dimensionless coupling constant. Forr<r the equation for a variable scatterin
lengtha(r ) is given by

da~r !

dr
52l

R2

r 4 ~r 1a~r !!2, a~0!50, ~3.71!

while the scattering lengtha0 equalsa(r). Introduction of the dimensionless functiona(x)
5 a(r )/RAl and of the dimensionless variablex5 r /RAl reduces Eq.~3.71! to

da~x!

dx
52

1

x4 ~x1a~x!!2, a~0!50, ~3.72!

whose solution is obviously given by

a~x!52
x

11x
. ~3.73!

Since for r 5r x5x05r/RAl, and a(r/RAl)52 r/(r1RAl), the dimensionless scatterin
lengthA05a0 /R is given by

FIG. 5. Comparison of imaginary parts of the exact scattering length~curve a! and of the second QLM approximation t
it ~curve b! for inverse square potential,ugu<8.

FIG. 6. Same as in Fig. 4, but in the third QLM approximation.
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A05AlaS r

RAl
D 52

rAl

r1RAl
[2

r

R

y0

11y0
, y05

1

x0
5

R

r
Al, ~3.74!

which coincides with that found in Ref. 19 and also in Refs. 4, 11, and 14, wherer is set to`. The
solution has a singularity, namely a branch point, atl50. The singularity marks the beginning o
interval2`,l,0, where potential is attractive and a fall to the center takes place18,20and where
the expression for the scattering lengthA0 becomes complex. We consider therefore only rep
sive potentials.

As always, let us start from the perturbation expansion~3.7!, whose coefficientsan(r ) are
calculated from recurrence relations~3.8!. In view of a strong singularity of the potential at th
origin from Eq.~3.9! it follows, however, that first coefficienta1(r ), and therefore all the others
are infinite. The perturbation expansion does not exist, which, of course, is a consequence
branch point singularity of the scattering length directly atl50.

There is, however, no problems with the QLM approximations to solution~3.73!, whose
iteration sequence in this case is given by

an11~x!52E
0

x ds

s4 @s22an
2~s!#expS 22E

s

x dt

t4 (t1an(t)) D . ~3.75!

Starting from the usual initial guessa0(x)50 one easily computes4,11 the first iterationa1(x)
52exp(1/x2*0

x ds/s2 e2 1/s2
), which substitution s5 1/At reduces to a form a1(x)

52 1
2exp(1/x2*1/x2

` dt/t1/2e2t)[2 Ap/2e1/x2
erfc(1/x). The dimensionless scattering length in t

first QLM approximation therefore is

A0,15Ala1~x0!52
Ap

2

r

R
y0ey0

2
erfc~y0!, ~3.76!

where erfc(x)512erf(x) is the complementary error function.16 One can see thatA0,1, like A0 , is
a function ofy0 and therefore has the same branch point singularity atl50 as the exact scatterin
length.

To obtain a higher QLM approximation it is convenient to remove a fourth power of vari
in the denominators of the integrals in Eq.~3.75!. To do this, let us introduce a new variabley
5 1/x and a new functionb(x)5a(1/x) with a boundary conditionb(`)5a(0)50. Equation
~3.72! then has the form

db~y!

dy
5~11yb~y!!2, b~`!50, ~3.77!

whose exact solution is given by

b~y!52
1

~11y!
, ~3.78!

while Eq. ~3.75! is written as

bn11~y!52E
y

`

ds@12s2bn
2~s!#expS 2E

s

y

dtt(11bn(t)) D . ~3.79!

The nth QLM approximation toa(x) is an(x)5bn(1/x)[bn(y) so thata(x0)[b(y0) and the
initial guess could be chosenb0(x)[b(`)50. In the long ranged caser5`, y050, and, since
erfc(0)51, A0,152 Ap/2Al520.886Al, a very good approximation11 to exact valueA0

52Al. The next QLM approximation, which can be computed numerically, results inA0,2

520.988Al, a precision of 1.2%. For comparison, calculation ofA0 in the second CBF approxi
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mation, Eq.~2.21!, which in this case reduces to a simple minded linearization approach,11 based
on neglecting a nonlinear term, givesA0,2520.954Al, precision of only 4.6%. In the infinite
coupling finite range casey0 is very large and one can use asymptotic expression~3.16!, which
gives A0,152 1

2r/R, a reasonable first approximation to exact valueA052 r/R. In the next,
second QLM approximation, the numerical computation yeldsA0,252 3

4r/R, a significant im-
provement.

The uniform quadratic convergence of QLM sequence~3.75! is proved, according to Eq
~2.34!, by showing that the first convergence coefficientq1(b) is less than unity. In our case, w
have chosena0(x)[0 and thereforeq1(b)5k(b)ia1(x)i<k(b), since in view of the properties
of the complimentary error function16 ua1(x)u<1 for all x.

To estimatek(b) we have to knowG(x) andF(x), which have to satisfy inequalities~2.31!.
Since the first and the second derivatives of the right-hand side of Eq.~3.72! are 2 2/x4 (x
1a(x)) and2 2/x4, respectively, and since the scattering length for the repulsive potential h
poles and should be finite,a(x)<M whereM is some positive constant, and therefore one
chooseG(x)5F(x)[F1(x)5 2M /x4. For small (x<e), wheree!1 is some small but finite
number, looking fora(x) in the form a(x);ax1bx2 and substituting in Eq.~3.72! gives a
521, b51. The first functional derivative for smallx therefore equals2 2/x2 and one can choos
in this case negative boundary functionF(x)[F2(x)52 2/x2 andG(x)5uF2(x)u.

Separating in Eq.~2.35! for k(b) smaller and larger values ofx gives

k~b!5
1

2 UC expE
0

e

dt F2~ t !21U, ~3.80!

whereC5exp*e
bdt F1(t) is a finite constant even for infinite intervalb5`. Since exp(*0

edtF2(t))
5exp(22*0

bdt1/t2)5exp(2/t u10
e )50, Eq. ~3.80! givesk(b)[ 1

2 und thusq1(b)< 1
2, which proves

uniform quadratic convergence of QLM iteration sequencean(x0), Eq. ~3.75!, on the whole
interval ~0,̀ !, that is for all values of coupling constantl, including large and infinite ones.

IV. CONCLUSION

Summing up, we have reformulated the proof of the convergence of the quasilineari
method~QLM! of Bellman and Kalaba1,2 by removing unnecessary restrictive conditions gen
ally not fulfilled in physical applications, and have generalized the proof for large or infi
domains of variables and for functionals which are singular at some points in the domain. W
have shown how to deal with solutions which are infinite at certain values of variable such a
example, scattering amplitudes at values corresponding to bound state energies, etc.

FIG. 7. Same as in Fig. 5, but in the third QLM approximation.
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In order to make presentation as simple and short as possible, we have limited ourselv
to the case of the first-order nonlinear ordinary differential equation in one variable, which p
cally covers the quantum mechanics of one particle in a central field~in this case the Schro¨dinger
equation for a wave function could be rewritten as the nonlinear Ricatti equation for its log
mic derivative! though the same modernization of the Bellman and Kalaba proof1,2 could be
provided also for a general nonlinear ordinary or partialnth order differential equations in th
N-dimensional space.

In order to highlight the power of the method in Sec. III we have considered exampl
different singular and nonsingular, attractive and repulsive potentialsV(r ) for which the nonlinear
first-order ordinary differential equation~1.1! for theS-wave scattering lengtha05a(`) obtained
in variable phase approach4,5 could be solved exactly and have compared the iterations obta
by the Bellman–Kalaba linearization method with exact solutions and with the usual perturb
theory. The results could be summed up as follows.

~i! The sequenceun(x), n51,2, . . . of QLM iterations, Eq.~2.22!, convergesuniformly and
quadratically to solutionu(x) of Eq. ~2.2!. For the convergence on the interval@0,b# is enough
that an initial guess for zero iteration is sufficiently good to ensure the smallness of just o
convergence coefficientsqm(b)5k(b)ium112umi , wherek(b) is given by Eq.~2.32! or Eq.
~2.35!. In addition, for strictly convex~concave! functionals f (u(x),x) difference un11(x)
2un(x) is strictly positive~negative!, which establishesthe monotonicityof the convergence from
below ~above!, respectively, on this interval.

~ii ! The QLM treats the nonlinear terms as a perturbation about the linear ones1,2 and is not
based, unlike perturbation theories, on the existence of some kind of small parameter. As a
it is able to handle, unlike the perturbation theory, large or even infinite values of the cou
constant.

~iii ! Comparison of QLM with the perturbation theory shows that each QLM iteration re
duces and sums many orders of perturbation theory exactly and in addition many more
approximately. Namely, in agreement with the quadratic pattern of the convergence, the n
Nn of the terms of the perturbation series, reproduced exactly in thenth QLM approximations,
equals 2n1121, and approximately the same number of terms is reproduced approximately
number of the exactly reproduced terms thus doubles with each subsequent QLM approxim
and reaches, for example, 127 terms in the sixth QLM approximation, 8191 terms in the tw
QLM approximation and so on.

~iv! QLM handles without any problems not only singular potentials, like the inverse squ
potential, for which the perturbation theory is divergent outside a narrow interval of the valu
the coupling constant, but even super singular potentials, like reverse quartic potential, for
perturbation series are not existent at all, since their calculation leads to infinities in each o
the perturbation expansion.

~v! As we saw in all of our examples, QLM easily handles different singularities, like pole
branch point singularities, reproducing correct type of the singularity already in first iteratio

~vi! Although the analytic calculations of third and higher approximation in QLM, like in
usual perturbation theory, in most cases~excluding inverse square potential! seem impossible, the
simplicity of the QLM iterational sequence Eq.~2.22! ~which, unlike perturbation theory, con
taines no sums on intermediate energy states! assures nonproblematic numerical calculation
higher order iterations, while the extremely fast convergence of the method allows accurat
mate of the solution after relatively small number of iterations.

In view of all this, since most equations of physics, from classical mechanics to quantum
theory, are either not linear or could be transformed to a nonlinear form, the quasilinear m
may turn out to be extremely useful and in many cases more advantageous than the pertu
theory or its different modifications, like expansion in inverse powers of the coupling cons
1/N expansion, etc.



Acad-
s and

ntum

6291J. Math. Phys., Vol. 40, No. 12, December 1999 Quasilinearization method and its verification . . .
ACKNOWLEDGMENTS

This research was supported by the Israeli Science Foundation founded by The Israeli
emy of Sciences and Humanities. The author is indebted to Dr. A. Gal for useful discussion
constructive comments on this article.

1R. Kalaba, J. Math. Mech.8, 519 ~1959!.
2R.E. Bellman and R.E. Kalaba,Quasilinearization and Nonlinear Boundary-Value Problems~Elsevier, New York,
1965!.

3V. Lakshmikantham and A.S. Vatsala,Generalized Quasilinearization for Nonlinear Problems, Mathematics and its
Applications Vol. 440~Kluwer, Dordrecht, 1998!.

4F. Calogero,Variable Phase Approach to Potential Scattering~Academic, New York, 1965!.
5V.V. Babikov, Method Fazovych Funkzii v Kvantovoi Mechanike (Variable Method of Phase Functions in Qua
Mechanics)~Nauka, Moscow, 1968!.

6A.A. Adrianov, M.I. Ioffe, and F. Cannata, Mod. Phys. Lett. A11, 1417~1996!.
7M. Jameel, J. Phys. A21, 1719~1988!.
8K. Raghunathan and R. Vasudevan, J. Phys. A20, 839 ~1987!.
9M.A. Hooshyar and M. Razavy, Nuovo Cimento B75, 65 ~1983!.

10R. Courant and D. Hilbert,Methoden der Mathematischen Physik, ~Springer, Berlin 1937!, Vols. I and II.
11S. Fluegge,Practical Quantum Mechanics~Springer, New York 1974!, Vols. I and II.
12V. Volterra, Theory of Functionals~Blackie and Son, London, 1931!.
13R.F. Dashen, Nuovo Cimento28, 229 ~1963!; J. Math. Phys.4, 388 ~1963!.
14V.V. Babikov, Sov. Phys. Usp.10, 271 ~1967!.
15E. Picard, J. de Math.6, 145 ~1890!.
16I.S. Gradsteyn and I.M. Ryzhik,Table of Integrals, Series, and Products~Academic, New York 1994!.
17B.W. Charet al., Maple V Library Reference Manual and Computer Program~Springer, New York, 1991!.
18L.D. Landau and E.M. Lifshitz,Quantum Mechanics~Pergamon, New York 1977!.
19F. Calogero, Phys. Rev.135, B693 ~1964!.
20R.G. Newton,Scattering Theory of Waves and Particles~Springer, New York, 1982!.


